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Abstract

Non commutative superspaces can be introduced as the Moyal-
Weyl quantization of a Poisson bracket for classical superfields. Dif-
ferent deformations are studied corresponding to constant background
fields in string theory. Supersymmetric and non supersymmetric de-
formations can be defined, depending on the differential operators used
to define the Poisson bracket. Some examples of deformed, 4 dimen-
sional lagrangians are given. For extended superspace (N > 1), some
new deformations can be defined, with no analogue in the N = 1 case.
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1 Introduction

Non commutative geometry and supergeometry naturally arise in string the-
ory in several contexts. Among others, we may mention the work of Connes,
Douglas and Schwarz [I] where non commutative tori where introduced as
possible compactification spaces of M theory, the work of Banks, Fischler,
Shenker and Susskind [2] where M-theory was related to the N — oo limit
of the supersymmetric matrix quantum mechanics describing D0O-branes and
the work of Seiberg and Witten [3] where a certain limit of the string dy-
namics is described by a gauge theory in presence of a non zero background
field B,,. (For a review, see Ref. [], and references therein).

More recently, the extension of non commutativity to odd variables has
been related to the presence of other background fields. The R-R field
strength backgrounds give rise to a deformation of type 6§ — 6 [H], and the
gravitino background gives rise to an  — 6 deformation [6].

Field theories in non commutative spaces have been considered in the
literature in a broader context, where a huge amount of work has been done.
For an introduction to different aspects of the subject, see for example Refs.
[7, 8, 9, [T, [T, [12].

In connection with string theory, supersymmetric theories have been con-
sidered mainly where the deformation of superspace affects only to the space-
time part (z —x deformations). There, the extension of Wess-Zumino 13, [I4]
and Yang-Mills models is straightforward once the gauge invariance in su-
perspace is properly defined [I4]. Also in Ref. [I4] the possibility of a super-
symmetric deformation of superspace with non vanishing 6 — 6 deformation
was explored. In fact, the possibility of having fermi coordinates that have
a non zero anticommutator was already studied in the literature [I5, [16].
From a more mathematical point of view, non commutative supermanifolds
and supervarieties have also been considered in the literature [T, [I8, [19].

Starting from the observation of Ooguri and Vafa [5], deformations of the
anticommuting variables have acquired renewed interest. The effect of such
deformations in the Lagrangian has been investigated by Seiberg [20] and
Berkovits and Seiberg [Z]].

In the present paper we consider a variety of deformations, both for N =1
and extended (N = 2) supesymmetry in D = 4. These deformations vary
according the differential operators chosen to construct the Poisson bracket
that afterwards becomes quantized with a star product of Moyal-Weyl type.



In particular, we show explicitly the difference between the deformation con-
sidered in Ref. [I4] and the one proposed in Ref. [20]. The first one has the
advantage of being manifestly supersymmetric, the second one, although it
explicitly breaks one half of the supersymemtry, allows the definition of chiral
and antichiral superfields, which form subalgebras of the star product. This
was not possible with the supersymmetric deformation, and allows a sim-
ple generalization of super Yang-Mills theories to the deformed superspace.
For the Wess-Zumino model both deformations lead to the same Lagrangian,
preserving 1/2 of the supersymmetry.

We also consider deformations of type = — 6 and explore the consequences
of these in the Lagrangian for some simple cases.

Finally we study deformations of extended superspaces where new pos-
sibilities arise. For example, one can consistently have a non trivial § — @
anticommutator, which is related to having constant vector backgrounds.
This corresponds to deformations of harmonic superspace [22].

The paper is organized as follows. In section Pl we remind some known
facts about Poisson brackets in superspace and fix the notation. Section
is devoted to the definition of supersymmetric Poisson brackets and their
Moyal-Weyl deformation. In particular, we obtain the formula for the Moyal-
Weyl deformation in presence of an x — 6 deformation. In section H we
consider extended superspace and its deformations. In section B we study
the deformed Wess-Zumino model in different scenarios.

