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Abstract

In this article we study in detail the prospects of determining the infrared finite QCD effective

charge from a special kinematic limit of the vertex function corresponding to three background

gluons. This particular Green’s function satisfies a QED-like Ward identity, relating it to the gluon

propagator, with no reference to the ghost sector. Consequently, its longitudinal form factors

may be expressed entirely in terms of the corresponding gluon wave function, whose inverse is

proportional to the effective charge. After reviewing certain important theoretical properties,

we consider a typical lattice quantity involving this vertex, and derive its exact dependence on

the various form factors, for arbitrary momenta. We then focus on the particular momentum

configuration that eliminates any dependence on the (unknown) transverse form factors, projecting

out only the desired quantity. A preliminary numerical analysis indicates that the effective charge

is relatively insensitive to the numerical uncertainties that may afflict future simulations of the

aforementioned lattice quantity. The numerical difficulties associated with a parallel determination

of the dynamical gluon mass are briefly discussed.

PACS numbers: 12.38.Aw, 12.38.Lg, 14.70.Dj
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I. INTRODUCTION

The ongoing quest for a deeper understanding of the nonperturbative features of the basic

Green’s functions of QCD has been benefited considerably by the constructive interaction

between lattice simulations and the Schwinger-Dyson equations (SDEs). One of the central

issues in this search is the systematic study of how the effects of dynamical mass generation

manifest themselves in the nonperturbative structure of the propagators of the fundamental

fields (quarks, gluons, and ghosts). In particular, the concept of a momentum-dependent

gluon mass [1] has received renewed attention, because it provides a natural explanation

for the infrared finiteness of the gluon propagator, ∆(q2), and ghost dressing function,

F (q2), observed in large-volume lattice simulations carried out in the Landau gauge, both

in SU(2) [2] and in SU(3) [3].

Especially interesting in this context is the definition and properties of the QCD effective

charge, as well as its interplay with the gluon mass. In fact, as has been explained in detail

in a series of works [4–6], if the finiteness of the aforementioned Green’s functions is to

be attributed to the dynamical generation of a gluon mass [i.e., ∆−1(0) = m2(0)], then the

corresponding effective charge, when properly defined, saturates also at a finite, nonvanishing

value [1, 5]. Within this picture, the so-called “freezing” of the charge is a consequence of

the presence of the gluon mass in the corresponding logarithms, which are cured from the

perturbative Landau pole, are well-defined for all physical momenta, and acquire a finite

value at q2 = 0. It is important to emphasize that this characteristic property of the QCD

coupling, which endows the theory with an infrared fixed point, has been advocated by a

large number of very distinct theoretical and phenomenological approaches, see [1, 5, 7–14]

and references therein.

A self-consistent framework for the study of the effective charge is provided by the fusion

of the pinch technique (PT) [1, 15–19] with the background field method (BFM) [20], known

in the literature as the “PT-BFM” scheme [21–23]. The natural starting point in this context

is the PT gluon propagator, ∆̂(q2), which is known to coincide with the two-point function

of two background gluons. Note that ∆̂(q2) and ∆(q2), as well as their individual kinematic

components introduced below, are related by powerful identities [24, 25] [see, e.g., Eq. (2.9)],

involving an auxiliary two-point function, which, in the deep infrared, practically coincides

with the ghost dressing function [26, 27].
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In the presence of a dynamically generated mass, the (Euclidean) ∆̂(q2) assumes the

form ∆̂−1(q2) = q2Ĵ(q2)+ m̂2(q2), where the first term corresponds to the “kinetic term”, or

“wave function” contribution, while the second denotes the momentum-dependent mass [28].

Then, the (infrared finite) effective charge α(q2) may be defined as α(q2) = αs(µ
2)Ĵ−1(q2, µ2),

where µ is the renormalization (subtraction) point chosen, within an appropriate renor-

malization scheme [28]. By virtue of the QED-like Ward identities (WIs) satisfied in the

PT-BFM framework, this latter quantity is formally renormalization group (RG)-invariant

(µ-independent). Note that the freezing property of this α(q2) hinges crucially on the fact

that the infrared finiteness of ∆̂(q2) has been accounted for by the inclusion of the m̂2(q2)

in the above decomposition; instead, the alternative definition in terms of the gluon dress-

ing function Ẑ(q2) = q2∆̂(q2), namely α(q2) = αs(µ
2)Ẑ(q2, µ2), gives rise to a RG-invariant

effective charge that vanishes trivially at the origin [5].

Evidently, in order to proceed further with the determination of the physical effective

charge, one needs information on the behavior of Ĵ(q2). To be sure, Ĵ(q2) could be obtained

from Eq. (2.13) if its conventional counterpart, J(q2), were known; however, unlike F (q2),

this latter quantity may not be directly extracted from existing lattice simulations. Indeed,

the lattice determines the full propagator ∆(q2), but offers no direct information on the

momentum dependence of the individual components.

Similarly, within the nonperturbative PT-BFM framework, both Ĵ(q2) and m̂2(q2) satisfy

independent (but coupled) non-linear integral equations, which are obtained from the SDE

of the ∆̂(q2) following a well-defined procedure, developed in a series of recent works [29,

30]. These two equations may, in principle, determine the complete dynamics of these two

quantities. In practice, however, one is considerably limited by the fact that the main

ingredients entering in them are the (largely unexplored) fully dressed three- and four-gluon

vertices, for arbitrary values of their momenta, and, as a result, only approximate solutions

may be obtained.

It would be clearly desirable, therefore, to determine Ĵ(q2) from an approach that is

ab-initio exact, in the sense that it does not involve any field-theoretic approximations. To

that end, in this article we explore the possibility of extracting this important quantity

from a possible lattice simulation of the PT-BFM three-gluon vertex [15, 31], to be denoted

by Γ̂, defined as the one-particle irreducible part of the correlation function involving three

background gluons (the prospects for a lattice nonperturbative formulation of the BFM have
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been recently revitalized due to the results of [32, 33]).

The fundamental reason why this vertex can furnish clean information on Ĵ(q2) is the

Abelian WI that it satisfies [15]. Specifically, to all orders in perturbation theory this WI

involves only the difference of ∆̂−1(q2) = q2Ĵ(q2), defined at the appropriate momenta; this

is to be contrasted with the usual Slavnov-Taylor identity (STI) satisfied by the conventional

three-gluon vertex [34], which involves, in addition, contributions from the ghost-sector of

the theory, and especially from the so-called ghost-gluon kernel [35].

Of course, to properly account for mass generation, Γ̂ must be supplemented by a spe-

cial nonperturbative vertex, denoted by V̂ , which contains the necessary poles to enforce

gauge invariance in the presence of a gluon mass [29]. This particular vertex is completely

longitudinally coupled, and its divergence furnishes precisely the missing mass terms that

convert q2Ĵ(q2) into a massive ∆̂−1(q2), thus maintaining the form of the original WI intact.

However, when the full vertex Γ̂+ V̂ is contracted by three polarization tensors, as happens

typically in lattice calculations in the Landau gauge [36], any reference on the (completely

longitudinal) V̂ disappears [29], and only the dependence on the nonperturbative Ĵ , defined

at different momenta scales, survives. Then, a special kinematic limit, frequently employed

in the lattice studies of three-point functions [36], converts the lattice quantity of interest

into a function of a single variable, given simply by the first derivative of q2Ĵ(q2). Finally,

a straightforward integration of the lattice result over the relevant momentum interval fur-

nishes Ĵ(q2), and consequently α(q2); this constitutes the central result of the present work.

