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Departamento de F́ısica Teórica Universidad de Valencia

46100 Burjassot (Valencia)
Spain

We have investigated the bound states of an electron and positron in superstrong magnetic fields
typical for neutron stars. The complete relativistic problem of positronium in a strong magnetic
field has not been succesfully solved up to now. In particular, we have studied the positronium
when it moves relativistically across the magnetic field. A number of problems which deal with the
pulsar magnetosphere, as well as the evolution of protoneutron stars, could be considered as a field
for application.

I. INTRODUCTION

Theoretical models for radio-pulsar emission mechanisms include the bound states of a relativistic electron and
positron in a superstrong magnetic field. The year 1985 was marked by a number of papers, where the authors tried
to take into account the positronium contribution into the dispersion equation of a photon which propagates in a
superstrong magnetic field (Leinson & Oraevsky, [1], [2]); Herold et al., [3]; Shabad & Usov, [4]). Nevertheless, the
correct solution of the completely relativistic problem for the bound states of an electron and positron in a superstrong
magnetic field remains unknown. Koller et al. [5] have formulated the quadratic form of the completely relativistic
Dirac equation for bound states of an electron and positron in a magnetic field of arbitrary intensity. However,
they only found a solution for the simplest case, when positronium does not move across the magnetic field. There
was also the work of Shabad and Usov [6], where they tried to solve the Bethe-Salpeter equation for a positronium
atom relativistically moving across the superstrong magnetic field. Unfortunately, they did not take into account the
retardation effect in the interaction between the electron and positron. For this reason, we return to the problem of
positronium in a superstrong magnetic field. We suggest a solution of the Bethe-Salpeter equation for positronium
relativistically propagating across the superstrong magnetic field. The results which contradict those given by Shabad
and Usov are discussed.

This paper is organized as follows. In Section 2 we state the problem by considering the Bethe-Salpeter equation for
a bound electron-positron pair interacting with an external magnetic field. The problem can be simplified when the
adiabatic approximation (discussed in Section 3) holds, since in this case only one Landau level for each particle has
to be taken into account. In section 4, we concentrate on the particular case when the electron and positron occupy
the same Landau level. As a particularly important case, we devote Sect. 5 to the ground band of positronium levels,
and analyze some particular cases. In Appendix A we recall the explicit formulae of the electron (or positron) wave
function in the presence of an external magnetic field.

II. BETHE-SALPETER EQUATION FOR A BOUND PAIR OF ELECTRON AND POSITRON IN A
STRONG MAGNETIC FIELD

To find the bound states of electron and positron in a strong magnetic field, we start from the Bethe-Salpeter
equation for the scattering amplitude, to the lowest order in the fine structure’s constant e2 ≃ 1/137

Γij
(p−,−p+) = ie2

∫
d3p

′

−

(2π)
3

d3p
′

+

(2π)
3

d4q

(2π)
4Gil

(
p−, p

′

−

)
γµ

lsΓst(p
′

− − q,−p′

+ − q)γν
tqGqj

(
−p′

+,−p+

)
Dµν (q) (1)

where Ĝ
(
p−, p

′

−

)
and Ĝ

(
−p′+,−p+

)
are the propagators of the electron and positron, respectively, in an external

uniform magnetic field, which will be taken as directed along the Z axis. Here and henceforth, a − (+) subscript
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denotes the electron (positron), and summation over repeated indices will be understood. Dµν (q) , with q = (ω,q) is

the photon propagator. In Eq. (1) p−, p+, q, p
′

+ and p
′

− are the four-momenta of the interacting particles.
It is convenient to study this equation in the mixed (coordinates-energy) representation. To this purpose, we define

the new unknown function

χij (r−, r+; ε−,−ε+) ≡
∫
d3p−

(2π)3
d3p+

(2π)3
exp (ip−r−) Γij(p−,−p+)exp (ip+r+) . (2)

which depend on both individual space coordinates r∓ and energies of the electron and the positron. Their energies
can be written as:

ε− =
E

2
+ ε, ε+ =

E

2
− ε (3)

where the total energy E of the bound pair is an integral of motion in the stationary state we are considering. By
the use of Fourier transformation of the Green’s functions

Ĝ
(
p−, p

′

−

)
=

∫
d3r

′

−d
3r−Ĝ(r−, r

′

− ; ε−) exp [−ip−r− + ip′
−r′−] (4)

Ĝ
(
−p′+,−p+

)
=

∫
d3r

′

+d
3r+Ĝ(r′+, r+ ;−ε+) exp [ip′

+r′+ − ip+r+] (5)

we obtain the following equation:

χij

(
r−, r+;

E

2
+ ε,−E

2
+ ε

)
= ie2

∫
d3r

′

−d
3r

′

+Gil(r−, r
′

−;
E

2
+ ε)Gqj(r

′
+, r+;−E

2
+ ε)

