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Abstract. We explore the possibility of experimentally detecting a predicted h1 [IG(JP C) = 0−(1+−)] state
of hidden charm made out from the D∗D̄∗ interaction. The method consists in measuring the decay of
X(4660) into ηD∗D̄∗, determining the binding energy with respect to the D∗D̄∗ threshold from the shape
of the D∗D̄∗ invariant mass distribution. A complementary method consists in looking at the inclusive
X(4660) → ηX decay, searching for a peak in the X invariant mass distribution given by the missing
X(4660), η mass. We make calculations to determine the partial decay width of X(4660) → ηh1 from the
measured X(4660) → ηD∗D̄∗ distribution. This estimation should serve in an experiment to foresee the
possibility of detecting the h1 state on top of the background of inclusive events.

1 Introduction

The world of heavy quarks, charm and beauty, is experi-
encing a fast development. A rich spectrum of new states
is being found in present laboratories by the collaborations
BABAR, CLEO, BELLE, BES [1–4]. The coming facility
of FAIR will certainly add new states corresponding to
quantum numbers which are not accessible with present
machines. The states capturing more attention are those
that do not fit within the standard picture of mesons as
qq̄ or baryons as qqq, and which require more complex
structures, like tetraquarks, meson molecules, or hybrids
including possible glueballs, for mesons, or pentaquarks
and meson baryon molecules for baryons. Some of these
states, heavy but with no open charm or beauty, would be
candidates for quarkonium, qq̄ pairs with heavy quarks,
but they do not fit within the ordinary spectrum of such
states and they have been called X,Y,Z states. The search
for more states and theoretical work to understand their
structure is a thriving field at present.

The possible existence of more sophisticated states than
qq̄ for mesons or qqq for baryons, like the multiquark
states, hybrid mesons and mesonic molecules has been
early discussed within quark models [5–8]. More recently,
the discovery of the X,Y,Z states has stimulated much
work in this direction [9–15].

One of the methods that has proved efficient to study
such states is the use of effective field theories. Much be-
fore the X,Y,Z states were discovered, effective field the-
ories were used to study the interaction of mesons among
themselves or mesons with baryons. In many cases if was
found that the interaction between these hadrons was at-
tractive and strong enough to generate bound states or

resonances, which were called dynamically generated, lead-
ing to some kind of molecular states of two hadrons. The
use of chiral Lagrangians with the application of unitary
techniques in coupled channels led to the chiral unitary
approach, nowadays broadly used, which was very success-
ful describing the interaction of hadrons and making pre-
dictions for bound states and resonances that have been
verified experimentally (see ref. [16] for a review on this
issue).

The existence of heavy meson molecules was predicted
almost 40 years ago by Voloshin and Okun [17]. In the
charm sector, the field of meson molecules has been much
studied [12, 18–34] and many of the observed states with
hidden charm and open charm are shown to be consistent
with the molecular interpretation, with a good reproduc-
tion of the different observables of those states.

One of the important steps in this direction was the
realization that some of the X,Y,Z states could be inter-
preted in terms of vector-vector molecules with hidden
charm [35]. This work follows the work on the ρρ inter-
action of ref. [36] using the local hidden gauge approach
[37–39], where the f2(1270) and f0(1370) states were inter-
preted as quasibound ρρ states.1 The work was extended
to the SU(3) sector in ref. [41] and more resonances were
found, most of which could be associated to known reso-
nances. One of the resonances predicted in ref. [41] was an
h1 resonance with quantum numbers IG(JP C) = 0−(1+−)
and mass around 1800 MeV, which couples to K∗K̄∗. This
resonance is not catalogued in the PDG [42] and there are
reasons for it since due to its negative C-parity it cannot

1 For a different interpretation of the f0(1370) as a compo-
nent of an unmixed scalar octet see ref. [40].
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decay into pairs of ρρ, ωω and equally does not couple
to φφ. For reasons of parity, coming from two vectors in
L = 0, it does not decay into a pair of pseudoscalar mesons
either. This largely limits the number of decay channels,
rendering the K∗K̄∗ as the channel to search for it. How-
ever, since the state lies around the K∗K̄∗ threshold, a
neat peak might be difficult to see and would be distorted
by the limited phase space around threshold. Neverthe-
less, it was very recently found [43] that a peak around
the K∗K̄∗ threshold, seen in the J/ψ → ηK∗0K̄∗0 reac-
tion observed at BES [44], was naturally interpreted as a
signature of the h1 resonance predicted in ref. [41].

