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tWe generalize the 
on
ept of opti
al Galton board (OGB), �rst proposed by Bouwmeester et al. [Phys. Rev. A 61, 013410(2000)℄, by introdu
ing the possibility of nonlinear self�phase modulation on the wavefun
tion during the walker evolution.If the original Galton board illustrates 
lassi
al di�usion, the OGB, whi
h 
an be understood as a grid of Landau�Zener
rossings, illustrates the in�uen
e of interferen
e on di�usion, and is 
losely 
onne
ted with the quantum walk. Our nonlineargeneralization of the OGB shows new phenomena, the most striking of whi
h is the formation of non-dispersive pulses in the�eld distribution (soliton�like stru
tures). These exhibit a variety of dynami
al behaviors, in
luding ballisti
 motion, dynami
allo
alization, non�elasti
 
ollisions and 
haoti
 behavior, in the sense that the dynami
s is very sensitive to the nonlinearitystrength.PACS numbers: 03.67.Lx, 05.40.Fb, 05.45.Yv, 42.65.-kINTRODUCTION.The Galton board, or quin
unx, is a matrix of regu-larly spa
ed pegs �xed to a board through whi
h pelletsfall impulsed by gravity. The �nal distribution of pel-lets' lo
ations at the bottom of the devi
e follows thebinomial distribution, and thus the Galton board 
onsti-tutes a realization of the random walk. The importan
eof random walks does not need to be emphasized here,as their presen
e is ubiquitous in s
ien
e. They are im-portant, in parti
ular, as a tool in 
lassi
al 
omputation(the best known algorithms for solving some parti
ularproblems are based on their use [1℄). For sure, this isone of the main reasons behind the present interest onthe quantum 
ounterpart of random walks, the so�
alledquantum random walks [2℄ or, more appropriately, quan-tum walks (QWs). Moreover, from a fundamental pointof view the study of quantum 
ounterparts of important
lassi
al phenomena, and vi
eversa, is of obvious interest.The QW has been introdu
ed from several di�erentperspe
tives: In the seminal papers (in 1993 Aharonov etal. [2℄ introdu
ed the QW as a generalization of the ran-dom walk, and in 1996 Meyer [3℄ introdu
ed it as a non-trivial quantum 
ellular automaton) the 
omputationalaspe
ts were not stressed, but later Watrous [4℄ inde-pendently introdu
ed QWs from a quantum algorithmi
point of view, and other versions of the QW (the so�
alled 
ontinuous QW, that 
an be viewed as a quantumgeneralization of the Markov 
hain) were also proposed[5℄. Today there is a 
onsiderable amount of papers de-voted to QWs, and we refer the reader to existing reviews[6, 7℄.Not only one 
an think of quantum versions of therandom walk, one 
an also think of wave [8℄ as well asquantum versions of the Galton board [9℄. The di�er-en
e between the wave and quantum versions lies in that,in the wave version, it is 
lassi
al waves (e.g. opti
alwaves) what are used, while the quantum version uses