2 Generalities on super Poisson brackets.

We consider the superalgebra A = C*°(R™) ® A(R™) which has an obvious
Zy grading. We say that an even element ¢ has parity p(¢) = p, = 0 and an
odd element has parity p(¢) = p, = 1. We have that

p(¢Y) = p(¢) + p(¢») mod(2)

Even and odd elements are homogeneous elements.
A Poisson bracket on A is a bilinear operation

(L V:AxA— A

such that for homogeneous elements ¢, and



1. p({p,v}) = p(¢) + p(¥) (it is an even Poisson bracket).
2. {¢,¢} = _(_1)p¢pw{,¢’¢}‘
3.(Derivation property)

{60/, 0} = ¢{¢ ¥} + (—1)PsPv{g, ¥}/
(6,00} = (—1)Po {6, ¢/} + {0, ¥}/

4. (Graded Jacobi identity)

{o, {, x}} + (—1)pxeeteo)fy Lo p}} + (—1)PeetPI Ly {y,¢}} = 0.

Let us denote

A=a, for A=1,...n,
A=a+n, for A=n+1,...n+m.

24 denotes generically all variables % and . Then, a Poisson bracket on A
can be written as

«— ABH
{¢,0} = 00 AP"P D 1), (1)
where (5 3
V=g Pa=ga

are respectively right and left derivatives. They both coincide with the or-
dinary derivative in the case that z* is an even variable. For odd variables
one has

(F(2)0 .. .0%€0™ . .0P) D = (1) (f(2)0° ...0%0% .. %),
De(f(2)0™ .. 00 . 0%) = (—1)F(f(2)0™ ... 06" ... 0™),

SO _ .
60 4= (_1)PA(I7¢>+1) D 4.

They are odd derivations of the algebra A:

5§(¢¢) = 35((?)1? + (—1)pfp¢¢5>g(¢), (left derivation),
(60) D¢ = d(1) D¢ + (—1)PPe(9) ey, (right derivation).



Right and left derivatives are chosen in such way that for F' € A
«— —
dFF = F 0¢df =df 0 F.

If PAB = —(—1)Pare PBA and p(PAB) = ps + pp, then properties 1,2,3
are automatically satisfied.

If we want to consider a constant Poisson bracket (PAP = constant,
that is, independent of z*), we have to extend the scalars to a commutative
superalgebra. Then the entries of R and S are odd scalars. The algebra
will be A[¢!)...€°] = C®°(R") ® A(R™) ® A(R?), where the odd generators
& € A(R?®) are considered as scalars (inert under the derivations). Then, the
graded Jacobi identity is also satisfied.

3 Supersymmetric Poisson brackets and star
products

We consider a four dimensional space time with coordinates z*, = 0,...3
and Minkowskian signature. For the moment being we take N = 1 supersym-
metry, with one complex Weyl spinor 0%, o = 1,2, generating the odd part
of the superspace. On the space of superfields the covariant left derivatives
are defined as

— — _.
D,® = 9,9 +i0",0%0,
=4 —

O = —0,P—i00",0,0

satisfying an algebra

Given a left derivation D of degree pp, that is,
D(OV) = D () + (—1)PPP+&D (),
one can define a right derivation TD, also of degree pp
«— «— «—
(dU)D = &(V)D + (—1)PPP¥(D)D VY,
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in the following way
D — (_1)pv(p<1>+1)1_)>q>‘

Then we can define the right covariant derivatives as
— — —
®D, = ®0,—10,P0,0"
— —
®D, = —P 04+ 10,90%,.
They satisfy an algebra
= <=
(Do Dy} ={Ds, D3} =0
«— <
{D,, Dy} = +2ic",0,.
On may notice that for any two odd derivations
— —
(D, D@ = (—1)»*{D, D'}®. 2)

The supersymmetry algebra is realized as an algebra of left derivations on
superspace

— — —. =
Qo= aa—wgdeaau, Q,= —aa+190‘ K O
satisfying
— = - =
{Qav Q,B} = {Qdm Qﬁ} =0
— =
{Qa, Qa} - +27'OJ05LO¢8,UI
One has also
- — - = - — -
{Da, Qpt ={Da, Qgt ={Ds, @p} ={Da, Qy} = 0. (3)

3.1 Supersymmetric Poisson brackets

On the space of complex superfields one can consider the following Poisson
bracket, which is a generalization of the Poisson bracket considered in [T4]:

(@, 0} = ngqlg\y +P%9 D, Dﬁm+§—®PWD U-oD, Pl

ov
oz’

(4)



This satisfies the Jacobi identity with P** antisymmetric, P*’ symmetric,
Pre arbitrary (and odd), and all of them constant. It will be convenient to
take P* pure imaginary, while the other matrices are just complex. Because
of @ and @), { , }1 is a supersymmetric Poisson bracket, that is, the
supersymmetry charges are derivations with respect to the Poisson bracket,

Q{®, U} = {Q, U} + (—1)»*{d, Q U}
Q{®, W} = {Qd, U} + (~1)P*{d, QU}.