One can guess that the h1 state made out of K∗K̄∗

could have an analogue in the D∗D̄∗, and indeed this
is the case as found in ref. [35]. There such a state was
found around 3945 MeV and couples mostly to D∗D̄∗ and
less strongly to D∗

sD̄
∗

s . The same state, with mass 3955
± 16 MeV, is obtained using heavy quark spin symmetry
in refs. [27, 28]. For the same reasons as before, this state
does not couple to any other pair of vector mesons, except
K∗K̄∗, but with such a tiny coupling that makes fruitless
its investigation in this channel. Once again we have to
resort to the D∗D̄∗ channel, with the added problem that
now it is a bound state in this channel and the D∗ has
a very small width. Yet, as we shall see, it is possible to
find a signature of the resonance by looking at the D∗D̄∗

spectrum in the X(4660) → ηh1 and X(4660) → ηD∗D̄∗

reactions. The choice of the X(4660) is made in order to
find a similar reaction as the one of ref. [44], replacing the
J/ψ by the only analogous vector which has enough en-
ergy to produce the reaction. The X(4660) is catalogued
in the PDG as a ??(1−−) state. Yet, the G-parity should
be negative since it decays into ψ(2S)π+π−. And the the-
oretical papers written on this state also attribute to it
zero isospin [45–47].

Another way to find the predicted resonance would
be to search in the inclusive X(4660) → ηX reaction,
where X is undetermined,2 but looking at the X invari-
ant mass distribution determined from the observation of
the η alone. This might not be easy if one has a large back-
ground of X(4660) → ηX events, since one must look for
a probably small signal over a relatively large background.
It is then most convenient to know the rate expected be-
fore planning the experiment. This is one additional in-
formation we provide here. We show that the knowledge
of the X(4660) → ηD∗D̄∗ partial decay width allows us
to determine the partial decay width for X(4660) → ηh1.
The rates obtained for these two decay modes are of com-
parable size, and the strength of the X(4660) → ηh1 is
concentrated in a narrow window of invariant masses of
h1, its small width. Thus, provided that the integrated
X(4660) → ηD∗D̄∗ width is of the order of the back-
ground of the X(4660) → ηX reaction, the probability
that a neat peak in the X(4660) → ηX inclusive reac-
tion can be seen is large. The theoretical study of the

2 We denote with X whatever undetermined state appears as
a decay product together with the η meson. To avoid confusion
with the state X(4660), this one will always appear in this work
with its nominal mass between parenthesis.
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Fig. 1. Decay mechanism of the X(4660) resonance. In (a),
the three-body decay X(4660) → ηD∗0D̄∗0 is shown. In (b) we
represent the decay X(4660) → ηh1, where the h1 is generated
by the D∗D̄∗ interaction.

X(4660) → ηD∗D̄∗ and X(4660) → ηh1 reactions is the
topic of the present paper, with the purpose of providing
information that motivates the experimental search of this
otherwise elusive resonance.

2 Formalism

In studying the X(4660) → ηh1 and X(4660) → ηD∗0D̄∗0

decay processes, we shall follow the formalism of ref. [43],
which closely follows the idea of refs. [48,49] in the J/ψ →
φf0(980) decay. The formalism is suited to study the decay
of a particle into a spectator and a dynamically generated
resonance. Since the latter is produced via the interaction
of a pair of particles, the mechanism consists of a primary
decay into the spectator and the pair of particles (without
interaction), followed by the interaction of the pair to gen-
erate the resonance. For the particular case that we study
here, the corresponding Feynman diagrams are depicted
in fig. 1. However, we shall differentiate two situations. In
the first one, the I = 0 D∗0D̄∗0 pair is explicitly present
in the final state [fig. 1(a)]. In the second one, the η and
the h1 resonance are produced, regardless of which its de-
cay channel is [fig. 1(b)]. This situation is faced when the
inclusive X(4660) → ηX decay is studied, and one looks
for a peak in the square of the invariant mass distribution

(PX(4660) − pη)
2
.

The h1 which is the subject of this work is dynamically
generated in the D∗D̄∗ interaction in I = 0. To write the
amplitude t for this process, we shall make use of the on-
shell factorized form of the Bethe-Salpeter equation [50],

t(s) = v(s) + v(s)G(s)t(s)

= v(1 +Gt) =
(
v−1 −G

)
−1

, (1)

where s ≡ M2
inv is the invariant mass squared of the D∗D̄∗

system. The function v in eq. (1) is the potential for the
D∗D̄∗ interaction in I = 0 and L = 0. Two different forms
of the potential will be used in this work. The first one
is the dynamical potential of ref. [35], and the second one
is a constant potential. We will discuss both approaches
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below. In eq. (1), G is the one-loop two-point function for
the D∗D̄∗ system, conveniently regularized. In this work,
we use a once-subtracted form for this function. For the
case of equal masses running through the loop, G can be
written as