amplitude probability waves (wavefun
tions). The so�
alled opti
al Galton board (OGB) was �rst proposed byBouwmeester et al. [8℄, and was introdu
ed as a gridof (opti
al) Landau�Zener 
rossings. Bouwmeester et al.showed, both theoreti
ally and experimentally, the exis-ten
e of spe
tral di�usion, as well as dynami
al lo
aliza-tion in their parti
ular proposal for an OGB. As for thequantum version, the quantum quin
unx of Ref. [9℄ is aquantum�opti
al proposal for the implementation of theQW.Although 
lassi
al waves and wavefun
tions are di�er-ent in a deep sense, a very interesting point raised by theOGB is that it 
an be understood, to some extent, as anopti
al realization of the QW [10, 11, 12℄. It is 
onve-nient to stress that there are small di�eren
es betweenthe OGB of [8℄ and the QW, but as it was shown in [10℄,the OGB redu
es to a QW with an appropriate param-eter setting of the devi
e. Moreover, Woj
ik et al. [12℄suggested that their generalization of the QW (
onsistingin the introdu
tion of some additional position� depen-dent phase 
hanges of the walker, see also [13, 14, 15℄)qualitatively des
ribes the OGB of [8℄, as it reprodu
esthe observed dynami
al lo
alization. These generaliza-tions of the QW have shown unsuspe
ted 
onne
tions ofthe QW with Anderson lo
alization [13℄ and quantum
haos [12, 14℄.Here we propose a nonlinear generalization of the OGB(NLOGB), 
onsisting on the introdu
tion of nonlinearityin the evolution of the walker. Given the 
onne
tion be-tween the OGB and the QW mentioned above, one 
ouldsay that we are proposing a nonlinear generalization ofthe QW (the nonlinear QW). However, as we dis
ussbelow, our proposal makes full sense only from a 
las-si
al perspe
tive, and thus our preferen
e for the nameNLOGB (nonlinear opti
al Galton board). As expe
ted,the nonlinearity deeply modi�es the QW dynami
s, giv-ing rise to new and interesting phenomena whi
h we in-vestigate in some detail.1
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After this introdu
tion, the rest of the arti
le is orga-nized as follows: In Se
tion II we brie�y review the QW,as we will use its formalism for introdu
ing the NLOGB;in Se
tion III we introdu
e the NLOGB as a nonlinearQW; in Se
tion IV we des
ribe the formation of solitoni
stru
tures; in Se
tion V we analyze the dynami
s of thesystem des
ribing the di�erent phase transitions we haveobserved; and in Se
tion VI we give our main 
on
lusions.THE COINED QUANTUM WALK.Here we deal with the 
oined, dis
rete QW, in one di-mension. This pro
ess is better introdu
ed as a quantumgeneralization of the random walk: In the random walkthe walker moves to the right or to the left, dependingon the output of a random pro
ess (e.g. tossing a 
oin);then the QW mimi
s the random walk in the existen
eof a 
onditional displa
ement that depends on the stateof the 
oin, but di�ers from the QW in the fa
t thatthe 
oin is not a binary random pro
ess but a qubit. Asthe qubit 
an be in a superposition state, the walker 
anmove simultaneously, say, in the two opposite dire
tions.In order to make the dynami
s nontrivial [3℄, the 
oinstate must be 
hanged (the analog of tossing the 
lassi-
al 
oin) after ea
h walk step, what is a

omplished bythe appli
ation of a suitable unitary transformation onthe qubit. The main feature of the QW, as opposed tothe random walk, is that the di�usion of the parti
le ismu
h faster (in the absen
e of de
oheren
e [7℄): Whilein the random walk the width of the probability distri-bution of the walker position grows as the square root ofthe number of steps, it grows linearly with the numberof steps in the QW. Moreover, the probability distribu-tions have a very di�erent shape (gaussian in the randomwalk, and resembling the Airy fun
tion in the QW). Letus now introdu
e formally the QW.The standard 
oined QW 
orresponds to the dis
retetime evolution, on a one-dimensional latti
e, of a quan-tum system (the walker), 
oupled to a bidimensionalsystem (the 
oin), under repeated appli
ation of a pairof dis
rete linear operators. Let HW be the Hilbertspa
e of the walker, with {|m〉 ,m ∈ Z} a basis of HW ;and let HC be the Hilbert spa
e of the 
oin, with basis
{|u〉 , |d〉}. The state of the total system belongs to thespa
e H = HC ⊗HW and, at time t, 
an be expressed as

|ψ (t)〉 =
∑

m

[um,t |u,m〉 + dm,t |d,m〉] . (1)The 
onne
tion between states in 
onse
utive timesis made by an unitary linear evolution operator Û ,whi
h 
an be written as Û = ÛdÛc, i.e., |ψ(t)〉 =
ÛdÛc |ψ(t− 1)〉. Here, Ûc = Ĉ ⊗ Î is the "
oin toss oper-ator" with Ĉ ∈ SU(2), typi
ally 
hosen as the Hadamard

transformation
Ĉ =

1√
2

(|u〉 〈u| − |d〉 〈d| + |u〉 〈d| + |d〉 〈u|) , (2)and
Ûd =

∑

m

(|u,m+ 1〉 〈u,m|+ |d,m− 1〉 〈d,m|) , (3)is the "
onditional displa
ement operator", whi
h movesthe walker one position to the right or to the left, de-pending on whether the 
oin state is u or d, respe
tively.The main quantity related to the walk is the probabil-ity distribution fun
tion of the walker along the latti
e,
al
ulated as Pm(t) = |um,t|2 + |dm,t|2 ≡ Pu
m(t) + P d

