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Abstract

We study in detail the impact of dynamical quarks on the gluon mass generation mechanism, in

the Landau gauge, for the case of a small number of quark families. As in earlier considerations,

we assume that the main bulk of the unquenching corrections to the gluon propagator originates

from the fully dressed quark-loop diagram. The nonperturbative evaluation of this diagram pro-

vides the key relation that expresses the unquenched gluon propagator as a deviation from its

quenched counterpart. This relation is subsequently coupled to the integral equation that controls

the momentum evolution of the effective gluon mass, which contains a single adjustable parame-

ter; this constitutes a major improvement compared to the analysis presented in Phys. Rev. D86

(2012) 014032, where the behaviour of the gluon propagator in the deep infrared was estimated

through numerical extrapolation. The resulting nonlinear system is then treated numerically, yield-

ing unique solutions for the modified gluon mass and the quenched gluon propagator, which fully

confirm the picture put forth recently in several continuum and lattice studies. In particular, an

infrared finite gluon propagator emerges, whose saturation point is considerably suppressed, due

to a corresponding increase in the value of the gluon mass. This characteristic feature becomes

more pronounced as the number of active quark families increases, and can be deduced from the

infrared structure of the kernel entering in the gluon mass equation.

PACS numbers: 12.38.Aw, 12.38.Lg, 14.70.Dj
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I. INTRODUCTION

The concept of a momentum-dependent gluon mass [1] has been the focal point of con-

siderable attention in recent years, mainly because it offers a natural and self-consistent

explanation [2] for the infrared finiteness of the (Landau gauge) gluon propagator and ghost

dressing function, observed in large-volume lattice simulations, both in SU(2) [3] and in

SU(3) [4]. Given the purely nonperturbative nature of the associated mass generation mech-

anism, the Schwinger-Dyson equations (SDEs) constitute the most appropriate framework

for studying such phenomenon in the continuum [5–8].

At the level of the SDEs, the general analysis finally boils down to the study of an

integral equation, to be referred as the mass equation [9, 10], which governs the evolution

of the dynamical gluon mass, m2(q2), as a function of the momentum q2 (see Eq. (2.7)

below). It turns out that this special equation has been derived exactly, following the

elaborate procedure explained in detail in [10]. This particular construction was carried

out within the framework provided by the synthesis of the pinch technique (PT) [1, 11–15]

with the background field method (BFM) [16], known in the literature as the PT-BFM

scheme [5, 17, 18].

This exact mass equation, however, may not be treated in its complete form, because a

particular field-theoretic ingredient entering in it is not fully known. Therefore, an approx-

imate version of the full equation has been considered instead [10], which depends on a free

adjustable parameter. The detailed numerical study of this particular equation, for pure

SU(3) Yang-Mills, revealed that its solutions depend strongly on the precise shape of the

gluon propagators entering in its kernel. In particular, the q2 region below 1 GeV2 appears

to be crucial for obtaining physically acceptable (i.e., positive-definite and monotonically

decreasing) solutions.

Interestingly enough, as has been shown in recent SDEs [19] and lattice studies [20],

the gluon propagator, ∆(q2), undergoes considerable changes in this particular region of

momenta when a small number of light (dynamical) quarks is included in the theory, i.e.,

when “unquenching” takes place. This basic observation, in turn, motivates the further

scrutiny of the mass equation under the special conditions that occur when the transition

from pure Yang-Mills to real world QCD takes place. In particular, it is clearly of the outmost

importance to establish, in quantitative detail, how the inclusion of dynamical quarks affects
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the entire mechanism of gluon mass generation. In fact, from the point of view of computing

unquenching effects to the gluon propagator, the present work constitutes a sequel to [19],

whose main improvement is the incorporation of the gluon mass equation into the general

dynamical analysis (in the context of the so-called “scaling” solutions, where no mass scale

is generated, the unquenching effects have been investigated in detail in [21, 22]).

If one subscribes to the interpretation that the infrared finiteness of the lattice propa-

gators is a consequence of the generation of such a mass, then the new unquenched lattice

results of [20] would seem to indicate that the general mass generation picture persists in the

presence of quark loops. In fact, the observed considerable suppression of the value of the

saturation point of the unquenched propagators with respect to the quenched ones, would

clearly suggest that the corresponding gluon mass increases [since ∆−1(0) = m2(0)]. To

be sure, this basic argument must be supplemented by a more careful analysis, taking into

account the effects of renormalization. In particular, the required renormalization of the

gluon propagators by a multiplicative constant may shift the location of their corresponding

saturation points. However, provided that all curves are renormalized at the same (subtrac-

tion) point, the relative size (ratio) between these saturation points will remain unaltered,

indicating the aforementioned relative increase of the effective gluon mass.

To explore this fundamental issue systematically, one needs a faithful description of the

effects of the inclusion of quark-loops to the gluon propagator. To be sure, one could envisage

the possibility of substituting the unquenched lattice data directly into the mass equation,

in a spirit similar to that followed in the pure Yang-Mills case. However, we will refrain

from using this latter set of data, and will resort instead to the full SDE approach presented

in [19], which allows the approximate inclusion of such effects in the quenched propagator.

This particular approach assumes the presence of a small number of quark families,

and treats the entire effect of “unquenching” as a “perturbation” to the quenched gluon

propagator1. Then, the main bulk of the “unquenching” is attributed to the fully dressed

quark-loop graph, while higher loop contributions are considered to be subleading. The

inclusion of this particular nonperturbative loop induces considerable modifications to the

shape of the resulting propagator, but does not provide precise information on the existence

1 In the case of several quark families the changes induced may be rather profound, see,e.g., [23, 24], and

references therein.
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and value of the new saturation point. Indeed, such information may be only gathered in

conjunction with the gluon mass equation, which was unavailable at the time of the original

analysis. As a result, in the work of [19] the existence of a saturation point was assumed,

and its approximate value was obtained through simple extrapolation from the overall shape

of the propagator in the region around 0.05 GeV2.