G(s) =
1

16π2

(
a(µ) + log

m2
D∗

µ2
− σ log

σ − 1

σ + 1

)
, (2)

with σ(s) =
√

1 − 4m2
D∗/s. The parameter a(µ) is the

subtraction constant, and it depends on the regularization
scale µ such that a(µ) − logµ2 is independent of µ, that
is, there is only one free parameter. The presence of the
function G in eq. (1) ensures the elastic unitarity of the
amplitude t above threshold,

√
s > 2mD∗ ,

Im t−1(s) = −Im G(s) =
σ(s)

16π
. (3)

The state h1 appears as an I = 0 bound state (with
mass Mh1

≡ √
sh1

< 2mD∗) of the D∗D̄∗ system, that is,
as a pole in the physical Riemann sheet of the amplitude
in eq. (1),

t =
g2

s− sh1

, (4)

where g is the coupling of the state h1 to theD∗D̄∗ system.
The quantity gG is related to the wave function around
the origin [51]. The coupling g can be calculated as the
residue of the amplitude at the pole s = sh1

. However,
from eq. (4), it can be also calculated as:

1

g2
=
dt−1

ds
=
dv−1

ds
− dG

ds
, (5)

where the derivative is obviously evaluated at s = sh1
.

In the case of small binding energies B = 2mD∗ − Mh1
,

this derivative is driven by the unitarity term in eq. (3)
analytically extrapolated below threshold, and it can be
simplified to give:

g2 = 64πmD∗

√
4BmD∗ , (6)

which is nothing but Weinberg’s formula for the coupling
of a weakly bound state [52, 53].

Now we discuss about the potential v for the D∗D̄∗

interaction in I = 0 appearing in eq. (1). This potential
can be calculated within the hidden gauge formalism, as in
ref. [35], where the h1 state we are studying was predicted.
The expression for this potential is given by:

v =

(
9 + b

(
1 − 3s

4m2
D∗

))
g2

D∗ (7)

with gD∗ = mD∗/2fD∗, fD∗ ≃ 146 MeV, and where the
constant b is given in terms of the masses of the vector
mesons, having a value b = 27.6. Since the potential is
fixed in this case, the only free parameter of the ampli-
tude t is the subtraction constant a(µ). Hence, once this
constant is fixed, the amplitude is completely determined.
In particular, the position of the bound state is also fixed.

This argument can be also reversed and for a given posi-
tion of the bound state there corresponds a unique value
of the subtraction constant a(µ).

We will also make use of a constant (energy indepen-
dent) potential. This is a good approximation for the lim-
ited range of energies Minv that will be studied in this
work. The use of such a potential also provides some model
independence to our calculation. Besides its simplicity, a
constant potential has other advantages, as we discuss
now. If there is a bound state, the potential is such that

G(sh1
) = v−1 ≡ Gh1

, (8)

so that the amplitude in eq. (1) can be simplified to:

t =
1

Gh1
−G

. (9)

It is worth noting that the difference in the denominator
does not depend on the subtraction constant a(µ) used
in the loop function G, eq. (2).3 In this way, the ampli-
tude is fully determined by means of just one parameter,
the mass of the bound state. Furthermore, also the cou-
pling g is entirely determined by the mass of the bound
state, since the derivative of the inverse of the potential in
eq. (5) disappears. The coupling g is then given solely by
the derivative of the G function, which is independent of
the subtraction constant. In the end, this means that the
whole amplitude is determined by the bound state mass
and unitarity.

We now discuss the decay processes depicted in fig. 1.
Let us start with the three-body decay process of fig. 1(a).
We shall assume that the primary production vertex for
X(4660) → ηD∗D̄∗, with the D∗D̄∗ pair in I = 0, is of
short-range nature, that is, a constant in the field theory
formalism. We denote by VP this bare vertex. The full

amplitude T̃P for that process must take into account the
D∗D̄∗ final state interaction, as shown in fig. 1(a). The
full amplitude is then:

T̃P =
VP√

2
(1 + vG+ · · · ) =

VP√
2

(1 + vGt) =
VP√

2

t

v
, (10)

where eq. (1) has been taken into account. The factor
1/

√
2 appears because of the D∗0D̄∗0 component of the

I = 0 D∗D̄∗ system. Making use of eq. (10), the differen-
tial decay width for the process X(4660) → ηD∗0D̄∗0 can
be written as:

dΓηD∗0D̄∗0

dMinv
=

|T̃P |2
32π3

pη p̃D∗

M2
X(4660)