m(t).We have already 
ommented that the QW 
an be 
las-si
ally simulated. In order to make things 
on
rete, we
onsider the s
heme depi
ted in Fig. 1, whi
h repre-sents an opti
al 
avity. A quasi-mono
hromati
 light �eldenters the 
avity through a partially re�e
ting mirror.When this �eld rea
hes the beam�splitter (BS in Fig. 1),it 
an follow two di�erent paths, upper and lower in the�gure. These two paths play the role of the qubit (whi
h,in this 
ase, would be better 
alled a 
ebit, following theterminology introdu
ed in [17℄), and the beam�splitterimplements the unitary transformation [17℄ (the "
ointoss" operator). Then in the lower (upper) path, the �eldfrequen
y, whi
h plays the role of the walker in this op-ti
al implementation, is in
reased (de
reased) in a �xedamount ∆ω by means of appropriately tuned ele
troopti
modulators. This is the �rst step of the QW. Then, the
avity mirrors re�e
t the light ba
k to the beam�splitterand a new step of the QW is implemented, and so on andso forth.In this 
ase, the QW o

urs in the frequen
y distribu-tion of the output �eld, with the intensity of ea
h fre-quen
y 
omponent playing the role of the probability of�nding the walker at a given position, i.e., Pu
m(t) and

P d
m(t) are spe
tral intensities in this 
lassi
al�wave 
on-text, and not probabilities. In other words, afterm 
avityroundtrips, the spe
trum of the output �eld exhibits theprobability distribution of the QW. This is one of thes
hemes proposed in [10℄ for the opti
al (
lassi
al) imple-mentation of the QW, where also the 
onne
tion betweenthe OGB of Ref. [8℄ and the QW is given, and we referthe reader to that paper for full details on this type of
lassi
al (opti
al) implementation of the QW. Let us em-phasize that this s
heme 
onstitutes a realization of theopti
al Galton board.What this 
lassi
al implementation of the QW (andothers [18, 19, 20, 21℄) suggests is that interferen
e, andnot entanglement, is the responsible of the QW 
hara
-teristi
s. Entanglement would manifest in QWs in morethan two dimensions, in the amount of 
lassi
al resour
esneeded for its implementation, as 
ompared with a truequantum implementation, as already dis
ussed in [10℄.This does not mean that there is nothing quantum in2



Figure 1: Opti
al 
avity for the implementation of the OGBand the NLOGB. EOM1 and EOM2 are two ele
troopti
 mod-ulators whi
h are tuned for in
rementing (de
reasing) the �eldfrequen
y in ∆ω. BS is a beam�splitter, and the 
avity is 
on-stituted by four mirrors, one of whi
h is partially re�e
tingand serves as input/output port. For implementing the OGB,the upper and lower paths must be a linear opti
al medium,whi
h must be repla
ed by a nonlinear opti
al medium (su
has, e.g., an opti
al �ber) for implementing the NLOGB.the QW: It is the di�erent physi
al meaning of Pm(t)(in a true quantum system, the probability distribution
an be re
onstru
ted only after a large enough numberof measurements, while in the 
lassi
al simulation theanalog of the probability distribution 
orresponds to the�eld spe
trum and 
an be seen 
ompletely at ea
h walkstep). The e�e
t of de
oheren
e 
ould be di�erent in
lassi
al and quantum implementations [7℄. But, at leastin the QW on the line, the quantum nature seems not tomanifest, as it 
an be su

essfully simulated by 
lassi
almeans. See [22℄ for a dis
ussion on this topi
.INTRODUCING THE NONLINEAR OPTICALGALTON BOARD.The opti
al 
avity s
heme of Fig. 1 serves us to in-trodu
e the nonlinear opti
al Galton board (NLOGB).It su�
es to assume that light a
quires some intensity-dependent phase while traveling through the upper andlower paths, i.e., that these paths are not made by alinear medium (va
uum), but with a nonlinear medium(e.g. a Kerr medium, like an opti
al �ber or similar).This is very easily taken into a

ount with the QW for-malism introdu
ed in the previous se
tion that we will
ontinue to use here: We only need to introdu
e onemore operator des
ribing the a
quisition of the intensity-dependent (nonlinear) phase due to propagation in theKerr medium, i.e., we have to generalize the unitary op-

erator de�ned above in the following way:
Û(t) = ÛdÛcÛnl(t− 1), (4)

