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Abstract

We compute the extension of the Lagrangian of N = 1 supersym-
metric theories to the case in which some axion symmetries are gauged.
It turns out that generalized Chern–Simons terms appear that were
not considered in previous superspace formulations of general N = 1
theories.

Such gaugings appear in supergravities arising from flux compact-
ifications of superstrings, as well as from Scherk–Schwarz generalized
dimensional reduction in M-theory.

We also present the dual superspace formulation where axion chiral
multiplets are dualized into linear multiplets.
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1 Introduction

In many models of superstring and M-theory compactified to D = 4, it is
possible to obtain a scalar potential which stabilizes some of the moduli (as
well as matter) fields, lifting therefore the degeneracy of the moduli space of
vacua. Examples of this phenomenon are type II superstrings compactified
on orientifolds with NS and RR fluxes turned on [1] - [7], or Scherk-Schwarz
generalized dimensional reductions [8] in M-theory.

In these theories the mass terms arise through a Higgs mechanism. The
supergravity description corresponds to the gauging of some axion symme-
tries related to shifts of the scalar fields coming from wrapped RR forms
or from the NS two-form B field in type II strings, and from the wrapped
three-form in M-Theory.

In these gauge theories, generalized Chern–Simons terms emerge [9, 10,
12, 13]. If the gauge groups are abelian they are of the form

2

3
cAB, C

∫

AA ∧ AC ∧ dAB, (1)

where cAB, C are real constants with symmetries

cAB, C = cBA, C , cAB, C + cCA, B + cBC, A = 0. (2)

In the non abelian case an additional term is present

1

4
cAB, CfA

DE

∫

AD ∧ AE ∧ AC ∧ AB, (3)

where fA
DE are the structure constants of the gauge group.

In theories arising from type IIB compactification on T6/Z2 orientifold
[2, 3], the constants cAB, C are proportional to the RR and NS three-form
fluxes F α

ABC (with A, B, C = 1, · · · , 6; α = 1, 2), and equation (1) takes the
form [14, 15]

2

3
F α

ABC

∫

AA
α ∧ AB

β ∧ dAC
γ ǫβγ , (4)

Property (2) is understood in these theories from the fact that, in (4),

F
[α
ABCǫβγ] = 0

where the bracket [· · · ] stands for complete antisymmetrization of the indices.
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If we perform a Scherk–Schwarz dimensional reduction to M-theory with
Scherk–Schwarz phase matrix MA

B, the constants cAB,C come from the 5-d
Chern–Simons form [11, 12]

dABCAA ∧ F B ∧ F C (A, B, · · · = 1, · · · , 27)

and are given by
cAB,C = dABDMD

C .

In this case the condition (2) is a consequence of the fact that, in N = 8
d = 5 supergravity, dABC is an E6 invariant tensor.

Another instance where a particular form of such terms appears is in
deconstructed supersymmetric U(1) gauge theories [16], where it arises for
cancellation of mixed U(1) anomalies [16, 17].

The occurrence of such terms was studied for N = 2 in Ref. [9], but for
a matter coupled N = 1 supersymmetric gauge theory they have not been
considered previously.

It is the aim of the present investigation to give such completion for the
N = 1 case. We will consider only the abelian gauge groups, as for example
the groups of axion shift symmetries.

Let V A be the superfield vector potentials and W A
α = D̄2DαV A denote the

chiral supersymmetric field strengths, with A = 1, . . . nv, where nv denotes
the number of vectors undergoing the gauging and α is a spinor index. The
gauge transformations depend on chiral superfield parameters ΛA,

V A −→ V A + ΛA + Λ̄A, W A −→ W A.

Let the kinetic term of the vectors in the Lagrangian be written as [18]
∫

d2θfABW AW B + h. c., (5)

(we have suppressed the contracted spinor indices) where the matrix fAB is
a holomorphic function of the scalar fields. We assume that under a gauge
transformation (we will justify later this assumption) the kinetic matrix of
the vectors transforms as

δΛfAB = cAB,CΛC

with cAB,C the real constants appearing in (1)). Gauge invariance is achieved
because of the presence of the generalized Chern–Simons terms which involve
only the vector fields.
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The axionic chiral multiplets can be dualized into linear multiplets [19].
The dual lagrangian exhibits Green-Schwarz couplings of the linear multi-
plets. Let bi denote the two-form fields dual to the axion fields Si and F A

the field strengths of the gauge potentials. If we write the gauge transforma-
tions of the dual axion multiplets as

δSi = M i
AΛA,

then the G-S coupling terms are the supersymmetric extensions of the bosonic
dual terms

M i
Abi ∧ F A.