Here, instead, our present knowledge of the mass equation allows us to carry out a

thorough analysis of this particular dynamical question. Specifically, the equation describing

the unquenching of the gluon propagator is coupled to the mass equation, and the resulting

non-linear system is solved numerically. In this way, one eventually obtains as a result the

unquenched gluon propagator in the entire range of physically relevant momenta, including

the value of its saturation point.

The main result of this article may be summarized as follows. The solution of the system

reveals that the mass equation yields physical solutions in the presence of quarks, specifically

for the typical cases Nf = 2 (two degenerate light quarks), and Nf = 2+1+1 (two degenerate

light quarks and two heavy ones), considered in the recent lattice simulations [20]. In fact,

one establishes clearly that the value of the gluon mass at the origin increases as additional

quarks are included in the theory. In addition, one obtains a concrete prediction for the

quenched gluon propagator, which compares rather favorably with the aforementioned lattice

results. We emphasize that throughout this analysis we make use of a single adjustable

parameter, which is meant to model contributions to the mass equations stemming from the

fully-dressed three gluon vertex.

The article is organized as follows. In Section II, we first define the basic quantities

appearing in the problem, and introduce some important relations characteristic to the

PT-BFM framework. Then, we describe the modifications that must be implemented at

the level of the gluon SDE in order to consistently accommodate a dynamical gluon mass.

Finally, we review the theoretical origin and properties of the two key dynamical equations,

namely the gluon mass (integral) equation and the unquenching formula. Section III is

dedicated to the solution of the system formed when the aforementioned two equations are

coupled to each other. To that end, we begin by reviewing the main ingredients appearing

in them, and spell out the approximations employed in their treatment. Then we proceed to

the numerical solution, describing in detail the iterative procedure adopted. The numerical

results obtained are then compared with the latest lattice results, and some of the possible
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reasons for the observed deviations are discussed. Our conclusions are finally presented in

Section IV.

II. GLUON MASS EQUATION WITH UNQUENCHED GLUON PROPAGATORS

The full gluon propagator (quenched or unquenched) in the Landau gauge assumes the

general form

i∆µν(q) = −i∆(q2)Pµν(q); Pµν(q) = gµν − qµqν/q
2, (2.1)

where ∆(q2) is related to the scalar form factor of the gluon self-energy Πµν(q) = Π(q2)Pµν(q)

through

∆−1(q2) = q2 + iΠ(q2) . (2.2)

In addition, the corresponding inverse gluon dressing function, J(q2), is defined as

∆−1(q2) = q2J(q2), (2.3)

and, as has been explained in [9, 25], it is intimately related with the definition of the

renormalization-group invariant QCD effective charge.

As has been demonstrated in detail in the recent literature [26, 27], the nonperturbative

dynamics of Yang-Mills theories gives rise to a dynamical (momentum-dependent) gluon

mass, which accounts for the infrared finiteness of ∆(q2). Specifically, from the kinematic

point of view, we will describe the transition from a massless to a massive gluon propagator

by carrying out the replacement ∆−1(q2) → ∆−1
m (q2), where (Minkowski space)

∆−1
m (q2) = q2Jm(q

2)−m2(q2). (2.4)

Notice that the subscript “m” indicates that effectively one has now a mass inside the cor-

responding expressions: for example, whereas perturbatively J(q2) ∼ ln q2, after dynamical

gluon mass generation has taken place, one has Jm(q
2) ∼ ln(q2 + m2). The presence of

this mass, in turn, tames the Landau pole appearing in the (perturbative) effective charge,

causing its saturation in the deep infrared [28, 29].

From the dynamical point of view, the emergence of massive solutions from the gluon

propagator SDE depends crucially on the inclusion of a set of special vertices, to be generi-

cally denoted by V and called pole vertices [9], which contain massless, longitudinally coupled

poles. These vertices are added to the usual (fully dressed) vertices of the theory, and have a
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Ṽ
m2(q2) =

1

1 +G(q2)

1

q2
qµ ×




µ µ
+




ν
×qν

Γm

FIG. 1: The effective SDE satisfied by the dynamical gluon mass. The blue vertex corresponds

to the vertex Γm of Eq. (2.5), while the red vertex Ṽ indicates a pole vertex in which one of the

gluon is leg is a background leg. Finally, the box singles out the quantity Y (k2) which represents

the purely two-loop dressed correction to the one-loop dressed mass equation kernel.

two-fold effect: they trigger the well-known Schwinger mechanism, thus endowing the gluon

with a dynamical mass, while, at the same time, they guarantee that the Slavnov-Taylor

identities (STIs) of the theory maintain exactly the same form before and after the mass

has been dynamically generated. In particular, the transversality of Πµν(q) in the presence

of masses is preserved, provided that one replaces all vertices Γ appearing in the gluon SDE

by

Γ −→ Γ′ = Γm + V, (2.5)

with V having the precise structure that will make the new vertices Γ′ satisfy the same

formal STIs as the Γ before, but with the replacement ∆−1 −→ ∆−1
m .

It turns out that Jm(q
2) and m2(q2) satisfy two separate, but coupled, integral equations

of the generic type2 [9]

Jm(q
2) = 1 +

∫

k

K1(k, q,m
2,∆),

m2(q2) =

∫

k

K2(k, q,m
2,∆), (2.6)

such that K1,K2 6= 0, as q → 0. In the equations above we have introduced the dimensional

regularization measure
∫
k
= µǫ

∫
ddk/(2π)d where d = 4− ǫ is the space-time dimension and

µ the ’t Hooft mass.

