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Nonlinear optial Galton boardC. Navarrete-Benlloh1,2, A. Pérez1 and Eugenio Roldán2

1Departament de Físia Teòria and IFIC, Universitat de Valènia-CSIC,Dr. Moliner 50, 46100�Burjassot, Spain and
2Departament d'Òptia, Universitat de Valènia, Dr. Moliner 50, 46100�Burjassot, SpainAbstratWe generalize the onept of optial Galton board (OGB), �rst proposed by Bouwmeester et al. [Phys. Rev. A 61, 013410(2000)℄, by introduing the possibility of nonlinear self�phase modulation on the wavefuntion during the walker evolution.If the original Galton board illustrates lassial di�usion, the OGB, whih an be understood as a grid of Landau�Zenerrossings, illustrates the in�uene of interferene on di�usion, and is losely onneted with the quantum walk. Our nonlineargeneralization of the OGB shows new phenomena, the most striking of whih is the formation of non-dispersive pulses in the�eld distribution (soliton�like strutures). These exhibit a variety of dynamial behaviors, inluding ballisti motion, dynamialloalization, non�elasti ollisions and haoti behavior, in the sense that the dynamis is very sensitive to the nonlinearitystrength.PACS numbers: 03.67.Lx, 05.40.Fb, 05.45.Yv, 42.65.-kINTRODUCTION.The Galton board, or quinunx, is a matrix of regu-larly spaed pegs �xed to a board through whih pelletsfall impulsed by gravity. The �nal distribution of pel-lets' loations at the bottom of the devie follows thebinomial distribution, and thus the Galton board onsti-tutes a realization of the random walk. The importaneof random walks does not need to be emphasized here,as their presene is ubiquitous in siene. They are im-portant, in partiular, as a tool in lassial omputation(the best known algorithms for solving some partiularproblems are based on their use [1℄). For sure, this isone of the main reasons behind the present interest onthe quantum ounterpart of random walks, the so�alledquantum random walks [2℄ or, more appropriately, quan-tum walks (QWs). Moreover, from a fundamental pointof view the study of quantum ounterparts of importantlassial phenomena, and vieversa, is of obvious interest.The QW has been introdued from several di�erentperspetives: In the seminal papers (in 1993 Aharonov etal. [2℄ introdued the QW as a generalization of the ran-dom walk, and in 1996 Meyer [3℄ introdued it as a non-trivial quantum ellular automaton) the omputationalaspets were not stressed, but later Watrous [4℄ inde-pendently introdued QWs from a quantum algorithmipoint of view, and other versions of the QW (the so�alled ontinuous QW, that an be viewed as a quantumgeneralization of the Markov hain) were also proposed[5℄. Today there is a onsiderable amount of papers de-voted to QWs, and we refer the reader to existing reviews[6, 7℄.Not only one an think of quantum versions of therandom walk, one an also think of wave [8℄ as well asquantum versions of the Galton board [9℄. The di�er-ene between the wave and quantum versions lies in that,in the wave version, it is lassial waves (e.g. optialwaves) what are used, while the quantum version uses