It is clear that the usefulness of the aforementioned exact result must be assessed within

the context of a realistic lattice simulation, taking into account, to some extent, the practical

limitations associated with such an endeavor. In particular, it is important to provide a rough

estimate of the errors that the various numerical uncertainties may introduce to the effective

charge and, subsequently, the gluon mass. A simple modeling of these effects reveals that

the predictions obtained for the effective charge are rather robust, and that the induced

deviations do not alter significantly its theoretically expected behavior. Instead, with the

exception of the deep infrared, the extraction of the gluon mass is afflicted by important

qualitative discrepancies.

The article is organized as follows. In Sec. II we define the basic quantities appearing

in this problem, and summarize some important relations, characteristic to the PT-BFM

framework. In Sec. III we introduce the RG-invariant definition of the QCD effective charge
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and of the gluon mass; in particular, we put forth an interesting analogy between this

latter RG-invariant mass and the standard constituent quark mass. In Sec. IV we present

the relevant three-gluon vertex, together with its basic properties. Particular attention is

payed to the linear (ghost-free) WI satisfied by this vertex, which allows for the complete

determination of its longitudinal form factors in terms of the gluon propagator, with no

reference to ghost Green’s functions. Sec. V contains the main results of the paper. First,

we briefly review the general prospects of simulating PT-BFM Green’s functions on the

lattice. Then, assuming that such a simulation can be actually carried out for the vertex,

we show how the effective charge and gluon mass can be directly reconstructed from the

data obtained in a commonly used kinematical limit. In addition, we carry out a detailed

numerical study on how the unavoidable numerical errors of a possible simulation propagate

to the relevant physical quantities. Our analysis shows that, while a faithful approximation

of the effective charge can be generally obtained, the reconstruction of the gluon running

mass is much more subtle, displaying large fluctuations due to the inevitable distortion of

delicate numerical cancellations. Finally, our conclusions are presented in Sec. VI.

II. GENERAL CONSIDERATIONS

The full gluon propagator i∆ab
µν(q) = δab∆µν(q) in the Landau gauge is defined as

∆µν(q) = −iPµν(q)∆(q2), (2.1)

where

Pµν(q) = gµν −
qµqν
q2

(2.2)

is the usual transverse projector, and the scalar cofactor ∆(q2) is related to the (all-order)

gluon self-energy Πµν(q) = Pµν(q)Π(q
2) through

∆−1(q2) = q2 + iΠ(q2). (2.3)

It is advantageous to introduce the inverse of the gluon dressing function, J(q2), defined

as [35]

∆−1(q2) = q2J(q2). (2.4)

At tree-level, J(q2) = 1. Perturbatively, at one-loop, it is given by

J(q2) = 1 +
13CAg

2

96π2
ln

(
q2

µ2

)
, (2.5)
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where CA denotes the Casimir eigenvalue of the adjoint representation [CA = N for SU(N)],

and the renormalization has been carried out in the momentum-subtraction (MOM) scheme.

Evidently, J−1(q2) displays a Landau pole at q2 = µ2 exp(−96π2/13CAg
2).

The generation of a dynamical gluon mass leads to the infrared finiteness of the gluon

propagator, to be denoted by ∆m(q
2). In particular, in Minkowski space one has

∆−1
m (q2) = q2Jm(q

2)−m2(q2), (2.6)

with m2(0) 6= 0. The subscript “m” in Jm indicates that the resulting expressions are

regulated by the presence of m2(q2). Specifically, after gluon mass generation, the Jm(q
2)

may be qualitatively described by

Jm(q
2) = 1 +

13CAg
2

96π2
ln

(
q2 + ρm2(q2)

µ2

)
, (2.7)

with g2, the constant ρ, and m2(q2) such that Jm(q
2) > 0 for all values of q2, thus avoiding

completely the appearance of a Landau pole.

The detailed dynamics that govern Jm(q
2) and m2(q2) are determined by two coupled

integral equations, obtained from the SDE of the gluon propagator. Specifically, after a

nontrivial reorganization of terms, one obtains an inhomogeneous equation for Jm(q
2), and

a homogeneous one for m2(q2), of the general form [29, 30]

Jm(q
2)[1 +G(q2)] = 1 + µǫ

∫
ddk

(2π)d
K1(k, q,m

2,∆m),

m2(q2)[1 +G(q2)] = µǫ

∫
ddk

(2π)d
K2(k, q,m

2,∆m), (2.8)

where d = 4 − ǫ is the space-time dimension and µ the ’t Hooft mass. Note that the

corresponding kernels are such that, as q → 0, K1,2(k, q,m
2,∆m) 6= 0; in fact, in Euclidean

space, the solution of these equations furnishes Jm(q
2) > 0 and m2(q2) > 0, as expected on

physical grounds.

The appearance of the factor [1 + G(q2)] on the lhs of Eq. (2.8) stems from the fact

that the corresponding equations are not derived from the standard SDE for the gluon

propagator, but rather from its PT-BFM version; the advantages of this particular approach

have been explained in detail in a series of articles [21–23]. In the PT-BFM formalism the

natural separation of the gluonic field into a “quantum” (Q) and a “background” (B) gives

rise to an extended set of Feynman rules, and leads to an increase in the type of possible
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Green’s functions that one may consider. In the case of the gluonic two-point function, in

addition to the conventional QQ gluon propagator, ∆, two additional quantities appear:

the QB propagator, ∆̃, mixing one quantum gluon with one background gluon, and the BB

propagator, ∆̂, with two background gluon legs. It turns out that these three propagators

are related by the all-order identities [24, 25]

∆(q2) = [1 +G(q2)]∆̃(q2) = [1 +G(q2)]2∆̂(q2), (2.9)

usually referred to as Background-Quantum identities (BQIs).

The function G(q2) is defined as the gµν component of the special two-point function

Λµν(q) = −ig2µǫCA

∫
ddk

(2π)d
∆σ

µ(k)D(q − k)Hνσ(−q, q − k, k)

= gµνG(q2) +
qµqν
q2

L(q2), (2.10)

where Dab(q2) = δabD(q2) is the ghost propagator, and Hνσ is the gluon-ghost kernel [37, 38].

Pertubatively, at one-loop, we have (Landau gauge, MOM scheme)

1 +G(q2) = 1 +
9

2

CAg
2

96π2
ln

(
q2

µ2

)
. (2.11)

Just as the usual quantum gluon propagator, the BB propagator ∆̂ is also infrared finite,

and must be parametrized in complete analogy with Eq. (2.6), namely

∆̂−1
m (q2) = q2Ĵm(q

2)− m̂2(q2), (2.12)

and an exactly analogous formula holds for ∆̃ (not used here). Then, one can establish that

the BQIs hold individually for the kinetic and mass terms, i.e.,

Ĵm(q
2) = [1 +G(q2)]2Jm(q

2), (2.13)

m̂2(q2) = [1 +G(q2)]2m2(q2) (2.14)

Use of Eq. (2.13), together with Eq. (2.11) and Eq. (2.5), furnishes the one-loop perturbative

expression for Ĵ(q2), namely

Ĵ(q2) = 1 + bg2 ln

(
q2

µ2

)
, (2.15)

where b = 11CA/48π
2 is the first coefficient of the QCD β-function. Evidently, as is well-

known [20], the propagator ∆̂(q2) absorbs all the RG logarithms, exactly as happens in QED

with the photon self-energy.
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III. EFFECTIVE CHARGE AND RG-INVARIANT GLUON MASS

Let us next recall that, due to the Abelian WIs satisfied by the PT-BFM Green’s func-

tions, the renormalization constants of the gauge-coupling and of ∆̂(q2), defined as

g(µ2) = Z−1
g (µ2)g0,

∆̂(q2, µ2) = Ẑ−1
A (µ2)∆̂0(q

2), (3.1)

where the “0” subscript indicates bare quantities, satisfy the QED-like relation

Zg = Ẑ
−1/2
A . (3.2)

As a result, the product

d 0(q
2) ≡ g20∆̂0(q

2) = g2∆̂(q2) ≡d (q2), (3.3)

forms a RG invariant (µ-independent) quantity. As has been explained in the recent litera-

ture [28],d (q2) may be cast in the form

d (q2) =
g2(q2)

q2 +m2(q2)
, (3.4)

with

g2(q2) = g2Ĵ−1
m (q2), (3.5)

and

m2(q2) = m̂2(q2)Ĵ−1
m (q2). (3.6)

Note that the two quantities defined above are individually RG invariant . The usual effective

charge, α(q2), is obtained from Eq. (3.5) simply as α(q2) ≡ g2(q2)/4π. At one-loop,

g2(q2) =
g2

1 + bg2 ln (q2/µ2)
=

1

b ln (q2/Λ2)
. (3.7)

where Λ denotes an RG invariant mass scale of a few hundred MeV.