×
∫
d3qdω

(2π)
4 Dµν ( ω,q) exp

[
iq
(
r′− − r′+

)]
γµ

lsχst

(
r′−, r

′
+;
E

2
+ ε− ω,−E

2
+ ε− ω

)
γν

tq (6)

We choose the following gauge :

A0 = 0,A = (0, Bx, 0) (7)

so that Bx = By = 0, Bz = B. In this way, the Green’s function of the electron takes the general form :

G(r−, r
′

−;ε−) =
∑

nσ

∫
dk−3
2π

dk−2
2π

exp[ik−3 (z− − z
′

−) + ik−2 (y− − y
′

−)]
Ψ

(+)
nσ (x− +

k−

2

eB , k
−
3 )Ψ

(+)

nσ (x
′

− +
k−

2

eB , k
−
3 )

[ε− − En(k−3 ) + i0]
, (8)

where En(k−3 ) =

√
m2

n +
(
k−3
)2

and mn ≡ m
√

1 + 2nb, with b ≡ B/B0. (B0 = m2/e = 4.4 × 1013G is the so-called

critical magnetic field). The electron wave functions Ψ
(+)
nσ are bispinors of positive frequency which correspond to

Landau states of the electron in the magnetic field. Each Landau state of the electron is marked by the number
n = 0, 1, ... which characterizes the quantized motion across the magnetic field; k−3 is the electron momentum along
the magnetic field; σ = ±1 corresponds to the spin projection of the electron s3 = ±1/2. For many applications,
it is convenient to use wave functions of negative frequency for the states of positron (See Appendix A). Then, the
positron propagator has the following form:

G(r
′

+, r+;ε+) =
∑

n′σ

∫
dk+

3

2π

dk+
2

2π
exp[−ik+

3 (z
′

+ − z+) − ik+
2 (y

′

+ − y+)]
Ψ

(−)
n′σ(x

′

+ − k+

2

eB ,−k
+
3 )Ψ

(−)

n′σ(x+ − k+

2

eB ,−k
+
3 )

[ε+ + En′(k+
3 ) − i0]

, (9)

where En′(k+
3 ) =

√
m2

n′ +
(
k+
3

)2
. We assume that the center of mass of the positronium can move relativistically

in any direction with respect to the magnetic field, i.e., we make no assumption about the center of mass momentum

P3 = k−3 + k+
3 (10)

along the magnetic field, but we assume that the longitudinal relative motion of the electron and positron is nonrela-
tivistic. Therefore, the relative momentum projection
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k3 =
mn′k−3 −mnk

+
3

mn +mn′

(11)

is much smaller than the electron mass. Let us write the electron and positron momenta in the following form :

k−3 =
mn

mn +mn′

P3 + k3 (12)

k+
3 =

mn′

mn +mn′

P3 − k3 (13)

Thus, we may expand the Landau levels energy as a series of k3 :

En(k−3 ) ≃ mn

√
M2

nn′ + P 2
3

Mnn′

+
P3k3√

M2
nn′ + P 2

3

+
M3

nn′

(M2
nn′ + P 2

3 )
3/2

k2
3

2mn
(14)

En′(k+
3 ) ≃ mn′

√
M2

nn′ + P 2
3

Mnn′

− P3k3√
M2

nn′ + P 2
3

+
M3

nn′

(M2
nn′ + P 2

3 )
3/2

k2
3

2mn′

(15)

where Mnn′ ≡ mn +mn′ . This yields

En(k−3 ) + En′(k+
3 ) ≃

√
M2

nn′ + P 2
3 +

k2
3

2µnn′

(16)

with the reduced mass

µnn′ =
mnmn′

Mnn′

(
M2

nn′ + P 2
3

)3/2

M3
nn′

(17)

III. ADIABATIC APPROXIMATION

In a sufficiently strong magnetic field B >> 109G the Larmor radius

aL =
1√
eB

(18)

is small with respect to the Bohr’s radius

aB =
1

me2
(19)

because :

aB

aL
=

√
eB

1

me2
=

√
b

e2
>> 1. (20)

When inequality (20) holds, the Coulomb’s binding energy |ε| ∼ me4 is much smaller than the distance between
Landau levels of the electron (or positron). This means that the energies ε∓ of the bound electron and positron vary
in a small vicinity of the Landau levels they occupy. In this case, the poles near these Landau levels give the principal
contribution to the Green’s functions of the electron and the positron. Therefore, we can write :

Ĝn(r−, r
′

−;ε−) =
∑

σ

∫
dk−3
2π

dk−2
2π

exp[ik−3 (z− − z
′

−) + ik−2 (y− − y
′

−)]
Ψ

(+)
nσ (x− +

k−

2

eB , k
−
3 )Ψ

(+)

nσ (x
′

− +
k−

2

eB , k
−
3 )