One can replace D by D in @) and write another Poisson bracket

W@_CID ov s 8_(1) e e ov
{®,V}, = Paﬂﬁ P<I>DD\II+8PD\II (I)Dpaxﬂ
but one cannot have in principle terms with both derivatives, D and D, since
they do not anticommute, and the Jacobi identity will not be immediately
satisfied. A consequence of this is that { , }; o are degenerate in the space
of odd variables. Another consequence is that in Minkowskian space the
Poisson brackets do not satisfy a reality condition,

{(I)*> \I]*}172 7& {\117 @}12,

which does not mean that they are ill defined nor inconsistent in any way. If
we take (P%)* = P9 and (P**)* = —PH% | they satisfy instead the relation

{(I)*v \Il*}l,? = {\Ilv @}3,1-

In Section B4 we will use the quantization of these Poisson brackets to give a
prescription for a deformed Wess-Zumino Lagrangian which is invariant with
respect to the whole supertranslation algebra.

In other signatures or dimensions, a similar, supersymmetric Poisson
bracket may admit such a reality condition [24].

Chiral superfields, D;® = 0, are a Poisson subalgebra of { , } (as
antichiral superfields, Ds® = 0, are a Poisson subalgebra of { , };). Indeed,
the Poisson structures restricted to these subspaces involve only the even
coordinates z*.

It is useful to express { , }12 in terms of ordinary derivatives:



{@, U}, = (P* +C"™00 + iP*0%,0% — iP"*0",0)0,90, ¥
s D e’ - =y -paB v pf va
+0,P (1P} 0% + P*7) 8 g0 — @ 0 o (1P} ,0° + P*)0, W
— —
+P® 0, 05V,

{®, U}y = (P"™ + 09D — iP*0°0%, + iP'*0%0*,) 0,0, ¥
. = — A » Vi
+0,(iPY9%l, — P) 9 50 — 0 4 (1P°07 0% — PY)0, W

e = =
+PY 940 40,
where 1 1
w o __ T pof [ V.O.fﬁ. wo_ a8 _af Bov
cH = 2P TacTage s D 2P €000

From these formulas the commutation rules of the basic variables z#, 8%, 8%
can be read directly.
We make now a change of variables [25]

ot 0%, 0% — Yyt =2t i 0%, 6%, 6.
A superfield may be expressed in both coordinate systems
O(x,0,0) = ' (y,0,0).

The covariant derivatives and supersymmetry charges take the form

_. 0%’ —
l_))afb' = 5}05@, + 22.0'56-!906% Dd®/ = _5}d®/a
Y

- P’
3.0 = a0 + 200002
Oy+

— —
Q.0 = 0,9



In the new coordinates the brackets { , }12 become

0P’ OV’
/ / 24 jg po v noe vo M [e%
{@, U’} = (P"™ +4C*" 00 + 2iP"*0% 6% — 2iP 9)8y“8y
a¢/ —. —_ «— . a /
- paf | pi 36} I Y -pafB _v B vo
+ayu(22P Tag 0%+ P") 0 g0 — @' 9 o (20P0},0” + P )0y

+P9P D, D 5,

0P’ OU’ YR
{0, 0"}, = P“”8 o T PO 940 4
O T 4
+8—P”O‘8 <I>’8 P”O‘a
oy+ oyt

which simplifies { , }».