amplitude probability waves (wavefuntions). The so�alled optial Galton board (OGB) was �rst proposed byBouwmeester et al. [8℄, and was introdued as a gridof (optial) Landau�Zener rossings. Bouwmeester et al.showed, both theoretially and experimentally, the exis-tene of spetral di�usion, as well as dynamial loaliza-tion in their partiular proposal for an OGB. As for thequantum version, the quantum quinunx of Ref. [9℄ is aquantum�optial proposal for the implementation of theQW.Although lassial waves and wavefuntions are di�er-ent in a deep sense, a very interesting point raised by theOGB is that it an be understood, to some extent, as anoptial realization of the QW [10, 11, 12℄. It is onve-nient to stress that there are small di�erenes betweenthe OGB of [8℄ and the QW, but as it was shown in [10℄,the OGB redues to a QW with an appropriate param-eter setting of the devie. Moreover, Wojik et al. [12℄suggested that their generalization of the QW (onsistingin the introdution of some additional position� depen-dent phase hanges of the walker, see also [13, 14, 15℄)qualitatively desribes the OGB of [8℄, as it reproduesthe observed dynamial loalization. These generaliza-tions of the QW have shown unsuspeted onnetions ofthe QW with Anderson loalization [13℄ and quantumhaos [12, 14℄.Here we propose a nonlinear generalization of the OGB(NLOGB), onsisting on the introdution of nonlinearityin the evolution of the walker. Given the onnetion be-tween the OGB and the QW mentioned above, one ouldsay that we are proposing a nonlinear generalization ofthe QW (the nonlinear QW). However, as we disussbelow, our proposal makes full sense only from a las-sial perspetive, and thus our preferene for the nameNLOGB (nonlinear optial Galton board). As expeted,the nonlinearity deeply modi�es the QW dynamis, giv-ing rise to new and interesting phenomena whih we in-vestigate in some detail.1
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After this introdution, the rest of the artile is orga-nized as follows: In Setion II we brie�y review the QW,as we will use its formalism for introduing the NLOGB;in Setion III we introdue the NLOGB as a nonlinearQW; in Setion IV we desribe the formation of solitonistrutures; in Setion V we analyze the dynamis of thesystem desribing the di�erent phase transitions we haveobserved; and in Setion VI we give our main onlusions.THE COINED QUANTUM WALK.Here we deal with the oined, disrete QW, in one di-mension. This proess is better introdued as a quantumgeneralization of the random walk: In the random walkthe walker moves to the right or to the left, dependingon the output of a random proess (e.g. tossing a oin);then the QW mimis the random walk in the existeneof a onditional displaement that depends on the stateof the oin, but di�ers from the QW in the fat thatthe oin is not a binary random proess but a qubit. Asthe qubit an be in a superposition state, the walker anmove simultaneously, say, in the two opposite diretions.In order to make the dynamis nontrivial [3℄, the oinstate must be hanged (the analog of tossing the lassi-al oin) after eah walk step, what is aomplished bythe appliation of a suitable unitary transformation onthe qubit. The main feature of the QW, as opposed tothe random walk, is that the di�usion of the partile ismuh faster (in the absene of deoherene [7℄): Whilein the random walk the width of the probability distri-bution of the walker position grows as the square root ofthe number of steps, it grows linearly with the numberof steps in the QW. Moreover, the probability distribu-tions have a very di�erent shape (gaussian in the randomwalk, and resembling the Airy funtion in the QW). Letus now introdue formally the QW.The standard oined QW orresponds to the disretetime evolution, on a one-dimensional lattie, of a quan-tum system (the walker), oupled to a bidimensionalsystem (the oin), under repeated appliation of a pairof disrete linear operators. Let HW be the Hilbertspae of the walker, with {|m〉 ,m ∈ Z} a basis of HW ;and let HC be the Hilbert spae of the oin, with basis
{|u〉 , |d〉}. The state of the total system belongs to thespae H = HC ⊗HW and, at time t, an be expressed as

|ψ (t)〉 =
∑

m

[um,t |u,m〉 + dm,t |d,m〉] . (1)The onnetion between states in onseutive timesis made by an unitary linear evolution operator Û ,whih an be written as Û = ÛdÛc, i.e., |ψ(t)〉 =
ÛdÛc |ψ(t− 1)〉. Here, Ûc = Ĉ ⊗ Î is the "oin toss oper-ator" with Ĉ ∈ SU(2), typially hosen as the Hadamard

transformation
Ĉ =

1√
2

(|u〉 〈u| − |d〉 〈d| + |u〉 〈d| + |d〉 〈u|) , (2)and
Ûd =

∑

m

(|u,m+ 1〉 〈u,m|+ |d,m− 1〉 〈d,m|) , (3)is the "onditional displaement operator", whih movesthe walker one position to the right or to the left, de-pending on whether the oin state is u or d, respetively.The main quantity related to the walk is the probabil-ity distribution funtion of the walker along the lattie,alulated as Pm(t) = |um,t|2 + |dm,t|2 ≡ Pu
m(t) + P d

m(t).We have already ommented that the QW an be las-sially simulated. In order to make things onrete, weonsider the sheme depited in Fig. 1, whih repre-sents an optial avity. A quasi-monohromati light �eldenters the avity through a partially re�eting mirror.When this �eld reahes the beam�splitter (BS in Fig. 1),it an follow two di�erent paths, upper and lower in the�gure. These two paths play the role of the qubit (whih,in this ase, would be better alled a ebit, following theterminology introdued in [17℄), and the beam�splitterimplements the unitary transformation [17℄ (the "ointoss" operator). Then in the lower (upper) path, the �eldfrequeny, whih plays the role of the walker in this op-tial implementation, is inreased (dereased) in a �xedamount ∆ω by means of appropriately tuned eletrooptimodulators. This is the �rst step of the QW. Then, theavity mirrors re�et the light bak to the beam�splitterand a new step of the QW is implemented, and so on andso forth.In this ase, the QW ours in the frequeny distribu-tion of the output �eld, with the intensity of eah fre-queny omponent playing the role of the probability of�nding the walker at a given position, i.e., Pu
m(t) and