It is interesting to observe the analogy between the RG invariant mass defined in Eq. (3.6)

and the corresponding constituent quark mass, familiar from a plethora of studies on chiral

symmetry breaking. Specifically, the quark propagator is usually cast in the form

S−1(p) = A(p2) /p− B(p2)I

= A(p2)[/p−M(p2)I], (3.8)
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where I is the identity matrix, and the term A−1(p2) is often referred to in the literature

as the “quark wave function”. Note that, the quark acquires a dynamical mass (signaling

the breaking of chiral symmetry) provided that B(p2) is different from zero, and that the

constituent quark mass, M(p2) = B(p2)/A(p2), is RG invariant . Then, it is natural to

propose an analogy between the gluon and quark propagators; clearly, Ĵm(q
2) corresponds

to A(p2), while m̂2 plays exactly the role of B(p2). Then, the division by Ĵm(q
2) and A(p2)

gives rise, in both cases, to RG invariant masses, suggesting a close correspondence between

m2(q2) and M(p2).

Next, using the BQIs (2.13) and (2.14) to relate the components of ∆̂m(q
2) to the corre-

sponding ones of ∆m(q
2), we get

m̂2(q2)Ĵ−1
m (q2) = m2(q2)J−1

m (q2), (3.9)

which finally furnishes a set of relations equivalent to (3.5) and (3.6),

g2(q2) = g2[1 +G(q2)]−2J−1
m (q2), (3.10)

m2(q2) = m̂2(q2)[1 +G(q2)]−2J−1
m (q2). (3.11)

The basic Eqs. (3.5) and (3.6), or alternatively Eqs. (3.10) and (3.11), express the funda-

mental quantities g2(q2) and m2(q2) in terms of Ĵm(q
2), or Jm(q

2) and G(q2), respectively. It

is therefore important to review the state-of-the-art in the determination of these quantities,

both in the continuum as well as on the lattice.

To that end, let us first focus on the quantities Jm(q
2) and G(q2), defined in the context

of the conventional covariant gauges; in fact, we will specialize the discussion in the Landau

gauge, where lattice simulations are usually performed.

Let us say from the outset that lattice simulations of the gluon propagator ∆m(q
2) cannot

furnish Jm(q
2) without any additional input, for the simple reason that they provide the

entire combination of Jm(q
2) and m2(q2), as appears in Eq. (2.6), but not the individual

components comprising it. The SDEs, on the other hand, when appropriately reorganized,

give rise to two coupled integral equations, one for Jm(q
2) and one for m2(q2), as shown

schematically in Eq. (2.8). In principle these two equations should furnish the exact behavior

of Jm(q
2) andm2(q2); in practice, one is limited by the fact that the closed form of the kernels

K1 and K2 are only approximately known. In fact, K2 is better known than K1, mainly

because the only unknown quantity that enters in K2 is the full three-gluon vertex Γαµν ,
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whereas in K1 appears, in addition, the full four-gluon vertex. Even though neither of these

two vertices is known, the STIs that the three-gluon vertex satisfies [see Eq. (4.5)] furnish

nontrivial information on the structure of its longitudinal components, thus providing certain

field-theoretically motivated approximations for K2; on the contrary, no such construction

exists for the four-gluon vertex, which remains practically unexplored.

The situation described above has motivated the advent of an approach which combines

the information from both the lattice and the SDEs. In particular, instead of solving the

system of Eq. (2.8), only the mass equation (involving the better known K2) is solved, using

as input in it the lattice data for ∆m(q
2). Then, once a solution form2(q2) has been obtained,

one can use Eq. (2.6) to extract the approximate form of Jm(q
2).

Regarding the function G(q2), notice that, quite remarkably, in the Landau gauge it

coincides with the so-called Kugo-Ojima function [26, 27]. In addition, there is a deep

connection between the form factors G(q2) and L(q2) and the ghost dressing function

F (q2) = q2D(q2), (3.12)

expressed through the identity [26, 27]

1 +G(q2) + L(q2) = F−1(q2). (3.13)

Since in d = 4 it is known that L(q2) ≪ G(q2) over the entire momentum range [27], one

finally arrives at the result

1 +G(q2) ≈ F−1(q2), (3.14)

which becomes an exact relation at q2 = 0, since in this case L(0) = 0.

From the above discussion it is clear that one cannot obtain direct information on Jm(q
2)

from the gluonic two point sector. Turning to the three-point functions, one might think

that, given that Jm(q
2) enters into the longitudinal components of the conventional three-

gluon vertex, as first demonstrated by Ball and Chiu [35], a judicious combination of them

could project it out. However, the problem in this case is the “contamination” from the

various form-factors comprising Hµν , which enter nontrivially in the various expressions.

It turns out that the PT-BFM three-gluon vertex lends itself for this type of analysis.

Given that it satisfies QED-like WIs instead of STIs, there is no ghost sector contributions:

the longitudinal form factors can be expressed in terms of the Ĵm only. To be sure, the

transverse form factors enter in general, and are unknown. But, as we will see in Sec. V, there
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is a simple kinematic limit, studied usually in the lattice simulations of the (conventional)

vertex, which eliminates completely the transverse components, and projects out solely the

first derivative of q2Ĵm(q
2). It is therefore clear that a possible lattice extraction of Ĵm(q

2)

would provide an immediate determination of g2(q2) from Eq. (3.5).

On the other hand, regarding the prospects of extracting the RG invariant gluon mass

from Eq. (3.6) or (3.11), one may envisage two basic scenarios [again assuming independent

knowledge of Ĵm(q
2)]:

(i ) ∆̂m(q
2) has been simulated on the lattice. Then, it is direct to extract m̂2(q2) from

Eq. (2.12), since (Euclidean space)

m̂2(q2) = ∆̂−1
m (q2)− q2Ĵm(q

2), (3.15)

or, using Eq. (3.6),

m2(q2) = ∆̂−1
m (q2)Ĵ−1

m (q2)− q2. (3.16)

(ii ) ∆̂m(q
2) has not been simulated on the lattice. Then, to proceed further, one must

necessarily employ the BQIs; this is rather feasible, because, as mentioned earlier,

the function G(q2) has been simulated on the lattice. Specifically, one may use the

conventional ∆m(q
2) obtained from the lattice together with G(q2) to build ∆̂m(q

2)

by means of the BQI. Then one may return to the previous case (i ), and substitute it

into Eqs. (3.15) and (3.16).

This general discussion motivates a systematic study of the PT-BFM three-gluon vertex.

To that end, in the next section we will present a brief reminder on the structure and

general properties of the B3 vertex, while in Sec. V after summarizing the current prospects

of simulating nonperturbative PT-BFM Green’s functions on the lattice, we will consider

how Ĵ(q2) maybe extracted from a possible lattice simulation of this vertex.