3.2 Non supersymmetric Poisson brackets

One can define different Poisson brackets by making use of the operators ()q
and Q4. In fact, the operators D’s and the @Q’s play interchangeable roles.
Consider for example the brackets [20]

0P ov 0P ov
py = af po po =
{0, 0} = P oo + P Q. Qﬁ\l““a PrQ T — dQ 4P o (9)
0P oV L= = 0P ov
{(I) \11}4_P“Va 2 B Paﬁ(b@d@ﬁ'\l]+ o7 MPNO‘Q U — (DQ PMOéa -

where the right acting charges are

5Gy = 3o+ 22 gh g
o

= — \J
PQ, = q>ad+z’a—e%—gd.
ozt

In terms of the coordinates y, 6,6, the bracket { , }s, for example, be-
comes

0" OW +Paﬁq>’8aa /R aq)P“aa U-009, PWW

! 1 — puv
{0 V) =P DYk y¥ Dyt oyk”




The quantization of this bracket with P = Pr* = () was explored in Ref.
[20]. Since {Q, Q} # 0, this bracket is not supersymmetric with respect to
the charges @), that is,

Q{0 W} £ {Q0, W}y + (—1)P{®, QU}s,

although it is still supersymmetric with respect to the charges Q. Because of
@), one has instead that the operators D and D are derivations with respect
to this bracket,

— — —
D{®, U}54={D®P, ¥}34+ (—1)"*{P, DV};,4
— — —

D{(I), \I]}3,4 - {D(I), \11}374 + (—1)1@{(1), D\If}3,4.

It follows that the subspaces of chiral (D®=0) and antichiral (D®=0) super-
fields are Poisson subalgebras of { , }3.4.

One could use a different change of variables
00, 00— gt = — i g go,

with superfields B B
¢(x7 97 9) = ®/,(g7 97 9)'

The brackets { , }1 and {, }4 would acquire simpler forms. The procedure
is identical and we will not repeat it here.

3.3 Moyal-Weyl star products

Generically we consider Poisson brackets of the form
— AR
{®, U} = dDAP*"DpV, (6)

where the index A runs over all the variables, even and odd. The derivations

172 commute (or anticommute) with each other and %PAB = 0. The matrix
PAP has the right symmetry properties for () to be a Poisson bracket. Under
these assumptions there is an associative star product of Moyal-Weyl type,
defined by

[e.9] n

DxV=e"(D, V) = gP"(cp, ) (7)
n=0

10



where

PP, 0) = 3 (_1>p§;:::§z.

A1, Ap;Bi,Bn

®D A, Dy, Dy PYBL A pABD DL DL,

n—1 n
and PR = (pa +p8) D pay:
i=1 j=i+1

The associativity of the star product

¢x (hxx) = (dx ) *x,

follows from the associativity in the purely even case (see for example [23]).
The sign p it is needed to take into account the odd character of PH<.
The procedure is as follows. We decompose again A = (u, @) and we define

— —
Kao=10u,P"D,,

%
where a and g run over the same set of numbers. Then X, is an even
derivation. The Poisson bracket can be written as

— = — — — — — —
(B, U} = P®D, D,V + PPOD D0 + 6" (0D, K,V — ®K,D,0).

This is a Poisson bracket with P45 of block diagonal type (the index A
now runs over (u,a,«)). Then we can apply the standard formula for the
Moyal-Weyl product (see for example Ref. [14]) and obtain the quantization.
Returning to the previous notation gives the sign p. In the case where P45
is block diagonal (that is, P4P is always even), then p = 0.

Notice that because of

oe 09 0

oxh Oyt Ogh’

the star products defined by () in each of the three sets of coordinates
(x,0,0), (y,0,0), (7,0,0) is exactly the same.

From the explicit formula for the quantization of the Poisson bracket (),
one has that if a derivation K (anti)commutes with D, it is also a derivation
either, of the Poisson bracket and of the corresponding star product,

K(D+T) = (KO) % T + (—1)PPed 5 (1),

11



So a supersymmetric Poisson bracket gives rise to a supersymmetric star
product.

We remark again that in minkowskian signature the star products defined
here do not satisfy a reality condition

PxV A UKD,

but they are perfectly consistent (for reality conditions on star products, see
for example Ref. [26]). As for the Poisson brackets we have

(I)*l\lf:\ll*gq), @*3‘1’2\11*4(1).

4 Deformed extended superspace: chiral and
harmonic superfields

We consider now the case of a superspace with extended supersymmetry, in
which more star products exist. In particular, there exists a star product that
is not only invariant under supertranslations but also Lorentz invariant. For
definiteness we consider a Poisson bracket of type { , }; with P* = Pt = (.
The same arguments could be used for brackets of type { , }23.4.