P d
m(t) are spetral intensities in this lassial�wave on-text, and not probabilities. In other words, afterm avityroundtrips, the spetrum of the output �eld exhibits theprobability distribution of the QW. This is one of theshemes proposed in [10℄ for the optial (lassial) imple-mentation of the QW, where also the onnetion betweenthe OGB of Ref. [8℄ and the QW is given, and we referthe reader to that paper for full details on this type oflassial (optial) implementation of the QW. Let us em-phasize that this sheme onstitutes a realization of theoptial Galton board.What this lassial implementation of the QW (andothers [18, 19, 20, 21℄) suggests is that interferene, andnot entanglement, is the responsible of the QW hara-teristis. Entanglement would manifest in QWs in morethan two dimensions, in the amount of lassial resouresneeded for its implementation, as ompared with a truequantum implementation, as already disussed in [10℄.This does not mean that there is nothing quantum in2



Figure 1: Optial avity for the implementation of the OGBand the NLOGB. EOM1 and EOM2 are two eletroopti mod-ulators whih are tuned for inrementing (dereasing) the �eldfrequeny in ∆ω. BS is a beam�splitter, and the avity is on-stituted by four mirrors, one of whih is partially re�etingand serves as input/output port. For implementing the OGB,the upper and lower paths must be a linear optial medium,whih must be replaed by a nonlinear optial medium (suhas, e.g., an optial �ber) for implementing the NLOGB.the QW: It is the di�erent physial meaning of Pm(t)(in a true quantum system, the probability distributionan be reonstruted only after a large enough numberof measurements, while in the lassial simulation theanalog of the probability distribution orresponds to the�eld spetrum and an be seen ompletely at eah walkstep). The e�et of deoherene ould be di�erent inlassial and quantum implementations [7℄. But, at leastin the QW on the line, the quantum nature seems not tomanifest, as it an be suessfully simulated by lassialmeans. See [22℄ for a disussion on this topi.INTRODUCING THE NONLINEAR OPTICALGALTON BOARD.The optial avity sheme of Fig. 1 serves us to in-trodue the nonlinear optial Galton board (NLOGB).It su�es to assume that light aquires some intensity-dependent phase while traveling through the upper andlower paths, i.e., that these paths are not made by alinear medium (vauum), but with a nonlinear medium(e.g. a Kerr medium, like an optial �ber or similar).This is very easily taken into aount with the QW for-malism introdued in the previous setion that we willontinue to use here: We only need to introdue onemore operator desribing the aquisition of the intensity-dependent (nonlinear) phase due to propagation in theKerr medium, i.e., we have to generalize the unitary op-

erator de�ned above in the following way:
Û(t) = ÛdÛcÛnl(t− 1), (4)

Ûnl(t) =
∑

c=u,d

∑

m

eiFc(m,t) |c,m〉 〈c,m| , (5)where Fc (m, t) (c = u, d) is an arbitrary funtion of theprobabilities (or intensities, in a lassial ontext) Pu
m(t)and P d

m(t) [23℄. Notie that the role of Ûnl(t) is to add anonlinear (probability dependent) phase to eah of thespinor omponents. With the above formulation, thestandard QW is obviously reovered when Fu = Fd = 0,and the generalized QWs of [13℄ and [12, 14℄ are reoveredwhen Fu = Fd = m2φ0 and Fu = Fd = mφ0, respetively,with φ0 a onstant phase. We see that a physial systemlike the one represented in Fig. 1 allows to implementa number of interesting generalizations of the QW in arelatively simple way. Let us emphasize that the OGBof Bouwmeester et al. [8℄ is very lose to what we areommenting [10℄.In this artile we shall onsider one of the simplestforms for (5) by hoosing Fc (m, t) = 2πα |cm,t|2 (c =
u, d), i.e., we assume that the nonlinear phase gainedbetween two QW steps is due to a Kerr-type nonlinearitythat ats separately on the two oin states (u and d)and has a strength α. The reursive evolution equationsfor the probability amplitudes an be easily derived from
|ψ(t+ 1)〉 = Û (t+ 1) |ψ(t)〉, yielding

um,t+1 =
1√
2
um−1,te

i2πα|um−1,t|
2 (6)

+
1√
2
dm−1,te

i2πα|dm−1,t|
2

,

dm,t+1 =
1√
2
um+1,te

i2πα|um+1,t|
2 (7)