=
|VP |2
64π3

pη p̃D∗

M2
X(4660)

∣∣∣∣
t

v

∣∣∣∣
2

, (11)

3 If the loop function is regularized by means of a cutoff Λ,
then this difference is independent of the cutoff in the Λ → ∞

limit.
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where pη is the η momentum in the rest frame of the

X(4660) decaying into an η and a D∗0D̄∗0 pair with in-
variant mass Minv,

pη =
λ1/2(M2

X(4660),m
2
η,M

2
inv)

2MX(4660)
, (12)

and p̃D∗0 is the D∗0 momentum in the rest frame of the
D∗0D̄∗0 system,

p̃D∗0 =
λ1/2(M2

inv,M
2
D∗0,M2

D∗0)

2Minv
. (13)

In eqs. (12) and (13), λ(x, y, z) is the Kählen or triangle
function, λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx.

We now discuss the X(4660) → ηh1 two-body decay
process, for which the the amplitude TP can be obtained
from fig. 1(b),

TP = VPGh1
g , (14)

where Gh1
≡ G(M2

h1
) is the loop function calculated at

the mass of the h1 state. Then, the decay width for this
process, Γηh1

, can be calculated as:

Γηh1
=

|TP |2
8π

pη,h1

M2
X(4660)

=
|VP |2

8π

pη,h1

M2
X(4660)

G2
h1
g2 , (15)

where pη,h1
is pη in eq. (12) calculated for Minv = Mh1

.
We can now divide eqs. (11) and (15) to get rid of the un-
known vertex VP , and express the differential decay width
of eq. (11) in terms of known quantities,

dΓηD∗0D̄∗0

dMinv
=

Γηh1

8π2g2

pηp̃D∗0

pη,h1

∣∣∣∣
t

v Gh1

∣∣∣∣
2

. (16)

This is the final expression for the differential decay width
when one uses a dynamical potential, as in eq. (7). Un-
der the assumption of a constant potential, however, this
expression can be further simplified by means of eqs. (8)
and (9) to:

dΓηD∗0D̄∗0

dMinv
=

Γηh1

8π2g2

pηp̃D∗0

pη,h1

∣∣∣∣
1

Gh1
−G

∣∣∣∣
2

. (17)

It is worth stressing that in this case, the differential decay
width depends only on the mass of the bound state (up to
the unknown width Γηh1

). Another useful quantity that
we can calculate is the following ratio,

R =
Γηh1

ΓηD∗0D̄∗0

, (18)

where ΓηD∗0D̄∗0 is the integrated differential decay width

in eq. (16),

ΓηD∗0D̄∗0 =

∫
dMinv

dΓηD∗0D̄∗0

dMinv
, (19)

where the integration runs over 2m∗

D < Minv < MX(4660)−
mη, the available range of energies for the D∗0D̄∗0 system.

d
Γ
/
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M
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Fig. 2. (Color online) Differential decay width for the pro-
cess X(4660) → ηD∗0D̄∗0. The solid, dashed, dot-dashed,
and double-dot-dashed lines correspond to binding energies
B = 100, 70, 40, and 10 MeV, respectively. The shaded area
stands for a phase space distribution. All curves are normalized
so has to have the same area. (a) Results obtained with the dy-
namical potential, eqs. (7) and (16). (b) Results obtained with
the constant potential, eqs. (8) and (17).

3 Results

In fig. 2 we show the X(4660) → ηD∗0D̄∗0 differential
decay width in terms of Minv for the four binding ener-
gies B = 100, 70, 40, and 10 MeV, with solid, dashed,
dot-dashed, and double-dot-dashed lines, respectively. In
fig. 2(a) results obtained with the dynamical potential ap-
proach [eqs. (7) and (16)] are shown. Note that if there is a
bound state, there is a one-to-one correspondence between
the binding energy B and the subtraction constant a(µ).
For the four cases represented in fig. 2(a), the subtraction
constant is given in Table 1. Analogously, the results of
fig. 2(b) stem from using a constant potential, eqs. (8)
and (17). In both cases, the curves are compared with a
phase space distribution, proportional to pη p̃D∗ [eqs. (12)
and (13)]. In order to have a meaningful comparison, all
the curves are normalized so that the area below them is
the same. As we can see, even for large binding energies of
h1 the shape of the mass distribution differs substantially
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Fig. 3. (Color online) The ratio R [eqs. (18) and (19)] as a
function of the binding energy B of the h1 state. The blue solid
line shows the results for the dynamical potential approach,
eqs. (7) and (16). The red dashed line, in contrast, is obtained
with a constant potential, eqs. (8) and (17).