IV. THE PT-BFM THREE-GLUON VERTEX

The gauge-invariant three-gluon vertex Γ̂αµν has been first considered in [15], where its

one-loop construction was carried out by means of the PT, and its basic WI was derived

(see also [19]). It was further studied in [31], with particular emphasis on the special rela-

tions between gluonic, fermionic, and scalar loop contributions, and has been revisited very

recently in [39], using string-inspired techniques.
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q

r

FIG. 1: The one-particle irreducible B3 vertex and the SDE it satisfies. Background legs are

indicated by the small circle at their end; black circles correspond to 1PI Green’s functions, white

circles represent connected functions, while gray circles indicate SDE kernels. The corresponding

symmetry factors may be found in [23].

A. General properties

The equivalence between PT (or the “generalized PT”) and BFM allows for a concise

field-theoretic definition of this vertex, as vacuum expectation value of the time-ordered

product of three background gluons. In particular, denoting the full connected three-point

function by (momentum space)

Ĝabc
αµν(q, r, p) =

〈
0
∣∣∣T [Âa

α(q)Â
b
µ(r)Â

c
ν(p)]

∣∣∣ 0
〉

〈0|0〉
, (4.1)

one defines

Ĝabc
αµν(q, r, p) = ∆̂aa′

αα′(q)∆̂bb′

µµ′(r)∆̂cc′

νν′(p)Γ̂
a′b′c′

α′µ′ν′(q, r, p), (4.2)

where Γ̂αµν(q, r, p) is the amputated three-point function.

Exactly as happens with the conventional three-gluon vertex Γαµν , the Γ̂αµν is fully Bose

symmetric. This is to be contrasted with the BQ2 vertex, usually denoted by Γ̃αµν , which

is Bose symmetric only under the interchange of its two quantum legs. The SDE satisfied

by Γ̂αµν is shown in Fig. 1. Note that the tree-level expressions for Γαµν and Γ̂αµν coincide:

Γ(0)
αµν(q, r, p) = Γ̂(0)

αµν(q, r, p) = (q − r)νgαµ + (r − p)αgµν + (p− q)µgαν . (4.3)
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For the purposes of the present work, the most important property of Γ̂αµν is the fact

that it satisfies the completely Bose-symmetric set of Abelian WIs

qαΓ̂αµν(q, r, p) = p2Ĵ(p2)Pµν(p)− r2Ĵ(r2)Pµν(r),

rµΓ̂αµν(q, r, p) = q2Ĵ(q2)Pαν(q)− p2Ĵ(p2)Pαν(p),

pνΓ̂αµν(q, r, p) = r2Ĵ(r2)Pαµ(r)− q2Ĵ(q2)Pαµ(q). (4.4)

These simple WIs are to be contrasted with the STIs satisfied by Γαµν , namely

qαΓαµν(q, r, p) = F (q2)
[
p2J(p2)P α

ν (p)Hαµ(p, q, r)− r2J(r2)P α
µ (r)Hαν(r, q, p)

]
(4.5)

and cyclic permutations. The tensorial decomposition of Hνµ is given by [35]

Hνµ(p, r, q) = gµνaqrp − rµqνbqrp + qµpνcqrp + qνpµdqrp + pµpνeqrp, (4.6)

where aqrp is short-hand notation for a(q, r, p), etc.

An immediate consequence of Eq. (4.4) is the QED-like relation

Ẑ1 = ẐA. (4.7)

between the wave-function renormalization for ∆̂, introduced in Eq. (3.1), and the vertex

renormalization defined as

Ẑ1Γ̂
αµν(q, r, p) = Γ̂αµν

R (q, r, p). (4.8)

In addition, one may extract from the set of WIs given in Eq. (4.4) the expression of

the vertex Γ̂αµν in the kinematical limit r → 0, which will be the relevant momentum

configuration in the subsequent analysis (for a related analysis, see also [40]). To show that,

consider the Taylor expansion of a function f(q, r, p) around r = 0 (and p = −q). In general

we have

f(q, r, p) = f(q, 0,−q) + rµ
{

∂

∂rµ
f(q, r, p)

}

r=0

+O(r2), (4.9)

where the Lorentz structure of the function f has been suppressed. Specializing this result

to the second WI in Eq. (4.4), one finds

rµΓ̂αµν(q, r, p) = rµΓ̂αµν(q, 0,−q) +O(r2)

= −rµ
{

∂

∂rµ

[
(q + r)2Ĵ(q + r)Pαν(q + r)

]}

r=0

+O(r2). (4.10)
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where we have use the fact that the zero-th order term of Eq. (4.9) vanishes in this case.

Thus, equating the coefficients of the terms linear in rµ, one obtains the relation

Γ̂αµν(q, 0,−q) = −

{
∂

∂rµ

[
(q + r)2Ĵ(q + r)Pαν(q + r)

]}

r=0

= −
∂

∂qµ

[
q2Ĵ(q2)Pαν(q)

]
. (4.11)

Interestingly enough, the above relation is formally equivalent to the well-known QED text-

book result

Γµ(0,−p, p) = −
∂

∂pµ
S−1(p), (4.12)

obtained from the WI

qµΓµ(q,−q − p, p) = S−1(p)− S−1(q + p), (4.13)

relating the photon-electron vertex with the electron propagator.

Next, the derivative of Eq. (4.11) can be easily evaluated by applying the formula

∂

∂qµ
Pαν(q) = 2qµ

qαqν
q4

−
1

q2
(gµαqν + gµνqα)

= −
1

q2
[qαPµν(q) + qνPµα(q)], (4.14)

yielding the final result

Γ̂αµν(q, 0,−q) = Ĵ(q2)(gαµqν + gνµqα − 2gανqµ)− 2q2Ĵ ′(q2)qµPαν(q)

= Ĵ(q2)Γ̂(0)
αµν(q, 0,−q)− 2q2Ĵ ′(q2)qµPαν(q), (4.15)

where the prime indicates the derivative with respect to q2. Note that, due to Bose symmetry,

the procedure described above can be applied exactly in the same way for the remaining

WIs, in order to obtain the kinematical limits q, p → 0 of the vertex Γ̂αµν . Also, we observe

that the tensorial structure of the full vertex Γ̂αµν in this particular kinematical limit is not

exhausted by the term proportional to the tree level expression.

B. The pole part of the three-gluon vertex

As has been explained in a series of recent works, a crucial condition for obtaining an

infrared finite gluon propagator, without interfering with the gauge invariance (or the BRST

symmetry) of the theory, is the existence of a set of special vertices, to be generically denoted
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by V , that are completely longitudinal and contain massless poles. The dynamical origin

of the aforementioned poles is purely nonperturbative: for sufficiently strong binding, the

mass of certain (colored) bound states may be reduced to zero [41–45].

The role of these vertices is two-fold. On the one hand, thanks to the massless poles

they contain, they make possible the emergence of an infrared finite solution out of the SDE

governing the gluon propagator; thus, one invokes essentially a non-Abelian realization of

the well-known Schwinger mechanism [46, 47]. On the other hand, these same poles act like

composite Nambu-Goldstone excitations, preserving the form of the STIs of the theory in

the presence of a gluon mass.

Specifically, in order for the WIs to maintain the same form before and after mass gen-

eration, the effective substitution

∆̂−1(q2) = q2Ĵ(q2) 7−→ ∆̂−1
m (q2) = q2Ĵm(q

2)− m̂2(q2), (4.16)

implemented by the mass generation at the level the gluon propagator, must be accompanied

by the simultaneous replacement of the vertex [29]

Γ̂ 7−→ Γ̂′ = Γ̂m + V̂ . (4.17)

Then, since

qαΓ̂mαµν(q, r, p) = p2Ĵm(p
2)Pµν(p)− r2Ĵm(r

2)Pµν(r), (4.18)

qαV̂αµν(q, r, p) = m̂2(r2)Pµν(r)− m̂2(p2)Pµν(p), (4.19)

one finds that the corresponding WI satisfied by Γ̂′ would read

qαΓ̂′

αµν(q, r, p) = qα
[
Γ̂m(q, r, p) + V̂ (q, r, p)

]
αµν

= [p2Ĵm(p
2)− m̂2(p2)]Pµν(p)− [r2Ĵm(r

2)− m̂2(r2)]Pµν(r)

= ∆̂−1
m (p2)Pµν(p)− ∆̂−1

m (r2)Pµν(r), (4.20)

which is indeed the first of the identities in Eq. (4.4), with the aforementioned replacement

∆̂−1 → ∆̂−1
m enforced.