Ûnl(t) =
∑

c=u,d

∑

m

eiFc(m,t) |c,m〉 〈c,m| , (5)where Fc (m, t) (c = u, d) is an arbitrary fun
tion of theprobabilities (or intensities, in a 
lassi
al 
ontext) Pu
m(t)and P d

m(t) [23℄. Noti
e that the role of Ûnl(t) is to add anonlinear (probability dependent) phase to ea
h of thespinor 
omponents. With the above formulation, thestandard QW is obviously re
overed when Fu = Fd = 0,and the generalized QWs of [13℄ and [12, 14℄ are re
overedwhen Fu = Fd = m2φ0 and Fu = Fd = mφ0, respe
tively,with φ0 a 
onstant phase. We see that a physi
al systemlike the one represented in Fig. 1 allows to implementa number of interesting generalizations of the QW in arelatively simple way. Let us emphasize that the OGBof Bouwmeester et al. [8℄ is very 
lose to what we are
ommenting [10℄.In this arti
le we shall 
onsider one of the simplestforms for (5) by 
hoosing Fc (m, t) = 2πα |cm,t|2 (c =
u, d), i.e., we assume that the nonlinear phase gainedbetween two QW steps is due to a Kerr-type nonlinearitythat a
ts separately on the two 
oin states (u and d)and has a strength α. The re
ursive evolution equationsfor the probability amplitudes 
an be easily derived from
|ψ(t+ 1)〉 = Û (t+ 1) |ψ(t)〉, yielding

um,t+1 =
1√
2
um−1,te

i2πα|um−1,t|
2 (6)

+
1√
2
dm−1,te

i2πα|dm−1,t|
2

,

dm,t+1 =
1√
2
um+1,te

i2πα|um+1,t|
2 (7)

− 1√
2
dm+1,te

i2πα|dm+1,t|
2

.As we show below, the nonlinearity just introdu
eddeeply modi�es the behavior of the probability distribu-tion Pm(t). For this purpose, we perform a numeri
alstudy of Eqs. (6,7) for di�erent values of α. We shall
onsider α > 0 for de�niteness, sin
e from Eqs. (6,7) oneeasily sees that 
hoosing a positive α, say α = α0, withsome initial 
onditions (um,0; dm,0) is equivalent to tak-ing α = −α0 and 
omplex-
onjugated initial 
onditions
(

u∗m,0; d
∗
m,0

). Moreover, we shall adopt, unless otherwisespe
i�ed, symmetri
al initial 
onditions lo
alized at theorigin, i.e., um,0 = δm0/
√

2 and dm,0 = iδm0/
√

2.From a 
lassi
al (wave) viewpoint, the above pro
ess isa nonlinear opti
al Galton Board (NLOGB) and 
an beimplemented with the same devi
e we have 
ommented inthe previous se
tion, provided that the two opti
al beamspropagate in a Kerr medium (e.g., an opti
al �ber), asthis nonlinear propagation exa
tly 
orresponds to what
Ûnl represents. From a quantum viewpoint the imple-mentation of Ûnl is probably impossible be
ause of the3