− 1√
2
dm+1,te

i2πα|dm+1,t|
2

.As we show below, the nonlinearity just introdueddeeply modi�es the behavior of the probability distribu-tion Pm(t). For this purpose, we perform a numerialstudy of Eqs. (6,7) for di�erent values of α. We shallonsider α > 0 for de�niteness, sine from Eqs. (6,7) oneeasily sees that hoosing a positive α, say α = α0, withsome initial onditions (um,0; dm,0) is equivalent to tak-ing α = −α0 and omplex-onjugated initial onditions
(

u∗m,0; d
∗
m,0

). Moreover, we shall adopt, unless otherwisespei�ed, symmetrial initial onditions loalized at theorigin, i.e., um,0 = δm0/
√

2 and dm,0 = iδm0/
√

2.From a lassial (wave) viewpoint, the above proess isa nonlinear optial Galton Board (NLOGB) and an beimplemented with the same devie we have ommented inthe previous setion, provided that the two optial beamspropagate in a Kerr medium (e.g., an optial �ber), asthis nonlinear propagation exatly orresponds to what
Ûnl represents. From a quantum viewpoint the imple-mentation of Ûnl is probably impossible beause of the3



linearity of the Shrödinger equation. It is lear from nowthat the proess we are proposing makes full sense onlyas a nonlinear OGB, and will �nd oneptual di�ultiesas a nonlinear QW.In spite of the di�ulties when speaking of a nonlin-ear QW, one should keep in mind that nonlinearities anbe introdued in quantum systems through a lever useof measurement [24, 25℄, what keeps open the possibil-ity of implementing the proposed NLQW. Another, morerealisti possibility onerns using systems desribed bynonlinear e�etive Hamiltonians, as Bose�Einstein on-densation, where QWs ould be implemented [26℄, or su-peronduting devies, just to mention a ouple of poten-tial andidates. But these appear as remote possibilities,as ompared with the immediay of an optial implemen-tation in an optial devie similar to that already usedby Bouwmeester et al. [8℄.FORMATION OF SOLITON�LIKE STRUCTURES.In Fig. 2 we represent the evolved probability distri-butions Pm(t) for α = 0 (i.e., the standard QW) and
α = 0.4. When α = 0, we observe the typial QW be-havior [6℄: Pm(t) exhibits two peaks at the borders ofthe distribution, whose tails deay in the entral zone,and whose maximum value monotonially dereases withtime as the probability distribution broadens; and, mostimportantly, the width of Pm(t) is proportional to t. Thisprobability distribution an be expressed, in some limit[11℄, as a ombination of Airy funtions propagating inopposite diretions.The shape of Pm(t) for α = 0.4 is very di�erent: Nowthe two peaks of Pm(t) ontain most of the total proba-bility, around 30% eah one in the ase of Fig. 2, mostlydistributed within a few lattie positions (see the insetin Fig. 2) . But the most striking harateristi of theprobability peaks in this nonlinear ase, is that their sizeand shape remain basially onstant with time, exept forsmall osillations around a mean value.We will haraterize the probability peaks by theirposition and intensity (i.e., the total probability theyontain). As for the position, given the small �u-tuations on the shape of the peak, we use the "en-ter of mass", de�ned as mCM ≡ ∑

mmPm(t), with
m ∈ [mmax + ∆m,mmax − ∆m], mmax the position ofthe probability maximum and ∆m the width of the peak[27℄. Only small quantitative di�erenes are found be-tween the behavior of mmax and that of mCM .The most important feature of the probability peaksis that they are non-spreading pulses, i.e., they prop-agate without distortion [28℄. As these probabilitywave-pakets do not spread in time, and present otherpartile�like features (see below) we an onsider themas solitoni-like strutures, and will simply refer to themas solitons.

Figure 2: (Color online) Probability distribution urves of
Pm(t) for t = 300, with the initial ondition um,0 = δm0/