[ε− − En(k−3 ) + i0]
(21)

Ĝn′

(r
′

+, r+; ε+) =
∑

σ

∫
dk+

3

2π

dk+
2

2π
exp[−ik+

3 (z
′

+ − z+) − ik+
2 (y

′

+ − y+)]
Ψ

(−)
n′σ(x

′

+ − k+

2

eB ,−k
+
3 )Ψ

(−)

n′σ(x+ − k+

2

eB ,−k
+
3 )

[ε+ + En′(k+
3 ) − i0]

(22)
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Generally speaking, in the case of n 6= n′ two terms corresponding to the same total energy E = ε+ + ε− give the
major contribution to the product of Green functions in the right-hand side of the Bethe-Salpeter equation. The first
of them corresponds to an electron occupying the Landau level n, while the positron occupies the level n

′

. The second
term is the state with the same energy, but with the electron occupying the level n

′

and the positron in the state n.
Within this adiabatic approximation, it is possible to characterize the positronium states in a strong magnetic field
by the almost-good quantum numbers n and n

′

, and by other additional constants, which characterize the motion of
the center of mass and the relative motion of the electron and positron along the magnetic field .

IV. EQUATION FOR THE BOUND STATE WAVE FUNCTION FOR EQUAL LANDAU NUMBERS

If both the electron and the positron occupy the same Landau level, then virtual photons with small values of
ω ∼ me4 ≪ |q| ∼ me2 give the major contribution to the e+e− interaction. Therefore, we can neglect ω in the photon
propagator

Dµν ( ω,q) = gµν
4π

ω2 − q2
≃ −gµν

4π

q2
(23)

This yields, for n = n′:

χij

(
r−, r+;

E

2
+ ε,−E

2
+ ε

)
= −ie2

∫
d3r

′

−d
3r

′

+G
n
il(r−, r

′

−;
E

2
+ ε)Gn

qj(r
′
+, r+;−E

2
+ ε)

×
∫

d3q

(2π)3
4π

q2
exp

[
iq
(
r′− − r′+

)]
gµνγ

µ
ls

∫
dω

2π
χst

(
r′−, r

′
+;
E

2
+ ω,−E

2
+ ω

)
γν

tq (24)

By performing integration over dε/2π, we obtain the wave function of the bound pair

Φ̂(r−, r+;E) =

∫
dε

2π
χij

(
r−, r+;

E

2
+ ε, −E

2
+ ε

)
(25)

which verifies the following equation:

Φ̂ (r−, r+;E) = −ie2
∫
d3r

′

−d
3r

′

+∣∣r′− − r′+
∣∣
dε

2π
Ĝn(r−, r

′

−;
E

2
+ ε)γµΦ̂

(
r′−, r

′
+;E

)
γµĜ

n(r′+, r+;−E
2

+ ε) (26)

Integration over dε
′

/2π in the right-hand side can be done with the help of the following formula :

∫ ∞

−∞

dε

2π

1(
ε+ E/2 − En(k−3 ) + i0

) (
ε− E/2 + En′(k+

3 ) − i0
) =

i

E − En(k−3 ) − En′(k+
3 )

(27)

Thus, one has

Qnn′

ilqj ≡
∫
dε

′

2π
Gn

il(r−, r
′

−;
E

2
+ ε

′

)Gn′

qj(r+, r
′

+;−E
2

+ ε
′

) =
∑

σ

∑

σ′

i

∫
dk−3
2π

dk−2
2π

dk+
3

2π

dk+
2

2π

×exp[ik−3 (z− − z
′

−) + ik−2 (y− − y
′

−) − ik+
3 (z

′

+ − z+) − ik+
2 (y

′

+ − y+)]

E − En(k−3 ) − En′(k+
3 )

×Ψi(+)
nσ (x− +

k−2
eB

)Ψ
l(+)

nσ (x
′

− +
k−2
eB

)Ψ
q(−)

n′σ′ (x
′

+ − k+
2

eB
)Ψ

j(−)

n′σ′ (x+ − k+
2

eB
) (28)

Since the relative motion of the bound pair along the magnetic field is nonrelativistic, we neglect k±3 ∼ me2 inside
the bispinors. The Landau level energies of the electron and positron are given by Eqs. (14,15).