Let 4,7 =1,...N. We have

(B, U} = PIPOD ;D ;. (8)

The matrix P/# must be symmetric under the simultaneous exchange i « j
and o < (3. We can write

pilaif — p;jaﬁ —I—P;jeaﬁ, (9)

where the subscripts a and s mean that the matrix is antisymmetric or sym-
metric respectively. The first term is symmetric under the independent ex-
changes ¢ <+ 7 and a < f3.

The second term is Lorentz invariant. Any Poisson bracket containing
only the second term will be Lorentz invariant, and then super Poincaré
invariant. This term has no analogue in N =1 .

We could choose P¥ % = §% P25 Then first term would be O(NN) invari-
ant.

12



For N = 2 we could choose
PiBi = peiieaB,

Then, since € is an invariant form of SO(2) we can have SO(2) invariance
and Lorentz invariance simultaneously. More generally, we can decompose

@) in terms of representations of SO(2)
PeiB = PP 4+ PEP 4 Poaeie?,
where the first and last terms are SO(2) singlets and the second term is

the SO(2) doublet corresponding to the traceless part, (P*’6;; = 0). The

second term does not exist in N = 1.
It is convenient to make the change of variables

1

V2

so that (7®)* = #=¢. The labels £ are charges under SO(2). (@) becomes

ezta — (ela + 7:020{)7 é:l:d (eld + ’i¢92d)

Sl

P:I:Oc 0 Z(P(;);B ¥ Panaﬁ)a P:I:a 16 _ i(le“glﬁ + le{:2ﬁ).

This is a suitable basis to describe harmonic superspace [22]. We make a
shift in the superspace variables

zh, 0%, 0F — yt =2t +i0T o0 — 0 oM0T, 6%, 6F.

In this basis the covariant derivatives become

0 0 _
- __ T = — 0~ 'u.
D} = 50— D, 507a +2i0" %00,
- 0 - 0
+_ - _ oot

The change of basis can be expressed as
Di: = Ui:tDiu
with U being harmonics in S2. The only non zero anticommutators are

[Df, D3} = —{D;, Df} = ~2ict's0)

13



Chiral superfields satisfy B
DEd, =0,

«

while harmonic superfields are defined as
D, ®, = D, ®;, = 0.

In N=2 superspace, chiral superfields describe vector multiplets while har-
monic superfields describe hypermultiplets.
One could choose for example a deformation like,

(@, 0} = P POD DLV + PO D, D,V +
+Pr*POD DAV + P~ D D,V (10)
This has no analogue in N = 1, if P~ % or PT*%08 ig different from

zero. Nevertheless, we have as before that antichiral superfields have Poisson
bracket zero, so their product is not deformed.
Another choice could be a deformation like

. =g —
(0,0} = P (®D D4V + ®D+ & D W)
. .= =
+P*°dD+ Dtal + P-4 4o D*aDIW. (1)

Again, it has no analogue in N = 1. In this case the product in the subspace
of antiharmonic superfields (D} ®,;, = DI ®,;, = 0) is not deformed.

If only one term, say P~%~%, is different from zero, then the deformation
is given in terms of the vector v# = P4k

As in section B2 we could do the same analysis with the operators )’s
instead of the operators D’s.

In section we will comment about the physical consequences of these

deformations.

5 Wess-Zumino model in non commutative
superspace

In this section we want to explore the possibility of using the star product to
construct Lagrangians of physical theories. The “purely even” deformation
(that is, a deformation that is non trivial on the coordinates z*) has been

14



studied in [I4]. In order to see the effects of the non commutativity of the
odd variables, we will set P* = 0. We will analyze the theory in both,
euclidean and minkowskian signatures.

In the first place, we will consider a Poisson bracket of type { , }; and its
quantization, which is supersymmetric. A bracket of type { , }3 was used in
Ref.[20], with which we will compare our results.

From now on, unless explicitly stated the star product ® x ¥, without
any subindex, will refer to the Moyal-Weyl quantization of { , }; with P* =
Pr* =10, so

— =
{0, U} = PO D,DyV.

The star product has a finite expansion

2

OxTV = U+ hPPOD, D0 + hz det PO D?

—

DV =

2

= T + hPP(~1)P++DD 0D 4 — hzdet PD%®

—

D20, (12)

where
e S g = ==
D* = D,Dge™”, D =€eé"D,Dg.
Another convenient way of expressing the star product is

2
BxW =V + Do (WP (—1)P* D, + hzdet PD®DW), (13)

which makes manifest the fact that the difference between the ordinary prod-
uct and the star product is a total covariant derivative.

