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Abstract

We calculate the low-momentum N-N effective potential obtained in the

OBE approximation, inside a nuclear plasma at finite temperature, as de-

scribed by the relativistic σ-ω model. We analyze the screening effects on

the attractive part of the potential in the intermediate range as density or

temperature increase. In the long range the potential shows Friedel-like os-

cillations instead of the usual exponential damping. These oscillations arise

from the sharp edge of the Fermi surface and should be encountered in any

realistic model of nuclear matter.
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In the usual approaches to the study of nuclear matter near saturation density, the phe-

nomenological potentials are basic ingredients for the description of the nuclear interaction

in a Schrödinger-dynamical framework [1]. Potentials obtained from the exchange of single

pseudoscalar, scalar, pseudovector and vector mesons with different theoretical approaches

[2] lead to satisfactory quantitative predictions of the observed properties of two-nucleon sys-

tems. A simplified description of the main features of the N-N interaction can be obtained

from the exchange of scalar and vector mesons only [3].

For higher densities (owing to the Pauli principle) relativistic effects become essential,

not only in the description of the interaction itself, but also for the analysis of the particle dy-

namics. In this case, the Lagrangian approach becomes the natural framework for the study

of the nuclear plasma [4]. The solution of appropriate Lagrangian models in the relativis-

tic Hartree approximation (RHA) provides a satisfactory picture of the thermodynamical

behaviour of relativistic nuclear matter at finite temperature [5]. Moreover, the relativistic

meson propagators in vacuum obtained from this approach allow for the calculation of the

N-N interaction potentials [6].

Inside nuclear matter, the polarization effects introduce important changes in the form

of the relativistic meson propagators. Consequently, the N-N interaction potentials inside

the plasma are also strongly modified by the screening. Their behaviour as a function of the

thermodynamical state provides a very explanatory visualization of these effects and suggest

the existence of new collective phenomena.

In this letter we report some results of a study of the N-N interaction potentials ob-

tained in the one-boson exchange model (OBE) inside symmetric nuclear matter at finite

temperature, and analyze some phenomena related to the screening.

The Lagrangian model used for this calculation describes the nuclear interaction in terms

of scalar-σ and vector-ω mesons exchanges [3]. Although such a simplified model is not able

to account for the whole richness of actual nuclear matter, it gives (when solved in RHA

[7]) an acceptable description for its thermodynamical behaviour. Moreover, as mentioned

above, the involved mesons reproduce the main qualitative features of the nuclear interac-
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tion in vacuum. In fact the fictitious σ-meson, which provides the attractive part of the

potential at intermediate range, is introduced as a simple parameterization of the correlated

2 π-exchange contribution to the N-N interaction. It has not been proven that such a pa-

rameterization is also possible inside the nuclear medium. Nevertheless, the behaviour of the

screened potential with the thermodynamical state found here is qualitatively similar, in the

intermediate range, to the one found in a 2 π-exchange calculation [8]. Moreover, as we shall

see, the medium effects on the long-range behaviour of this potential are mainly dominated

by the singularities of the matter polarization contributions, and are rather independent of

the details of the basic interaction. They should be present in more realistic analysis which

take into account all the relevant meson exchanges.

When solving the model in the RHA, the values of the constants in the Lagrangian

are fixed as follows: The meson and fermion masses are fixed to their ”physical” values

µσ = 550 MeV, µω = 783 MeV and m = 939 MeV. For the coupling constants, we

choose the values which lead to a satisfactory fit of the saturation properties in the RHA:

g2

σ = 183.3(µσ/m)2 and g2

ω = 114.7(µω/m)2. From these values, saturation is attained at a

Fermi momentum of the nucleon Pf0 = 1.42fm−1, with a binding energy Eb = −15.46MeV .

In going beyond RHA, the analysis of the small perturbations of the fermion distribu-

tion and meson fields around the Hartree equilibrium gives the expressions for the meson

propagation equations inside the plasma, which can can be written in a matrix form as

D(k).Σ1(k) = 0, where Σ1 is the column matrix of the components of the scalar and vector

perturbing fields, and D(k) is a 5×5-matrix containing the scalar (Πσ), mixing (Πµ
σω) and

vector (Πµν
ω ) polarization tensors, which are functions of the thermodynamical state and

include the renormalized vacuum contributions [9]. At T=0 they reduce to the one-loop

meson polarizations [10]. The propagator matrix for the mixed scalar-vector field inside

matter is given by [9,11] G(k) = − D(k)−1. At zero density and temperature, the meson

fields decouple from each other, and the components of this matrix reduce to the one-loop

scalar and vector propagators in vacuum.

The first step in the calculation of the screened two-nucleon potential is the derivation
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of the relativistic one-boson (σ + ω) exchange amplitude diagrams from the propagator.

