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Abstract

The theory of the string in interaction with a dilaton background field is

analyzed. In the action considered, the metric in the world sheet of the string

is the induced metric, and the theory presents second order time derivatives.

The canonical formalism is developed and it is showed that first and second

class constraints appear. The degrees of freedoom are the same than for the free

bosonic string. The light cone gauge is used to reduce to the physical modes

and to compute the physical hamiltonian.
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1. Introduction.

We consider the theory of the bosonic string in interaction with an scalar field,

the dilaton. Much work has been done on the problem of constructing string

theories on general background fields [1]. The theory describing the interaction

of the bosonic string with the metric, the antisymmetric field and the dilaton,

via the Polyakov approach, was recently studied in the excellent paper by Buch-

binder, Fradkin, Lyakhovich y Pershin [2]. The theory they consider is given by

the action

S = −
∫

d2ξ
√
−g

{1

2
gab∂ax

µ∂bx
νGµν(x) +

1

2
ǫab∂ax

µ∂bx
νAµν(x) +(2) RΦ(x)

}

.

(1)

Gµν(x) is the D-dimensional metric, Aµν(x) is the antisymmetric field and Φ(x)

is the dilaton. gab(ξ) is the metric of the world-sheet of the string, and it

is considered here as a variable, independent of the embeding xµ(ξ). It is a

Polyakov-type action. (2)R is the curvature of the two dimensional submanifold,

associated to the metric gab. As it is well known, this theory can be consistently

quantized provided the external fields satisfy certain restrictions. If the only

background field is Gµν(x), the theory is consistent in D = 26 and the metric

satisfies up to linear order in the curvature the Einstein equations. Nevertheless

if the dilaton is different from zero (different from constant, indeed) the critical

dimension is D = 25 and the Einstein equations are modified. The dilaton, as

expected, changes notably the classical and quantum behaviour of the system.

On one hand the field equations of action (1) imply that the metric of the world

sheet of the string is the induced metric only if Φ(x) = ctt. (In two dimensions

the last term in (1) is the Euler characteristic when Φ(x) = ctt, so it becomes

irrelevant to the field equations). So the presence of the dilaton changes this

geometrical interpretation of the action. On the other hand, the degrees of

freedoom of the theory are not the same in both situations. If Φ(x) 6= ctt, the

degrees of freedoom areD−1 (the space-time has dimensionD); if Φ(x) = ctt the

degrees of freedoom are D− 2, as in the free bosonic string. This is because the

term proportional to the curvature breaks the invariance of the action under the
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rescaling of the metric, unless it is an irrelevant, total derivative. So it appears

another degree of freedoom, and the limit Φ(x) → ctt is not smooth. The

free bosonic string is not a good starting point in order to make a perturbative

treatment of the background fields. In Ref. [2] the problem is solved considering

a string in interaction with a non trivial dilaton as the base for the perturbative

treatment.

The theory we are considering has a similar action, but now the metric

gab(ξ) is not an independent variable, but it corresponds to the induced metric

on the two dimensional surface,

gab(ξ) = ∂ax
µ∂bx

νGµν(x), (2)

and the geometrical interpretation is guaranteed. It is a Nambu-Goto type

action. Obviously both actions are not equivalent. The last one is more com-

plicated, since the term containing the dilaton has higher derivatives. Indeed

we will restrict ourselves to the case Gµν(x) = ηµν and Aµν(x) = 0, it is, we

will retain the dilaton as the only non trivial background field. This interaction

is complex enough, and we expect a better understanding of the modifications

that the dilaton produces compared with the free string.