The exact closed form of the kernel K2, and hence the full integral equation that deter-

mines m2(q2), has been derived in [10], by appealing to the special properties of the pole

2 Note that in the rest of this article we will suppress the subscript “m” in ∆; it is understood that the

gluon propagator is infrared finite.
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vertices V . The resulting homogeneous equation is given by [10] (see also Fig. 1)

m2(q2) = −
g2CA

1 +G(q2)

1

q2

∫

k

m2(k2)∆µ
ρ(k)∆

νρ(k + q)Kµν(k, q), (2.7)

with

Kµν(k, q) = [(k + q)2 − k2] {1− [Y (k + q) + Y (k)]} gµν

+ [Y (k + q)− Y (k)](q2gµν − 2qµqν). (2.8)

The quantity Y represents the subdiagram nested inside the two-loop dressed graph of Fig. 1,

given by

Y (k2) =
g2CA

4k2
kα

∫

ℓ

∆αρ(ℓ)∆βσ(ℓ+ k)Γσρβ(−ℓ− k, ℓ, k), (2.9)

with Γσρβ the full three-gluon vertex, and CA the Casimir eigenvalue in the adjoint repre-

sentation [CA = N for SU(N)].

Finally, the function G(q2) corresponds to the gµν component of a special two point-

function, which constitutes a crucial ingredient in a set of powerful identities, relating the

conventional Green’s functions to those of the BFM [30, 31]. For the case of the conventional

gluon propagator, ∆, and the PT-BFM gluon propagator, denoted by ∆̂, the relevant identity

reads

∆(q2) = [1 +G(q2)]2∆̂(q2); (2.10)

its application at the level of the corresponding SDEs leads to the appearance of the factor

1 +G(q2) in Eq. (2.7).

The numerical treatment of Eq. (2.7), under certain simplifying assumptions regarding

the form of Y (k2) (see next section), gave rise to solutions that display the basic qualita-

tive features expected on general field-theoretic considerations, and employed in numerous

phenomenological studies. In particular, the m2(q2) obtained are monotonically decreasing

functions of the momentum and vanish rather rapidly in the ultraviolet [1, 10].

As explained in the Introduction, the purpose of the present work is to study the effects

induced on the gluon mass by the inclusion of a small number of light quark families. To

that end, one needs to solve Eq. (2.7) using unquenched gluon propagators, ∆Nf
(q2), namely

carrying out the substitution ∆(q2) → ∆Nf
(q2) inside the integral of the r.h.s..

The corresponding expression for ∆Nf
(q2) will be obtained following the SDE approach

presented in [19]. Specifically, one assumes that the main bulk of the unquenching effect is
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∆−1
Nf
(q2) = [1 +G(q2)]−2X̂(q2) +

λ(q2)
︷ ︸︸ ︷
m2

Nf
(q2)−m2(q2) + ∆−1(q2)

︸ ︷︷ ︸
lattice

(b)

(a)

X̂(q2)Pµν(q) = k + q

k

)−1 +( )−1 = m0 + (

(c)

1 +G(q2) ≈ F−1(q2)
︸ ︷︷ ︸
lattice(d)

µ ν

FIG. 2: Schematic representation of the unquenched propagator (a), corresponding to Eq. (2.15),

and some of the ingredients [(b), (c), and (d)] entering in it. In particular, (b) represents the quark

loop, which, in the approximation employed, is the only source of quark-dependence. The quark

propagators entering in (b) are solutions of the gap equation depicted in (c), where m0 denotes the

appropriate current mass. Finally, the function G(q2) is obtained from the relation shown in (d),

namely Eq. (3.2). The quantities obtained from the lattice are also indicated. Note that the term

λ2(q2) will be determined dynamically, once the mass equation of Fig. 1 is coupled to (a).

captured by the (fully dressed) one-loop diagram of Fig. 2 (b), neglecting, at this level of

approximation, all contributions stemming from (higher order) diagrams containing nested

quark loops.

Denoting the contribution of this special diagram by

X̂µν(q) = X̂(q2)Pµν(q), (2.11)

we have that

X̂(q2) = −
g2

6

∫

k

Tr
[
γµS(k)Γ̂µ(k,−k − q, q)S(k + q)

]
. (2.12)

where S denotes the full quark propagator, and the vertex Γ̂µ corresponds to the PT-BFM

quark-gluon vertex, satisfying the QED-like Ward identity

iqµΓ̂µ(k,−k − q, q) = S−1(k)− S−1(k + q). (2.13)
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Of course, in the case of including various quark loops, corresponding to different quark

flavors Nf , the term X̂µν(q) in Eq. (2.11) is replaced simply by the sum over all quark loops,

i.e.,

X̂µν(q) →
∑

f

X̂µν
f (q). (2.14)

Then, the detailed analysis of [19] reveals that the unquenched gluon propagator ∆Nf
(q2)

may be expressed as a deviation from the quenched propagator ∆(q2), namely (Euclidean

space)

∆Nf
(q2) =

∆(q2)

1 +
{
X̂(q2) [1 +G(q2)]−2 + λ2(q2)

}
∆(q2)

, (2.15)

where the quantity

λ2(q2) = m2
Nf
(q2)−m2(q2), (2.16)

measures the difference induced to the gluon mass due to the inclusion of quarks.

An important point, which can be established formally and confirmed numerically [19],

is that the nonperturbative X̂(q2) vanishes at the origin, X̂(0) = 0, exactly as it happens

in perturbation theory. This implies that the mass equation is not directly affected by the

presence of dynamical quarks, as the methodology used to derive Eqs. (2.7), (2.8) and (2.9)

is left invariant by the unquenching procedure. However, the solutions of the corresponding

equation will be different from those obtained in the quenched case, as the kernel Kµν will

change, due to the modifications induced by X̂(q2) in the overall shape of the propagator

throughout the entire range of momenta. Thus, the inclusion of quark loops affects the

value of the saturation point of the gluon propagator, not directly through the presence of

the X̂(q2), rather indirectly through the generation of a non vanishing mass difference λ2(q2).