From now on we will use only left derivatives and we will denote them
simply as D,, Ds. We will also consider only even superfields, so pe = 0,
The subalgebra of antichiral fields (D®, = 0) does not get deformed,

O, xV, =P,7,.

More generally, the star product of an antichiral field with a general field is
the commutative product,

Oy xV =P,

15



5.1 1/2 supersymmetric lagrangian in euclidean su-
perspace

In this subsection we consider a superspace with euclidean signature, so 6
and 6 are pseudoreal and independent. We will see that the difficulty in
defining a star product that is simultaneously supersymmetric and has sub-
algebras of chiral and antichiral superfields will lead to an explicit breaking
of supersymmetry in the Lagrangian.

Let @ be a chiral superfield, and ® an antichiral superfield. The prescrip-
tion for the kinetic term in the Wess-Zumino lagrangian is

/dgﬁdge_cb*cb DD % By g,

which does not get deformed. The interaction terms that involve powers
dtm) = @™ (in an obvious notation) do not get deformed neither. These
superfields are antichiral, so the classical prescription for the Lagrangian

/ FFO" = D% Dy

does not break supersymmetry.

We want to analyze the terms that can have a non trivial contribution
from the star product, as for example, ®*. This term is not a chiral
superfield. But we can still give the prescription

/ dH o™ = DM |,_s_,.

We will see that this prescription breaks 1/2 of the supersymmetries, the Q,,
but it is still invariant under the Q.
For n = 2, and using ([3), we have

D?*(® « ®) = D*(9?).
For n = 3, and using () we have
h2
D*(®x ® % ®) = D*(®?) — Zdet PD*®D*®D*®. (14)
Let us express the chiral field in terms of ordinary fields as usual

(y,0) = Ay) + O(y) + 00F (y).

16



Then 2
D*(® % ® % D)|y_g_o = D*(®?)|g_go — 7 det PF?.

The term that is added to the action is proportional to F'3. Since the term
®*3) is non chiral, the Lagrangian cannot be invariant under the whole su-
persymmetry algebra. Let us see this statement in more detail. Let ¥ be an
antichiral superfield DU = 0,

U(y,0) = B(y) + 0x(y) + 00G(y).

The supersymmetry transformations are

5EB = 0 (SgB == g)z
deX = —i2e0t0, B deX = 2Ge
0.G = tect0,x 3G =0 (15)

The component B of an antichiral superfield is invariant under the super-
symmetries (). If Y were a total derivative, then the integral of B on space
time would be invariant under both, the ) and @) supersymmetries. In par-
ticular D?© is an antichiral superfield for arbitrary ©, and if © is itself a
chiral superfield then the component y is a total derivative.

In this case, the lagrangian is constructed as D?©, but © contains non
chiral terms. As a consequence, the action can only be invariant under half
of the supersymmetry generators.

It is remarkable that the Lagrangian that we obtain is the same that
the one proposed in Ref. [20]. There, the star product chosen was the
star product quantizing a bracket of type { , }3 in (H). This star product
breaks the Q supersymmetries explicitly, and although chiral fields are a good
subalgebra of the star product, the resulting Lagrangian preserves only half
of the supersymmetries.

It is easy to compute some higher order terms in the Lagrangian,
1
D*(®™*)) = D?o* — 5 det P(D*®*)D*®D?*®,
1
D*(@™) = D2o*+ 5 det P(D*®)?D*®?
1 1
+ det P(D*®*)’D*® + E(det P)?(D*®)°.

17



As mentioned in Ref. [20], the terms appearing in the Lagrangian contain
P8 only through the expression det P, so the action is Lorentz invariant.

Quantum properties of the model with the deformation involving the @),
operators have been studied in Rfs. [27, 28]

5.2 A comment on N=2 theories.

We remind that for N = 2 theories we considered two types of deformations,
([) and (). One could construct theories with the method we have used
for N = 1. In the first case (the chiral case), one would expect that the QF
supersymmetry will be broken, while in the second case (the harmonic case)
the broken supersymmetries will be Q, Q7. .