The closed expression for V̂αµν may be reconstructed from the WIs it satisfies (namely

Eq. (4.19) and its cyclic permutations), together with the condition of complete longitudi-

nality, i.e.,

P α′α(q)P µ′µ(r)P ν′ν(p)V̂α′µ′ν′(q, r, p) = 0; (4.21)
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it reads,

V̂αµν(q, r, p) =
qα
q2
[m̂2(r2)− m̂2(p2)]P ρ

µ (r)Pρν(p) + c.p., (4.22)

where c.p. denotes “cyclic permutations”. As we will see in the next section, due to its

completely longidudinal nature [viz. Eq. (4.21)], the contribution of this pole vertex to the

typical lattice ratio, given in Eq. (5.3), vanishes in the Landau gauge.

C. The longitudinal form factors

The complete closed form of Γ̂m is not known; its longitudinal part, however, may be

reconstructed from the WIs that Γ̂m satisfies, following rather standard procedures [35].

Specifically, one begins by separating the vertex into the “longitudinal” and the (totally)

“transverse” parts,

Γ̂αµν
m (q, r, p) = Γ̂αµν

m(ℓ)(q, r, p) + Γ̂αµν
m(t)(q, r, p), (4.23)

where the component Γ̂m(ℓ) satisfies the WI of Eq. (4.18) (and its permutations), whereas

qαΓ̂
αµν
m(t)(q, r, p) = rµΓ̂

αµν
m(t)(q, r, p) = pνΓ̂

αµν
m(t)(q, r, p) = 0.

The longitudinal part is then decomposed into 10 form factors X̂i, according to

Γ̂αµν
m(ℓ)(q, r, p) =

10∑

i=1

X̂i(q, r, p)ℓ
αµν
i , (4.24)

with the explicit form of the tensors ℓi given by [31]

ℓαµν1 = (q − r)νgαµ ℓαµν2 = −pνgαµ ℓαµν3 = (q − r)ν [qµrα − (q · r)gαµ]

ℓαµν4 = (r − p)αgµν ℓαµν5 = −qαgµν ℓαµν6 = (r − p)α[rνpµ − (r · p)gµν ]

ℓαµν7 = (p− q)µgαν ℓαµν8 = −rµgαν ℓαµν9 = (p− q)µ[pαqν − (p · q)gαν]

ℓαµν10 = qνrαpµ + qµrνpα.

(4.25)

Then, the WI of Eq. (4.18) and its permutations give rise to an algebraic system for the X̂i,

whose solution reads,

X̂1 =
1

2
[Ĵm(q

2) + Ĵm(r
2)], X̂2 =

1

2
[Ĵm(q

2)− Ĵm(r
2)], X̂3 =

Ĵm(q
2)− Ĵm(r

2)

q2 − r2
,

X̂4 =
1

2
[Ĵm(r

2) + Ĵm(p
2)], X̂5 =

1

2
[Ĵm(r

2)− Ĵm(p
2)], X̂6 =

Ĵm(r
2)− Ĵm(p

2)

r2 − p2
,

X̂7 =
1

2
[Ĵm(p

2) + Ĵm(q
2)], X̂8 =

1

2
[Ĵm(p

2)− Ĵm(q
2)], X̂9 =

Ĵm(p
2)− Ĵm(q

2)

p2 − q2
,

X̂10 = 0. (4.26)
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Thus, the longitudinal form factors of Γ̂αµν
m(ℓ)(q, r, p) involve only the quantity Ĵm, since it is

the only quantity that enters on the rhs of Eq. (4.18). Instead, the corresponding expressions

for the form factors of the conventional (Q3) vertex, Γαµν , first derived in [35], contain, in

addition, the ghost dressing function F and the various form-factors comprising the gluon-

ghost kernel Hµν . For example, the closed form of X7 (to be employed in the next section)

is given by

X7(q, r, p) =
1

4

{
2[F (q)Jm(p)arqp + F (p)Jm(q)arpq] + r2[F (p)Jm(r)bqpr + F (q)Jm(r)bpqr]

+ (q2 − p2)[F (r)Jm(q)bprq + F (q)Jm(p)brqp − F (r)Jm(p)bqrp − F (p)Jm(q)brpq]

+ 2(qr)F (p)Jm(q)drpq + 2(rp)F (q)J(p)drqp
}
. (4.27)

Note in addition, that, unlike X̂10, the corresponding X10 does not vanish.

Finally, the (undetermined) transverse part of the vertex is described by the remaining

4 form factors Ŷi,

Γ̂αµν
m(t)(q, r, p) =

4∑

i=1

Ŷi(q, r, p)t
αµν
i , (4.28)

with the completely transverse tensors ti given by

tαµν1 = [(q · r)gαµ − qµrα][(r · p)qν − (q · p)rν ]

tαµν2 = [(r · p)gµν − rνpµ][(p · q)rα − (r · q)pα]

tαµν3 = [(p · q)gνα − pαqν ][(q · r)pµ − (r · p)qµ]

tαµν4 = gµν [(p · q)rα − (r · q)pα] + gαµ[(r · p)qν − (q · p)rν] + gαν[(r · q)pµ − (r · p)qµ]

+ pαqµrν − rαpµqν . (4.29)

It turns out that in the limit r → 0 all the transverse tensors in Eq. (4.29) are zero, so

the transverse part of the vertex vanishes in this limit. On the other hand, for the same

limit, only the following longitudinal tensors given in Eq. (4.25) survive

ℓαµν1 = qνgαµ ℓαµν2 = qνgαµ ℓαµν4 = qαgµν

ℓαµν5 = −qαgµν ℓαµν7 = −2qµgαν ℓαµν9 = −2q2qµP αν(q),
(4.30)

with the associated form factors

X̂1 =
1

2
[Ĵ(q2) + Ĵ(0)], X̂2 =

1

2
[Ĵ(q2)− Ĵ(0)], X̂4 =

1

2
[Ĵ(0) + Ĵ(q2)],

X̂5 =
1

2
[Ĵ(0)− Ĵ(q2)], X̂7 = Ĵ(q2), X̂9 = Ĵ ′(q2), (4.31)
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corresponding to the limit r → 0 of those appearing in Eq. (4.26). Thus, using these results,

it is elementary to show that one is able to reproduce the expression given in Eq. (4.15).

V. LATTICE PROSPECTS

In this section we first discuss the theoretical possibilities of simulating PT-BFM Green’s

functions on the lattice. Then, we consider the relevant lattice quantity, and derive its

general expression in terms of the various (longitudinal and transverse) form factors. Next,

we show how the effective charge and gluon mass may be reconstructed from the data

obtained in a standard kinematical limit. In addition, we present a numerical study on the

propagation of the (modeled) data errors into the effective charge and gluon mass. Finally,

exploiting some basic field-theoretic properties, we relate the conventional and BFM lattice

quantity at the origin.

