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Abstract. We consider the effect of two different environments on the
performance of the quantum adiabatic search algorithm, a thermal bath at finite
temperature, and a structured environment similar to the one encountered in
systems coupled to the electromagnetic field that exists within a photonic crystal.
While for all the parameter regimes explored here, the algorithm performance is
worsened by the contact with a thermal environment, the picture appears to be
different when considering a structured environment. In this case we show that, by
tuning the environment parameters to certain regimes, the algorithm performance
can actually be improved with respect to the closed system case. Additionally, the
relevance of considering the dissipation rates as complex quantities is discussed
in both cases. More particularly, we find that the imaginary part of the rates can
not be neglected with the usual argument that it simply amounts to an energy
shift, and in fact influences crucially the system dynamics.
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1. Introduction

The paradigm of Adiabatic Quantum Computation (AQC), introduced in [1], is known
to be equivalent to standard, circuit based, quantum computation [2]. From the point
of view of its physical implementation, it is however specially appealing, since it is
entirely formulated in terms of a controlled dynamics, and moreover it offers some
inherent robustness to errors [3].

In AQC the solution of a computational problem is encoded in the ground state
of a certain (problem) Hamiltonian. The system is started in the easily preparable
ground state of an initial Hamiltonian, which is then slowly turned into the problem
one. The adiabatic theorem [4, 5, 6, 7, 8] guarantees that, if the variation of the
Hamiltonian is sufficiently slow, time evolution will drive the system into the solution
state. The resource measuring the computational cost of the algorithm is thus the total
evolution time required to guarantee the adiabaticity condition‡. For most cases, it
depends on the inverse squared of the minimum energy gap during the evolution.

Since quantum systems are not in general completely isolated from their
environment, errors and dissipation are ubiquitous, and it is fundamental to decide
how quantum computers and algorithms can be built that achieve their computational
tasks in spite of inaccurate operations and certain loss of coherence. But AQC gets
affected by errors in a fundamentally different way than the standard, gate-based
model of quantum computation. The interaction with the environment may excite
the system out of its ground state, causing errors, but if the energy scales in the
environment are much smaller than the minimum gap, the adiabatic evolution will be
naturally preserved. On the other hand, the dissipation may also result in a modified
effective Hamiltonian, and thus affect the performance of the AQC [9, 10, 11]. Even
when the coupling with the environment is weak, it may produce noticeable effects in
the performance of the adiabatic algorithm, specially considering the large time scales
that this requires.

Looking at the question from a different perspective, the algorithm may be
implemented within a system inwhich the interaction with the environment is not
an undesirable effect, but rather a tool that can be actually controlled and tuned
at will to improve the performance of AQC. Whether the effect of the environment
is controllable or not, the system in question has to be considered as a quantum

open system, and its interaction with the environment can be treated within the weak
coupling limit, provided that this coupling is small enough in comparison to the system
and the environment time scales.

In this work we study the effect of different types of noise on a particular adiabatic
algorithm, namely the adiabatic version of Grover’s search. Grover’s problem, or
that of search in an unstructured database [12], is one of the problems for which
quantum computation has been explicitly shown to exhibit a remarkable speedup over
the classical one. The adiabatic version of the quantum search algorithm achieves,
in a closed system, the optimal quadratic speedup with respect to its best classical
counterpart [13]. But if the system is subject to some dissipative dynamics, the
performance of the search may depend on the characteristics of the bath [14]. In
particular, it was pointed out by Amin and collaborators [10] that the presence of a
thermal bath can in some cases enhance the performance of the adiabatic quantum
search.

‡ A more strict measure of the cost is given by the product of the norm of the Hamiltonian times
the total time [2].
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In this paper, we study the performance of the adiabatic search algorithm
implemented in a quantum open system. To this end, we adopt the two-level
approximation, in which only the interaction of the environment with the two levels
involved in the quantum search algorithm is considered [11, 14].

We will consider two situations.
First, we analyze the case in which the system is coupled to a thermal

environment. In particular, we consider an ohmic environment as appearing in [15],
which is valid to describe cases in which the spectral density is a smooth function in
the frequency space.

Second, we consider an ideal situation in which the adiabatic search algorithm
is implemented within an atom lattice. In that case, we study the model proposed
in [16], where the atoms in the lattice are coupled in a controlled way to a bosonic
environment which has very similar properties to the radiation field within a photonic
crystal. Here we study how, under certain conditions, and always within the two-
level approximation, a controlled coupling with the environment can give rise to an
improvement of the quantum search algorithm. To study the generality of this result,
we analyze a real two-level system (as opposed to an effective one arising from the
interplay of many qubits) which undergoes an adiabatic evolution, not necessarily
corresponding to the search algorithm, and which interacts with the same photonic-
crystal-like environment. We show that, even in this situation, the coupling with the
environment makes the system, in certain parameter ranges, end up in a final state
that corresponds, with a higher probability, to the target state (the ground state of
the final Hamiltonian).

In both cases, the quantum open system is described through a master equation
formalism. Hence, the effect of the environment in the system dynamics is encoded
in a collection of terms that depend on the so called dissipation rates. In this paper
we stress the importance of considering these rates as complex quantities. Indeed,
the conclusions about the performance of the adiabatic algorithm highly depend on
whether the imaginary parts are neglected or not, which suggests that they cannot be
considered simply as an overall energy shift. We use units in which h̄ = 1 .

