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Abstract

We propose a modified version of the Horowitz-Maldacena final-state
boundary condition based upon a matter-radiation thermalization hy-
pothesis on the Black Hole interior, which translates into a particular
entangled state with thermal Schmidt coefficients. We investigate the con-
sequences of this proposal for matter entering the horizon, as described
by a Canonical density matrix characterized by the matter temperature
T. The emitted radiation is explicitly calculated and is shown to follow
a thermal spectrum with an effective temperature Teyr. We analyse the
evaporation process in the quasi-static approximation, highlighting impor-
tant differences in the late stages with respect to the usual semiclassical
evolution, and calculate the fidelity of the emitted Hawking radiation rel-
ative to the infalling matter.

Black Holes (BHs) are probably the most fascinating objects in our Universe.
Although initially related to the General Theory of Relativity, they have be-
come an interdisciplinary field, where ideas from Thermodynamics, Quantum
Field Theory in Curved Spacetimes, String Theory and Quantum Information
are applied in order to understand those aspects which go beyond the purely
gravitational context. Among them, the most spectacular is the BH evaporation
effect [I], which shows that quantum BHs, unlike their classical counterparts,
emit particles in the form of thermal radiation. Even more intriguing is the sug-
gestion Hawking made [2] that black holes will evaporate completely and the
information about their formation will be lost forever. Obviously, if the whole
process is governed by a unitary transformation, as demanded by Quantum
Mechanics, no information can be lost. This question, however, is still under
debate, and several hypothesis have been suggested [3].

Recently, Horowitz and Maldacena [4] (HM, hereafter) have made a proposal
to describe this transformation based on a final-state projection condition, which
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resembles quantum teleportation (but without a classical communication chan-
nel). In the original HM proposal, matter inside the BH is in a maximally
entangled state with the incoming Hawking radiation. The unknown effects of
quantum gravity are encoded into an additional unitary transformation S acting
on matter states alone. The overall transformation acting on matter entering
the horizon is obtained by the projection onto this final state.

Several comments and modifications of this interesting proposal have been
discussed later. Gottesmann and Preskill [5] have argued that the interaction
between the collapsing body and the infalling Hawking radiation would modify
the suggested maximally entangled state, and this modification gives rise, in
general, to a loss of information. Following this idea, in [6] the author allows
for a modified final state with random Schmidt coefficients. As a consequence,
some information is lost, giving “almost certain escape” for general states.

In this letter, we propose a different form for the HM entangled state, which
is in fact described by a thermal spectrum. Several arguments will be given to
justify this proposal. We will then determine explicitly the radiation emitted by
the BH, and analyze both the consequences regarding the evaporation process
and the relation between the information contained in the infalling matter and
that of the emitted Hawking radiation. We use units such that G = h = ¢ =
kg = 1.

Let us begin with a brief description of the final-state projection proposal.
The Hilbert space of the infalling matter plus Hawking radiation can be written
as

H:HM®Hin®Hout (1)
where Hj; corresponds to matter degrees of freedom, and H;,, (Hoyt) stands for
the incoming (outgoing) Hawking radiation, described by an entangled thermal

state belonging to H;, ® Hyy:. We denote this state by [¢)ingout and can be
expressed, in a compact form, as

|¢>in®out = Z >\;TH |]>zn & |j>out- (2)
J

In the above equation, the states |j)in (|7)out) denote Fock states for the
incoming (outgoing) radiation. In a more detailed way, we can write

7)in = [N1N2...)in (3)
(analogously for |j),u: ), where N; denotes the occupation number for frequency
w;, (i=1,2,...) and we have to take into account all possible positive frequen-
cies. Following these conventions, the coefficients in Eq. (@) would read as

)\;TFH = \/;_Hexp(—ﬂHej/Z), (4)

with €; the energy corresponding to the Fock state (3), Sy = 1/Ty the inverse

of the Hawking temperature, given, for the Schwarzschild BH, by Ty = 1/87M

.. 1 . . .
(M is its mass), and T s a normalization factor.



Following HM, the matter state inside the BH, together with the infalling
radiation, form a pure entangled state |1) yrgin, written in the form

V) Mein = Z Ajliyar @ f)in- (5)

J

The states {|j)as} form an orthonormal basis of the Hilbert space Hps .
In the original proposal, it is suggested that this state is maximally entangled,
therefore all the A; would be the same. Moreover, as mentioned above, a BH
unitary transformation S acting on matter degrees of freedom is included in that
proposal. We will, however, keep the above form, with yet undefined coefficients
Aj, as a starting point for our discussion.