The paper is organized as follows. In section 2 we recall the symplectic
action of the σ-model isometries on vector fields as duality rotations and the
need to introduce generalized Chern–Simons terms. In section 3 we derive the
dual lagrangian with linear multiplets, whose physical bosonic components
are antisymmetric tensors. Conclusions and outlooks are given in section 4.
An appendix with some useful formulae is included.

2 Dualities, axionic symmetries and Chern–

Simons terms

The standard form of the Lagrangian density in N = 1 supersymmetric gauge
theories is [18]

∫

d4θK(S, S̄eV ) +

[
∫

d2θ
(

fAB(S)W AW B + P (S)
)

+ h. c.

]

, (6)

where K and P (the Kähler potential, and the superpotential respectively)
are gauge invariant. The matrix fAB is a chiral superfield, symmetric in
the indices A, B, transforming in the twofold symmetric tensor product of
the coadjoint representation of the gauge group, to make the action gauge
invariant.

From the structure of the vector couplings [20] it follows that fAB may
have a more general transformation rule. The invariance of the system of
field equations plus Bianchi identities [21] allows a transformation of fAB in
terms of a matrix of Sp(2nv, R)

(

A B
C D

)

AtC, BtD symmetric, AtD − CtB = 1 (7)
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of the form
if ′ = (C + Dif)(A + Bif)−1. (8)

The transformations of Sp(2nv, R) mix electric and magnetic field strengths.
When a subgroup of this symmetries becomes a local (gauge) symmetry, it
must act on the gauge potentials so it must be electric; this means that
necessarily B = 0. This implies At = D−1 and

if ′ = CA−1 + (At)
−1

ifA−1, (9)

while the gauge vectors transform simply as V ′ = AV . Nevertheless, the
gauge group may have, as embedded in Sp(2nv, R), C 6= 0. The gauge group
corresponds, in the scalar manifold, to a subset of the isometry group that
has been gauged. A gauge transformation will result in a transformation
of f (as a function of the scalar fields) of the type (9). If the symplectic
transformation is constant, this will result in a change of the Lagrangian as
a total derivative1, but if the transformation depends on local parameters,
then the Lagrangian (6) must be modified to achieve gauge invariance.

One can gauge abelian groups, which have B = 0, A = 1 and C 6= 0.
They have a non trivial action on the scalar fields. Non abelian gaugings
(A 6= 0) with C 6= 0 are also possible but will not be considered here.

From now on we will assume that the gauge group is abelian. We assume
that we can choose local coordinates in the scalar manifold in such way that
the set of chiral multiplets (nc) can be split in two sets,

{Si}n
i=1 and {T a}m

a=1, n + m = nc,

in such way that only the multiplets Si (together with the vector potentials)
transform under the gauge group. We have

δΛT a = 0, δΛSi = M i
AΛA, δΛV A = ΛA + Λ̄A. (10)

Also, we assume that the matrix fAB is of the form

fAB(S, T ) = dABiS
i + f̃AB(T ).

Then
δΛfAB(S, T ) = cAB, CΛC, (11)

1Note that the convention taken in (8) is essential for this to be true
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with
cAB, C = dABiM

i
C . (12)

We will see later that the lagrangian can be made gauge invariant if dABiM
i
C

are such that the second property in (2) holds.
The combination Si + S̄i−M i

AV A is gauge invariant, and the kinetic term
for the chiral fields is of the form

∫

d4θK(T, Si + S̄i − M i
AV A).

(The fields Si in this expression are the logarithms of what in (6) was denoted
by S).

The relevant vector kinetic term is
∫

d2θdABiS
iW AW B + h. c., (13)

and its gauge variation is

∫

d2θcAB, CΛCW AW B + h. c.. (14)

This term is a total derivative if ΛC(x, θ) is an imaginary constant. Other-
wise, to cancel this variation we must add a generalized Chern–Simons term,
which can be constructed with the Chern–Simons multiplet introduced in
Ref. [19]. This term is

−
2

3
cAB, C

∫

d4θV CΩAB(V ), (15)

with
ΩAB(V ) = DαV (AW B)

α + D̄α̇V (AW α̇B) + V (ADαW B)
α , (16)

(the parenthesis (· · · ) stands for symmetrization in the indices). Note that
Ω is real; in particular, the last term is real because of the Bianchi identity

DαWα = Dα̇W α̇ = DαWα.