2. Adiabatic Grover’s algorithm

In Grover’s problem, the goal is to find a particular item, m, in an unstructured
database of size N = 2n. The best classical algorithm for this search takes time O(N),
while it was shown in [12] that there is a quantum algorithm solving the problem in
time O(

√
N), known to be the optimal performance [17, 18].

The quantum algorithm maps each element of the database onto one element of
the computational basis for n qubits. The solution will then correspond to a particular
state, |m〉. In the adiabatic algorithm [13], the system is started in an easy to prepare
initial state, containing an equal superposition of all basis states,

|Ψ0〉 =
[

1√
2
(|0〉+ |1〉)

]⊗n

=
1√
N

N−1
∑

z=0

|z〉, (1)

where |z〉 are the elements of the computational basis. Then a time dependent
Hamiltonian is applied which smoothly interpolates between the initial Hamiltonian

H0 = 1l− |Ψ0〉〈Ψ0|, (2)
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having |Ψ0〉 as its ground state, and the final one,

Hm = 1l− |m〉〈m|, (3)

whose ground state is the solution |m〉. If the adiabatic condition is satisfied, the final
state will be |Ψf 〉 ≈ |m〉.

The Hamiltonian governing the evolution can be written as

HG(s) = (1− s)H0 + sHm, (4)

in terms of the dimensionless parameter s ∈ [0, 1], a function of time that controls
how fast the Hamiltonian changes. HG acts non-trivially only on the two dimensional
subspace spanned by |m〉 and |m⊥〉 = 1√

N−1

∑

z 6=m |z〉, and can thus be diagonalized

analytically. Indeed, in this subspace it can be expressed as

HG(s) =
1

2
1l+H(s), (5)

where we have defined H(s) = 1
2 (Ω(s)σx − ∆(s)σz) with ∆(s) = 2 1−s

N + (2s − 1)

and Ω(s) = 2(s − 1)
√
N−1
N , σx,z being the Pauli matrices in the basis {|m〉, |m⊥〉}.

The time-dependent energy eigenvalues are E0,1(s) = 1
2 ∓

√
Ω(s)2+∆(s)2

2 , and the
corresponding eigenvectors

|0(t)〉 = sin θ|m〉+ cos θ|m⊥〉,
|1(t)〉 = − cos θ|m〉+ sin θ|m⊥〉, (6)

where sin θ =
√

∆(s)+α(s)
2α(s) and cos θ = − Ω(s)√

2α(s)(α(s)+∆(s))
. The subspace orthogonal

to |m〉 and |m⊥〉 is the eigenspace of HG with energy E2 = 1. The time dependent
gap between the ground and first excited state is then given by α(s) = E1 − E0 =√
Ω2 +∆2.

The adiabatic condition imposes a lower bound on the running time of the

algorithm, T ≫ max
〈1(s)| dHds |0(s)〉

α(t)2 , where the maximum is taken over the whole range

s ∈ [0, 1].
If the interpolation is linear, i.e. slin(t) = t/T , and the total time is larger

than Tlin = N
ǫ , the adiabatic condition is approximately satisfied, with an error ǫ2

in the overlap between the final state and the solution. Using a different function
s(t), it is possible to ensure the condition by adjusting the velocity of change of the
Hamiltonian to the instantaneous gap [13]. This leads to the optimal performance,
when the interpolating function is

sopt(t) =
1

2

(

1 +
tan(2ǫt

√
N−1
N − arctan

√
N − 1)√

N − 1

)

. (7)

In that case, the total running time of the algorithm is Topt ≃ π
√
N/2ǫ for N ≫ 1.

3. Evolution equation of the system weakly coupled to an environment

Let us consider the evolution of a system evolving adiabatically with Hamiltonian
HS(t), and interacting with an environment whose free Hamiltonian is HB. Then, the
total Hamiltonian has the form

H = HS(t) +HB +Hint, (8)
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where Hint is the interaction Hamiltonian, which describes a linear coupling between
system and environment operators. In particular, for an environment given as a set
of harmonic oscillators, described by annihilation bλ and creation b†λ operators, the
interaction may have the form

Hint =
∑

λ

∑

i

giλ(σib
†
k + h.c.) (9)

where giλ is the coupling constant of the system with the mode λ, and σi (σ
†
i ) are spin

ladder operators corresponding to the qubit i.
In our case, we will consider that the environment is mainly coupled to the

two-dimensional subspace spanned by |m〉 and |m⊥〉 [14, 11]. In this situation, the
interaction Hamiltonian (9) can be written approximately [19] as Hint = A ⊗ B,
where A = σz and B are operators that act on the system and the environment
Hilbert spaces, respectively. Considering that the environment is composed of a
set of harmonic oscillators, the environment coupling operator can be written as
B =

∑

λ gλ(b
†
λ + bλ). The evolution equation of the system within the weak coupling

approximation is given by (see the appendix for further details),

dρS
dt

= − i[HS(t), ρS ]−
∫ t

0

dτg(t− τ) (AA(τ,−t)ρS −A(τ,−t)ρSA)