The next nontrivial step is therefore to treat the mass equation Eq. (2.7) and the un-

quenching master formula of Eq. (2.15) as a coupled system, and determine both m2
Nf

and

∆Nf
(q2). This rather involved task will be undertaken in detail in the next section.

III. NUMERICAL ANALYSIS

Before entering into the technical details of the solution of the system, it is important

to comment on a fundamental qualitative difference between the present situation and the

treatment followed in [10]. Specifically, as already explained in the previous section, even in

the absence of quarks, Eq. (2.7) forms part of a system of coupled equations, namely that of
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Eq. (2.6). However, given that the corresponding equation for Jm(q
2) is only partially known,

the approach adopted in [10] was to treat the gluon propagators appearing in Eq. (2.6) as

external quantities, using the lattice results of [4] for their functional form. As a consequence,

the intrinsically non-linear equation (2.6) (recall Eq. (2.4)) was converted into a linear one.

As a result of this linearity, one obtained a continuous family of solutions, parametrized

by the values of a multiplicative constant; the actual solution chosen was the one that

reproduced the saturation point of the lattice gluon propagator that was used as input in

Eq. (2.6).

Here, instead, even though we still decouple the equation for Jm(q
2), the mass equation

retains its non-linear nature due to the form of the unquenched gluon propagator, ∆Nf
(q2),

that will be inserted in it. Specifically, as can be appreciated from Eq. (2.15), the λ2(q2)

appearing in the denominator of ∆Nf
(q2) introduces a non-linear term into Eq. (2.6). Con-

sequently, the solution obtained will be unique, and the saturation point of the resulting

∆Nf
(q2) will emerge as a prediction of the theory rather than as an input from the lattice.

A. Main ingredients and basic assumptions

We next proceed to a brief description of the ingredients entering into the two equa-

tions (2.6) and (2.15) composing the system under study, together with an account of the

most important underlying assumptions.

(i ) The determination of the quantity X̂(q2) is of central importance, since it approx-

imates the entire effect of the inclusion of the active quarks. In order to evaluate it from

Eq. (2.12), one needs specific expressions for the full quark propagator S and the fully-

dressed vertex Γ̂. Evidently, the total X̂(q2) emerges as the sum of the individual flavor

contributions, in accordance with Eq. (2.14).

The nonperturbative form of each quark propagator entering into X̂(q2) is obtained from

the standard gap equation [32], supplemented by an appropriate current mass term, in order

to make contact with the lattice results of [20]. In this latter simulation, the gluon (and

ghost) propagators have been evaluated from large volume configurations (up to 33 × 6

[fm4]), generated from a lattice action that included (twisted mass) fermions. Specifically,

one employed two light degenerate quarks (Nf = 2), with a current mass ranging from 20 to

50 MeV, or two light and two heavy quarks (Nf = 2+ 1+ 1), with a strange (charm) quark

10
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FIG. 3: (color online) The inverse of the quark wave-functions (top), and dynamical quark masses

(bottom), obtained from the quark gap equation for three different values of the current mass:

m0 = 41.2 MeV (black, continuous), m0 = 95 MeV (red, dotted) and m0 = 1.51 GeV (blue,

dashed).

current mass roughly set to 95 MeV (1.51 GeV).

For the quark propagator, S(p), we use the standard parametrization

S−1(p) = −i [A(p)p/− B(p)] = −iA(p) [p/−M(p)] , (3.1)

where A(p) represents the “quark wave-function”, while the ratio M(p) = B(p)/A(p) de-

notes the dynamical quark mass, and extracts them from the corresponding system of inte-

gral equations. The inverse of the quark wave-functions, 1/A(p), and the dynamical quark
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FIG. 4: The full nonperturbative quark loop contribution X̂(q2) for the two cases Nf = 2 (black,

continuous) and Nf = 2 + 1 + 1 (blue, dashed).

masses, M(p), used in the present work, are shown in the top and bottom panels of Fig. 3,

respectively. They have been obtained from the gap equation of [32], where the quenched

lattice data of [4] were used as input.

As can be seen from Fig. 3 the two degenerate light quarks acquire a physical mass around

300 MeV, while the two heavier ones get physical masses around 440 MeV (strange) and 2.2

GeV (charm). It should be stressed that these values for the quark masses are consistent

with the ones generally employed in phenomenological calculations [33, 34].

As for the PT-BFM quark-gluon vertex Γ̂, the fact that it satisfies the Abelian Ward

identity of Eq. (2.13) allows one to model it by means of the standard Abelian Ansätze

existing in the literature [35, 36]. In particular, Γ̂ is expressed entirely in terms of the

quantities A(p) and M(p), with no reference to auxiliary ghost Green’s functions, a fact

that simplifies considerably the task of computing X̂(q2).

When all the aforementioned ingredients are put together, the two different X̂(q2), cor-

responding to the cases Nf = 2 (black, continuous) and Nf = 2 + 1 + 1 (blue, dashed), are

shown in Fig. 4.