A. BFM on the lattice

Within perturbation theory, the BFM was formulated to all orders on the lattice in [48]

(see also the early work of Gross and Dashen [49]); however, its nonperturbative implementa-

tion has been pending for quite some time. A possible nonperturbative formulation, which

evades the well-known “Neuberger 0/0 problem” [50], has been only recently introduced

in [32], through a reformulation of the BFM method in terms of canonical transformations

(so that dynamical ghosts are not needed). This led to the proposal of the gauge fixing

functional [32, 33]

F [g] = −

∫
d4xTr (Ag

µ − Âµ)
2, (5.1)

which upon minimization on the group elements g provides the background Landau gauge

condition D̂µ(A
g
µ − Âµ) = 0. Then, on the minimum of this functional, the mapping given

by

A → Ag(A,Â) − Â ≡ Qµ (5.2)

defines the action of a canonical transformation on the gauge fields, constituting a non-

perturbative generalization of the familiar splitting into a background and a quantum field

[51]. The inverse of this mapping amounts to a gauge transformation, which can be used

to determine the quantum field Q corresponding to the gauge configuration minimizing the
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gauge-fixing functional (5.1). The relevant correlators (e.g., in the two- and three-point

functions) may then be constructed in terms of this particular field, and lattice simulations

of the corresponding discretized version can be then carried out.

Preliminary numerical simulations for a variety of explicit backgrounds have been per-

formed in [33], indicating that the functional (5.1) furnishes a convergence rate comparable

to that of the zero background case. Note, however, that in the PT-BFM formulation one

considers the background field as an external yet unspecified source, to be set to zero after

taking the appropriate derivatives of the vertex functional. Therefore, in order to properly

simulate this procedure on the lattice, one ought to introduce a suitable dependence of the

background field Â on a parameter, which, upon variation, would smoothly turn it off. Work

in this direction is already in progress; at the moment, we are not aware of any theoretical

obstruction that would prevent the computation of PT-BFM Green’s functions on the lattice

by techniques similar to those discussed in [52].

B. The basic lattice quantity

Let us therefore assume that the three-point function defined in Eq. (4.1) may be in-

deed simulated on the lattice, following the procedure briefly outlined above. Then, as is

customary, in the Landau gauge, one considers the following ratio [36]

R̂(q, r, p) =
N (q, r, p)

D(q, r, p)
, (5.3)

with the numerator and denominator given by

N (q, r, p) = Γ(0)
αµν(q, r, p)Ĝρστ (q, r, p),

D(q, r, p) = Γ(0)
αµν(q, r, p)P

αρ(q)P µσ(r)P ντ(p)Γ(0)
ρστ (q, r, p)∆̂m(q)∆̂m(r)∆̂m(p), (5.4)

where a common color factor cancels out in the ratio. Note the index “m” in the full

propagators, indicating the nonperturbative generation of a gluon mass. In addition, and

according to the discussion in the previous section, the substitution given in Eq. (4.17)

must also be implemented. Then, inserting Eq. (4.2) into N (q, r, p), together with the

aforementioned substitution, we see that (i ) the product ∆̂m(q)∆̂m(r)∆̂m(p) cancels out

when forming the ratio of Eq. (5.3), and (ii ) any reference to the pole vertex V̂ρστ disappears,

due to the longitudinality condition Eq. (4.21) that it satisfies.
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Thus, the numerator and denominator become

N (q, r, p) = Γ(0)
αµν(q, r, p)P

α
ρ (q)P

µ
σ (r)P

ν
τ (p)Γ̂

ρστ
m (q, r, p),

D(q, r, p) = Γ(0)
αµν(q, r, p)P

αρ(q)P µσ(r)P ντ(p)Γ(0)
ρστ (q, r, p). (5.5)

When one decomposes the full three-gluon vertex into a longitudinal and a transverse

part, as in Eq. (4.23), the numerator in Eq. (5.5) becomes

N (q, r, p) = N(ℓ)(q, r, p) +N(t)(q, r, p), (5.6)

with

N(ℓ,t)(q, r, p) = Γ(0)
αµν(q, r, p)P

α
ρ (q)P

µ
σ (r)P

ν
τ (p)Γ̂

ρστ
m (ℓ,t)(q, r, p). (5.7)

Then, the denominator is given by

D(q, r, p) = 4
r2p2 − (r·p)2

q2r2p2
[3(q2r2 + q2p2 + r2p2) + (r·p)2 − r2p2], (5.8)

the longitudinal part of the numerator by

N(ℓ)(q, r, p) = 4
r2p2 − (rp)2

q2r2p2

{
[3q2r2 − (q ·p)(p·r)]Â1 + [3r2p2 − (p·q)(q ·r)]Â2

+ [3q2p2 − (q ·r)(r·p)]Â3 + [(q ·r)(r·p)(p·q)− q2r2p2]Â4

}
, (5.9)

and its transverse part by

N(t)(q, r, p) = 2[r2p2 − (rp)2]
{
[3(q ·r)− p2]Ŷ1 + [3(r·p)− q2]Ŷ2

+ [3(q ·p)− r2]Ŷ3 + 6Ŷ4

}
. (5.10)

Note also that the identity

(q ·r)(r·p) + (r·p)(p·q) + (p·q)(q ·r) = q2r2 − (q ·r)2 = q2p2 − (q ·p)2 = r2p2 − (r·p)2, (5.11)

which can be easily proved using momentum conservation, has been employed in deriving

the above expressions, and that we have introduced the notation

Â1 = X̂1 − (q · r)X̂3; Â2 = X̂4 − (r·p)X̂6;

Â3 = X̂7 − (p·q)X̂9; Â4 = −X̂3 − X̂6 − X̂9. (5.12)

It is important to emphasize that the expressions given in Eqs. (5.9) and (5.10) carry

over directly to the case of the conventional three-gluon vertex Γαµν
m , simply by converting
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the hatted quantities to normal ones. Of course, as already mentioned, the functional form

of the corresponding Xi comprising the Ai is significantly more complicated. Note also

that even though X10 does not vanish, it still does not contribute to Eq. (5.9), because

P α
ρ (q)P

µ
σ (r)P

ν
τ (p)ℓ

ρστ
10 = 0.

It turns out that the physical quantity of interest may be extracted from R̂ by employing

a very common kinematic choice. Specifically, to begin with, as is customary in lattice

studies, we will describe the ratio R̂ in terms of the modulo of two independent momenta

(say, q2 and r2) and the angle φ formed between them; thus R̂ = R̂(q2, r2, φ). Then, the

quantity of interest corresponds to the case R̂(q2, 0, π/2), which is a special case of the

so-called “orthogonal configuration”, namely R̂(q2, r2, π/2).

In this latter configuration we have,

p2 = q2 + r2; q ·r = 0; q ·p = −q2; r·p = −r2, (5.13)

and, therefore, the relevant quantities reduce to

D(q, r, π/2) =
4

q2 + r2
[3(q4 + r4) + 8q2r2], (5.14)

and

N (ℓ)(q, r, π/2) =
4

q2 + r2
[2q2r2Â1 + 3r2(q2 + r2)Â2 + 3q2(q2 + r2)Â3 − q2r2(q2 + r2)Â4],

N (t)(q, r, π/2) = −2q2r2[(q2 + r2)Ŷ1 + (3r2 + q2)Ŷ2 + (3q2 + r2)Ŷ3 + 6Ŷ4], (5.15)

with the (suppressed) arguments of the form-factors Âi and Ŷi correspondingly adapted to

the particular kinematic configuration chosen.

At this point, if, in addition, we set r2 = 0, then the transverse term vanishes,

N (t)(q, 0, π/2) = 0, and we obtain

R̂(q2, 0, π/2) = Â3(q, 0, π/2) = X̂7 + q2X̂9, (5.16)

so that (we only indicate the q2 in the argument of R̂)

R̂(q2) = [q2Ĵm(q
2)] ′, (5.17)

where, as before, the prime indicates derivatives with respect to q2. Let us point out that this

particular result may be derived directly from Eq. (5.3), by substituting in it the expression
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for Γ̂αµν given in Eq. (4.15). Specifically,

R̂(q, r, p) = Ĵ(q2)− 2q2Ĵ ′(q2)

{
Γ
(0)
αµν(q, r, p)P ατ(q)P µ

σ (r)P
ν
τ (p)q

σ

D(q, r, p)

}
. (5.18)

In the orthogonal configuration (q·r = 0), we have that qσP µ
σ (r) = qµ; then, using Eq. (5.14)

and setting r2 = 0, it is easy to show that the quantity in curly brackets is equal to {−1
2
}.

