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Blak Hole evaporation in a thermalized�nal-state projetion modelA. Fabbri and A. PérezFebruary 2, 2008Departamento de Físia Teória and IFIC,Universidad de Valenia-CSIC,Dr. Moliner 50, 46100 Burjassot, SpainAbstratWe propose a modi�ed version of the Horowitz-Maldaena �nal-stateboundary ondition based upon a matter-radiation thermalization hy-pothesis on the Blak Hole interior, whih translates into a partiularentangled state with thermal Shmidt oe�ients. We investigate the on-sequenes of this proposal for matter entering the horizon, as desribedby a Canonial density matrix haraterized by the matter temperature
T . The emitted radiation is expliitly alulated and is shown to followa thermal spetrum with an e�etive temperature Teff . We analyse theevaporation proess in the quasi-stati approximation, highlighting impor-tant di�erenes in the late stages with respet to the usual semilassialevolution, and alulate the �delity of the emitted Hawking radiation rel-ative to the infalling matter.Blak Holes (BHs) are probably the most fasinating objets in our Universe.Although initially related to the General Theory of Relativity, they have be-ome an interdisiplinary �eld, where ideas from Thermodynamis, QuantumField Theory in Curved Spaetimes, String Theory and Quantum Informationare applied in order to understand those aspets whih go beyond the purelygravitational ontext. Among them, the most spetaular is the BH evaporatione�et [1℄, whih shows that quantum BHs, unlike their lassial ounterparts,emit partiles in the form of thermal radiation. Even more intriguing is the sug-gestion Hawking made [2℄ that blak holes will evaporate ompletely and theinformation about their formation will be lost forever. Obviously, if the wholeproess is governed by a unitary transformation, as demanded by QuantumMehanis, no information an be lost. This question, however, is still underdebate, and several hypothesis have been suggested [3℄.Reently, Horowitz and Maldaena [4℄ (HM, hereafter) have made a proposalto desribe this transformation based on a �nal-state projetion ondition, whih1
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resembles quantum teleportation (but without a lassial ommuniation han-nel). In the original HM proposal, matter inside the BH is in a maximallyentangled state with the inoming Hawking radiation. The unknown e�ets ofquantum gravity are enoded into an additional unitary transformation S atingon matter states alone. The overall transformation ating on matter enteringthe horizon is obtained by the projetion onto this �nal state.Several omments and modi�ations of this interesting proposal have beendisussed later. Gottesmann and Preskill [5℄ have argued that the interationbetween the ollapsing body and the infalling Hawking radiation would modifythe suggested maximally entangled state, and this modi�ation gives rise, ingeneral, to a loss of information. Following this idea, in [6℄ the author allowsfor a modi�ed �nal state with random Shmidt oe�ients. As a onsequene,some information is lost, giving �almost ertain esape� for general states.In this letter, we propose a di�erent form for the HM entangled state, whihis in fat desribed by a thermal spetrum. Several arguments will be given tojustify this proposal. We will then determine expliitly the radiation emitted bythe BH, and analyze both the onsequenes regarding the evaporation proessand the relation between the information ontained in the infalling matter andthat of the emitted Hawking radiation. We use units suh that G = ~ = c =
kB = 1.Let us begin with a brief desription of the �nal-state projetion proposal.The Hilbert spae of the infalling matter plus Hawking radiation an be writtenas

H = HM ⊗Hin ⊗Hout (1)where HM orresponds to matter degrees of freedom, and Hin (Hout) stands forthe inoming (outgoing) Hawking radiation, desribed by an entangled thermalstate belonging to Hin ⊗ Hout. We denote this state by |φ〉in⊗out and an beexpressed, in a ompat form, as
|φ〉in⊗out =

∑

j

λTH

j |j〉in ⊗ |j〉out. (2)In the above equation, the states |j〉in (|j〉out) denote Fok states for theinoming (outgoing) radiation. In a more detailed way, we an write
|j〉in = |N1N2...〉in (3)(analogously for |j〉out ), where Ni denotes the oupation number for frequeny

ωi , (i = 1, 2, ... ) and we have to take into aount all possible positive frequen-ies. Following these onventions, the oe�ients in Eq. (2) would read as
λTH

j =
1√
ZH

exp(−βHǫj/2), (4)with ǫj the energy orresponding to the Fok state (3), βH = 1/TH the inverseof the Hawking temperature, given, for the Shwarzshild BH, by TH = 1/8πM(M is its mass), and 1√
ZH

is a normalization fator.2



Following HM, the matter state inside the BH, together with the infallingradiation, form a pure entangled state |ψ〉M⊗in, written in the form
|ψ〉M⊗in =