√

2and dm,0 = iδm0/
√

2, for α = 0 (standard QW) and α = 0.4.The inset is a magni�ation of the right�moving probabilitysoliton. Notie that Pm (t) is null for odd m (as t is evenin this plot). We have represented only nonzero values andjoined them for guiding the eye.Apparently, solitons do not require a minimum value of
α to form: We have heked their existene for α ≥ 0.01,and the analysis of the data from di�erent (non-zero) val-ues of α does not suggest the existene of any thresholdfor the solitons formation. Nevertheless, the time neededfor their formation (i.e., the transient until the inten-sity and shape of the probability struture is onstant onthe average) is larger for smaller α. This is appreiatedin Fig. 3 (a), where the intensity of a single soliton isrepresented as a funtion of time for di�erent values ofthe nonlinearity parameter α. Another important featureis that the width of the overall probability distribution
Pm(t) or, equivalently, the soliton veloity, dereases as
α inreases, as shown in Fig. 3 (b), where the positionof the solitons is represented for di�erent values of α (inthe ase α = 0, where solitons do not exist, we have rep-resented the position of the enter of mass of the max-4



Figure 3: (Color online) (a) Intensity (total probability) ofthe right�moving soliton. (b) Temporal evolution of the en-ter of mass, mCM , of the right�moving soliton (the plot issymmetri for the left-moving soliton). The values of α areindiated in the plots. Initial onditions are as in Fig. 2.imum of Pm (t) for the sake of omparison). Therefore,solitons form after some transient, and are slower andmore intense for larger α. This is the senario we foundfor α ≤ 0.474.In view of the phenomena desribed above, one mightwonder whether the intrinsi quantum features of QWsare deteriorated or not, and if so, to what extent. Oneway to quantify the possible loss of the quantum ben-e�ts is by analyzing the time evolution of the standardquadrati deviation σ =
√
< m2 > − < m > 2 . As al-ready disussed, the standard QW exhibits a harater-isti σ ∝ t. Given the transient whih appears duringthe formation of the solitons, the question we ask our-selves is: does the quotient σ/t go to a onstant after thetransient (i.e., for su�iently large time), or will it deayslower?As an be seen from Fig. 4, the �rst possibility is infat realized: after the transient, the standard deviationapproahes the typial QW time evolution. Therefore,

Figure 4: (Color online) Evolution of the ratio σ/t for di�erentvalues of α.the long-term QW behavior is not degraded by the for-mation and propagation of the solitons.DYNAMICAL PHASES.We have been able to identify three di�erent dynamialdomains, or dynamial phases, in the behavior of solitonsas a funtion of the value of α: Phase I, for α < αI ≃
0.474; phase II, for αI < α < αII ≃ 0.6565; and phaseIII, for α > αII . Let us desribe these phases separately.In Phase I, the dynamis is very simple: One solitonshave formed, they exhibit the ballisti propagation al-ready shown in Fig. 3(b). Di�erently, in Phase II the twosolitons start moving in opposite diretions, as in PhaseI, but after some time their veloity derease till the soli-tons reah a turning point and then move bakwards andollide at some later instant tcol at m = 0. After the ol-lision, the solitons ontinue moving apart inde�nitely, asin phase I. An example of suh behavior, for α = 0.49, isshown in Figure 5. Notie the appearane of small �om-muniation pakets� that are interhanged between thetwo solitons. Interestingly, the solitons intensity sharplydereases after the ollision (for example, for α = 0.495



Figure 5: (Color online) Color density plot showing the evolu-tion of Pm(t) as a funtion of t (horizontal axis) for α = 0.49.The vertial axis orresponds to the position on the lattie.Brighter regions indiate a higher probability. The two soli-tons are learly visualized as intense strips.the intensity of one soliton falls from 0.3062 before theollision, to 0.2426 afterwards), i.e., the ollision of thetwo solitons is an inelasti one. Another feature thatan be observed from the simulations is that, as α is in-reased from below αI (inside phase I), the intensity ofthe solitons inrease up to a maximum value. It seemsthat the ommuniation pakets interhanged by the twosolitons play the role of an attrative interation, whihis larger for larger intensities. This would explain the ex-istene of the above-mentioned turning point appearingat some ritial value αI . Inside phase II, the solitonsexperiene an inelasti sattering and loose a fration oftheir intensity, whih would prevent from reollapse.The method we used to determine this ritial value,however, makes use of the fat that the ollision instant
tcol dereases with α. Indeed, the funtion tcol(α) anbe well reprodued numerially by a simple hyperbola
1/tcol = a/α+b (where the values of a and b are obtainedby a numerial �t, with a oe�ient of determination
r2 = 0.99516, giving a = −0.0297 ± 0.0003 and b =
0.0627 ± 0.0006). This numerially-obtained law allowsto �x the frontier between phases I and II by the α valuefor whih tcol diverges (we obtained αI = 0.474± 0.007).As we made for phase I, it is worth investigating howthe standard deviation evolves at long times, in orderto quantify a possible departure from the harateristiquantum spreading. As before, we plot in Fig. 6 thequotient σ/t as a funtion of time for values of α orre-sponding to the seond phase. Now the transient showsmore ompliated features, due to the reollapse of thetwo solitons (whih manifests as the minimum appearingin both urves). However, as the solitons separate afterthe ollision, the typial σ ∝ t behavior shows up.