In Section 2. we describe the canonical formalism for higher derivatives. In

Section 3. we apply it to the string in interaction with the dilaton, obtaining the

primary constraints. In Section 4. we compute the secondary constraints. In

Section 5. the first class constraints are covariantly separated from the second

class constraints and the degrees of freedoom of the theory are computed. In

Section 6. we proceed to fix the light cone gauge and to compute the Hamilto-

nian, comparing with other approaches. By using the light cone gauge we do

not need to impose any restriction on the background fields. It is known that

starting from the lagrangean approach of a string in a background, the light cone

gauge is an admissible gauge provided the background is restricted. In particu-

lar Gµν must be a pp-wave. However, in the phase space approach we follow in

this paper, no conditions on Killing vectors of the background is required. The

problem is that the only dependence on the transverse momentum becomes non
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quadratic because the dependence of the background with the coordinate x−.

This feature does not allow the functional integration of the transverse momen-

tum to recover the lagrangean approach for arbitrary background. However, this

condition on the background is not a requirement of the canonical formulation.

Finally, in Section 7. we establish our conlusions.

2. Higher derivatives.

We use the generalization of the canonical formalism to higher derivatives pro-

posed in Ref. [3][4]. For clearness, we briefly resum here the resut for a La-

grangean depending on second order time derivatives.

We consider a physical system on an n-dimmensional configuration space.

Let L(q, q̇, q̈) be the Lagrangean of the system depending on the coordinates

(q1, . . . , qn) and their time derivatives of order one and two. The Euler Lagrange

equations are obtained applying the Hamilton principle to the functional action,

S(q) =

∫ tf

ti

L(q, q̇, q̈)dt. (3)

This is equivalent to extremizing the constrained functional,

R(q, u, v) =

∫ tf

ti

L(q, u, v)dt, (4)

subject to

q̇ = u, u̇ = v. (5)

The constraints are regular, so we can apply the Lagrange theorem and consider

the unconstrained functional

∫ tf

ti

[L(q, u, v)− p(u− q̇) − π(v − u̇)]dt, (6)

where we have introduced Lagrange multipliers p and π. The canonical moments

of the coordinates (q, u) are the corresponding Lagrange multipliers (p, π). The
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Hamiltonian can be read off from (6) as a function of two sets of canonically

conjugated variables (q, p) and (u, π) and a set of non canonical ones v,

H(q, u, p, π, v) = pu+ πv − L(q, u, v). (7)

Doing independent variations of all the variables, one obtains canonical equa-

tions of motion for the canonical coordinates, and in addition one obtains the

set of equations
∂H

∂v
= 0. (8)

If the Lagrangean is singular, the Hessian

∂2H

∂vi∂vj
= − ∂2L

∂vi∂vj
(9)

has rank r < n, and some of the equations (8) are primary constraints. The

Dirac procedure to compute the complete set of constraints follows as usual, if

constraints are regular. The components of v which cannot be calculated play

the same role as the Lagrange multipliers associated to first class constraints.

In the next section we apply the formalism to the string in interaction with

de dilaton.

3. Canonical action.

We denote ξ0 = τ and ξ1 = σ. A dot means a derivative with respect to τ

and a prime a derivative with respect to σ. D is the dimension of space-time,

whose metric is flat, with signature (1,−1, ....,−1). We assume the conditions

g00 = ẋ2 > 0 y g11 = x′2 < 0 hold. We denote (2)R simply by R, since there is

not possibility of confussion.

The lagrangean action is

S = −
∫

d2ξ
√
−g(1 + αΦR). (10)

If the space-time metric is flat, the curvature can be expressed in terms of the

second fundamental form of the surface as

R = sia
a s

ib
b − sia

b s
ib
a . (11)
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where si
ab i = 1, . . .D− 2 are the components of the second fundamental form

in an orthonormal base of the D − 2 normal vectors to the surface, ni
µ.

The orthonormal vectors satisfy

(ninj) − δij = 0

(nix′) = 0

(niẋ) = 0.