−
∫ t

0

dτg∗(t− τ) (ρSA(τ,−t)A−AρSA(τ,−t)) . (10)

with A(τ,−t) = U(t)U†(τ)AU(τ)U†(t), U(t) = T exp[−i
∫ t

0 HS(τ)dτ ] (T being the
usual time-ordering operator), and

g(t) =
∑

λ

g2λ[coth

(

βωλ

2

)

cos (ωλt)− i sin (ωλt)]. (11)

The well known Lindblad equation can be recaptured from the former equation by
just considering a delta-correlated bath, so that g(t− τ) = Γδ(t− τ). In such a case,
∫ t

0 dτA(τ,−t)g(t − τ) = ΓA, and similarly
∫ t

0 dτA(τ,−t)g∗(t − τ) = Γ∗A. Hence,
the Lindblad equation is not valid for every system that is weakly coupled with its
environment. It requires, in addition, that the coupling operators of the system (in
our case there is a single one, A) evolve very slowly with the system Hamiltonian,
within the time scale τC in which the correlation function g(τ) decays.

3.1. Bloch-Redfield equation

The Bloch-Redfield equation describes the evolution of the density operator in the
diagonal basis |n〉 of HS , ρ̇nm = 〈m|ρ̇S |n〉, with ρmn = 〈m|ρS |n〉. In our case, the
system Hamiltonian is time dependent, and the time dependent eigenbasis |n(t)〉
(corresponding to the set of eigenvalues En(t)) that diagonalizes instantaneously
the system Hamiltonian HS(t), should be considered. In this situation, the matrix
elements of the system density operator are ρmn = 〈m(t)|ρS |n(t)〉, and their evolution
equation can be written as

ρ̇nm = 〈m(t)|ρ̇S |n(t)〉+ 〈ṁ(t)|ρS |n(t)〉+ 〈m(t)|ρS |ṅ(t)〉. (12)

The first term on the right hand side of the equation is just the usual master equation
(10), expressed in the instantaneous basis of HS(t). In order to project (10) on the
system basis, one should calculate terms such as A(τ,−t)|n(t)〉, which requires the
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calculation of quantities such as U(t)|n(t)〉. Considering as a good approximation
that the free system is undergoing an exact adiabatic evolution, so that the adiabatic
theorem can be applied, we can write [20]

U(t)|n(t)〉 = e
−i
∫

t

0
En(τ)dτ |n(t)〉. (13)

Hence the first term of the evolution equation (12) can be expressed as

〈n(t)|ρ̇S |p(t)〉 = − iEnpρnp +
∑

ql

Γqn(t)AnqρqlAlp +
∑

ql

Γ∗
pqAnlρlqAqp

−
∑

lq

ΓqlAnlAlqρqp −
∑

ql

Γ∗
pqAnlρlqAqp, (14)

where Anm = 〈n(t)|A|m(t)〉, Enp = En − Ep, and

Γql(t) =

∫ t

0

dτg(t− τ)e
i
∫ t

τ
dτ ′(Eq(τ

′)−El(τ
′))

(15)

are the dissipation rates mentioned in the introduction. Notice that in our two level
system, any energy difference is Eq(t) − El(t) = ±α(t), where q, l = 0, 1. In order
to further simplify the equations we may assume that the rate of variation of α(t) is
much slower than the decaying of the correlation function g(t). In other words, when
the condition

1

α(t)

dα

dt
≪ 1

τC
(16)

is satisfied, the integrand Eq(τ
′)−El(τ

′) = ±α(τ ′) appearing in (15) will variate very
slowly in the integration region, and we can write

Γql(t) =

∫ t

0

dτg(t− τ)ei(Eq(t)−El(t))(t−τ). (17)

Let us consider the evolution equations for our case, where the coupling operator
A = σz . Expressing the density operator ρS in the spin basis {σx(t), σy(t), σz(t)} as
ρS = 1

2 (1+ρxσx(t)+ρyσy(t)+ρzσz(t)), the master equation can be written as follows

ρ̇x = 2csΓ−
R − 4c2Re(Γ00)ρx + α(t)ρy + 2

(

csΓ+
R + θ̇

)

ρx

+ 2cs

(

Γ+
R − 2Re(Γ00)

)

ρz

ρ̇y = 2cs

(

Γ+
I − 2Im(Γ00)

)

+

(

2s2Γ+
I − α(t)

)

ρx

− 2

(

2c2Re(Γ00) + s2Γ+
R

)

ρy + 2csΓ−
I ρz

ρ̇z = 2s2Γ−
R − 2(2csRe(Γ00)− θ̇) + 2s2Re(Γ00))ρx + 2cs(Γ+

R

− 2Re(Γ00))ρz , (18)

where Γ−
R = Re(Γ10 − Γ01), Γ+

R = Re(Γ10 + Γ01), Γ−
I = Im(Γ10 − Γ01) and

Γ+
I = Re(Γ10 + Γ01). The dissipation rates are defined as

Γ00 =

∫ t

0

dτg(τ),

Γ01 =

∫ t

0

dτg(τ)eiα(t)τ ,
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Γ00 =

∫ t

0

dτg(τ)e−iα(t)τ , (19)

and the variables c = cos 2θ = −∆
α , and s = sin 2θ = −Ω

α .