Since N = 2 theories may contain both, chiral and harmonic superfields,
such a theory will have three broken supersymmetries, Qf and QF. This is

in agreement with Ref. [21].

5.3 An example with P"* # (.

In this section we want to consider an example of a deformation with P#* # 0.
Generically P** # 0 contains 4 x 2 odd parameters, so the expansion of
the star product ([l) will necessarily end at order 8. We consider here the
following ansatz: We take P** = 0 for u # 1 and P'® # 0. We denote 9, = 0
and P? = P'@P,,. We have

h2
Pxd = O? 4 ?PQ(DO‘&DDQ&D — D*09%®) =

2
¥+ 1P (D (00D,0) - (00 D"0)) =

2
1

% + %P2(§D2(8<I>)2 — (09D ®)).

We want to compute the contribution of ® x & x ¢ to the Lagrangian,

2
D*((2x®)®) = D2(<1>3+%P%%DQ(&D)%—a(aq>D2q>)q>)) “
253 3h2 2 212582
D*@% 4 5=-D(00) D*®?,
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modulo terms that are total spacetime derivatives. The deformation term is
proportional to

P2F(i(‘9w0¢ — QAJF) = Pz(i((‘)wa@%)F - %FZDA)

The term of order 1 in A will appear only if we take more than one
superfield. We could have, for example (®; x ®5)®. Assume for simplicity
that only one Grassmann parameter P** is different from zero, so only the
first order contributes. We keep nevertheless the Lorentz covariant notation.
Then, up to total spacetime derivatives

D*((®y % Bo)®) = PH(ByDo®20,® — ©,0,,D,P) =
P (((A1thsa) — (Agth1a))0uF — (A1 Fy — Ay F1)0,000
+F (1100, A2 — 1200, A1 + A10,20 — A20,1010) —
(F10,A5 — F20, A1 + A10,F> — A0, F1),).

5.4  Supersymmetric lagrangian in minkowskian su-
perspace

We consider now a superspace with minkowskian signature. We remind that
the star product does not have a reality condition,

QU £ TP, (16)

® and ® are now related by complex conjugation. The kinetic term ® x ® =
®® is real and not deformed. We consider terms of two types, with the
following prescriptions:

1. @™ is a non-chiral superfield. It contributes to the action as
/ d%d o = D2D2oM|,_;_,.

This becomes zero in the classical limit, h — 0, so it is a purely non com-
mutative correction. It is not real, so we follow the standard prescription of
adding the hermitian conjugate term to the action,

/ P99 (307) = D* D (@0 p_g_o.
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Notice that because of ([[T), (®*™) # dm).

2. @™ = @™ is an antichiral superfield. We introduce it in the action as
/dZHCTY‘ ~ D%y,

Again, we should add the hermitian conjugate term

/dze (@) = D¥(@)|p_0 = D*(@")]gs.

The kinetic term plus terms of the type 1 and 2 (together with their
hermitian conjugates) give a deformed, supersymmetric Wess-Zumino model,
formulated in a non commutative superspace with a non trivial deformation
of the odd variables, and that has the correct classical limit.

The deformation of ®*? = ®? is a total (0, D) derivative.

Notice that one can use either the star product corresponding to a Poisson
bracket of type {, }1 (involving the D’s), or a star product associated with
the Poisson bracket { , }» (involving the D’s). The prescription to compute
the Lagrangian will lead to the same Lagrangian. So both star products can
be used interchangeably in the action, and have the same physical meaning.

Let us compute the term of type 1. For n = 3. We have (using ([4]))

D?*D*(® % ® % ®)|p_g_q

2
= D*(D*(®°) — hzdet PD*®D*®D*®)|g_5_ =

2 .
= hz det P(%JZngBEdﬁﬁuiﬂa&/wﬁF + F?04).

Notice that the correction to the Wess-Zumino action computed in Section
BT corresponds to the first component of the chiral superfield (D*®)3, and
consequently breaks 1/2 supersymmetry (Q) (see ([H)). In minkowskian
spacetime, adding the hermitian conjugate of this term will break the other
half of the supersymmetry (@), so the resulting action will not be invariant
under any supersymmetry.

Instead, the correction that we compute here is the last component of
the same superfield (D?®)3. The variation of the last component of a chiral
superfield under supersymmetry transformations is a total spacetime deriva-

tive, and the action is supersymmetric.
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