(12)

and the second fundamental form is

si
ab = DaDbx

µni
µ = x

µ
,a,bn

i
µ. (13)

We have different expressions for the curvature. First, we can express it in terms

of the covariant derivatives Da, independently of the normal vectors,

R = gabgcdDaDbx
µDcDdxµ − gabgcdDaDcx

µDbDdxµ, (14)

or in terms of them,

R =
2

g
(si

00s
i
11 − (si

01)
2) =

2

g

(

(xµ
,0,0n

i
µ)(xν

,1,1n
i
ν) − (xν

,0,1n
i
ν)2

)

. (15)

Both expressions are equivalent. The normal vectors niµ can be considered as

independent variables only if constraints (12) are introduced in the action with

Lagrange multipliers

−
∫

d2ξ{√−g − 2αΦ√−g [(ẍni)(x′ni) − (ẋ′ni)2]+

+λij

(

(ninj) − δij
)

− µi(n
ix′) − νi(n

iẋ)},
(16)

where λij , µi, ηi are the Lagrange multipliers associated with the constraints

defining the new variables as an orthonormal system of normal vectors to the

surface. This considerably simplifies the problem.

Let us compute the Euler-Lagrange equations. When varying the ni one

obtains relations which allow to compute the Lagrange multipliers. If these
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relations are introduced in the equation which results from varying xµ, one

obtains

[(ẋx′)ẋµ

√−g − ẋ2x′µ√−g
]′

+
[ (ẋx′)x′µ√−g − x′2ẋµ

√−g
].

+
2αR∂µΦ√−g +

+
[2αΦ′

√−gD0ẋ
µ − 2αΦ̇√−gD1ẋ

µ
]′

+
[ 2αΦ̇√−gD1x

′µ − 2αΦ′

√−gD0x
′µ

].
= 0.

(17)

The auxiliary variables niµ are eliminated. The two first terms in (17) are the

field equations of the free bosonic string. The remaining terms depend on ∂µΦ,

so, if the dilaton is a constant, the theory is equivalent to the free bosonic string.

The canonical analysis follows as in the previous section. We introduce new

variables uµ, vµ, pµ, πµ, miµ, γ
iµ. The canonical action is

S =

∫

d2ξ
[

pẋ+ πu̇+miµṅ
iµ −H(x, u, n, γ, p, π,m)

]

, (18)

where

H(x, u, n, γ, p, π,m) = H0 + vµ(πµ − 2αΦ√−g (x”ni)ni
µ) + γiµmiµ+

+ λij

(

(ninj) − δij
)

− µi(n
ix′) − νi(n

iẋ),

(19)

and

H0 = pu+
√
−g +

2αΦ√−g (u′ni)2. (20)

The variables (vµ, γiµ, λij , µi, νi) act as multipliers. From here, we can read the

primary constraints of the theory. For the following analysis, it is convenient to

consider the decomposition of the Lagrange multiplier vµ, in terms of its normal

and tangential components,

vµ = ωiniµ + Λ1u
µ + Λ2x

′µ. (21)

In such way,

vµ(πµ − 2αΦ√−g (x”ni)ni
µ) = ωi(πin

i − 2αΦ√−g (x”ni)) + Λ1πu+ Λ2πx
′. (22)
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And the primary constraints are,

Aij := (ninj) − δij = 0

Bi := (nix′) = 0

Ci := (niu) = 0

Diµ := miµ = 0

ϕi := πin
i − 2αΦ√−g (x”ni) = 0

ψ1 := πu = 0

ψ2 := πx′ = 0.

(23)

Apart from the constraints determining the auxiliary variables, the mo-

ment π is completely constrained. The Hamiltonian is not zero on the primary

constraints.

In the next section, we compute the secondary constraints.

4. Secondary constraints.

We compute the Poisson bracket of the Hamiltonian with all primary constraints.

From the conservation of Aik, Bi, Ci, Djν one obtains the Lagrange multipliers,

λkj = − 2αΦ√−g (nju′)(nku′) (24)

ηj = − 2αΦ

(−g)−3/2
2(nju′)[((u′x′)(ux′) − x′2(uu′)]−

− ωj 2αΦ

(−g)−3/2
[((ux′′)x′2 − (ux′)(x′x′′)]

(25)

µj = − 2αΦ

(−g)−3/2
2(nju′)[((u′u′)(ux′) − u2(x′u′)]+

+ ωj 2αΦ

(−g)−3/2
[((ux′′)(ux′) − u2(x′x′′)].