Now, the difference with the calculation in vacuum [6] is that the meson propagators are

dressed by the medium, and mixing between both meson fields appears [9]. Therefore, the

usual Feynman rules are slightly modified in the present case: We must introduce a i Γa

factor at each vertex (Γa is the coupling matrix defined as Γµ = γµ gω for a = µ from

0 to 3, and Γ4 = gσ ), and a dressed boson propagator matrix i G(k) for each internal

boson line. Moreover, in the present calculation we are interested in the structure of the

propagator matrix on the k0 = 0 axis only, where there are two poles associated to

the ”tachyonic” branches, coming from the vacuum polarization terms [9]. Such poles are

spurious because they arise at large values of q, where the point-particle approach fails, and

the nucleon structure should be taken into account. This is done through the introduction

of phenomenological monopolar form factors:

fa(k) = (Λ2

a − µ2

a)/(Λ2

a − k2) (1)

(a = σ, ω);

at each vertex of the loop and boson-exchange diagrams. This amounts to multiplying

each squared coupling constant by the corresponding form factor. With this prescription the

spurious ”tachyonic” branches (and the associated poles in the propagator matrix) disappear

[9].

Under these conditions, the relativistic OBE amplitude takes the form

A =
{[

χ†
1′

u(~p′
1
, s′

1
)
]

(iΓ)m [ u(~p1, s1) χ1 ]
}

· (iG(k))mn
{[

χ†
2′

u(~p′
2
, s′

2
)
]

(iΓ)n [ u(~p2, s2) χ2 ]
}

(2)

where p1 and p2 are the four-momenta for the incoming quasi-nucleon states and p′
1

and p′
2

correspond to the outgoing quasi-nucleon states, whereas k = p1 − p′
1

= p′
2
− p2 is

the transferred four-momentum. The interacting quasi-nucleons have effective mass M (as

given by the RHA approximation) and spins ~S1 = 1

2
~σ1 and ~S2 = 1

2
~σ2 . The indices m and n

run from 0 to 4 . Finally u(~p, s) and χ are the Dirac cuadri-spinor and the isospin wave

function, respectively.
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The potential (OBEP) is obtained by eliminating the wave functions of the initial and

final states in the amplitude Eq. (2) taken in the center-of-mass system. From this ex-

pression we obtain the non-relativistic potential by performing an expansion in the nucleon

momenta and keeping only the second-order terms. We have corrected the OBEP according

to the Blankenblecker-Sugar prescription [12], which includes the requirement of ”minimal

relativity” [6] as defined by V (q′, q) = (M/Eq′)
1/2 VOBEP (q′, q) (M/Eq)

1/2 where q and q′

are the CMS initial and final momenta of the nucleons, respectively, Eq =
√

M2 + q2, and

Eq′ =
√

M2 + q′2. Moreover, the above prescription implies taking the static (k0 = 0)

limit. After Fourier transformation one obtains the potential in coordinate space:

V (~r) = Vc(r) − 1

2
(∇2V2(~r) + V2(~r)∇2) + VLS(r) ~L · ~S + VSS(r)~σ1 · ~σ2 + VT (r) S12 (3)

where ~L = ~r ∧ ~p is the orbital kinetic momentum, ~S = (1/2)(~σ1 + ~σ2) is the total spin

operator and S12 = 3

r2 (~σ1 · ~x) (~σ2 · ~x) − (~σ1 · ~σ2 ) is the tensor operator.

The second term in Eq.(3) is a non-local component which gives a small contribution

to the potential. We shall omit here the study of this component. The other terms (cen-

tral, spin-spin, spin-orbit and tensor components) are now functions of the interparticle

distance, as well as of the thermodynamical state of the plasma (density and temperature).

We must emphasize that the non-relativistic limit concerns the dynamics of the two inter-

acting nucleons and the neglecting of retardation effects. However, the description of the

thermodynamical state of the plasma in the RHA remains fully relativistic. Also, no low-q

approximation has been done for the meson propagators.

In the analysis of the potential, the values of the coupling constants and cut-off pa-

rameters in the form factors have been fixed in order to fit the deuteron and low-energy

phenomenology data [6]:

g2

σ = 8.7171 g2

ω = 25 Λσ = 2.0 GeV Λω = 1.4 GeV (4)

However, in calculating the underlying thermodynamical state, the coupling constants

have been fixed to the above mentioned values which fit saturation in RHA.
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Figure (1) is a picture of the central component of the potential at T = 0, at saturation

density (solid line) and 2.4 times these density (dashed-dotted line), for symmetric nuclear

matter (Pf is the Fermi momentum of the nucleons). The same component, calculated at

zero density, with (Vpol) and without (Vvac) vacuum polarization contributions has also been

plotted. The very short-range region (r < 0.6fm) must be discarded because the potential

behaviour is dominated there by large-q values, and the non-relativistic (low-q) limit breaks

down [11]. Beyond this distance, a hard-core and a potential well appear both in vacuum and

at finite density. At zero density, the vacuum polarization effects enhance the slope of the

hard-core and increase the depth of the potential well by an important amount. The slope

of the repulsive-vector Yukawa component is strongly raised by the vacuum polarization,

whereas the attractive-scalar component remains nearly unaffected by these effects. This

explains the observed behaviour in vacuum. The matter polarization effects increase the

range of the vector component, and therefore the depth of the well is reduced as density

grows. It disappears shortly above the saturation density [11]. Similar results are obtained

if the attractive σ contribution to the N-N potential is replaced by the 2 π-exchange [8].