Let us introduce the new coordinates :

Z =
mnz− +mn′ z+
mn +mn′

, Y =
1

2
(y− + y+), X =

1

2
(x− + x+)

z = z− − z+, y = y− − y+, x = x− − x+ (29)
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Z1 =
mnz

′

− +mn′ z
′

+

mn +mn′

, Y1 =
1

2
(y

′

− + y
′

+), X1 =
1

2
(x

′

− + x
′

+)

z1 = z
′

− − z
′

+, y1 = y
′

− − y
′

+, x1 = x
′

− − x
′

+ (30)

and new momenta :

P3 = k−3 + k+
3 , P2 = k−2 + k+

2

k3 =
mn′k−3 −mnk

+
3

mn +mn′

, k2 =
1

2
(k−2 − k+

2 ) (31)

The expression for Qnn′ reads now :

Qnn′

ilqj = i

∫
dP3

2π

dk3

2π

dP2

2π

dk2

2π

exp{iP3(Z − Z1) + iP2(Y − Y1) + ik3(z − z1) + ik2(y − y1)}
ε− k2

3

2µnn′

− P 2
3

2M
nn

′

×
∑

σ

∑

σ′

Ψi(+)
nσ (X +

x

2
+
P2 + 2k2

2eB
)Ψ

l(+)

nσ (X1 +
x1

2
+
P2 + 2k2

2eB
)

×Ψ
q(−)

n′σ′ (X1 −
x1

2
− P2 − 2k2

2eB
)Ψ

j(−)

n′σ′ (X − x

2
− P2 − 2k2

2eB
) (32)

and the positronium wave function obeys the following equation:

Φ̂ (r,R;E) = e2
∫
dZ1dY1dX1d

3r1
r1

dP3

2π

dk3

2π

dP2

2π

dk2

2π

exp{iP3(Z − Z1) + iP2(Y − Y1)}
ε− k2

3

2µnn′

− P 2
3

2M
nn

′

exp{ik3(z − z1) + ik2(y − y1)}

×
∑

σ

∑

σ′

Ψi(+)
nσ (X +

x

2
+
P2 + 2k2

2eB
)Ψ

l(+)

nσ (X1 +
x1

2
+
P2 + 2k2

2eB
)

×γµΦ̂ (r1,R1;E) γµΨ
q(−)
nσ′ (X1 −

x1

2
− P2 − 2k2

2eB
)Ψ

j(−)

nσ′ (X − x

2
− P2 − 2k2

2eB
). (33)

To separate the motion of the center of mass we subtract a bilocal phase (Avron et al., [7])

PR+erA(R) (34)

from Φ̂, with the help of the gauge choice Eq. (7). Thus, one has

Φ̂(r−, r+;E) = exp[iP 0
3Z + iP 0

2 Y − ieBXy]φ̂(r) (35)

By using this expression one can perform the integration on the right-hand side of Eq. (33) over dZ1dY1. Thus, we
obtain the δ- functions δ(P3 − P 0

3 )δ(P2 − P 0
2 ), which allow for integration over dP3dP2. Therefore, we will substitute

everywhere the constants of motion P 0
3 , P

0
2 instead of P3 and P2 . We consider the reference frame P 0

3 = 0. Thus, the
equation for the stationary states becomes the following:

φ̂(r) = e2
∫
d3r1
r1

dk3

2π

1

ε− k2
3

2µnn′

∫
dk2

2π
exp (ik2y + ieBXy)

∫
dX1 exp (−ik2y1 − ieBX1y1) exp{ik3(z − z1)}

×
∑

σ

∑

σ′

Ψ(+)
nσ (X +

x

2
+
P 0

2 + 2k2

2eB
)Ψ

(+)

nσ (X1 +
x1

2
+
P 0

2 + 2k2

2eB
)

×γµφ̂(r1)γµΨ
(−)
nσ′(X1 −

x1

2
− P 0

2 − 2k2

2eB
)Ψ

(−)

nσ′ (X − x

2
− P 0

2 − 2k2

2eB
) (36)

The right-hand side of Eq.(36) depends on z only through the exponential exp(ik3z). The action of the operator

Ĥ0
z ≡ − 1

2µnn′

∂2

∂z2
− ε. (37)

on Eq.(36) cancels the denominator on the right-hand side. Subsequent integration over dk3 yields δ(z − z1), and
integration over dz1 becomes trivial. Finally, we obtain :
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Ĥ0
z φ̂(r) = −e2

∫
dx1dy1√

x2
1 + y2

1 + z2

∫
dk2

2π
exp (ik2y + ieBXy)

∫
dX1 exp (−ik2y1 − ieBX1y1)

×
∑

σ

∑

σ′

Ψ(+)
nσ (X +

x

2
+
P 0

2 + 2k2

2eB
)Ψ

(+)

nσ (X1 +
x1

2
+
P 0

2 + 2k2

2eB
)

×γµφ̂(r1)γµΨ
(−)
nσ′(X1 −

x1

2
− P 0

2 − 2k2

2eB
)Ψ

(−)

nσ′(X − x

2
− P 0

2 − 2k2

2eB
) (38)

Let us now introduce the new integration variables

ξ = X +
k2

eB
, λ = X1 +

k2

eB
(39)

and denote by x0 the distance between the orbiting centers of the electron and positron in the plane orthogonal to
the magnetic field:

x0 ≡ P 0
2

eB
(40)