(26)

If γiν is decomposed as

γiν = αiuν + βix′ν + ǫiknkν , (27)
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then one obtains

αi =
ωix′2 − (niu′)(ux′)

−g (28)

βi =
−ωi(ux′) + (niu′)u2

−g . (29)

The antisymmetric part of ǫik remains undetermined, while the symmetric part

is zero.

ǫīk =
1

2
(ǫik + ǫki) = 0 (30)

The conservation of Ψ1,Ψ2 gives two secondary constraints,

Ψ3 := H0 = pu+
√−g +

2αΦ√−g (u′ni)2 = 0 (31)

Ψ4 := πu′ + px′ = 0 (32)

It shows that the Hamiltonian is zero.The conservation of ϕi gives another sec-

ondary constraint,

ζi := −pni +
2αΦ√−g (niu′′) + +

2α√−g
[

2Φ′(niu′) − Φ̇(nix′′)
]

+

+
2αΦ

(−g)−3/2

[

(x′′ni)
(

u2(x′u′) − (ux′)(uu′)
)

− (u′ni)
(

(ux′)(ux′′)−

− u2(x′x′′) − 2(ux′)(u′x′) − 2x′2(uu′)
)]

= 0.

(33)

The conservation of Ψ3 and Ψ4 is satisfied trivially. The conservation of ζi

gives an equation for ωi,

F ikωk +Gi = 0, (34)

where

F ik = δik x′2√−g +
2αΦ′

(−g)3/2

[

(uu′)x′2 − (ux′)(u′x′)
]

− δik 2αΦ̇

(−g)3/2

[

(ux′′)x′2−

− (ux′)(x′′x′)
]

− δik(
2αΦ′

√−g )′ − 2α√−g
[

(∂µΦnkµ)(x′′ni) + (∂µΦniµ)(x′′nk)
]

,

(35)
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and

Gi =
u2(x”ni) − 2(ux′)(u′ni)√−g +

2α√−g (∂µΦniµ)(nku′)2+

+ 2
2αΦ′

(−g)3/2
(niu′)

[

u2(x′u′) − (ux′)(uu′)
]

+

+ 2
2αΦ̇

(−g)3/2
(niu′)

[

x′2(uu′) − (ux′)(x′u′)
]

+ 2
2α√−g (∂µΦu′µ)(niu′)+

+
2α√−g

[

2(∂µ∂νΦx′µuν)(niu′) − (∂µ∂νΦuµuν) + (nix′′)
]

.

(36)

The term independent of Φ in (35) is always different from zero, provided x′ is

a spatial vector. (34) is an algebraic equation which allows for the computation

of ωi (for example, one can suppose analiticity in α ). It is complicated, but

we are not going to use it explicitly. The important thing is that this Lagrange

multiplier can be computed, and that the conservation of ζi gives no other

secondary constraint. This is the complete set of constraints.

The constraints concerning the true variables of the theory can be resumed

in two covariant expressions that do not involve the auxiliary variables. These

expressions will be useful when fixing the gauge.

ϕµ := πµ − 2αΦ√−gD1x
′

µ = 0 (37)

is equivalent to Ψ1 = 0, Ψ2 = 0,ϕi = 0. Also,

ζµ = pµ +
1√−g

[

(ux′)x′µ − x′2uµ

]

+
[2α(∂νΦuν)√−g + 2

2αΦ

(−g)−3/2
Γ̃1

01

]

D1x
′

µ−

−
[

2
2αΦ

(−g)−3/2
Γ̃1

11 + 2
2αΦ′

√−g
]

D0x
′

µ − 2
2αΦ√−g (D0x

′

µ)′ − 2αΦ

(−g)−3/2
Γ̃1

01x
′′

µ−

− 2αΦ

(−g)−3/2

[

(ux′)x′µ − x′2uµ

]