Then, simple integration of Eq. (5.17) yields

q2Ĵm(q
2) =

∫ q2

0

dp2R̂(p2) + C, (5.19)

and, assuming that both Ĵm(q
2) and R̂(p2) are finite for all values of the momentum, we see

that the integration constant must vanish, C = 0. Thus, finally, one obtains the relation

Ĵm(q
2) =

1

q2

∫ q2

0

dp2 R̂(p2). (5.20)

Let us next renormalize this result within the MOM scheme, denoting the final answer

by Ĵ
(r)
m (q2). If we impose the standard MOM condition Ĵ

(r)
m (µ2) = 1, at some arbitrary

momentum scale µ, then, we have that

Ĵ (r)
m (q2) =

Ĵm(q
2)

Ĵm(µ2)
. (5.21)

However, let us point out that, strictly speaking, due to the presence of the gluon mass,

this last normalization condition imposed on Ĵm cannot be enforced simultaneously with

the corresponding MOM condition for ∆̂−1
m (q2), namely ∆̂−1

m (µ2) = 1. Indeed, since, for any

arbitrary µ, ∆̂−1
m (µ2) = µ2Ĵm(µ

2)+ m̂2(µ2), if at a given µ we impose that Ĵm(µ
2) = 1, then,

automatically, at the same µ, ∆̂−1
m (µ2) = µ2[1 + m̂2(µ2)/µ2]. Note however, that unless one

chooses to push the value of µ very deep in the infrared, this discrepancy is numerically

immaterial; for example, when one renormalizes ∆̂m at µ = 4.3 GeV, the value of the gluon

mass at the origin is m̂(0) = 1 GeV, making the ratio m̂2(0)/µ2 of the order of 5%. Of course,

this estimate is just an upper bound for the relevant ratio m2(µ2)/µ2, which in reality is

significantly smaller, since the function m̂2(q2) is decreasing rather rapidly (see, e.g., the

inset of the left panel of Fig. 2); in fact, at µ = 4.3 GeV, the gluon mass is practically

negligible.
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FIG. 2: The expected shape of the ratio R̂(q2) (right panel), obtained starting from the quenched

lattice data for the SU(3) gluon propagator ∆m(q2) (left panel), and the corresponding solution

of the mass equation m2(q2) (left panel, inset).

C. Modelling the error propagation

In order to understand how a possible lattice signal for the quantity R̂(q2) of Eq. (5.17)

may provide direct information on the effective charge α(q2) (and the possible caveats asso-

ciated with such a determination), we perform in what follows a detailed numerical study.

Specifically, starting from the knowledge of the conventional quenched lattice propagator

∆m(q
2) and ghost dressing function F (q2) [3], together with the associated solution of the

mass equation m2(q2) [30], one can reconstruct first Ĵ(q2), and next obtain the expected

shape of R̂(q2) through

R̂(q2) =

[
∆−1

m (q2)−m2(q2)

F 2(q2)

]
′

, (5.22)

where we have used Eq. (2.6) in Euclidean space.

The resulting curve (shown in Fig. 2), which will be referred to as the ‘expected’ result,

can be parametrized to a high precision by the function

R̂(q2) = A2 +
A1 − A2

1 + (q2/q20)
x , (5.23)

with best fit parameters corresponding to the values

Ā1 = 0.083; Ā2 = 5.150; q̄0 = 7.156 GeV; x̄ = 0.836. (5.24)

The above functional form of the expected behavior of R̂(q2) is rather useful, because

it allows for a systematic analysis of how uncertainties, simulated through deviations of
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FIG. 3: (color online) Numerical study of how uncertainties in the determination of R̂(q2),

parametrized according to Eq. (5.23), reflect into the determination of Ĵ , J as well as the effec-

tive charge α(q2). In particular, we compare the ‘expected’ results with the results reconstructed

from the parametrization (5.23) for the following parameter values: (first row) the best fit param-

eters (5.24); (second row) A1 fixed at the expected value R̂(0) = 0.0562, and, for the remaining

coefficients the refitted values A2 = 5.246, q0 = 7.279 and x = 0.8167; (third row) A1 and x fixed

at the values R̂(0) and 0.92 respectively, and A2 = 4.632, q0 = 6.234 GeV ; (fourth row) A1 and x

fixed at the values R̂(0) and x = 0.72 respectively, and, finally, A2 = 6.251 q0 = 9.21 GeV.

the fitting parameters from their “optimal” values, can influence the reconstruction of the
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FIG. 4: The reconstructed running mass starting from R̂(q2) as given in Eq. (5.23) when the param-

eters chosen are the best fit ones of Eq. (5.24). Notice the problems that afflict the determination

of the UV mass tail (shaded region).

effective charge (and gluon mass, see below).

The results of this study are shown in Fig. 3. As can be seen, the most sizable devia-

tion between the ‘expected’ and the reconstructed results occurs when uncertainties in the

determination of R̂(0) are sizable (Fig. 3, first row). This is mainly due to the fact that

the ‘expected’ value for R̂(0) turns out to be of O(10−2), and moderate deviations imply a

considerable effect in the determination of Ĵm through Eq. (5.20); this, in turn, translates

into a large variation of the effective charge, given that α ∼ Ĵ−1
m , see Eq. (3.5).

Specifically, in the first row of Fig. 3 we show the results for R̂, Ĵ , J and α obtained

starting from Eq. (5.23) with the best fit parameters (5.24); since in the parametriza-

tion (5.23), R̂(0) ≡ Ā1, such fit overestimates the value at the origin; this error propagates

in the determination of a reconstructed effective charge, which comes out suppressed in the

IR with respect to the ‘expected’ value.

The following three rows in Fig. 3 show the effect of uncertainties in the determination

of the exponent x (which controls the overall shape of the R̂ curve), once the behavior at

the origin has been fixed to its ‘expected’ value, that is A1 is fixed to the value R̂(0). As

can be seen, the effect is significantly milder, and one can always reconstruct the effective

charge to a high degree of accuracy.

Finally, let us focus our attention to the mass m2(q2); as we will see, its reconstruction

from this particular type of lattice measurements is especially subtle. The main difficulty
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FIG. 5: The ghost-gluon vertex and the Taylor kinematics.

stems from the fact that the extraction of m2(q2) proceeds by means of the relation

m2(q2) = ∆−1
m (q2)− q2Jm(q

2). (5.25)

Now, whereas both terms on the rhs increase in the UV, on theoretical grounds we know that

m2(q2) must decrease rather rapidly; this, in turn, implies that a rather delicate cancellation

between these aforementioned two terms must take place. This cancellation, however, is very

likely to be distorted by the reconstruction procedure, especially for high values of q2. This

particular problem is shown in Fig. 4, where we plot the reconstructed mass for R̂(q2)

provided by Eqs. (5.23) and (5.24). As can be seen there, while the determination in the

IR is reasonably accurate, the tail is seriously distorted, displaying even negative regions.

This characteristic pathology persists (with various degrees of intensity) in all cases analyzed

in Fig. 3.

D. Relating R̂(0) with R(0)

Let us now consider the conventional R(q2), obtained from Eq. (5.16) through the direct

substitution X̂7,9 → X7,9. Obviously, the complicated structure of X7 and X9 [see, e.g.,

Eq. (4.27)], infested by the unknown form factors of the ghost-gluon kernel, makes their use

for arbitrary q2 impractical. However, when q2 = 0 the corresponding expressions simplify

substantially, providing a fairly simple expression for R(0).