This distance depends on the transverse momentum P 0
2 , which characterizes the motion of the mass center across the

magnetic field. Then

Ĥ0
z φ̂(x, y, z) = −e2eB

∑

σ

∑

σ′

∫
dξ

2π
exp(ieBξy)Ψ(+)

nσ (ξ +
x+ x0

2
)Ψ

(−)

nσ′(ξ − x+ x0

2
)

×
∫

dx1dy1√
x2

1 + y2
1 + z2

∫
dλ exp(−ieBλy1)Ψ

(+)

nσ (λ+
x1 + x0

2
)γµφ̂(x1, y1, z)γµΨ

(−)
nσ′(λ− x1 + x0

2
) (41)

As follows from the last equation, the wave function describing the relative motion has the form :

φ̂(r) =
∑

σ

∑

σ′

fn
σσ′(z)

∫
dξ

2π
exp (ieBξy)Ψ(+)

nσ (ξ +
x+ x0

2
)Ψ

(−)

nσ′ (ξ − x+ x0

2
) (42)

where the functions fn
σσ′ depend only on the relative coordinate z. These functions are solutions of the following set

of Schrödinger-like equations:

− 1

2µnn

∂2

∂z2
fn

σσ′ (z, x0) +
∑

κκ′

V κκ′

σσ′ (z, x0)f
n
κκ′(z, x0) = εfn

σσ′(z, x0) (43)

Here, the effective potentials represent the Coulomb interaction, averaged over the fast transverse motion of the
interacting particles :

V κκ′

σσ′ (z) ≡ −e2 eB
2π

∫
dxdydξdλ exp [ieB (ξ − λ) y]√

(x− x0)
2

+ y2 + z2

×Tr
[
Ψ

(+)

nσ (λ +
x

2
)γµΨ(+)

nκ (ξ +
x

2
)
] [

Ψ
(−)

nκ′ (ξ − x

2
)γµΨ

(−)
nσ′(λ− x

2
)
]

(44)

In general, the matrix V κκ′

σσ′ (z) consists on 16 elements corresponding to different spin orientations of the two particles.
However, in the adiabatic approximation, most of them are zero. After integration over dλdξ, we obtain the effective
potentials in the following form:

V κκ′

σσ′ (z) = −e
3B

2π

∫ ∫
dxdy exp(−ρ2/2)√
(x− x0)2 + y2 + z2

Rκκ′

σσ′ (x, y) (45)

where

Rκκ′

σσ′(x, y) ≡ exp
(
ρ2/2

) ∫ dξdλ

2π
exp [ieB(ξ − λ)y]

×
[
Ψ

(+)

nσ (λ+
x

2
)γµΨ(+)

nκ (ξ +
x

2
)
] [

Ψ
(−)

nκ′ (ξ − x

2
)γµΨ

(−)
nσ′(λ− x

2
)
]

(46)

with ρ =
√
eB (x2 + y2).
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V. THE GROUND BAND OF POSITRONIUM STATES IN A SUPERSTRONG MAGNETIC FIELD.

The lowest band of positronium levels corresponds to the case when both the electron and the positron occupy
the ground Landau level with n = n′ = 0. Only a spin combination, spin-down for the electron and spin-up for the
positron, is possible in this case. A simple calculation, using the wave functions of Appendix A, gives the following
result:

R↑↑
↑↑(x, y) = R↓↓

↓↓(x, y) = R↓↓
↑↑(x, y) = R↑↑

↓↓(x, y) = −R↓↑
↑↓(x, y) = −R↑↓

↓↑(x, y) = R↑↓
↑↓(x, y) = 0 (47)

and

R↓↑
↓↑(x, y) = 1. (48)

Consequently, the wave functions of the lowest band, which will be labeled by the quantum number l, have the
following form :

φ̂
P 0

2

00l(r) = f
(0,l)
↓↑ (z, x0)

∫
dξ

2π
exp(ieBξy)Ψ

(+)
0↓ (ξ +

x+ x0

2
)Ψ

(−)

0↑ (ξ − x+ x0

2
) (49)

Using the formulae for bispinors corresponding to Landau states (see Appendix A), we can integrate this expression
over dξ. The result is :

φ̂
P 0

2

00l(r) = f
(0,l)
↓↑ (z, x0)

√
eB

2π
exp{−eB

4
[(x+ x0)

2 + y2]}





0
1
0
0




(

0 0 0 1
)

(50)

The wave function for the relative motion along the magnetic field can be found by solving the following Schrödinger
equation :

− 1

2µ00

∂2

∂z2
f

(0,l)
↓↑ (z, x0) + V ↓↑

↓↑ (z, x0)f
(0,l)
↓↑ (z, x0) = εl

00 (x0) f
(0,l)
↓↑ (z, x0) (51)

with µ00 = m/2. The effective potential is

V00(z, x0) ≡ V ↓↑
↓↑ (z, x0) = −2e2

π

∫ ∞

0

ρdρ exp(−ρ2/2)√
(ρaL − x0)2 + z2

K

(
i

√
4ρx0aL

(ρaL − x0)2 + z2

)
(52)

and

K (k) =

∫ π/2

0

dθ√
1 − k2 sin2 θ

(53)

is the elliptic integral of the first kind.