linearity of the S
hrödinger equation. It is 
lear from nowthat the pro
ess we are proposing makes full sense onlyas a nonlinear OGB, and will �nd 
on
eptual di�
ultiesas a nonlinear QW.In spite of the di�
ulties when speaking of a nonlin-ear QW, one should keep in mind that nonlinearities 
anbe introdu
ed in quantum systems through a 
lever useof measurement [24, 25℄, what keeps open the possibil-ity of implementing the proposed NLQW. Another, morerealisti
 possibility 
on
erns using systems des
ribed bynonlinear e�e
tive Hamiltonians, as Bose�Einstein 
on-densation, where QWs 
ould be implemented [26℄, or su-per
ondu
ting devi
es, just to mention a 
ouple of poten-tial 
andidates. But these appear as remote possibilities,as 
ompared with the immedia
y of an opti
al implemen-tation in an opti
al devi
e similar to that already usedby Bouwmeester et al. [8℄.FORMATION OF SOLITON�LIKE STRUCTURES.In Fig. 2 we represent the evolved probability distri-butions Pm(t) for α = 0 (i.e., the standard QW) and
α = 0.4. When α = 0, we observe the typi
al QW be-havior [6℄: Pm(t) exhibits two peaks at the borders ofthe distribution, whose tails de
ay in the 
entral zone,and whose maximum value monotoni
ally de
reases withtime as the probability distribution broadens; and, mostimportantly, the width of Pm(t) is proportional to t. Thisprobability distribution 
an be expressed, in some limit[11℄, as a 
ombination of Airy fun
tions propagating inopposite dire
tions.The shape of Pm(t) for α = 0.4 is very di�erent: Nowthe two peaks of Pm(t) 
ontain most of the total proba-bility, around 30% ea
h one in the 
ase of Fig. 2, mostlydistributed within a few latti
e positions (see the insetin Fig. 2) . But the most striking 
hara
teristi
 of theprobability peaks in this nonlinear 
ase, is that their sizeand shape remain basi
ally 
onstant with time, ex
ept forsmall os
illations around a mean value.We will 
hara
terize the probability peaks by theirposition and intensity (i.e., the total probability they
ontain). As for the position, given the small �u
-tuations on the shape of the peak, we use the "
en-ter of mass", de�ned as mCM ≡ ∑

mmPm(t), with
m ∈ [mmax + ∆m,mmax − ∆m], mmax the position ofthe probability maximum and ∆m the width of the peak[27℄. Only small quantitative di�eren
es are found be-tween the behavior of mmax and that of mCM .The most important feature of the probability peaksis that they are non-spreading pulses, i.e., they prop-agate without distortion [28℄. As these probabilitywave-pa
kets do not spread in time, and present otherparti
le�like features (see below) we 
an 
onsider themas solitoni
-like stru
tures, and will simply refer to themas solitons.

Figure 2: (Color online) Probability distribution 
urves of
Pm(t) for t = 300, with the initial 
ondition um,0 = δm0/

√

2and dm,0 = iδm0/
√

2, for α = 0 (standard QW) and α = 0.4.The inset is a magni�
ation of the right�moving probabilitysoliton. Noti
e that Pm (t) is null for odd m (as t is evenin this plot). We have represented only nonzero values andjoined them for guiding the eye.Apparently, solitons do not require a minimum value of
α to form: We have 
he
ked their existen
e for α ≥ 0.01,and the analysis of the data from di�erent (non-zero) val-ues of α does not suggest the existen
e of any thresholdfor the solitons formation. Nevertheless, the time neededfor their formation (i.e., the transient until the inten-sity and shape of the probability stru
ture is 
onstant onthe average) is larger for smaller α. This is appre
iatedin Fig. 3 (a), where the intensity of a single soliton isrepresented as a fun
tion of time for di�erent values ofthe nonlinearity parameter α. Another important featureis that the width of the overall probability distribution
Pm(t) or, equivalently, the soliton velo
ity, de
reases as
α in
reases, as shown in Fig. 3 (b), where the positionof the solitons is represented for di�erent values of α (inthe 
ase α = 0, where solitons do not exist, we have rep-resented the position of the 
enter of mass of the max-4



Figure 3: (Color online) (a) Intensity (total probability) ofthe right�moving soliton. (b) Temporal evolution of the 
en-ter of mass, mCM , of the right�moving soliton (the plot issymmetri
 for the left-moving soliton). The values of α areindi
ated in the plots. Initial 
onditions are as in Fig. 2.imum of Pm (t) for the sake of 
omparison). Therefore,solitons form after some transient, and are slower andmore intense for larger α. This is the s
enario we foundfor α ≤ 0.474.In view of the phenomena des
ribed above, one mightwonder whether the intrinsi
 quantum features of QWsare deteriorated or not, and if so, to what extent. Oneway to quantify the possible loss of the quantum ben-e�ts is by analyzing the time evolution of the standardquadrati
 deviation σ =
√
< m2 > − < m > 2 . As al-ready dis
ussed, the standard QW exhibits a 
hara
ter-isti
 σ ∝ t. Given the transient whi
h appears duringthe formation of the solitons, the question we ask our-selves is: does the quotient σ/t go to a 
onstant after thetransient (i.e., for su�
iently large time), or will it de
ayslower?As 
an be seen from Fig. 4, the �rst possibility is infa
t realized: after the transient, the standard deviationapproa
hes the typi
al QW time evolution. Therefore,