Specifically, after implementing X̂7,9 → X7,9 in Eq. (5.16), let us set q2 = 0, to obtain

R(0) = F (0)Jm(0)a(0, 0, 0), (5.26)

where Eq. (4.27) has been employed.

At this point one may invoke Taylor’s theorem [53] in order to determine, under mild

assumptions, the value of a(0, 0, 0). To that end, consider the general Lorentz decomposition
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for the ghost-gluon vertex,

Γµ(r, q, p) = B1(r, q, p)qµ − B2(r, q, p)pµ. (5.27)

Notice that, setting B
(0)
1 = 0 and B

(0)
2 = 1, one recovers the tree-level value of the ghost-

gluon vertex Γ
(0)
µ = −pµ. In the Taylor kinematic configuration, see Fig. 5, Eq. (5.27)

becomes

Γµ(0,−p, p) = −[B1(0,−p, p) +B2(0,−p, p)]pµ. (5.28)

Taylor’s theorem states that

B1(0,−p, p) +B2(0,−p, p) = 1, (5.29)

to all-orders in perturbation theory.

On the other hand, it is well-known that Γµ(r, q, p) can be obtained from the contraction

Γµ(r, q, p) = −pνHνµ(p, r, q)

= −[aqrp + (q ·p)bqrp + (q ·p)dqrp + p2eqrp]pµ − [(q ·p)bqrp + p2cqrp]qµ, (5.30)

which, in the Taylor kinematics reduces to

Γµ(0,−p, p) = −{a(−p, 0, p)− p2[c(−p, 0, p) + d(−p, 0, p)− e(−p, 0, p)]}pµ. (5.31)

Thus, equating Eq. (5.28) with Eq. (5.31) and using Eq. (5.29), we deduce the constraint

a(−p, 0, p)− p2[c(−p, 0, p) + d(−p, 0, p)− e(−p, 0, p)] = 1. (5.32)

Finally, taking the limit p → 0 in Eq. (5.32), and assuming that c,d, and e are regular

functions in that limit one obtains that a(0, 0, 0) assumes its tree-level value,

a(0, 0, 0) = 1. (5.33)

Consequently, Eq. (5.26) becomes

R(0) = F (0)Jm(0), (5.34)

whereas, in the same limit, Eq. (5.17) gives directly

R̂(0) = Ĵm(0). (5.35)
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It is now relatively straightforward to derive a simple relation relating R(0) with R̂(0).

Specifically, use of Eq. (2.13) and the relation (3.13) at q2 = 0, yields

Ĵm(0) = [1 +G(0)]2Jm(0) = F−2(0)Jm(0), (5.36)

so that finally
R(0)

R̂(0)
= F 3(0). (5.37)

Since F (0) > 1, the determination of R(0) from R̂(0) might be error prone; in the case

studied in the previous section, at µ = 4.3 GeV one has F (0) = 2.86, which furnishes

R(0) = 1.58 for the initial value R̂(0) = 0.067. Therefore, given also the sensitivity of

the effective charge to the value of R̂(0), one should ideally proceed the other way round,

limiting the possible values of R̂(0) through an independent measurement of R(0).

VI. CONCLUSIONS

In this work we have explored the possibility of determining the complete momentum

evolution of the QCD effective charge from a special kinematic limit of the three-gluon

vertex corresponding to three background gluons. Given that within the BFM quantization

scheme the (background) gauge invariance is preserved, the aforementioned vertex satisfies

linear WIs, with no reference to the ghost sector; within the PT the same property emerges

naturally, after the systematic rearrangement of an appropriate observable, following the

standard pinching rules. Consequently, and in contradistinction to what happens in the

case of the conventional three-gluon vertex, the longitudinal form factors of this PT-BFM

vertex may be expressed exclusively in terms of the background gluon wave function Ĵm. By

virtue of the dynamically generated gluon mass, this latter quantity, as well as the physical

effective charge defined from it, are infrared finite and free of any divergences related to the

perturbative Landau pole.

Particularly interesting in this context is the possibility of simulating the (Landau gauge)

PT-BFM vertex on the lattice. To that end, after briefly reviewing the general theoretical

feasibility of such a task, we have focused on the specifics of the vertex simulation, with

special emphasis on the relevant kinematic limit that projects out the desired quantity

Ĵm(q
2). In addition, a preliminary numerical analysis suggests that the extraction of the

effective charge is relatively insensitive to the numerical uncertainties that may infest an
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actual lattice simulation. On the contrary, the reconstruction of the running gluon mass

turned out to be considerably more subtle; specifically, instead of being positive-definite and

monotonically decreasing, the corresponding curve displays unphysical fluctuations past 1

GeV, due to the distortion of delicate numerical cancellations.

The results presented in this article are expected to contribute to the collective effort

dedicated to the deeper comprehension of the nature and properties of the QCD effective

charge. In fact, the possibility of probing directly the value of α(q2) at the origin, through

the corresponding lattice extraction of Ĵm(0), is intriguing, and may serve as testing ground

for various alternative pictures. In particular, the value of α(0) is directly related to the

notion of the “QCD conformal window”, appearing in studies based on the AdS/QCD

correspondence [13].

It is important to emphasize that the nature of the observable R̂, coupled with the

fact that we work in the Landau gauge, results in the total annihilation of the completely

longitudinal pole vertex V̂ , which is intimately associated with the Schwinger mechanism of

gauge-boson mass generation. In that sense, the situation is completely analogous to what

happens with standard observables, where all direct effects from this particular vertex vanish,

due to current conservation or general on-shellness conditions. Note that the same situation

applies to the case of conventional three-gluon vertex, and its associated V ; they too cancel

out completely from the corresponding lattice quantity R. Therefore, any (apparently)

singular behavior that may be observed in simulations of these quantities should not be

interpreted as a potential consequence of the pole vertices.

A possible determination of Ĵm(q
2) can provide considerable theoretical insights that

extend beyond the accurate extraction of the effective charge, and could help us explore

the nonperturbative behavior of additional key dynamical ingredients. In particular, the

complete integral equation that govern the evolution of Ĵm(q
2) depends on the fully dressed

four-gluon vertex that involves one background and three quantum gluons. The available

information on this vertex is very limited at the moment; the only robust result known is

the WI that is satisfies when contracted with the momentum of the background gluon. It is

therefore reasonable to expect that further research will be devoted in this direction. Then

it is clear that independent information on Ĵm(q
2) may prove valuable for determining the

structure of this elusive vertex, at least in some simple kinematic limits.

In general, the lattice simulation of the PT-BFM propagator and vertices would offer the
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unique opportunity to verify explicitly powerful formal relations, connecting basic Green’s

function of the theory. Note, for instance, that the simulation of ∆̂(q2) could furnish a

direct confirmation of the fundamental BQI of Eq. (2.9), given that both ∆(q2) and G(q2)

have already been simulated on the lattice. In addition, the result of Eq. (5.37) may be

of certain usefulness for future lattice endeavors. Specifically, one may use combinations

of lattice results to probe the veracity of the (few) theoretical assumptions entering in its

derivation; conversely, one may assume the validity of Eq. (5.37) and use it to validate

the lattice implementation of the BFM algorithm. To be sure, such comparisons must be

carried out between lattice simulations possessing similar parameters (e.g., bare couplings,

spacings, volumes).

Finally, note that the present considerations may be extended to include other fundamen-

tal vertices of the PT-BFM formalism, such as the vertex connecting a background gluon

and a ghost-anti-ghost pair, usually denoted by Γ̂µ. This vertex has a rather reduced tenso-

rial structure, and satisfies a simple Abelian WI, relating its divergence to the difference of

two inverse ghost propagators. A preliminary study reveals that relations similar to (4.15)

may be also obtained for the ghost dressing function. Hence, lattice simulation of Γ̂µ may

provide nontrivial cross-checks on the infrared behavior of this latter quantity. We hope to

present the full details of the related analysis in the near future.
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