Let us first compare Eqs. () and (B). From each of them one can obtain
the density matrix describing the infalling Hawking radiation, by tracing out
over the remaining degrees of freedom. For consistency, both expressions should
coincide, i.e.:

Pin = tTout(|¢>in®out in@out <¢|) = tTM(|1/)>M®1n M®1n<¢|) (6)

In other words,

pin =Y (A" 7)in (il =D (A)?13)in in (] (7)

J J
which implies \; = )\JTH V4 . As a consequence, the state |¢))rrgin described by
Eq. (@) adopts the form of a thermal state, similar to Eq. (). More precisely,
if we trace out the incoming radiation, the resulting density matrix is given by

prt = trin (|0 Mein mein (W) = > (ATF)?15)m m (], (8)

J

where the diagonal elements (/\;‘FH )2 follow a (Canonical) thermal distribution
with temperature equal to the Hawking temperature. Let us discuss this result
in more detail. One could argue that, as matter enters the horizon, it would
eventually thermalize with the incoming radiation, and finally adopt a thermal
distribution with the same temperature (the Hawking temperature). A sup-
porting argument for this hypothesis is given in [7], where it is claimed that, as
a space-like singularity is approached, solutions to Einstein’s equations become
chaotic, with rapid cycles through all states in the Hilbert space, so that time
averages give the same results as ensemble averages on a thermal system.

We also note that the above suggested (thermal) form for |¢) y/ein has also
been discussed in [8] within the context of gravitational collapse of a matter
shell (described by a scalar massless field). It is then shown that, for a given
frequency w, the stationary state of matter and incoming radiation inside the
black hole is a “maximally entangled two-mode squeezed” state with coefficients
given by Eq. (@). However, when discussing the final state projection, in this
reference the author also includes the unknown S matrix discussed in the HM
proposal. Our point of view is different: given the arguments above, we suggest



the state |¢)) pr@in as the state to be used for the final state projection. In this
way, our proposal resembles the one in [6] (compare Eq. (6) in this reference
with our Eq. (@), but now the A;’s to be used, instead of possessing a random
distribution, have a thermal one, shown in ().

This specific form for the final state allows us to make explicit calculations for
the emitted radiation within the context of final state projection, as suggested
by HM. Following these ideas, we define the projector

Avigin = V) Main Mein (V] 9)

An incoming state of matter |x) s entering the horizon would be transformed
into the state |@)ou+ of outgoing Hawking radiation, according to the projection

AM®in(|X>M|¢>in®out) = |¢>M®in|¢>out- (10)

In order to study more realistic situations, we generalize the above rule to
matter described by a density matrix. This would be the case, for example, when
we consider a nondegenerate gas falling into the black hole, as we discuss later.
Let pps be the matter density matrix, and define pingout = |@)ingout in@out (@|-
We extend the final state projection in the straightforward way

AM®zn(pM ® pin®out)AM®in S5 |U)>M®1n M®1n<w| & poutv (]-]-)

where pout = Mein (V] (PM @ Pingout) |¥) Mein 1S the unnormalized density matrix
describing the outgoing Hawking radiation. After some algebra, one obtains the
following result for the normalized density matrix:

D PMij)\iTH)\JTH|i>out out (J]
>, parii(A])?

with pari; = m{ilpm|s)amr the matrix elements of pps . As a particular case,

which will be useful for further discussions, let us assume that the infalling

matter is described by a Canonical ensemble characterized by a temperature T,

such that pyy = £ 3, €7 P i)ar ar(il and B =1/T . Here Z = >, e P is the

matter partition function. In this case, it is straightforward to obtain

1 —Pesrei
p t = €.
ot = Z} ;

Pout = P (12)

7;>out out <Z| )

where Be;p = 8+ By and Zesp = S, e; 7', From the above equation, we
immediately see that, as a consequence of the model introduced in this paper,
the BH radiates with an effective temperature

TTh

Ter =

Suppose we consider the infall of matter inside a BH. This situation could
correspond to the accretion disk around a solar mass (or larger) BH. The gas



can be described by a non-degenerate (Canonical) distribution function. The
temperature of the gas in the inner disk depends on several parameters such
as the mass of the BH, the distance to the center and the viscosity of the gas,
but typically one finds temperatures 7' ~ 10K [9]. For M ~ Mg, the Hawing
temperature is Ty ~ 107 7K. Since T > Ty the black hole emits radiation
at the usual Hawking temperature Tepyr ~ Tpy. Using standard arguments,
let us now consider the evaporation process modeled as a sequence of quasi-
stationary states, each of them radiating with the instantaneous temperature
Tefp = Teps(T,Tu(M(t))), which varies with time, and where the BH mass
M (t) satisfies the evolution equation

aM
dt
with Ry = 2M the Schwarzschild radius and o is the Stefan-Boltzmann con-
stant. In the usual case T,y — Ty and we have that the BH cooling time

= —AnR{o T, (14)

(corresponding to complete evaporation) is t, = 2536;73 M§3, where My = M(0)
is the BH initial mass. Now, defining m = M(t)/My and 7 = t/t. the above
equation can be rewritten as
4,2
dm _ __ym” (15)
dr 3(1+ym)*
where v = T/Ty and Tj, = 1/87 M is the initial Hawking temperature.