Figure 4: (Color online) Evolution of the ratio σ/t for di�erentvalues of α.the long-term QW behavior is not degraded by the for-mation and propagation of the solitons.DYNAMICAL PHASES.We have been able to identify three di�erent dynami
aldomains, or dynami
al phases, in the behavior of solitonsas a fun
tion of the value of α: Phase I, for α < αI ≃
0.474; phase II, for αI < α < αII ≃ 0.6565; and phaseIII, for α > αII . Let us des
ribe these phases separately.In Phase I, the dynami
s is very simple: On
e solitonshave formed, they exhibit the ballisti
 propagation al-ready shown in Fig. 3(b). Di�erently, in Phase II the twosolitons start moving in opposite dire
tions, as in PhaseI, but after some time their velo
ity de
rease till the soli-tons rea
h a turning point and then move ba
kwards and
ollide at some later instant tcol at m = 0. After the 
ol-lision, the solitons 
ontinue moving apart inde�nitely, asin phase I. An example of su
h behavior, for α = 0.49, isshown in Figure 5. Noti
e the appearan
e of small �
om-muni
ation pa
kets� that are inter
hanged between thetwo solitons. Interestingly, the solitons intensity sharplyde
reases after the 
ollision (for example, for α = 0.495



Figure 5: (Color online) Color density plot showing the evolu-tion of Pm(t) as a fun
tion of t (horizontal axis) for α = 0.49.The verti
al axis 
orresponds to the position on the latti
e.Brighter regions indi
ate a higher probability. The two soli-tons are 
learly visualized as intense strips.the intensity of one soliton falls from 0.3062 before the
ollision, to 0.2426 afterwards), i.e., the 
ollision of thetwo solitons is an inelasti
 one. Another feature that
an be observed from the simulations is that, as α is in-
reased from below αI (inside phase I), the intensity ofthe solitons in
rease up to a maximum value. It seemsthat the 
ommuni
ation pa
kets inter
hanged by the twosolitons play the role of an attra
tive intera
tion, whi
his larger for larger intensities. This would explain the ex-isten
e of the above-mentioned turning point appearingat some 
riti
al value αI . Inside phase II, the solitonsexperien
e an inelasti
 s
attering and loose a fra
tion oftheir intensity, whi
h would prevent from re
ollapse.The method we used to determine this 
riti
al value,however, makes use of the fa
t that the 
ollision instant
tcol de
reases with α. Indeed, the fun
tion tcol(α) 
anbe well reprodu
ed numeri
ally by a simple hyperbola
1/tcol = a/α+b (where the values of a and b are obtainedby a numeri
al �t, with a 
oe�
ient of determination
r2 = 0.99516, giving a = −0.0297 ± 0.0003 and b =
0.0627 ± 0.0006). This numeri
ally-obtained law allowsto �x the frontier between phases I and II by the α valuefor whi
h tcol diverges (we obtained αI = 0.474± 0.007).As we made for phase I, it is worth investigating howthe standard deviation evolves at long times, in orderto quantify a possible departure from the 
hara
teristi
quantum spreading. As before, we plot in Fig. 6 thequotient σ/t as a fun
tion of time for values of α 
orre-sponding to the se
ond phase. Now the transient showsmore 
ompli
ated features, due to the re
ollapse of thetwo solitons (whi
h manifests as the minimum appearingin both 
urves). However, as the solitons separate afterthe 
ollision, the typi
al σ ∝ t behavior shows up.