∑

j

λj |j〉M ⊗ |j〉in. (5)The states {|j〉M} form an orthonormal basis of the Hilbert spae HM .In the original proposal, it is suggested that this state is maximally entangled,therefore all the λj would be the same. Moreover, as mentioned above, a BHunitary transformation S ating on matter degrees of freedom is inluded in thatproposal. We will, however, keep the above form, with yet unde�ned oe�ients
λj , as a starting point for our disussion.Let us �rst ompare Eqs. (2) and (5). From eah of them one an obtainthe density matrix desribing the infalling Hawking radiation, by traing outover the remaining degrees of freedom. For onsisteny, both expressions shouldoinide, i.e.:

ρin = trout(|φ〉in⊗out in⊗out〈φ|) = trM (|ψ〉M⊗in M⊗in〈ψ|). (6)In other words,
ρin =

∑

j

(λTH

j )2|j〉in in〈j| =
∑

j

(λj)
2|j〉in in〈j| (7)whih implies λj = λTH

j ∀j . As a onsequene, the state |ψ〉M⊗in desribed byEq. (5) adopts the form of a thermal state, similar to Eq. (2). More preisely,if we trae out the inoming radiation, the resulting density matrix is given by
ρM = trin(|ψ〉M⊗in M⊗in〈ψ|) =

∑

j

(λTH

j )2|j〉M M 〈j|, (8)where the diagonal elements (λTH

j )2 follow a (Canonial) thermal distributionwith temperature equal to the Hawking temperature. Let us disuss this resultin more detail. One ould argue that, as matter enters the horizon, it wouldeventually thermalize with the inoming radiation, and �nally adopt a thermaldistribution with the same temperature (the Hawking temperature). A sup-porting argument for this hypothesis is given in [7℄, where it is laimed that, asa spae-like singularity is approahed, solutions to Einstein's equations beomehaoti, with rapid yles through all states in the Hilbert spae, so that timeaverages give the same results as ensemble averages on a thermal system.We also note that the above suggested (thermal) form for |ψ〉M⊗in has alsobeen disussed in [8℄ within the ontext of gravitational ollapse of a mattershell (desribed by a salar massless �eld). It is then shown that, for a givenfrequeny ω, the stationary state of matter and inoming radiation inside theblak hole is a �maximally entangled two-mode squeezed� state with oe�ientsgiven by Eq. (4). However, when disussing the �nal state projetion, in thisreferene the author also inludes the unknown S matrix disussed in the HMproposal. Our point of view is di�erent: given the arguments above, we suggest3



the state |ψ〉M⊗in as the state to be used for the �nal state projetion. In thisway, our proposal resembles the one in [6℄ (ompare Eq. (6) in this referenewith our Eq. (5)), but now the λj 's to be used, instead of possessing a randomdistribution, have a thermal one, shown in (4).This spei� form for the �nal state allows us to make expliit alulations forthe emitted radiation within the ontext of �nal state projetion, as suggestedby HM. Following these ideas, we de�ne the projetor
ΛM⊗in = |ψ〉M⊗in M⊗in〈ψ|. (9)An inoming state of matter |χ〉M entering the horizon would be transformedinto the state |φ〉out of outgoing Hawking radiation, aording to the projetion

ΛM⊗in(|χ〉M |φ〉in⊗out) = |ψ〉M⊗in|φ〉out. (10)In order to study more realisti situations, we generalize the above rule tomatter desribed by a density matrix. This would be the ase, for example, whenwe onsider a nondegenerate gas falling into the blak hole, as we disuss later.Let ρM be the matter density matrix, and de�ne ρin⊗out = |φ〉in⊗out in⊗out〈φ|.We extend the �nal state projetion in the straightforward way
ΛM⊗in(ρM ⊗ ρin⊗out)ΛM⊗in ≡ |ψ〉M⊗in M⊗in〈ψ| ⊗ ρ̄out, (11)where ρ̄out ≡ M⊗in〈ψ|(ρM⊗ρin⊗out)|ψ〉M⊗in is the unnormalized density matrixdesribing the outgoing Hawking radiation. After some algebra, one obtains thefollowing result for the normalized density matrix:

ρout =

∑
i,j ρMijλ

TH

i λTH

j |i〉out out〈j|
∑

i ρMii(λ
TH

i )2
, (12)with ρMij = M 〈i|ρM |j〉M the matrix elements of ρM . As a partiular ase,whih will be useful for further disussions, let us assume that the infallingmatter is desribed by a Canonial ensemble haraterized by a temperature T ,suh that ρM = 1

Z

∑
i e

−βǫi|i〉M M 〈i| and β = 1/T . Here Z =
∑

i e
−βǫi is thematter partition funtion. In this ase, it is straightforward to obtain

ρout =
1

Zeff

∑

i

e
−βeff ǫi

i |i〉out out〈i|,where βeff = β + βH and Zeff ≡ ∑
i e

−βeff ǫi

i . From the above equation, weimmediately see that, as a onsequene of the model introdued in this paper,the BH radiates with an e�etive temperature
Teff =

TTH

T + TH
. (13)Suppose we onsider the infall of matter inside a BH. This situation ouldorrespond to the aretion disk around a solar mass (or larger) BH. The gas4



an be desribed by a non-degenerate (Canonial) distribution funtion. Thetemperature of the gas in the inner disk depends on several parameters suhas the mass of the BH, the distane to the enter and the visosity of the gas,but typially one �nds temperatures T ∼ 107K [9℄. For M ∼ M⊙, the Hawingtemperature is TH ∼ 10−7K. Sine T ≫ TH the blak hole emits radiationat the usual Hawking temperature Teff ∼ TH . Using standard arguments,let us now onsider the evaporation proess modeled as a sequene of quasi-stationary states, eah of them radiating with the instantaneous temperature
Teff = Teff (T, TH(M(t))), whih varies with time, and where the BH mass
M(t) satis�es the evolution equation

dM

dt
= −4πR2

SσT
4
eff , (14)with Rs = 2M the Shwarzshild radius and σ is the Stefan-Boltzmann on-stant. In the usual ase Teff → TH and we have that the BH ooling time(orresponding to omplete evaporation) is tc = 256π3

3σ M3
0 , where M0 = M(0)is the BH initial mass. Now, de�ning m = M(t)/M0 and τ = t/tc the aboveequation an be rewritten as

dm

dτ
= − γ4m2

3(1 + γm)4
, (15)where γ = T/T 0

H and T 0
H = 1/8πM0 is the initial Hawking temperature.Eq. (15) shows two di�erent regimes. The �rst one orresponds to γm =

T/TH(t) ≫ 1 . During this phase one has Teff ≃ TH and the evaporationproeeds as in the standard ase, i.e. m3 ≃ 1 − τ . However, when mγ ≪ 1,that is T ≪ TH(t) and Teff ≃ T , the evolution is drastially modi�ed to
m ≃ 3/γ4τ , i.e. the mass goes to zero asymptotially, rather than showing a�nite evaporation time.For the example desribed above, one has γ ∼ 1014 , whih means thatthe transition γm ∼ 1 ours at τ = τ1 ∼ 1 − 10−42, when the BH mass is
M ∼ M0/γ ∼ 1019g. Suh a mass is ertainly marosopi, and well above thePlank mass sale, where quantum gravity e�ets are thought to dominate theevaporation. Equivalently, the transition orresponds to TH ∼ T . As we showbelow, at this stage the information released by the evaporating BH starts toapproah the one orresponding to the initial infalling matter.In order to ompare how muh information have in ommon the inom-ing matter and the outgoing radiation, we ompute the �delity F (ρout, ρM ) =

tr[ρ
1/2
M ρoutρ

1/2
M ]1/2 between ρM and ρout . Notie, however, that these two op-erators are expressed in di�erent basis. Therefore, we �rst add the operator U ′whih performs the trivial, information onserving map U ′|i〉M = |i〉out . Aftersome simple algebra, one obtains

F (ρout, ρM ) =
1

(ZZeff )1/2

∑

j

e−(β+βeff)ǫj/2. (16)5
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Figure 1: Fidelity of ρout with respet to ρM , as alulated from Eq. (17).It is simpler to take logs on the above expression. For example, one has
logZ = −∑

ω log(1 − e−βω). We perform the sum over frequenies by using asimple box normalization, i.e. ∑
ω −→ V