(u′νD0x
′

ν) +
2αΦ√−g u”

⊥

µ +

+
2αΦ

(−g)−3/2

[

uµ

(

(ux′′)(x′u′) − (ux′)(u′x′′)
)

+ x′µ
(

u2(x′′u′) − (uu′)(ux′′)
)]

(38)

is equivalent to Ψ3 = 0,Ψ4 = 0, ζi = 0. We have used the Christoffel symbols
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of the metric gab, Γ̃c
ab = gΓc

ab.

Γ̃0
00 = x′2(uv) − (ux′)(vx′)

Γ̃1
00 = u2(vx′) − (ux′)(uv)

Γ̃0
01 = x′2(uu′) − (ux′)(u′x′)

Γ̃1
01 = u2(x′u′) − (ux′)(uu′)

Γ̃0
11 = x′2(ux′′) − (ux′)(x′x′′)

Γ̃1
11 = u2(x′x′′) − (ux′)(ux′′).

(39)

The covariant derivatives are,

D0x
′µ = u′µ − Γ0

01u
µ − Γ1

01x
′µ

D1x
′µ = x′′µ − Γ0

11u
µ − Γ1

11x
′µ.

(40)

and u′′⊥ is the normal part to u′′ given by

u′′⊥µ = u′′µ− 1

−g [(u′′x′)(ux′)−(u′′u)x′2]uµ− 1

−g [(u′′u)(ux′)−(u′′x)u2]x′µ. (41)

These are the constraints one would have obtained if the original action, where

the auxiliary variables are substituted, had been used. We can see that all the

moments, p and π can be computed in terms of the coordinates x and u, so the

degrees of freedom are notably reduced. We expect some constraints to be first

class in order to contemplate the reparametrization invariance of the theory.

In the next section we study the character of these constraints and compute

the degrees of freedoom of the theory.

5. First and second class constraints.

Between the constraints associated to the auxiliary variables, there is a first

class constraint, corresponding to the undetermined Lagrange multiplier. This

constraint is

Dîk =
1

2
(Diµn

µ
k −Dkµn

µ
i ). (42)
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The Poisson bracket of this constraint with the remaining ones is zero. The

gauge transformation it generates only afects the variables ni, and it is given by

δεn
iµ = εîknkµ. (43)

The meaning of this transformation is an infinitesimal rotation in the space of

normal vectors. The other constraints Aij , Bi, Ci,Dīk, Diµu
µ, and Diµx

′µ are

second class. All these constraints and the gauge invariance (43) determine niµ

and miµ without ambiguity, so there is no dynamical variables. The remaining

constraints restrict the true variables of the theory. We are going to elucidate

which of them are first class.

The Hamiltonian we have computed,

H = Λ1ψ1 + Λ2ψ2 + ψ̃3 (44)

with

Ψ̃3 = Ψ3 −
2αΦ√−g (niu′)(nju′)Aij − (

2αΦ

(−g)−3/2
2(nju′)[(u′x′)(ux′) − x′2(uu′)]+

+ωj 2αΦ

(−g)−3/2
[((ux′′)x′2 − (ux′)(x′x”)])Bj−

−(
2αΦ

(−g)−3/2
2(nju′)[((u′u′)(ux′) − u2(x′u′)]−

−ωj 2αΦ

(−g)−3/2
[((ux′′)(ux′) − u2(x′x”)])Cj+

+
1

−g [ωix′2 − (niu′)(ux′)](Diµu
µ) +

1

−g [−ωi(x′u) − (niu′)u2](Diµx
′µ)+

+ ωiϕi,

(45)

and ωi given by equation (34), is proportional to the first class constraints. Ψ1