Figure 6: (Color online) Same as Fig. 4, for values of α
orresponding to phase II.Phase III, α > αII , di�ers from phase II in that, afterthe 
ollision, the two emerging solitons do not ne
essarily
ollide or separate from ea
h other. In fa
t, if α is in-
reased beyond αII , the situation be
omes quite 
ompli-
ated, as the evolution of the solitons be
omes extremelysensitive to small variations in α. In this sense, we 
ansay that phase III is a 
haoti
 phase: For some valuesof α, the solitons be
ome trapped and os
illate aroundthe origin; with a slightly di�erent value for α, however,the solitons eventually es
ape; and there are other α val-ues for whi
h lo
alization is found, whi
h is 
hara
terizedby an asymptoti
 setup of both solitoni
 stru
tures at anequilibrium point. Interestingly, the latter possibility 
ano

ur at very distant site positions for slightly di�erentvalues of α: For example, the right-moving soliton posi-tion os
illates between m = 5 and m = 9 for α = 0.6665;it remains stati
 at position m = 162 for α = 0.6669;and again os
illates, around m = 7, for α = 0.6673. InFig. 7 we show an example of the type of dynami
s oneen
ounters in phase III for the two values of α indi
atedin the �gure 
aption.The results we have just des
ribed 
orrespond to a par-ti
ular 
hoi
e of the QW initial 
onditions, whi
h guar-antees the symmetry of the probability distribution withrespe
t to the starting position. In order to see how 
rit-6



Figure 7: (Color online) Same as Fig. 5, but for α =0.6565(top) and α = 0.658197 (bottom).i
al is the role of the initial 
ondition, we have 
arriedout numeri
al simulations for di�erent sets of initial 
on-ditions, and have found that the dynami
s is also verysensitive to this 
hoi
e. Fig. 8 gives an idea of how dif-ferent things 
an be: we represent the evolution of theprobability distribution for um,0 = δm0, dm,0 = 0 and
α = 0.2 (top) or α = 0.6 (bottom). For this initial 
ondi-tion, the probability distribution is no longer symmetri
(even in the standard QW), and this fa
t strongly a�e
tsthe formation and dynami
s of solitons. We are not go-ing to enter into an exhaustive des
ription here; it willsu�
e to say that, in this 
ase, there are also severaldynami
 phases: For small α, a single soliton forms, 
ar-rying 
lose to 60% of the probability, that moves like inFig. 7 (top) (most of the rest of the probability is 
on-tained in small dispersive pulses that 
an be appre
iatedin the �gure); for large α several solitons, with di�erentintensities, 
an form, and lo
alization phenomena similarto what we have des
ribed above 
an o

ur too, see Fig.8 (bottom).CONCLUSIONS.We have introdu
ed a simple variation of the Opti-
al Galton Board (whi
h 
an be understood as a 
las-si
al implementation of the dis
rete 
oined QW), basedon the assumption that light propagates through a non-linear (Kerr-type) medium inside the opti
al 
avity or,using the algebrai
 language of QW, based on the a
qui-sition of non-linear -probability dependent- phases by thestate during the walk.

Figure 8: (Color online) Same as Fig. 5, but for α = 0.2 (top)and α = 0.6 bottom. The initial 
onditions are um,0 = δm0and dm,0 = 0. For α = 0.2 a single soliton is formed that
arries 57% of the probability. For α = 0.6 this soliton hasnow a smaller intensity (32% of the probability) and be
omeslo
alized near m = 0, while a se
ond soliton (20% of theprobability) is formed.The most striking feature that the nonlinearity intro-du
es, is the formation of soliton-like stru
tures, whi
h
arry a 
onstant fra
tion of the total intensity (probabil-ity) distribution within a non-dispersive pulse. We have
hara
terized the dynami
s of these solitons showing theexisten
e of 
omplex dynami
s (from ballisti
 motion todynami
al lo
alization) that is very sensitive to the ini-tial 
onditions. An important feature we found is that,in spite of the 
ompli
ated behavior during the transientand possible re
ollapse of the solitons, the long term evo-lution still shows the 
hara
teristi
 QW feature in the
ases when the solitons go away, in the sense that thestandard deviation be
omes σ ∝ t.It would be of greatest interest to have at hand an ana-lyti
al des
ription of the solitons motion and intera
tion,spe
ially during the formation transient and re
ollapse(when present), as done (approximately) in [10℄. Theadditional 
ompli
ation due to non-linearities, however,makes this task 
umbersome and lies beyond the s
opeof this paper.The des
ribed phenomena are, to the best of ourknowledge, new in the �eld of quantum walks. The ex-
iting features found here deserve, we believe, furtherresear
h.A
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