Eq. (52) depends on the parameter x0 = P 0
2 /eB, therefore the eigen-functions f

(0,l)
↓↑ , as well as the discrete spectrum

eigen-energies εl
00, depend on the quantity P 0

2 , which characterizes the relativistic motion of the center of mass across
the magnetic field. Unfortunately the integration in Eq. (52) can not be done analytically. By this reason, we consider
several limiting cases.

A. The case of small x0 .

We first consider the case of a small distance between the centers of Landau orbits in the plane orthogonal to the
magnetic field:

√
eBx0 =

P 0
2√
eB

≪ 1 (54)

This yields:
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V00(z) ≈ −e2
√
πeB

2

[
1 − erf

(
|z|
√
eB

2

)]
exp

(
eBz2

2

)
(55)

with

erf(x) =
2√
π

∫ x

0

dt exp
(
−t2

)
(56)

being the error function. At distances |z| ≫ aL, the potential behaves as the one-dimensional Coulomb potential

V00(z) ≈ − e2

|z| (57)

while for |z| ≪ aL goes to a constant

V00(0) = −
√
π

2

e2

aL
(58)

(This result differs from that given by Usov and Shabad by the factor
√
π/2).

For shallow levels, the characteristic size of the atom along the Oz axis is of the order aB ≫ aL , so that the
potential can be considered to have the form Eq. (57), and the energy levels should be close to Balmer’s spectrum.
This statement is not valid for deep levels. Eq. (51), with the potential Eq. (55), can be solved numerically. However,
an analytical estimate is of interest. To obtain such an estimate, we replace the potential Eq. (55) by a simple
function of the form

V00(z) ≈ − e2

|z| +
√

2
πaL

(59)

which slightly differs from Eq. (55) only in the region |z| ∼ aL, and has the same asymptotic forms.

1. Discrete spectrum.

Solutions to the Schrödinger equation with this potential have been investigated by Loudon [8] for negative energy.
For completeness, we quote shortly this calculations, which will be used later for investigation of the states of positive
energy. We define, as in [8], a dimensionless quantity α by writing

ε = − 1

2µ00a2
00α

2
(60)

with a00 =
(
µ00e

2
)−1

= 2aB, and replace the independent variable z in Eq. (51) by

z′ =
2

αa00

(√
2

π
aL + z

)
, for z > 0

z′ = − 2

αa00

(√
2

π
aL − z

)
, for z < 0 (61)

whereupon, for z 6= 0, the equation takes the Whittaker’s form of the confluent hypergeometric equation

d2f

dz′2
− 1

4
f +

α

|z′|f = 0 (62)

This equation has two independent solutions, given by Whittaker’s functions. The first of them

Mα, 1
2

(z′) = exp (−z′/2) z′Φ(1 − α, 2; z′) (63)

8



where Φ(1 − α, 2; z′) is the confluent hypergeometric function of the first kind, diverges as (z′)
−α

exp (z′/2) for large
z. Since for a bound state any solution of this equation must go to zero when |z′| tends to infinity, we choose the
second solution, which for z > 0 is

Wα, 1
2

(z′) = exp (−z′/2) z′Ψ(1 − α, 2; z′) (64)

where Ψ(1 − α, 2;x) is the confluent hypergeometric function of the second kind :

Ψ(1 − α, 2;x) =
1

Γ (−α)
{Φ(1 − α, 2;x)[log x+ ψ (1 − α) − ψ (1) − ψ (2)] − 1

αx
+

∞∑

r=1

(1 − α)r

r! (r + 1)!
Arx

r} (65)

Here

Ar =
r−1∑

n=0

[
1

n+ 1 − α
− 1

n+ 1
− 1

n+ 2

]
, (c)r =

Γ (c+ r)

Γ (c)
(66)

The function ψ (s) = Γ′ (s) /Γ (s) is the logarithmic derivative of the gamma function. The solutions for positive and
negative z can be joined together to form either even or odd wave-functions. For an odd state we require

Wα, 1
2

(√
2

π

2aL

αa00

)
= 0 (67)

while for an even state
[
d

dz′
Wα, 1

2
(z′)

]

z′=
√

2
π

2aL
αa00

= 0 (68)

To find solutions to Eqs. (67) and (68), which give the eigenvalues of the system, we keep only terms which are
dominant when

x =

√
2

π

2aL

αa00
(69)

is very small, and α is close to a positive integer. The eigenvalue conditions then become :
Odd state:

ψ (1 − α)

√
2

π

2aL

αa00
− 1

α
= 0 (70)

Even state:

log
2

αa00

√
2

π
aL + ψ (1 − α) = 0 (71)

Assuming α→ l where l = 1, 2, ... we can replace

ψ (1 − α) → 1

α− l
(72)

Then, the quantum defects δl = α− l are given by
Odd state:

δl =
2

a00

√
2

π
aL (73)

Even state:

δl = −
[
log

2

la00

√
2

π
aL

]−1

(74)
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For the adiabatic case one has δl ≪ 1 if log(a00/aL) ≫ 1.
In addition to this series of states having their quantum numbers α close to positive integers, there is another state

having α close to zero. For such a value of α, ψ (1 − α) is no longer an important term in Eq. (71), and 1/α becomes
the dominant term in α. In this case, the equation for the eigenvalues becomes

log
2

αa00

√
2

π
aL = − 1

2α
(75)

The quantum defect δl = α for the state l = 0 can be found from Eq. (75) by iteration. To the first order in aL/a00

its binding energy is given by

ε
(0)
1 = ε

(0)
2 ≈ −me4

(
log

√
π

2

a00

2aL

)2

(76)

To this state there corresponds the even wave-function

f
(0,0)
↓↑ (z, 0) =

[
1

a00
ln

(√
π

2

a00

aL

)]1/2

exp

[
− |z|
a00

ln

(√
π

2

a00

aL

)]
(77)

2. Continuous spectrum.

The spectrum for positive energies is continuous. Now, the variable z′, as well as the α value defined by Eq. (60)
are imaginary quantities. Let us write them as

α =
i

ka00
(78)

with k =
√

2µ00ε, and define:

z′ = −2ik

(√
2

π
aL + z

)
, for z > 0

z′ = 2ik

(√
2

π
aL − z

)
, for z < 0 (79)

In the region z′ > 0, Eq. (62) has two linearly-independent solutions, given by the Whittaker’s functions

f
(k)
1 (z) = C1W i

ka00
, 1
2

(
−2ik

[√
2

π
aL + z

])
(80)

f
(k)
2 (z) = C2M i

ka00
, 1
2

(
−2ik

[√
2

π
aL + z

])
(81)

where C1 and C2 are constants, which should be determined by the normalization conditions. To find these constants,
let us consider the asymptotic behavior of Whittaker’s functions when z → ∞

W i
ka00

, 1
2

(
−2ik

[√
2

π
aL + z

])
≃ exp

(
− 3π

2ka00

)
exp

(
ikz +

i

ka00
ln 2kz + i

√
2

π
kaL

)
(82)

M i
ka00

, 1
2

(
−2ik

[√
2

π
aL + z

])
≃
ka00 exp

(
3π

2ka00

)

∣∣∣Γ
(

i
ka00

)∣∣∣
exp

(
−ikz − i

ka00
ln 2kz − i

√
2

π
kaL + i

3π

2
− iδk

)
(83)
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where

δk = arg Γ

(
i

ka00

)
(84)

If we choose to normalize the eigen-functions in the following way :

∫ ∞

−∞

f (k)(z)f (k′)(z)dz = 2πδ (k − k′) (85)

then the normalization factors are

C1 = exp

(
3π

2ka00

)
, C2 =

1

ka00

∣∣∣∣Γ
(

i

ka00

)∣∣∣∣ exp

(
− 3π

2ka00

)
(86)

Indeed, the asymptotic form of the wave functions in this case are in a good agreement with the general form of
the normalized one-dimensional wave functions for a continuous spectrum, in the form exp (±ikz). The logarithmic
term in the exponentially grows much slower than z. This term is not important when calculating the normalization
integral, which diverges at infinity.

B. The case of large x0.

The bound pair of an electron and positron with a small magnitude of P 0
2 in a superstrong magnetic field is only of

academic interest. The known mechanism of positronium production in a pulsar magnetosphere [2], [4], [3] assumes
that the created bound pair has a quasi momentum P 0

2 & 2m. For a typical pulsar magnetic field B . 0.1B0, this
corresponds to the opposite limit :

√
eBx0 =

P 0
2√
eB

≫ 1 (87)

In this limit, the effective potential Eq. (52) takes the simple analytical form

V00(z/x0) ≈ − e2

x0

1√
1 + z2/x2

0

(88)

For P 0
2 & 2m and B = 0.1B0, i.e.