Table 1. Coupling of the h1 state to D∗D̄∗. For each binding
energy (first column) used in fig. 2 to calculate the differential
decay width of the X(4660) → ηD∗0D̄∗0 process, we give the
coupling as calculated with eq. (5) for a dynamical potential,
eq. (7) (second column), or with a constant potential, eq. (8)
(third column). We also show the coupling as calculated with
Weinberg’s formula, eq. (6) (fourth column). The subtraction
constant a(µ) (for µ = 1 GeV) needed in the loop function G

when the dynamical potential is used to reproduce the binding
energy is shown in brackets in the second column.

B (MeV) g (GeV) [a(µ)] g (GeV) g (GeV)
(Dyn.) (Cons.) (Weinberg)

100 21.2 [−2.1] 21.5 19.0
70 19.1 [−2.0] 19.3 17.4
40 16.3 [−1.9] 16.4 15.1
10 11.1 [−1.7] 11.2 10.7

from phase space. As the binding energy decreases, the
differences become more significant. It is clear that with
reasonable statistics the shape can be well determined and
the binding energy can be obtained from there, by using
any of the methods presented in this work.

In fig. 3 we plot the value of R [eq. (18)] as a func-
tion of the binding energy. As we can see, the values of
R range from 5 to 90 within the range of the considered
binding energies. It is interesting to see that the values
of R are relatively large. This means that the width of
Γηh1

is of the same order or larger than ΓηD∗0D̄∗0 , the in-
tegrated differential decay width. However, when looking
in the inclusive reaction X(4660) → ηX , Γηh1

will be dis-
tributed in a small range of the squared invariant mass
of X , M2

inc = (PX(4660) − pη)2, which, given the small
width of the h1, will come mostly from the experimental
resolution.

Summarizing how the results found in this work could
be experimentally used, the strategy to find the elusive h1

resonance is twofold:

(a). Measure dΓηD∗0D̄∗0/dMinv and, from the line shape,
determine the binding energy of h1, according to fig. 2.

(b). By integrating dΓηD∗0D̄∗0/dMinv, and using the the-

oretical ratio R [eqs. (18) and (19)] of fig. 3, deter-
mine Γηh1

. By measuring dΓηX/dMinc in the inclusive
X(4660) → ηX reaction, one would get a size of the
background in this inclusive reaction. If Γηh1

is not
very small compared with this background, it would
be then possible to observe a peak associated to h1

on top of this background. The bonus of this second
part is that the h1 will now appear as a narrow peak,
allowing to determine its mass and width (unless the
experimental resolution is bigger than the width of the
h1), while in the method (a) the mass would be only
indirectly obtained and no information on the width
would be provided.

In case the h1 resonance width is smaller than the ex-
perimental resolution, a bound in the width can be pro-
vided. Still, provided the h1 peak is visible on top of the
background, the mass could be well determined, and the
consistency with the mass found with method (a) could
be tested. In this case, the mass determined with method
(b) would be more precise than the one determined with
method (a).

4 Conclusions

In this work we have studied the X(4660) → ηD∗D̄∗ and
X(4660) → ηh1 reactions, where h1 is an axial vector
state [0−(1+−)] which is theoretically predicted as a bound
state from the D∗D̄∗ interaction. The h1 states made out
from vector-vector interaction are very elusive since they
do not decay into other pairs of vectors than those from
which they are built. Also for reasons of parity, they do not
decay into pairs of pseudoscalar mesons. This could justify
why the h1 state predicted has not yet been detected, thus
the relevance of finding suitable reactions where they can
be found.

In the present work we show that a measurement of
the D∗D̄∗ invariant mass distribution in the X(4660) →
ηD∗D̄∗ reaction allows one to determine the h1 mass.

On the other hand, we also explore a complementary
method of analysis by looking for a peak in the X mass
distribution in the inclusive X(4660) → ηX reaction. We
show that one can determine the rate for the X(4660) →
ηh1 decay from the integrated spectrum of the X(4660) →
ηD∗D̄∗ reaction. This knowledge, and a comparison with
the background of the inclusive X(4660) → ηX reaction,
will show the chances that one has to detect a neat peak
for the h1 on top of this background. This latter procedure
allows one to determine with precision the mass and width
of the h1 state, or at least a bound for the width if the
experimental resolution exceeds the value of the width.

The interest of the hadron community in finding meson
states that do not fit the standard qq̄ structure, together
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with the information provided in the present work, should
stimulate the implementation of the reactions suggested
which can be carried out at some present and future fa-
cilities.
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