Note finally that, as one can establish formally and confirm numerically [19], the non-

perturbative X̂(q2) vanishes at the origin, X̂(0) = 0, exactly as it happens in perturbation

theory. Evidently, the inclusion of quark loops does not affect directly the value of the sat-
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FIG. 5: The curves formed by the set of the pairs (Cαs, αs) yielding physical solutions to the full

mass equation (2.7), for the various numbers of quark families Nf : quenched (red, dots), Nf = 2

(green, triangles) and Nf = 2 + 1 + 1 (blue, squared). At the values of C indicated by the stars,

the solutions obtained corresponds to the expected values of the strong coupling αs at the scale

chosen (µ = 4.3 GeV); one has C = 9.04 for Nf = 0 (αs = 0.22), C = 8.48 for Nf = 2 (αs = 0.285),

and C = 8.64 for Nf = 2 + 1 + 1 (αs = 0.33). Finally, the values of αs obtained for the case in

which Y is simply kept at the lowest order perturbative value (i.e., C = 1) are αs = 0.93 (Nf = 0),

αs = 1.09 (Nf = 2), and αs = 1.25 (Nf = 2 + 1 + 1).

uration point of the gluon propagator. However, as already explained, the saturation point

will be indirectly affected, due to the modifications induced by X̂(q2) in the overall shape of

the propagator, throughout the entire range of momenta.

(ii ) As already mentioned, the quenched lattice data for ∆(q2) [4] constitute the starting

point for obtaining from Eq. (2.15) a prediction for ∆Nf
(q2). In addition, in the Landau

gauge, the quantity 1 + G(q2), appearing in both Eqs. (2.6) and (2.15), is linked to the

inverse of the ghost dressing function F (q2) through [37, 38]

F−1(q2) ≈ 1 +G(q2). (3.2)

This relation, which is valid to a very good approximation, and becomes an exact equality

at q2 = 0, allows one to use the lattice results of [4] for the ghost dressing function, in

order to determine G(q2). Notice that both sets of data will be renormalized at the scale
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µ = 4.3 GeV, which is the last available point in the ultraviolet. At this scale, the expected

value of the (quenched) strong effective charge is αs = g2/4π = 0.22 [39, 40].

(iii ) The function Y (k2) represents a crucial ingredient of Eq. (2.7). However, its exact

closed form is not available, mainly because our present knowledge of the full three-gluon

vertex, entering in its definition, is relatively limited; we must therefore resort to suitable

approximations. In particular, we will employ the lowest-order perturbative expression

for Y (k2), obtained from Eq. (2.9) by substituting the tree-level values for all quantities

appearing there. Within this approximation, and after carrying out momentum subtraction

renormalization (MOM) at k2 = µ2, one obtains [10]

YR(k
2) = −

αsCA

4π

15

16
log

k2

µ2
, (3.3)

where αs is the value of the coupling at the subtraction point chosen. This simple approx-

imation will be compensated, in part, by multiplying YR(k
2) by and arbitrary constant C,

i.e., by implementing the replacement YR(k
2) → C YR(k

2) treating C as a free parameter. In

this heuristic way, one hopes to model further corrections that may be added to the “skele-

ton” result provided by Eq. (3.3). This particular procedure has been proved sufficient for

obtaining in the quenched case physically meaningful solutions for m2(q2) for reasonable val-

ues of the constant C [10]. As the numerical study presented in Fig. 5 shows, this continues

to be true also in the unquenched case.

(iv ) A particularly helpful constraint may be obtained by taking the q2 → 0 limit of the

mass equation (2.7), which gives (passing to spherical coordinates, and setting y = k2)

m2(0) = −
3

8π
αsCA F (0)

∫
∞

0

dy m2(y)KNf
(y); KNf

(y) =
{
[1− 2CY (y)] y2∆2

Nf
(y)

}
′

,

(3.4)

where the prime denotes derivatives with respect to y. The usefulness of this relation lies in

the fact that, when used in combination with the unquenched propagators obtained following

the approach of [19], it allows one to deduce how the running mass will be affected by the

presence of dynamical fermions.

To see how this works in detail, consider first the quenched case; the kernel K0, con-

structed from the corresponding lattice propagator data, is shown on the top panel of Fig. 6.

As can be appreciated there, for increasing values of C one observes the appearance of a

negative area, in the region of momenta q2 < 1 GeV2. It is precisely the contributions

from this negative region that counteract the minus sign in front of the mass equation (2.7),
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FIG. 6: (color online) Comparison between the kernel KNf
(y) of Eq. (3.4) for the quenched case

(top), and the unquenched case with Nf = 2+1+1 (bottom). The plots are drawn with the same

scale to facilitate the comparison.

thus making possible the existence of positive-definite and monotonically decreasing solu-

tions [10].

Let us now repeat this exercise for the unquenched case withNf = 2+1+1. On the bottom

panel of Fig. 6 we show the kernel K2+1+1; the ∆2+1+1(q
2) used to construct it is obtained

from Eq. (2.15), using the X̂ that corresponds to the aforementioned quark configuration,

and setting λ2 = 0. As we will see in the next section, this particular propagator emerges
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precisely after the first step of the iterative procedure employed to solve the SDE system.

Note also that, due to the decoupling of the heavy fermions [19], the kernel K2, corresponding

to the case Nf = 2, is practically identical to K2+1+1.

As it is evident from Fig. 6, the addition of dynamical fermions affects the shape of

the kernel significantly, as it now displays a much shallower negative region compared to

the quenched case. Once this kernel is inserted into the mass equation (for the successive

iterative steps), one then observes that in order to keep satisfying the constraint Eq. (3.4)

with a positive m2(0), the dynamical mass must increase (and therefore the saturation point

of the unquenched propagator decrease), in order to compensate for the suppressed negative

region. This increase is counteracted in part by the fact that the coupling constant αs also

rises when adding quarks [at µ = 4.3 GeV, one has a 30% increase for the Nf = 2 case (from

0.22 to 0.285), and an additional 20% increase (from 0.285 to 0.33) for the Nf = 2 + 1 + 1

case].

This qualitative conclusion is supported by both the SDE study of [19] as well as the

lattice results of [20], and will be fully confirmed through the explicit numerical computations

carried out in the next subsection (see in particular Fig. 10, where the final running masses

for the different cases are presented).