√
eBx0 & 6, the curve given by Eq.(88) practically coincides with the exact

potential. In Fig. 1 we show the potential, in units of me4, versus the dimensionless distance me2z, for two values of
P 0

2 . We also show, for comparison, the approximation

V00(z) ≈ − e2

|z| + x0
(89)

used by Usov and Shabad.
In spite of the relatively simple expression given by Eq. (88), there are not available analytical solutions of the

Schrödinger problem for stationary states in this potential. For this reason, we have made a numerical calculation in
order to determine the energy εl

00 for bound states. The results, for the first five levels, are shown in Table 1, where
three values of the dimensionless parameter ξ0, defined as

ξ0 ≡ x0

a00
, (90)

were considered. For large values ξ0 ≫ 1, these results can be approximated by the following formula:

εl
00

me4
= −

[√
(l + 1)2 + 8ξ0 − (l + 1)

]2

16ξ20
(91)
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VI. CONCLUSIONS

We have investigated the bound states of an electron and positron in the presence of a superstrong magnetic field
(B >> 109G), as it can appear in some neutron stars. We have given a completely relativistic description of the
positronium motion across the magnetic field. Our starting point is the Bethe-Salpeter equation for the positron and
the electron at the lowest order in the electromagnetic coupling constant. The effects of the strong external magnetic
field are incorporated through the exact solutions of the Dirac equation for the interacting particles. The Bethe-
Salpeter equation then involves a summation over all possible Landau levels of those particles. As we have shown,
however, this equation can be transformed into a set of coupled Schrödinger-like equations under the hypothesis of
the so-called adiabatic approximation, which is valid for superstrong magnetic fields. In this case, only one Landau
level per interacting particle is relevant.

We have concentrated ourselves to some particular cases of particular interest, like the ground band of positronium,
where we found some differences with previous results.
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APPENDIX A: SOLUTIONS OF THE DIRAC EQUATION IN A CONSTANT MAGNETIC FIELD

The wave functions we use are solutions of the Dirac equation in a constant magnetic field directed along the z-axis.
By the use of the asymmetric (Landau) gauge Eq. (7), these four wave- functions, with definite third-component spin
direction, can be expressed in terms of the stationary wave functions as:

1√
L2L3

exp(−iǫEnt) exp [iǫ (k3z + k2y)] Ψ
ǫ
nσ(ξǫ, k3) (A1)

The wave functions are normalized in a volume (L1L2L3) , n is the quantum number of the Landau level, σ =↑, ↓
is the spin projection along the z-axis, ǫ = +1 (ǫ = −1) indicates the electron (positron) states, and k2, k3 are the
momenta in the y and z directions, respectively. The functions Ψǫ

nσ(ξǫ, k3), with

ξ± =
√
eB

(
x± k2

eB

)
(A2)

are given by

Ψ+
n↓ = C1/2

n





−ik3

√
E0

n −mϕn−1(ξ+)

(En + E0
n)
√
E0

n +mϕn(ξ+)

−i(En + E0
n)
√
E0

n −mϕn−1(ξ+)

−k3

√
E0

n +mϕn(ξ+)



 (A3)

Ψ+
n↑ = C1/2

n





(En + E0
n)
√
E0

n +mϕn−1(ξ+)

−ik3

√
E0

n −mϕn(ξ+)

k3

√
E0

n +mϕn−1(ξ+)

i(En + E0
n)
√
E0

n −mϕn(ξ+)



 (A4)

Ψ−
n↓ = C1/2

n





k3

√
E0

n +mϕn−1(ξ−)

−i(En + E0
n)
√
E0

n −mϕn(ξ−)

(En + E0
n)
√
E0

n +mϕn−1(ξ−)

ik3

√
E0

n −mϕn(ξ−)



 (A5)

Ψ−
n↓ = C1/2

n





i(En + E0
n)
√
E0

n −mϕn−1(ξ−)

−k3

√
E0

n +mϕn(ξ−)

ik3

√
E0

n −mϕn−1(ξ−)

(En + E0
n)
√
E0

n +mϕn(ξ−)



 (A6)
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with

Cn=
1

4EnE0
n(En + E0

n)
(A7)

En =
√
m2 + 2neB + k2

3 (A8)

E0
n =

√
m2 + 2neB ≡ mn (A9)

The functions ϕn(ξ) are the eigenfunctions of the one-dimensional harmonic oscillator, normalized with respect to x.
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TABLE I. Bounding energy of the first positronium energy levels, for different values of the parameter ξ0

ξ0 l = 0 l = 1 l = 2 l = 3 l = 4

0.1 -1.9093 -0.2371 -0.1283 -0.0609 -0.0433

1 -0.3349 -0.1374 -0.0757 -0.0463 -0.0318

10 -0.0432 -0.0319 -0.0240 -0.0186 -0.0147
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FIG. 1. Interaction potential of positronium, in units of me4, as given by our Eq. (88) (solid lines). We also show for
comparison the approximation, Eq. (89) used by Usov and Shabad (dotted lines). In both cases, the deepest curve corresponds
to P 0

2 = 2m, and the other one to P 0

2 = 4m.
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