4. Adiabatic evolution in different environments

We now analyze two different cases in which adiabatic evolution occurs in the presence
of dissipation.

In the first place we consider the effect of a thermal environment on the
performance of the adiabatic search algorithm. A thermal environment is the one
that we would expect to find naturally when a system is coupled to a bosonic bath,
for instance phonons in a solid lattice, or the radiation field at finite temperature.

In the second case we consider our system to be coupled in a controlled way
to a bosonic environment that corresponds to a matter wave field. This example
is much more specific than the former, but allows us to illustrate a case in which,
provided that the two-level approximation remains valid, an artificially controlled
coupling allows in some regimes an improvement on the performance of an adiabatic
quantum computation.

In all our simulations we consider the number of qubits n = 10.

4.1. Thermal environment

As noted above, the most important quantity that characterizes the influence of an
environment on the system dynamics is the so-called correlation function. When the
exact form of the coupling constants gk or the dispersion relation of the environment
ω(k) is not known, a phenomenological model should be used to describe the
interaction. In that situation, we can express the correlation function (11) as

g(t) =

∫ ∞

0

dωJ(ω)[coth

(

βω

2

)

cos (ωt)− i sin (ωt)], (20)

which fulfills the property g(−τ) = g∗(τ). In the last expression, the function J(ω)
is the so-called spectral density of the bath. A very well known approach consists in
assuming that J(ω) behaves as ωs [15]. In that case, it can be written as

J(ω) = ηωsω1−s
c e−ω/ωc . (21)

This model of spectral function has been extensively studied in the context of the spin-
boson model [15], where three different regimes were described: a sub-ohmic regime in
which 0 < s < 1, a super-ohmic regime with s > 1, and an ohmic regime where s = 1.
The exponential factor appearing in the last expression has been added to provide a
smooth cut-off for the spectral density, which is modulated by the frequency ωc. This
parameter controls the correlation time of the environment, approximately given by
τc ∼ 1/ωc: the larger ωc, the smoother the spectral function, and the shorter the
time the environment takes to relax to equilibrium, giving rise to a more Markovian
interaction. As seen in [15], whether we have ohmic, sub-ohmic or a super-ohmic

spectral function depends on the type of reservoir, and determines quite strongly the
evolution behavior of the coupled system. In this work we will focus on one of the
most significant cases, the ohmic dissipation, in which s = 1, and on large ωc, when
the spectral function is a smooth function of the frequency.



Effects of dissipation in an adiabatic quantum search algorithm 8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T/T
max

P
0f

(a) Fig 1.a.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T/T
max

P
0f

(b) Fig. 1.b.

Figure 1. Considering the coupling with a thermal environment, final success
probability of the algorithm with adiabatic final adiabatic time T , as a function
of T/Tmax (being Tmax = 0.8Tlin, with Tlin = 4N

π
, the time required for final

success probability 0.55 in the closed case) for different coupling parameters η, and
for two cases: Fig 1.a. considering complex dissipation rates Γij (with i, j = 0, 1),
as they appear naturally in the derived Bloch-Redfield equations, and Fig 1.b.
considering only the real part of the dissipation rates ℜ{Γij} (discontinuous
lines). In both figures, the black solid line corresponds to the closed case η = 0,
while black, green and blue discontinuous lines corresponds to η = 0.05, 0.1, 0.5
respectively. The curve η = 0.5 is not shown in Fig 1.a., since for that value the
imaginary part of the rates is too large and gives rise to unphysical results, what
points out a failure of the weak coupling assumption. The frequency cut is chosen
as ωc = 0.25.

Let us study how the final success probability of the adiabatic search algorithm
is affected by the presence of a thermal environment. To this order, we consider
the evolution equations derived in the former section, with dissipation rates that
depend on the correlation function (20). As shown in figure 1(a), the final success
probability decreases in the presence of dissipation for any value of evolution time
of the adiabatic algorithm T considered. A common approximation in the literature
consists in neglecting the effect of the imaginary parts of the dissipation rates (19),
with the argument that they amount only to an energy shift which in the context of
quantum optics is known as the Lamb shift [21]. However, in the current scenario,
figure 1(b) shows that if only the real part of the dissipation rates is considered in the
equations, the result for the same couplings is completely different. This shows that,
at least in the present case, the imaginary parts of the rates cannot be considered as
a simple energy shift. In fact, when eliminating the imaginary parts, one can see that
the larger the coupling with the environment, the higher the final success probability
at any adiabatic evolution time.

As a consequence, we stress that in order to correctly describe the system,
the imaginary parts of the rates should in general be considered, since they appear
naturally in the derivation of the second order evolution equation of the system (in
other words, they correspond to second order terms, as well as the real parts), and
they produce relevant changes in the evolution.