∫
d3ω

(2π)3 , where V is the box volume,whih we take as V = 4
3πR

3
s . The remaining terms in Eq. (16) are alulatedin a similar way, giving the �nal expression

logF (ρout, ρM ) = −24y4 + 48y3 + 33y2 + 9y + 1

8640y3(2y2 + 3y + 1)3
. (17)The latter formula depends only on the ratio y = TH/T .The resulting expression, Eq. (17), is plotted in Fig. 1, as a funtion of yfor the most relevant range. As it follows from the above formula, F (ρout, ρM )is exponentially suppressed for T ≫ TH , and beomes lose to unity as THapproahes T . Let us return to the astrophysial senario desribed previ-ously. Initially, we have y = 1/γ ∼ 10−14; therefore, for similar senarios

F (ρout, ρM ) −→ 0 , and the Hawking radiation does not ontain the informa-tion about the infalling matter. Now assume that the aretion eventually stops,and that the BH ontinues to evaporate, so that M dereases and TH inreasesaordingly. Following the above results, the information arried out by theareted mass will be approximately reovered when T ∼ TH or, in other words,when the BH approahes the asymptoti evaporation phase.To sum up the results presented in this letter, using a thermalized �nal-stateprojetion model, slightly di�erent from the original proposal by Horowitz andMaldaena, we onsidered the infall of matter (in the form of a thermal gasharaterized by a temperature T ) into the Blak Hole. Our model allows toquantitatively determine the form of the radiation emitted by the Blak Hole,whih is thermal at the temperature Teff given in eq. (13). Modeling theevaporation proess as a sequene of quasi-stationary states, eah haraterizedby the instantaneous temperature Teff , we have shown that, for realisti values6



of the Blak Hole initial mass M0 and of T , the emission rate is the standardone, i.e. Teff ∼ TH , for most of its lifetime.Extrapolation of our results to the late stages of the evaporation shows thetransition to a new regime, where Teff reahes its maximum value T and theblak hole mass goes to zero asymptotially. The �delity, measuring the infor-mation ontent in the emitted radiation relative to the initial infalling matter,is essentially zero during the �rst phase of the evaporation, and goes to unity asthe BH approahes the asymptoti regime, when information from the infallingmatter would be released.AknowledgmentsThis work has been supported by the Spanish Grants AYA2004-08067-C01,FPA2005-00711, FIS2005-05736-C03-03, the EU NetworkMRTN-CT-2004-005104and by Generalitat Valeniana (Grant GV05/264).Referenes[1℄ S.W. Hawking, Comm. Math. Phys. 43 (1975) 199.[2℄ S.W. Hawking, Phys. Rev. D14 (1976), 2460.[3℄ See for instane: D.N. Page, Phys. Rev. Lett. 44 (1980), 301; S.B. Gid-dings, Quantum mehanis of blak holes, [hep-th/9412138℄; T. Banks, A.Dabholkar, M.R. Douglas and M. O'Loughlin, Phys. Rev. D45 (1992), 3607;S.W. Hawking, Phys. Rev. D37 (1988), 904; A. Strominger, Les Houhesletures on blak holes, [hep-th/9501071℄; J.D. Bekenstein, Blak hole hair:25 years after, [gr-q/9605059℄; 't Hooft, Nul. Phys. B335 (1990), 138; L.Susskind, L. Thorlaius and J. Uglum, Phys. Rev. D48 (1993), 3743[4℄ G. T. Horowitz and J. Maldaena, J. High Energy Phys. 02 (2004) 008[hep-th/0310281℄.[5℄ D. Gottesman and J. Preskill, J. High Energy Phys. 03 (2004) 026[hep-th/0311269℄.[6℄ S. Lloyd, Phys. Rev. Lett. 96 (2006) 061302.[7℄ T. Banks and W. Fishler, Spae-like Singularities and Thermalization,[hep-th/0606260℄.[8℄ D. Ahn, On the �nal state boundary ondition of the Shwarzshild blakhole [hep-th/0606028℄.[9℄ S.L. Shapiro and S.A. Teukolsky, Blak Holes, White Dwarfs, and NeutronStars, John Wiley and Sons (1983).
7

http://arXiv.org/abs/hep-th/9412138
http://arXiv.org/abs/hep-th/9501071
http://arXiv.org/abs/gr-qc/9605059
http://arXiv.org/abs/hep-th/0310281
http://arXiv.org/abs/hep-th/0311269
http://arXiv.org/abs/hep-th/0606260
http://arXiv.org/abs/hep-th/0606028