and Ψ2 are first class, as follows from direct computation. The rest is a first

class constraint we will call Ψ̃3. In fact, one can show that Ψ3 and Ψ4 are not

by themselves first class constraints. In order to convert them into first class

constraints, they must be corrected with terms proportional to other second

class constraints. We will substitute Ψ3 by Ψ̃3 in the set of constraints we are

using to describe the submanifold.
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In order to obtain the remaining first class constraints, we make an arbitrary

linear combination of the second class constraints

< F >=< aklA
kl + bkB

k + ckC
k + dkµDkµ + fkϕ

k + hkζ
k + eΨ4 >, (46)

and compute the Poisson bracket of this constraint with the others. This pro-

cedure will determine the arbitrary coeficients until we have an arbitrary linear

combination of first class constraints. The result is that they are all zero except

(dinj) = 0

(dix′) = −(nix′′)e

(diu) = −(niu′)e,

(47)

and e remains undetermined. The only first class constraint is

Ψ̃4 = Ψ4 + +
1

−g [−(niu′)x′2 + (nix′′)(ux′)](Diνu
ν)+

+
1

−g [−(niu′)(ux′) + (nix′′)u2](Diνx
′ν).

(48)

We have four first class constraints, so the degrees of freedoom of the string

in interaction with the dilaton are D − 2, the same as the free bosonic string.

In the theory of Ref. [2] the interaction term breaks the Weyl invariance, so

it appears an additional degree of freedoom. This problem is solved in this

approach.

It is interesting to compare this result with the one for the rigid string [4][5].

The rigid string is a theory which also presents two dimensional reparametriza-

tion invariance, and presents second order derivatives in the Lagrangean. The

canonical formulation leads to four first class constraints too, and the Poisson

algebra of them does not contain the Virasoro algebra as a subalgebra. This

result is achieved only when restricting to certain submanifold. For the rigid

string no second class constraints appear, so the degrees of freedoom are twice

the ones of the free string.

6. Light cone gauge.
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We can impose four gauge fixing conditions. We take the light cone gauge,

defined by
χ1 = ux′

χ2 = u2 + x′2

χ3 = x+ − u+
0 τ

χ4 = u+ − u+
0 .

(49)

When Φ = 0, the constraints reduce to

p = u, π = 0 (50)

χ1 and χ2 are the constraints of the free bosonic string while χ3 and χ4 cor-

respond to the usual light cone gauge conditions. In this formulation one has

more degrees of freedoom and we could select for χ1 and χ2 another conditions,

different from the usual constraints px′ and p2 + x′2. If the conditions were

admissible, one would obtain an equivalent theory.

This gauge fixing allows the reduction to the physical modes, which are the

transversal modes x⊤, u⊤, computing the longitudinal ones,

(ux′) = u−x′+ + u+x′− − (ux′)⊤

x′−
= −(ux′)⊤

u+0

u−
= −x′⊤2 + u⊤2

2u+0.

(51)

We want to show now that (49) are admissible gauge fixing conditions, by com-

puting the Lagrange multipliers. We take the total Hamiltonian, this is, pro-

portional to all first class constraints,

HT = Λ1Ψ1 + Λ2Ψ2 + Λ3Ψ̃3 + Λ4Ψ̃4 (52)

and compute the conservation of all gauge fixing conditions. The result is

Λ3 − 1

Λ2 = −u
+0u′− − (uu′)⊤

x′⊤2

Λ1 = −Λ′

4x
′⊤2 + (u′x′)⊤

u+0u− + u⊤2

(53)
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and Λ4 satisfies the equation

u+0Λ′

4 = −ωini+ − u+0 (u′x′)⊤

x′⊤2
. (54)

Regretfully, the light cone gauge does not leave the action in canonical form

Sphys =

∫

d2ξ(−(pẋ)⊤ − (πu̇)⊤ + p+ẋ− + π+u̇−), (55)

so the computation of the Hamiltonian is not direct from here. Nevertheless, the

equations of motion for the transversal modes x⊤, u⊤ are first order (in time)

equations. We can compute the energy of the system as the conserved quantity

associated to traslational invariance of Sphys. It only holds (in this gauge) if

∂+Φ = 0. This means that the light cone gauge is apropriate to compute the

energy only in this case.