4.2. Structured environment

The effect of dissipation on the performance of the adiabatic search will depend on the
details of the environment and its interaction with the system. The particular features
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of the adiabatic search make it specially sensitive to energy scales in the bath that are
comparable to the characteristic gap in the system, ∆E [3, 10]. Intuitively, one would
expect that the algorithm is more resilient when this energy corresponds to a gap in
the spectral function of the environment (i.e. a frequency region where this function
is zero), similar to the effect when the dominant energy scale of the bath is far away
from ∆E, as studied for the thermal case in [10]. However, while this picture gives a
qualitative image, a complete idea of the effect of the environment in the algorithm
can only be achieved with a more complete study. With this aim, in the following
we analyse in detail the effect of an structured environment in the performance of
the search algorithm. Particularly, we will consider an environment with a gap in the
density of states (which leads to a gap in the spectral density), and which has the same
characteristics as the radiation field within a photonic crystal. In addition to that,
it is specially interesting to consider the case of a controllable environment, where
the capability to tune the parameters of the interaction may give us the possibility
to improve the performance of the algorithm via the dissipative dynamics. Such an
environment is indeed realizable in the context of optical lattices, as we discuss in the
following.

Let us therefore consider an ideal situation in which the quantum search algorithm
is implemented in an atom lattice, which is formed by loading a gas of ultracold atoms
in a standing wave field. In the last few years, atom lattices have been experimentally
realized by several groups [22, 23, 24, 25, 26, 27], and due to their high controllability,
they have also been proposed as a candidate to realize a quantum computer [27].

In addition, it has been recently shown [28, 16] that atoms in an optical lattice
can be coupled to an environment in a controlled way. In the later proposal, atoms
are considered to have two relevant internal states a and b. Atoms in state a are
actually trapped by the optical lattice, and have a frequency ωa = ω0

a + ω0/2, with
ω0 the trap frequency of the lattice. In addition, they are considered to be in the
so-called strongly correlated regime, where either there is one or zero atoms at each
site of the lattice. Atoms in state b are not trapped by the lattice potential, and

have an energy h̄ωb +
h̄k2

2m , where h̄ωb and h̄k2

2m correspond to the internal and kinetic
energies, respectively. If a Raman transition of total frequency ωL and Rabi frequency
ΩL is produced between the trapped and the untrapped state, the Hamiltonian that
describes this process can be written in the interaction picture as

Hint =
∑

j

∑

k

gk

(

b†kσje
i∆kt−i(k−kL)·rj + h.c.

)

. (22)

In (22), the sum in j runs over the N sites in the lattice, rj denotes the positions in
the lattice, and ∆k = k2/2m−∆L, with ∆L = ωL− (ωb−ωa) the laser detuning. The

coupling constants are gk = ΩLe
−X2

0
k2/2(8π3/2X3

0/V )1/2, where X0 = (1/2mω0)
1/2 is

the size of the wave function at each site.
The previous Hamiltonian is very similar to the one describing the interaction

of two level atoms with the radiation field. However, here the spin operators σi
(equivalently σ†

i ) are not describing transitions between atomic internal states, but
rather they describe transitions from a Fock state |1〉i (which corresponds to the
presence of an atom at site i), to the Fock state |0〉i, describing the absence of atoms

at site i. On the other hand, the operators b†k (equivalently bk) correspond to the
creation (annihilation) operators of a bath of harmonic oscillators, which in this case
is not the radiation field, but the matter-wave field that describes the untrapped
atoms.
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In our model, we assume that the qubits undergoing adiabatic evolution are
encoded in the presence |1〉i or absence |0〉i of an atom at site i of the lattice. The
coupling with the environment produces transitions between these basis states through
the Hamiltonian (22). However, contrary to the case of the thermal environment
studied in the former section, here the coupling with an environment is not an
uncontrolled event, but rather it is artificially produced through the two-photon
Raman transition to the untrapped level. For that reason, several external parameters
that describe the interaction can be easily controlled: most importantly ΩL, which
determines the coupling strength, ∆L, which determines the resonance condition, and
ω0, which determines the trapping frequency of each lattice well, and as we will later
see, will also characterize the width of the spectral function in the frequency space
J(ω).

It is important to notice that, contrary to the thermal case, in this situation the
correlation function can be fully determined by the coupling parameters gk and the

dispersion relation of the environment, given by ωk = k2

2m + ωb. No phenomenological
model is needed to characterize the spectral function. On the other hand, the relation
ωk indeed resembles that of the radiation field in a three dimensional and infinite
photonic crystal near the band-gap edge, which here corresponds to the frequency ωb

[29, 30, 31]. This environment will give rise to a very particular dissipation in our
system. The correlation function can be written as [16]

g(t) =
∑

k

g2ke
−i∆kt = Ω2

L

ei∆Lt

ν3t
, (23)

where we have assumed that the sum in the wave vector k can be performed in the
continuum limit. Here, the quantity νt =

√
1 + iω0t.

In figure 2(a) we observe, always in the two-level approximation and for various
parameter regimes, a larger final probability of success at small values of T for the open
system (discontinuous lines) than for the closed one (solid line). Similarly, figure 3(a)
shows an improvement in the algorithm performance for certain values of ∆L. This
results suggests that, at least within the two level approximation, a controlled coupling
with a certain environment may improve the performance of the quantum search
algorithm. Figures 2(b) and 3(b) show the result for the same parameter regimes as
in 2(a) and 3(a) respectively, but just considering in the equations the real part of
the dissipation rates. Just as in the case of the thermal environment, we can see that
results for real and complex rates differ considerably.