B. Solving the system and comparing with the lattice

The system of SDEs that we consider is composed of Eqs. (2.7), (2.12) and (2.15), supple-

mented by the quark gap equation. The initial condition is provided by the quenched SU(3)

gluon propagator and ghost dressing function obtained in the lattice simulations of [4], which

will be also used to determine the initial values of the form factors A(p) and M(p). All

calculations will be performed at µ = 4.3.

The algorithm that we adopt consists of the following main steps.

(i ) Using the quenched propagator as an input of the first iterative step, one determines

the quark form factors A(p) and M(p) by solving the quark gap equation; (ii ) A(p) and

M(p) are substituted into Eq. (2.12), and the corresponding value of the quark loop diagram

X̂(q2) is evaluated; (iii ) The preliminary form of ∆Nf
(q2) is determined from (2.15), employ-

ing initially λ2(q2) = 0, with the quenched mass m2(q2) obtained from the solution of the

mass equation (2.7) corresponding to the quenched lattice propagator; (iv ) The unquenched
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FIG. 7: (color online) Convergence of the iterative procedure for solving the SDE system in the

Nf = 2 + 1 + 1 case. Top: unquenched propagator ∆Nf
(q2); Bottom: mass difference λ2(q2).

propagator ∆Nf
(q2) of the previous step is substituted into the mass equation (2.7) in order

to determine the associated unquenched dynamical gluon mass m2
Nf
(q2), and therefore the

corresponding λ2(q2); (v ) At this point the latter quantity is inserted back into the master

equation (2.15), and the loop starts again, until convergence, determined by the stability of

the quantities involved, has been reached.

In Fig. 7 we show how the procedure described above converges rather rapidly to a

stable solution for both ∆Nf
(q2) (top panel) as well as λ2(q2) (bottom panel). In particular,

observe that at the first iterative step one has λ2(q2) = 0; even though this gives rise to
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FIG. 8: (color online) The unquenched gluon propagators obtained from our analysis, for Nf = 2

(upper panel) and Nf = 2+1+1 (lower panel), compared with the lattice data of [20] for the same

cases.

a propagator with the same saturation point as in the quenched case (red circles curve on

the top panel), the presence of the fermion loops alter in a rather marked way the overall

shape of the function. As discussed in the previous section, this affects in turn the kernel of

the mass equation, resulting in a λ2(q2) > 0 already at the second step, which then forces

the unquenched propagator to have a lower saturation point with respect to the quenched

case (green stars curves on both panels). Notice that, as anticipated, λ2(q2) increases at

each successive iteration, resulting in an unquenched propagator that is suppressed in the
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(q2), corresponding to the propagators

of the previous figure.

infrared with respect to the quenched case.

In Fig. 8 we present the central result of this analysis. In particular, we plot the prop-

agators obtained when convergence of the above mentioned iteration procedure has been

reached, and compare them with the corresponding unquenched lattice data, recently re-

ported in [20]. We observe a rather good agreement between our theoretical predictions and

the lattice computation for both values of Nf , for the available range of physical momenta.

A notable exception to this fair coincidence between curves is the saturation point of the

Nf = 2 + 1 + 1 case; specifically, the value obtained from our SDE analysis is 20% higher

than that found in lattice simulations. Similar conclusions can be drawn by observing the
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mass for Nf = 2 (red dotted line) and Nf = 2 + 1 + 1 (blue dashed line). In the deep infrared one

has m2(0) = 413 MeV, and m2+1+1(0) = 425 MeV. For comparison we also show the quenched

gluon mass (black continuous line) obtained from the quenched lattice propagator, in which case

m(0) = 376 MeV.

plot corresponding to the gluon dressing function q2∆Nf
(q2) shown in Fig. 9: while one has

an excellent agreement in the case of two degenerate light quarks, when two heavier quarks

are added the SDE solution tends to mildly overestimate the amplitude of the characteristic

peak located in the intermediate momentum region.

The corresponding dynamical gluon masses, m2
2(q

2) and m2
2+1+1(q

2), are shown in Fig. 10;

for comparison, we also plot the quenched solution, m2(q2), obtained from Eq. (2.6) when

the quenched lattice propagators of [4] are used as input. In particular, the corresponding

saturation points give m2(0) = 413 MeV andm2+1+1(0) = 425 MeV (at µ = 4.3 GeV), which

should be compared with the value m(0) = 376 MeV obtained for the quenched case. The

results captured in Fig. 10 are particularly important, because they demonstrate clearly

that the mass generation mechanism established for pure Yang-Mills continues to operate

in QCD-like circumstances.

Let us finally comment on some possible factors that might account for the aforementioned

discrepancies between our predictions and the lattice data for Nf = 2 + 1 + 1.

At first sight, one might be tempted to attribute part of the observed discrepancy to
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the presence of volume effects. Specifically, the propagator plot of Fig. 8 seems to indicate

that the deviation happens in the deep IR region q2 . 0.2 GeV2, where the lattice data

are expected to be affected by moderate volume artifacts (see in particular Fig. 2 of [20]).

However, a closer look at the corresponding gluon dressing function ( plot of Fig. 9) advocates

against this possibility; indeed, one observes the onset of a noticeable discrepancy as early as

q2 ∼ 2.8 GeV2, namely at a point where volume effects are well under control. Therefore it

is reasonable to assume that the observed deviation is not lattice related, but signals rather

a mild violation of one of the assumptions underlying the derivation of the unquenching

formula (2.15).