Under a gauge transformation the Chern–Simons multiplet transforms as

δΛΩAB(V ) = Dα(Λ(AW B)
α ) + D̄α̇(Λ̄(AW̄ α̇B)).
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Using the property (proven in the Appendix)

V (CΩAB) =
1

6
Dα

(

V AV BW C
α + V AV CW B

α + V BV CW A
α

)

+ h. c.,

the part in (15) which is symmetric in (A, B, C) gives zero contribution to the
action, being a total space-time derivative. This means that if c(AB, C) 6= 0
the variation (14) cannot be completely cancelled by a term like (15). So we
require that c(AB, C) = 0 as a consistency condition for gauge invariance.

The gauge variation of (15) is (see Appendix)

−cAB, C

(
∫

d2θΛCW AW B + h.c.

)

,

and we see that it cancels exactly the gauge variation of the vector kinetic
term (14), so that the Chern–Simons-completed vector lagrangian

−
2

3
cAB,C

∫

d4θΩABV C +

(
∫

d2θfABW AW B + h. c.

)

is gauge-invariant.
This is in agreement with what was found in Ref. [9] for the N = 2 case.

Let us further observe that, in the Wess–Zumino gauge, the component
expression of the Chern–Simons action (15) contains, beyond the bosonic
contribution (1), the extra term

cAB,C λ̄Aγµγ5λ
BAC

µ .

This is needed in order to make gauge-invariant the fermionic contribution
in (13) containing Imφi (φi = Si|θ=0)

dAB,i Imφi∂µ

(

λ̄Aγµγ5λ
B
)

which then becomes, using (12),

− dAB,i

(

∂µImφi − M i
CAC

µ

)

λ̄Aγµγ5λ
B.
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3 Dual form of the lagrangian

The lagrangian studied in the previous section can be dualized by replacing
the chiral multiplets Si by the dual linear multiplets Li. These are real mul-
tiplets satisfying the constraint D2Li = D̄2Li = 0. In order to perform the
dualization we introduce the real superfield U i. The lagrangian connecting
the two theories is

L =

∫

d4θ

[

K(T, U i − M i
AV A) − LiU

i +

(

dABiU
i −

2

3
cAB, CV C

)

ΩAB

]

+

+

[
∫

d2θf̃AB(T )W AW B + h. c.

]

, (17)

with cAB, C = dABiM
i
C . The original Lagrangian is obtained by varying

(17) with respect to Li, which gives U i = Si + S̄i (notice that Li is not
unconstrained), and substituting back in L.

The dual Lagrangian instead is obtained by varying with respect to U i

and substituting the equation obtained in L. Let us define Ũ i = U i−M i
AV A.

Then, the relevant terms in (17) become
∫

d4θ

[

K(T, Ũ i) − Ũ i(Li − dABiΩ
AB) − LiM

i
AV A +

1

3
cAB, CV CΩAB

]

.

Solving

Ψi ≡
∂K(T, Ũ i)

∂Ũ i
− Li + dABiΩ

AB = 0

one gets
∫

d4θ

[

Φ(T, Li − dABiΩ
AB) − LiM

i
AV A +

1

3
cAB, CV CΩAB

]

,

where

K(T, Ũ i) − Ũ i(Li − dABiΩ
AB) = Φ(T, Li − dABiΩ

AB) at Ψi = 0.

The gauge transformation of Li are

δLi = dABi

[

Dα
(

ΛAW B
α

)

+ D̄α̇

(

Λ̄AW Bα̇
)]

.

Notice that the variation of the Green–Schwarz term is now cancelled by
the variation of the generalized Chern–Simons term (which has a different
coefficient with respect to the dual formulation).
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4 Conclusions

In this investigation we have given the superfield expression of the N = 1
lagrangian with gauged axion symmetries.

The lagrangian requires new coupling terms which were not present in
the standard formulation because there it was assumed that the gauge trans-
formations changed the kinetic matrix of the vectors as

f ′ = (At)−1fA−1,

where A is the adjoint action of the fields. It is interesting to observe that
not all the axion gauge symmetries can be gauged, but only those for which
the expression

dABiMC = cAB, C satisfies c(AB, C) = 0.