Indeed, considering the full complex rates is particularly important for a
structured environment like the one analysed here. When the system frequency is
within the gap, the corresponding rate is, at long times, a purely imaginary quantity.
Hence, by only considering the real part of the rates one would arrive to the wrong
conclusion that the environment has no effect at all in the system. However, it
has been known for a long time that even when the system resonant frequency is
within a gap of the spectral density, the coupling with the environment has important
consequences in its dynamics. Among other things, a so-called photon-atom bound
state is formed [29], in which the energy is coherently interchanged between system and
environment. This particular state, and more generally the dynamics of the system
with a resonant frequency within the environment gap, can only be properly described
when considering the imaginary part of the rates.

In addition we note that, while in the thermal case the improvement of the
algorithm performance observed for real rates can no longer be observed when
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Figure 2. For a system coupled with a structured environment, the figures
show the final success probability of the algorithm as a function of T/Tmax (with
Tmax = Tlin, and Tlin = 4N

π
). Solid black lines represent the solution for a closed

system; red and blue dashed lines correspond to η = 0.05 with ∆L = 0.2 and 0.27
respectively; red and blue dotted lines correspond to η = 0.1 with ∆L = 0.2
and 0.27 respectively. Fig 1.a. represents the curves for complex rates, and for
different couplings γ and laser detunings ∆L. Fig 2.a. represents the curves for
the same parameters but considering only the real part of the dissipation rates.
In both cases the trap frequency is chosen as ω0 = 0.25.
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(b)

Figure 3. For a system coupled with a structured environment, the final success
probability of the algorithm is plotted as a function of the laser detuning ∆L.
Fig. 3.a represents the solutions considering complex rates. In this figure, the
solid black line represents the solution for the closed system, while black, green,
red and blue discontinuous lines correspond to couplings η = 0.01, 0.05, 0.1, 0.4
(from the bottom up) respectively. Fig. 3.b. shows the curves considering only
the real part of the dissipation rates. In this figure, the solid black line represents
the solution for the closed system, while black, green, blue discontinuous lines
correspond to couplings η = 0.01, 0.05, 0.2 (from the bottom up) respectively.
The trap frequency is chosen as ω0 = 0.25, and Tmax = 0.8 Tlin, with Tlin = 4N

π
.

considering the full complex rates, the opposite is observed here. Indeed, as noted
above only when complex rates are included in the description, an increase in the final
success probability is observed for certain parameter regimes. This can be seen again
by comparing figures 2(b) and 3(b), corresponding to real rates, with 2(a) and 3(a).

From all this we again conclude how crucial it is to consider the imaginary terms
of the dissipation rates in order to correctly describe the system dynamics.
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4.3. Application to a genuine two-level system

In the former section we have seen within the two-level approximation, how an
adiabatic search algorithm can be improved by connecting the system to a photonic
crystal like environment as the one described in [16]. We are aware that the
applicability of this result to a future implementation of the adiabatic version of the
Grover’s algorithm depends on how good the two-level approximation is. The validity
of the two-level approximation will be analyzed in more detail in Sect. 5. Notice,
however, that this caveat would not apply to a genuine two-level system controllably
coupled to a dissipative environment. Therefore in this section we will study if a
real two level system undergoing a more general adiabatic evolution (not necessarily
corresponding to the initial conditions of Grover’s algorithm) would also experience
an improvement in the final result under some condition. We recall that here an
improvement means that at the end of the adiabatic evolution, the population of the
ground state of the final Hamiltonian is larger than in the closed system case.

To this order we consider the Hamiltonian (22) but with n = 1, corresponding to
a single site in the lattice. This model can be realized by considering a lattice with a
filling factor sufficiently low so that the sparse atoms do not interact with each other.
Hence, in a real setup we would have several independent copies of atoms at single
sites. Instead of the adiabatic search algorithm, which should be realized with N
sites, let us consider an adiabatic process described by the Hamiltonian (4), but with
|m〉 = |1〉 and |ψ0〉 = a0|0〉 + b0|1〉 with arbitrary coefficients a0 and b0 =

√

1− a20.
We observe in Figure 4 that, for certain parameter regimes the final probability of
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Figure 4. Final success probability (population of the ground state of
the final Hamiltonian) for a genuine two level system undergoing adiabatic
evolution, considering different adiabatic evolution times T , with Tmax = 10 (the
approximate time in which the closed system reaches a success probability equal to
one). The solid line corresponds to the closed system, while black, green and red
discontinuous lines correspond to the results for η = 0.01, 0.05, 0.2 respectively.
Other parameters are chosen as ω0 = 0.5, ∆L = 0.5, and a0 =

√
0.5.

success for the open system is larger than for the closed system. Similar results have
been observed for other choices of the coefficient a0. Hence, we conclude that the
improvement of the adiabatic evolution for the system coupled with the environment
is a robust effect in the two-level system, not linked to the particular choice of
initial state in the search algorithm. Although in this section we have studied in
particular a system subject to a photonic crystal-like environment, we believe that
similar results could be encountered in other different scenarios, provided that the
interaction between the system and the environment can be externally controlled. A
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simple example would be an atom in which the transition between the two relevant
internal levels is produced by a two-photon process, mediated by a single laser followed
by a spontaneous emission. This corresponds in quantum optics to a Λ scheme, and
would give rise to an effective Hamiltonian of the form (22). Despite having a different
dispersion relation, this Hamiltonian would describe a coupling with the environment
that can be tuned through the laser Rabi frequency.