In particular, it is natural to expect that one of our basic operating assumption, namely

that the quark-loop contributions constitute a “perturbation” of the quenched propagator,

will become progressively less accurate as the number of active flavors increases. It is there-

fore possible that from Nf > 2 onward we begin to perceive the onset of additional effects,

not captured by (2.15). For instance, the identification of the “pure” gluonic diagrams of

the gluon SDE with the gluon propagator ∆(q2) obtained in quenched lattice simulations,

may no longer be entirely reliable, due to the presence of (increasingly appreciable) effects,

coming from higher-order quark subdiagrams.

Clearly, an additional theoretical uncertainty originates from the approximate (pertur-

bative) treatment of the quantity Y (k2). In particular, the parameter C may only model,

to some extent, unknown contributions that display a logarithmic momentum dependence,

as in Eq. (3.3), but cannot account for terms with a different functional form. Moreover,

the use of an Ansätz for the vertex Γ̂µ entering into the definition of X̂(q2) may induce

further error, due to the fact that its transverse (automatically conserved part) is in general

undetermined.

IV. CONCLUSIONS

In this work we addressed the basic theoretical question of whether the mass generation

mechanism established in pure Yang-Mills studies persists in real-world QCD. Specifically,

by employing a methodology relying mainly on the SDEs that describe the gluon two-point

sector within the PT-BFM framework, we studied in quantitative detail how the inclusion

of dynamical quarks affects the generation of the momentum-dependent gluon mass, in the
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Landau gauge. This important issue is especially relevant and timely, given the qualitative

picture that appears to emerge from recent unquenched lattice simulations. Our results

demonstrate clearly that the gluon propagator still saturates in the infrared (therefore, a

gluon mass is indeed generated), and that the saturation point is progressively suppressed,

as the number of quark flavors increases.

Several of the salient dynamical features pertinent to the transition from the quenched

to the unquenched theory have been presented in the preliminary study of [19]. The main

novelty of the present analysis resides in the fact that, unlike [19], where the saturation point

of the gluon propagator was estimated by means of an extrapolation procedure, here it is

determined explicitly from the solution of the gluon mass equation. Therefore, the results

obtained constitute a genuine prediction of the formalism employed, emerging entirely from

the inherent dynamical equations.

As has been explained in [19] and in the present work, the “lowest order unquenching”

consists in including explicitly the contribution of the quark loop X̂(q2), keeping all other

quantities unquenched. This is reflected clearly at the level of the master formula Eq. (2.15),

where the quantity 1 +G(q2) (or, equivalently, F−1(q2), by virtue of Eq. (3.2)) assumes its

quenched form, obtained from [4]. Moreover, the computation of X̂(q2) [see Fig. 2] uses

as input the quark propagator obtained from the gap equation, which, in turn, depends on

both the gluon propagator and the ghost dressing function; again, the quenched forms of [4]

were employed. Finally, the strength of the gauge coupling g also depends on the number of

flavors; in the present analysis we have used its value when Nf = 0 (momentum-subtraction

scheme [40]). In order to improve this analysis, and eventually reach a better agreement

with the lattice, one possible strategy would be to gradually introduce quark effects into

some of the aforementioned (quenched) ingredients. For example, one could envisage the

possibility of using unquenched instead of quenched data for the ghost dressing function

F (q2), obtained from the lattice analysis of [20]. Given that this quantity enters both in the

master formula and the gap equation, its overall effect may be appreciable. In addition, the

increase in the value of the gauge coupling produced by the inclusion of quark flavors may

modify our predictions in the right directions. We hope to be able to implement some of

these improvements in the near future.

It is worth pointing out that the ingredients obtained from the present analysis may

be used to determine the flavor-dependence of the QCD effective charge, αs(q
2). Specif-
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ically, as has been shown in [28], this latter quantity may be defined in terms of

the functions J(q2) and G(q2), through the renormalization-group invariant combination

α−1
s (q2) = α−1

s (µ2)[1 +G(q2;µ2)]2Jm(q
2;µ2), where µ is the renormalization (subtraction)

point chosen, within an appropriate renormalization scheme. The direct determination of

J(q2) from its own dynamical equation, shown schematically in Eq. (2.6), is thwarted from

the fact that the main ingredients entering in it are the fully dressed three-gluon vertex BQ2

(studied in [41]) and the (largely unexplored) four-gluon vertex BQ3, for arbitrary values

of their momenta. Instead, one may employ Eq. (2.4) to compute J(q2) indirectly, using a

combined approach based on the knowledge of the full propagator from the lattice, and the

corresponding gluon mass from solving Eq. (2.7). (For the possibility of the direct extraction

of the quantity Ĵm(q
2;µ2) = [1 +G(q2;µ2)]2Jm(q

2;µ2) from specialized lattice simulations,

see [42]). Work in this direction is already in progress.

Finally, it would clearly be important to study the infrared dynamics of the gluon prop-

agator, quenched and unquenched, away from the Landau gauge. The SDEs formulated

within the PT-BFM framework provide a natural starting point for such an investigation in

the continuum. In fact, it would be particularly relevant to determine whether the detailed

mass generation mechanism established in the Landau gauge persists for other values of the

gauge-fixing parameter, such as, for example, the Feynman gauge, which is known to be of

central importance for the PT. To be sure, further reliable input from the lattice would be

invaluable for accomplishing such a demanding task, given that, even though the formal pro-

cedure for implementing covariant Rξ gauges on the lattice has been already reported [43],

the available simulations are restricted to modest size volumes, and ξ ≪ 1 only [44]. We

hope to report progress in some of these directions in the near future.

Acknowledgments

The research of J. P. is supported by the Spanish MEYC under grant FPA2011-23596.

The work of A. C. A is supported by the National Council for Scientific and Technological

Development - CNPq under the grant 306537/2012-5 and project 473260/2012-3, and by

23



São Paulo Research Foundation - FAPESP through the project 2012/15643-1.

[1] J. M. Cornwall, Phys. Rev. D26, 1453 (1982).