Figure 6: (Color online) Same as Fig. 4, for values of αorresponding to phase II.Phase III, α > αII , di�ers from phase II in that, afterthe ollision, the two emerging solitons do not neessarilyollide or separate from eah other. In fat, if α is in-reased beyond αII , the situation beomes quite ompli-ated, as the evolution of the solitons beomes extremelysensitive to small variations in α. In this sense, we ansay that phase III is a haoti phase: For some valuesof α, the solitons beome trapped and osillate aroundthe origin; with a slightly di�erent value for α, however,the solitons eventually esape; and there are other α val-ues for whih loalization is found, whih is haraterizedby an asymptoti setup of both solitoni strutures at anequilibrium point. Interestingly, the latter possibility anour at very distant site positions for slightly di�erentvalues of α: For example, the right-moving soliton posi-tion osillates between m = 5 and m = 9 for α = 0.6665;it remains stati at position m = 162 for α = 0.6669;and again osillates, around m = 7, for α = 0.6673. InFig. 7 we show an example of the type of dynamis oneenounters in phase III for the two values of α indiatedin the �gure aption.The results we have just desribed orrespond to a par-tiular hoie of the QW initial onditions, whih guar-antees the symmetry of the probability distribution withrespet to the starting position. In order to see how rit-6



Figure 7: (Color online) Same as Fig. 5, but for α =0.6565(top) and α = 0.658197 (bottom).ial is the role of the initial ondition, we have arriedout numerial simulations for di�erent sets of initial on-ditions, and have found that the dynamis is also verysensitive to this hoie. Fig. 8 gives an idea of how dif-ferent things an be: we represent the evolution of theprobability distribution for um,0 = δm0, dm,0 = 0 and
α = 0.2 (top) or α = 0.6 (bottom). For this initial ondi-tion, the probability distribution is no longer symmetri(even in the standard QW), and this fat strongly a�etsthe formation and dynamis of solitons. We are not go-ing to enter into an exhaustive desription here; it willsu�e to say that, in this ase, there are also severaldynami phases: For small α, a single soliton forms, ar-rying lose to 60% of the probability, that moves like inFig. 7 (top) (most of the rest of the probability is on-tained in small dispersive pulses that an be appreiatedin the �gure); for large α several solitons, with di�erentintensities, an form, and loalization phenomena similarto what we have desribed above an our too, see Fig.8 (bottom).CONCLUSIONS.We have introdued a simple variation of the Opti-al Galton Board (whih an be understood as a las-sial implementation of the disrete oined QW), basedon the assumption that light propagates through a non-linear (Kerr-type) medium inside the optial avity or,using the algebrai language of QW, based on the aqui-sition of non-linear -probability dependent- phases by thestate during the walk.

Figure 8: (Color online) Same as Fig. 5, but for α = 0.2 (top)and α = 0.6 bottom. The initial onditions are um,0 = δm0and dm,0 = 0. For α = 0.2 a single soliton is formed thatarries 57% of the probability. For α = 0.6 this soliton hasnow a smaller intensity (32% of the probability) and beomesloalized near m = 0, while a seond soliton (20% of theprobability) is formed.The most striking feature that the nonlinearity intro-dues, is the formation of soliton-like strutures, whiharry a onstant fration of the total intensity (probabil-ity) distribution within a non-dispersive pulse. We haveharaterized the dynamis of these solitons showing theexistene of omplex dynamis (from ballisti motion todynamial loalization) that is very sensitive to the ini-tial onditions. An important feature we found is that,in spite of the ompliated behavior during the transientand possible reollapse of the solitons, the long term evo-lution still shows the harateristi QW feature in theases when the solitons go away, in the sense that thestandard deviation beomes σ ∝ t.It would be of greatest interest to have at hand an ana-lytial desription of the solitons motion and interation,speially during the formation transient and reollapse(when present), as done (approximately) in [10℄. Theadditional ompliation due to non-linearities, however,makes this task umbersome and lies beyond the sopeof this paper.The desribed phenomena are, to the best of ourknowledge, new in the �eld of quantum walks. The ex-iting features found here deserve, we believe, furtherresearh.AknowledgmentsWe gratefully aknowledge fruitful disussions with7
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