5. Spectral density and the validity of the two level approximation

Let us now qualitatively study the validity of the two-level approximation. This
approximation is suitable when the environment does not produce significant
transitions to other levels of the energy spectrum different than |0〉 and |1〉, the ones
involved in the quantum search algorithm. In general, the transition probability per
unit time between two system levels |i〉 and |j〉 is approximately given by the Fermi
Golden Rule as Pij ≈ J(ωij)〈i|Hint|j〉. From this formula, we can already see that
the spectral density, J(ω), is indeed a very important quantity that determines, at
each frequency, what is the density of environmental states available, and how strong
the coupling is. Indeed, one may expect that the two-level approximation applies
better to parameter regimes such that the spectral density is small for frequencies
corresponding to transitions to levels different from |0〉 and |1〉.

Notice that this can only be understood as a first qualitative approach to the
question of the validity of this approximation. Firstly, because an equally important
factor to determine Pij is the magnitude of the transition amplitudes 〈i|Hint|j〉, and
secondly, because Pij only accounts for the real part of the transition rates.

Let us illustrate this qualitative approach by considering the energy vs. time plot
in figure 5 for the thermal bath. All energy differences Ei − Ej in the closed system
are represented in the plot as solid lines. The background shows how the spectral
density varies for different energies, with darker color representing a larger value of
J . Intuitively we expect that a particular transition i → j becomes more important
when the corresponding energy gap coincides with large values of J(ω).
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Figure 5. The energy gaps in the closed system as a function of the adiabatic
parameter s: E1 −E0 (blue), E2 −E1 (red) and E2 −E0 (green). For each value
of energy, the background color indicates the magnitude of the spectral density
for a thermal bath, where we have chosen the same parameters as in section (4.1),
s = 1 and ωc = 0.25.

In order to compute the spectral function for the photonic crystal-like
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environment, let us consider the calculus of the correlation function of the system
as defined in (23),

g(t) =
4πΩ2

LX
3
0

π3/2

∫ ∞

0

dkk2e−i( k2

2m−∆L)te−X2

0
k2

. (24)

Here, both gk and ωk only depend on the modulus of the wave vector. Using this,
the angular part of the integral has been performed (giving rise to a factor 4π) and
only the integral of the modulus is left. We can consider that the coupling parameter
gk does only depend on the modulus of the wave vector, because it has been assumed
that the total wave vector of the Raman lasers kL ≈ 0. According to the definition
(20), the spectral function is the kernel of the integral (24) translated to the frequency

space. Hence, it is necessary to use the dispersion relation ω(k) = k2

2m + ωb in order
to perform a change of variable in the integral (24), such that it becomes an integral
in ω,

g(t) = η

∫ ∞

ωb

dω
√

2(ω − ωb)e
−i(ω−ωL)te−2

ω−ωb
ω0 , (25)

with η =
8π1/2Ω2

L

ω
3/2
0

. Considering now an energy shift of the form ω̂ = ω−ωL, the former

integral is just

g(t) = η

∫ ∞

∆L

dω
√

2(ω −∆L)e
−iωte−2

ω−∆L
ω0 . (26)

Since in this case the temperature of the reservoir is zero, it is straightforward to see

that the spectral density has the form J(ω) = η
√

2(ω −∆L)e
−2

ω−∆L
ω0 .

Like in the thermal case, figure 6 represents all energy differences Ei −Ej for the
closed system in solid lines, compared to the spectral density in the background. From
a naive interpretation of the picture, one would consider that, since the minimum gap
E1 − E0 corresponds to an energy within the environment gap, where the spectral
density is zero, the effects of the environment are somehow minimized. However,
as it is shown in figure 2(a), for the same ∆L = 0.28, the performance of the
algorithm is even improved with respect to that of the closed system. Hence, the
environment gap does not protect the algorithm from the interaction, but rather it
produces some positive effects on its performance. As already mentioned, another
important factor that determines the transition probability to other levels |i〉 different
to the ones considered in the two level approximation (|0〉 and |1〉) is the amplitude
of the transition elements 〈i|Hint|0〉, 〈i|Hint|1〉, and in general 〈i|Hint|j〉, with Hint
given by (22). However, this analysis is out of the scope of the present paper, and will
be made elsewere.

6. Conclusions

We have studied the performance of the adiabatic quantum search in a dissipative
environment. Our derivation of the Bloch-Redfield equation allows for a more complete
account of the effects of the complex dissipation rates than previous studies. In
particular, we have shown that neglecting the imaginary parts of such rates give rise to
a completely different dynamic than when considering the full complex rates. Hence,
conclusions about whether there is an improvement of the performance of the adiabatic
algorithm within an open system, cannot be extracted by a partial analysis that only
accounts for the real part of the dissipation rates.
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Figure 6. The energy gaps in the closed system as a function of the adiabatic
parameter s: E1−E0 (blue), E2−E1 (red) and E2−E0 (green). The background
indicates the magnitude of the spectral density for the photonic crystal-like
environment, with ∆L = 0.28 and ω0 = 0.25 as typical parameters used in
section (4.2). We expect that the dominant transitions induced by the couplig
to the environment are 0 ↔ 1. The transition 1 ↔ 2 may also contribute, but
it will be suppressed during the first part of the algorithm because the E1 level
is initially not populated. It will again be important after s ≈ 0.65. With these
parameters, moreover, the minimum gap, around s = 0.5, is decoupled from the
frequencies of the bath, what can be expected to bring some protection to the
most sensitive part of the algorithm.