[2] A. Aguilar, D. Binosi, and J. Papavassiliou, Phys.Rev. D78, 025010 (2008), 0802.1870.

[3] A. Cucchieri and T. Mendes, PoS LAT2007, 297 (2007), 0710.0412.

[4] I. Bogolubsky, E. Ilgenfritz, M. Muller-Preussker, and A. Sternbeck, Phys.Lett. B676, 69

(2009), 0901.0736.

[5] D. Binosi and J. Papavassiliou, Phys.Rev. D77, 061702 (2008), 0712.2707.

[6] R. Alkofer and L. von Smekal, Phys. Rept. 353, 281 (2001), hep-ph/0007355.

[7] C. S. Fischer, J. Phys. G32, R253 (2006), hep-ph/0605173.

[8] J. Braun, H. Gies, and J. M. Pawlowski, Phys.Lett. B684, 262 (2010), 0708.2413.

[9] A. Aguilar, D. Binosi, and J. Papavassiliou, Phys.Rev. D84, 085026 (2011), 1107.3968.

[10] D. Binosi, D. Ibanez, and J. Papavassiliou, Phys.Rev. D86, 085033 (2012), 1208.1451.

[11] J. M. Cornwall and J. Papavassiliou, Phys. Rev. D40, 3474 (1989).

[12] A. Pilaftsis, Nucl. Phys. B487, 467 (1997), hep-ph/9607451.

[13] D. Binosi and J. Papavassiliou, Phys. Rev. D66, 111901(R) (2002), hep-ph/0208189.

[14] D. Binosi and J. Papavassiliou, J.Phys.G G30, 203 (2004), hep-ph/0301096.

[15] D. Binosi and J. Papavassiliou, Phys.Rept. 479, 1 (2009), 0909.2536.

[16] L. F. Abbott, Nucl. Phys. B185, 189 (1981).

[17] A. C. Aguilar and J. Papavassiliou, JHEP 12, 012 (2006), hep-ph/0610040.

[18] D. Binosi and J. Papavassiliou, JHEP 0811, 063 (2008), 0805.3994.

[19] A. Aguilar, D. Binosi, and J. Papavassiliou, Phys. Rev. D86, 014032 (2012), 1204.3868.

[20] A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti, and J. Rodriguez-Quintero, Phys.Rev. D86,

074512 (2012), 1208.0795.

[21] C. S. Fischer and R. Alkofer, Phys.Rev. D67, 094020 (2003), hep-ph/0301094.

[22] C. Fischer, P. Watson, and W. Cassing, Phys.Rev. D72, 094025 (2005), hep-ph/0509213.

[23] L. Del Debbio, PoS LATTICE2010, 004 (2010).

[24] X. Cheng and E. Tomboulis, PoS QCD-TNT-II, 046 (2011), 1112.4235.

[25] A. C. Aguilar and J. Papavassiliou, Phys.Rev. D81, 034003 (2010), 0910.4142.

[26] A. Aguilar, D. Ibanez, V. Mathieu, and J. Papavassiliou, Phys.Rev. D85, 014018 (2012),

24



1110.2633.

[27] D. Ibanez and J. Papavassiliou (2012), 1211.5314.

[28] A. Aguilar, D. Binosi, J. Papavassiliou, and J. Rodriguez-Quintero, Phys.Rev. D80, 085018

(2009), 0906.2633.

[29] A. Aguilar, D. Binosi, and J. Papavassiliou, JHEP 1007, 002 (2010), 1004.1105.

[30] P. A. Grassi, T. Hurth, and M. Steinhauser, Annals Phys. 288, 197 (2001), hep-ph/9907426.

[31] D. Binosi and J. Papavassiliou, Phys.Rev. D66, 025024 (2002), hep-ph/0204128.

[32] A. Aguilar and J. Papavassiliou, Phys.Rev. D83, 014013 (2011), 1010.5815.

[33] P. Maris and C. D. Roberts, Int.J.Mod.Phys. E12, 297 (2003), nucl-th/0301049.

[34] D. Wilson, I. Cloet, L. Chang, and C. Roberts, Phys.Rev. C85, 025205 (2012), 1112.2212.

[35] J. S. Ball and T.-W. Chiu, Phys.Rev. D22, 2542 (1980).

[36] D. C. Curtis and M. R. Pennington, Phys. Rev. D42, 4165 (1990).

[37] P. A. Grassi, T. Hurth, and A. Quadri, Phys. Rev. D70, 105014 (2004), hep-th/0405104.

[38] A. Aguilar, D. Binosi, and J. Papavassiliou, JHEP 0911, 066 (2009), 0907.0153.

[39] P. Boucaud, F. de Soto, J. Leroy, A. Le Yaouanc, J. Micheli, et al., Phys.Rev. D74, 034505

(2006), hep-lat/0504017.

[40] P. Boucaud, F. De Soto, J. Leroy, A. Le Yaouanc, J. Micheli, et al., Phys.Rev. D79, 014508

(2009), 0811.2059.

[41] D. Binosi and J. Papavassiliou, JHEP 1103, 121 (2011), 1102.5662.

[42] D. Binosi, D. Ibanez, and J. Papavassiliou (2013), 1304.2594.

[43] A. Cucchieri, T. Mendes, and E. M. Santos, Phys.Rev.Lett. 103, 141602 (2009), 0907.4138.

[44] A. Cucchieri, T. Mendes, G. M. Nakamura, and E. M. Santos, PoS FACESQCD, 026 (2010),

1102.5233.

25


	I Introduction
	II Gluon Mass equation with unquenched gluon propagators
	III Numerical analysis
	A Main ingredients and basic assumptions
	B Solving the system and comparing with the lattice

	IV Conclusions
	 Acknowledgments
	 References