Eq. ([@3) shows two different regimes. The first one corresponds to ym =
T/Tw(t) > 1 . During this phase one has T.yf ~ Ty and the evaporation
proceeds as in the standard case, i.e. m? ~ 1 — 7. However, when mvy < 1,
that is T <« Ty(t) and Tey;p ~ T, the evolution is drastically modified to
m =~ 3/y*r, i.e. the mass goes to zero asymptotically, rather than showing a
finite evaporation time.

For the example described above, one has v ~ 10'* | which means that
the transition ym ~ 1 occurs at 7 = 7 ~ 1 — 107*2, when the BH mass is
M ~ Mg/~ ~ 10%g. Such a mass is certainly macroscopic, and well above the
Planck mass scale, where quantum gravity effects are thought to dominate the
evaporation. Equivalently, the transition corresponds to Ty ~ T. As we show
below, at this stage the information released by the evaporating BH starts to
approach the one corresponding to the initial infalling matter.

In order to compare how much information have in common the incom-
ing matter and the outgoing radiation, we compute the fidelity F(pout, prr) =
tT[p}\fpoutp}\f]l/ 2 between pys and pyy: - Notice, however, that these two op-
erators are expressed in different basis. Therefore, we first add the operator U’
which performs the trivial, information conserving map U'|i)ar = |i)out - After
some simple algebra, one obtains

1 _ .
F(poutapM) = W Ze (B+Besys) ]/2' (16)
’ J
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Figure 1: Fidelity of p,u+ with respect to pas, as calculated from Eq. (7).

It is simpler to take logs on the above expression. For example, one has
logZ = =" log(l — e~P«). We perform the sum over frequencies by using a

simple box normalization, ie. Y, — V [ (CI;T“)’S , where V is the box volume,

which we take as V = 2mR3 . The remaining terms in Eq. (I6) are calculated
in a similar way, giving the final expression

24y* + 48y 4+ 33y> + 9y + 1
8640y3(2y% 4+ 3y + 1)3

The latter formula depends only on the ratio y = Ty /T .

The resulting expression, Eq. (I7), is plotted in Fig. 1, as a function of y
for the most relevant range. As it follows from the above formula, F(pout, par)
is exponentially suppressed for T' > Ty , and becomes close to unity as T
approaches 7. Let us return to the astrophysical scenario described previ-
ously. Initially, we have y = 1/y ~ 107'4; therefore, for similar scenarios
F(pout, ppr) — 0, and the Hawking radiation does not contain the informa-
tion about the infalling matter. Now assume that the accretion eventually stops,
and that the BH continues to evaporate, so that M decreases and Ty increases
accordingly. Following the above results, the information carried out by the
accreted mass will be approximately recovered when T' ~ Ty or, in other words,
when the BH approaches the asymptotic evaporation phase.

To sum up the results presented in this letter, using a thermalized final-state
projection model, slightly different from the original proposal by Horowitz and
Maldacena, we considered the infall of matter (in the form of a thermal gas
characterized by a temperature T') into the Black Hole. Our model allows to
quantitatively determine the form of the radiation emitted by the Black Hole,
which is thermal at the temperature Te¢r given in eq. ([I3). Modeling the
evaporation process as a sequence of quasi-stationary states, each characterized
by the instantaneous temperature 7,r¢, we have shown that, for realistic values

1OgF(pout7pM) = (17)



of the Black Hole initial mass My and of T, the emission rate is the standard
one, i.e. Teps ~ Ty, for most of its lifetime.

Extrapolation of our results to the late stages of the evaporation shows the
transition to a new regime, where T,s; reaches its maximum value 7" and the
black hole mass goes to zero asymptotically. The fidelity, measuring the infor-
mation content in the emitted radiation relative to the initial infalling matter,
is essentially zero during the first phase of the evaporation, and goes to unity as
the BH approaches the asymptotic regime, when information from the infalling
matter would be released.
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