At larger distances, the screening effects of the medium introduce important qualitative

new features. Whereas in vacuum the potential shows an exponential damping with the

distance, an oscillatory behaviour appears at finite density, whose amplitude is damped as

an integer power of the distance. These are Friedel oscillations, similar to those encountered

in many low-temperature Fermi systems [13]. Mathematically, these oscillations arise from

the fact that the matter polarization contributions to the screened meson propagators show

singularities in their derivatives at q = 2Pf (Kohn singularities [14]). After Fourier trans-

formation, such singularities introduce oscillations in the r-space potential. More detailed

analytical calculations [15], [19] show that, in this region, the potential can be decom-

posed into σ and ω Yukawa-like components (which dominate at shorter distances), and

this Friedel-like component, which determines the large-r features and is long-ranged and

oscillatory. From a physical point of view, the Kohn singularity is associated to the sharp

character of the Fermi surface at T = 0 and is rather independent on the details of the
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interaction. Consequently, the long-range oscillations of the screened interparticle potential

must be an universal feature of interacting degenerate Fermi systems. Indeed, this has been

found for degenerate non-relativistic [16] and relativistic [17] electromagnetic plasmas, for a

QCD plasma [18], and for the screened one-pion exchange potential in a relativistic nuclear

plasma [15].

In the calculation of Ref. [8], where the 2 π-exchange is explicitly considered, no Friedel

oscillations have been found. In fact, this paper was concerned with the intermediate range

of the screened N-N potential, and the complete effects of the matter polarizations were

not included in the meson propagators. Such effects go beyond the effective meson mass

variation with density, considered by the authors. Therefore, it is not surprising that they

do not obtain oscillations in the long range.

As a test of the small sensitivity of the Friedel behaviour to the details of the interaction,

we have plotted in Fig.(1) the central component of the potential at saturation density and

T = 0 (dotted line), now using for the potential the values of the coupling constants which

fit saturation in the RHA, which are very different from the ones used in the previous

calculation for the same thermodynamical state. We observe important differences in the

intermediate region in both cases but, in the long range, the oscillations of the potential are

only slightly affected by the changes in the intensity of the couplings.

In Fig. (2) the spin-spin component of the potential is plotted at T = 0, in vacuum

(Pf = 0), at saturation density (Pf/m = 0.3), and 2.4 times saturation density (Pf/m =

0.4). A glance to this drawing shows also a Friedel-like oscillatory behaviour whose amplitude

increases with density. (The spin-orbit and tensor components of the potential show also

a similar behaviour: in all cases the amplitude of the oscillations increase as density grows

[11]). At saturation density, the most important effect in the long-range appears on the

central potential component, where the amplitude of the first oscillation reaches 2MeV

for a distance of around 2fm. Nevertheless, for higher densities the oscillations of the

spin-spin component reach comparable maxima. Indeed, for Pf/m = 0.4 the amplitude of

the first oscillation in the central component is ∼ 8MeV at rmax ≈ 1.5fm (see Fig.(1)),
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whereas the spin-spin component reaches 10MeV at the same distance (see Fig.(2)). The

position of the first maximum of the oscillations, rmax , is related to the Fermi momentum

through [15] Ppf .rmax ≈ π. The ratio between the position of the first maximum of the

oscillation and the mean interparticle distance d = (3π2/2P 3

f )1/3 is nearly constant with

density (rmax/d ≈ 1.28).

At finite temperature, the slope of the hard core is slightly reduced, as showed in Fig.(3),

where the central component has been plotted at saturation density and various tempera-

tures. In the intermediate range, the effects of temperature on the central potential reduce

the depth of the well. The well disappears for temperatures beyond 40 MeV. This can be

interpreted in terms of the modifications introduced on the Yukawa-like components by the

temperature in this region. As temperature increases, the ranges and intensities of these

Yukawa components are modified in such a way that in the balance, the vector-repulsive

part becomes dominant and the well disappears. (see Refs. [15] and [19] for a more detailed

analytical study).

Concerning the long-range behaviour of the potential, as temperature increases the Fermi

distribution function becomes smooth and the Kohn singularity (and the associated oscil-

lations) disappears in all the components of the potential. This is indeed observed in Fig.

(3). The amplitudes of the oscillations decrease with temperature. As can be checked an-

alytically [15,19] this amplitude at a fixed distance and constant density is exponentially

damped with temperature. The oscillations in all the components disappear for tempera-

tures between 40−80MeV . Beyond this, the potential becomes exponentially damped with

the distance.
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FIGURES

FIG. 1. Central component of the potential at T = 0 at zero density with (Vpol) and without

(Vvac) vacuum polarization contributions at saturation density (Pf /m = 0.3) and 2.4 times

saturation density (Pf/m = 0.4). The dotted line (with Pf/m = 0.3) corresponds to the

central component of the potential at saturation density obtained from different values of the

model parameters.

FIG. 2. Spin-spin component of the potential at T = 0 for the same values of the Fermi

momentum as in Fig.1.

FIG. 3. Central component of the potential at saturation density for different temperatures.
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