E =

∫

dσ
[ δL
δẋ⊤

ẋ⊤ +
δL
δu̇⊤

u̇⊤ − L
]

, (56)

where

Sphys =

∫

dσdτL. (57)

The result is,

E =

∫

dσu+0p− (58)

whith p− expressed in terms of the physical modes

p− =
1

2u+0
(x′⊤2 + u⊤2) + 2αΦx′⊤2·

[

(∂µΦx′µ)
(

−(x′x′′)⊤

2u+0
− (uu′)⊤

u+0
+
x′⊤2(x′u′)⊤(x′u)⊤

u+0
+
x′⊤2(x′x′′)⊤u⊤2

2u+0

)

−

− (∂µΦuµ)
(

−(x′u′)⊤

2u+0
− (ux′′)⊤

u+0
+
x′⊤2(x′x′′)⊤(x′u)⊤

u+0
+
x′⊤2(x′u′)⊤u⊤2

2u+0

)]

(59)

The Hamiltonian only depends on Φ through his derivatives, so when Φ =ctt

one recovers the energy of the free bosonic string. If Φ 6=ctt, in the energy

appears a term proportional to α. This term produces the energy not being

definite in sign.
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We compare with the system treated in [2]. This system has a degree of

freedoom more. The canonical coordinates one uses to describe it are qs =

(xµ, γ), ps = (pµ, π), and the action is

S =

∫

dσdτ
[

pẋ+ πγ̇ − λ0T0 − λ1T1

]

(60)

where T0 and T1 are the first class constraints which satisfy the Virasoro algebra.

They are given by the following expressions

T0 =
1

2
Grsprps +

1

2
Grsq

′rq′s − 2(Nsq
′s)′ (61)

and

T1 = psq
s − 2(Nsps)

′, (62)

where we have used the notation Ns = (−∂µφ, 0), Ns = (0, 1) and

Grs =

(

ηµν −∂µφ

−∂νφ 0

)

. (63)

If we fix the light cone gauge,

x+ = p+0τ,

p+ = p+0, (64)

the physical Hamiltonian is p−, which in terms of the physical modes is

p−
[

p+0 − ∂+φ+π

(∂φ)2

]

=

1

2
(p⊤2 + x′⊤2) +

π2

2(∂φ)2
+
p+0∂−φπ

(∂φ)2
+

(∂φp)⊤π

(∂φ)2
+

φ′γ′

(∂φ)2
− 2φ′′,

(65)

and it is not positive definite.

Our conclussion is that the interaction term of the string and the dilaton

must be corrected in order to obtain a consistent quantum theory.
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7. Conclusions.

In this paper we obtained the canonical formulation of the string in interaction

with a background dilaton field, with an action of Nambu-Goto type which has

second order time derivatives. The complete set of constraints is computed, and

it is found that four first class constraints appear, reflecting the reparametriza-

tion invariance of the lagrangean action. In addition, the theory is restricted

by second class constraints. We decouple covariantly the first and second class

constraints. However, because of the second class constraints, the covariant

quantization of the system becomes intrincated. The degrees of freedoom of the

theory are the same as for the free bosonic string, in distinction to the Polyakov

type theory, which has only first order time derivatives. We had used the light

cone gauge to reduce to the physical modes, and to compute the physical hamil-

tonian, which becomes indefinite in sign if the dilaton field is different from

constant. It is well known that higher order terms in the curvature should be

included in order to obtain the low energy approximation of a complete string

theory. It is the Hamiltonian of the complete theory the one which is required

to be positive definite. Our result, which clearly extend to the case when the

other background fields are not trivial, shows that any conclusion based on an

analysis of a truncated theory could be modified by higher order contributions.

The theory is compared with other approaches.
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[4] M. A. Lledó and A. Restuccia, Ann. Phys. 224 (1993).
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