Particularly, we have analyzed the effect of the dissipation on the adiabatic
version of Grover’s algorithm for two different settings, namely a thermal bath and a
controllable environment with tunable parameters. While for a thermal environment
no improvement is observed in the performance of the algorithm, coupling the system
to a structured environment gives rise to a final success probability that for certain
parameter regimes is higher than in the closed system case. Hence, we have found an
example in which the performance of the search can be improved with respect to the
closed system, by tuning the bath parameters appropriately.

Our study, valid for the quantum search in the framework of the two-level
approximation, can be extended to the adiabatic evolution of a genuine two-
dimensional system.
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7. Appendix A

In this appendix we proceed to derive equation (10) in the paper. The total density
matrix can be written in the form

ρtot(t) = ρS(t)⊗ ρB(t) + ρcorrel, (27)

where ρS = TrB(ρtot(t)) and ρB = TrS(ρtot(t)) are the reduced density matrices of
the system and the bath, respectively, and ρcorrel describes the correlations existing
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between system and environment. We assume that in general we are dealing with a
thermal bath, so that ρB = e−βHB , with β = 1/(KBT ), KB the Boltzmann constant
and T the temperature of the reservoir. We consider the master equation for the
reduced density operator in the interaction picture with respect to both the system
and the environment, ρSI = U†(t)ρSU(t), where U(t) is given by the time-ordered

exponential U(t) = Te
−i
∫ t

0
HS(τ))dτ

. Considering that dU†(t)
dt = iHS(t)U†(t), the

evolution equation up to second order in g = ‖Hint‖/‖HS +HB‖ is given by [32]

ρ̇SI(t) = −
∫ t

0

dτT rB[HI(t), [HI(τ), ρSI(t)⊗ ρB]]. (28)

Here the terms ∼ TrB(ρBH
t
int) have been neglected, an assumption that is valid for

most types of environments and couplings. Particularly, it is valid for our present case
of a system lineraly coupled to an environment of harmonic oscillators. In addition,
it has also been assumed that ρ(t) = ρS(t) ⊗ ρB, and since τC ≪ 1/Γ, we have
also assumed that ρSI(τ) ≈ ρSI(t) in the integral. On the other hand, the quantity
HI(t) = U†(t)Ht

intU(t) with Ht
int = eiHBtHinte

−iHBt. Going back to the original
picture, the evolution equation of ρS is then given by

dρS
dt

= − i[HS(t), ρS ]

−
∫ t

0

dτU(t)TrB [HI(t), [HI(τ), ρSI(t)⊗ ρB]]U†(t). (29)

The latter equation can also be expressed as

dρS
dt

= −i[HS(t), ρS ]−
∫ t

0

dτT rB
[

Ht
int, [HI(τ,−t), ρS(t)⊗ ρB]

]

,(30)

where HI(τ,−t) = U(t)U†(τ)Hτ
intU(τ)U

†(t). Expanding the commutator on the right
hand side of the last equation, we find the following terms,

TrB
(

[Ht
int, [HI(τ,−t), ρS(t)ρB ]]

)

= TrB
(

{Ht
intHI(τ,−t), ρS ⊗ ρB}

− Ht
intρS ⊗ ρBHI(τ,−t)−HI(τ,−t)ρS ⊗ ρBH

t
int
)

. (31)

Let us now consider our case, in which the interaction Hamiltonian can be written
as Hint = A ⊗ B, where A = σz and B =

∑

λ gλ(b
†
λ + bλ). We can make further

simplifications in equation (31)

TrB
(

[Ht
int, [HI(τ,−t), ρS(t)⊗ ρB]]

)

= g(t− τ) (AA(τ,−t)ρS −A(τ,−t)ρSA)
+ g(τ − t) (ρSA(τ,−t)A−AρSA(τ,−t)) , (32)

where A(τ − t) = U(t)U†(τ)AU(τ)U†(t), and g(t − τ) = TrB[B
tBτρB], g(τ − t) =

TrB[B
τBtρB], having the form

g(t) =
∑

λ

g2λ[coth

(

βωλ

2

)

cos (ωλt)− i sin (ωλt)]. (33)

Here, we have taken into account that, for a thermal bath,

TrB(ρBb
†
λbλ′) = δλ,λ′N(ωλ),

T rB(ρBbλb
†
λ′) = 1 + δλ,λ′N(ωλ), (34)
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with N(ωλ) = 1/(eωλβ − 1) the number of excitations with frequency ωλ. Note that
according to equation (11), g(−t) = g∗(t). Considering that, and inserting (32) in
(30) we find

dρS
dt

= − i[HS(t), ρS ]−
∫ t

0

dτg(t− τ) (AA(τ,−t)ρS −A(τ,−t)ρSA)

−
∫ t

0

dτg∗(t− τ) (ρSA(τ,−t)A−AρSA(τ,−t)) . (35)
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