In fact, the variation of the action with the term (15) included is

c(AB, C)

∫

d2θΛCW AW B + h. c.

and it vanishes only when the above consistency condition is fulfilled. The
simplest case where c(AB,C) 6= 0 is when we have only one axion S with
coupling

SW AW BδAB.

Under the axion symmetry S → S + Λ the lagrangian is not gauge-invariant
at the classical level, rather it can be used to cancel (one-loop) quantum
anomalies [22, 23, 24].

It is possible to extend the present analysis to the supergravity case and to
non-abelian axion symmetries. Such cases are incountered in Scherk–Schwarz
M-theory compactifications and in type IIB supergravity compactifications
in the presence of fluxes.

In the non-abelian case (A 6= 11 in equation (7)), the coefficients cAB,C

must satisfy the extra condition [9]

fD
E(BcA)D,F − fD

F (BcA)D,E +
1

2
fD

EF cAB,D = 0. (18)

This follows from the fact that for a vector transforming as

δVa = t b
a AΛAVb + CaAΛA

9



the closure of the gauge algebra requires a cocycle condition on the coefficient
CaA

2

t b
a ACbB − t b

a BCbA − f C
AB CaC = 0.

The condition (18) on the coefficients cAB,C is just the above relation, when
specified to the twofold symmetric product of the coadjoint representation.

In the Wess–Zumino gauge, the supersymmetric version of the non abelian
completion (3) is

cAB,CfB
PQV CDαV AD̄2

(

DαV P V Q
)

+ h. c.

Appendix: Some useful relations

Consider the superfield:

ΩAB = DαV (AW B)
α + D̄α̇V (AW̄ α̇B) + V (ADαW B)

α (19)

where (· · · ) stands form complete symmetrization in the indices.
ΩAB is real thanks to the property

DαWα = D̄α̇W̄ α̇ (20)

and it satisfies:
D̄2ΩAB = W (AαW B)

α (21)

Consider now the superfield ΩABV C . Its totally symmetric part can be
written as a total derivative

Ω(ABV C) =
1

2
Dα

(

V (AV BW C)
α

)

+ h. c.

=
1

6
Dα

(

V AV BW C
α + V BV CW A

α + V AV CW B
α

)

+ h. c. (22)

so that such a lagrangian term does not contribute to the action:

∫

d4x

∫

d4θΩ(ABV C) = 0. (23)

2We thank R. Stora for enlightening discussions on this issue.
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Indeed, using (20), we have:

Ω(ABV C) = DαV (AW B
α V C) +

1

2
V (ADαW B

α V C) + h. c.

=
1

2
Dα

(

V (AV B
)

W C)
α +

1

2
V (ADαW B

α V C) + h. c.

=
1

2
Dα

(

V (AV BW C)
α

)

+ h. c. (24)

The gauge invariance

We explicitely show here, for the abelian case, that the lagrangian (6) com-
pleted with the Chern–Simons term (1) is gauge-invariant.

Indeed, from (10) we have

δΛΩAB = Dα
(

Λ(AW B)
α

)

+ h. c. .

Then

δΛ

(

cAB,C

∫

d4θΩABV C
)

= cAB,C

∫

d4θ
[

ΩABΛC + Dα
(

ΛAW B
α

)

V C
]

+ h. c. =

= cAB,C

∫

d2θ
(

W AW BΛC − ΛAW BW C
)

+ h. c. (25)

where we have used (21) and the notation

W AW B = W BW A ≡ W αAW B
α = −W A

α W αB.

However, due to equations (2), we have

cAB,CΛAW BW C = (−cAC,B − cBC,A)ΛAW BW C

= −cAB,CΛAW BW C − cAB,CΛCW AW B

so that

cAB,CΛAW BW C = −
1

2
cAB,CΛCW AW B (26)

Using (26) in (25) we get

δΛ

(

cAB,C

∫

d4θΩABV C

)

=
3

2
cAB,C

∫

d2θΛCW AW B + h. c. (27)

11



On the other hand, from (11), the gauge transformation of the vector kinetic
term (5) is

δΛ

(
∫

d2θfABW AW B + h. c.

)

= cAB,C

∫

d2θΛCW AW B + h. c. (28)

so that the Chern–Simons-completed vector lagrangian

−
2

3
cAB,C

∫

d4θΩABV C +

(
∫

d2θfABW AW B + h. c.

)

is gauge-invariant.
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