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The Gram-negative bacterium Vibrio vulnificus is a common inhabitant of estuarine environments.
Globally, V. vulnificus is a significant foodborne pathogen capable of causing necrotizing wound infections
and primary septicemia, and is a leading cause of seafood-related mortality. Unfortunately, molecular
methods for the detection and enumeration of pathogenic V. vulnificus are hampered by the genetically
diverse nature of this pathogen, the range of different biotypes capable of infecting humans and aquatic
animals, and the fact that V. vulnificus contains pathogenic as well as non-pathogenic variants. Here we
report an alternative approach utilizing the development of a real-time PCR assay for the detection of
pathogenic V. vulnificus strains based on a polymorphism in pilF, a gene previously indicated to be
associated with human pathogenicity. Compared to human serum reactivity, the real-time PCR assay
successfully detected pathogenic strains in 46 out of 47 analysed V. vulnificus isolates (97.9%). The method
is also rapid, sensitive, and more importantly can be reliably utilised on biotype 2 and 3 strains, unlike
other current methods for V. vulnificus virulence differentiation.

Crown Copyright � 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

The Gram-negative halophilic bacterium Vibrio vulnificus is
a natural inhabitant of tropical as well as temperate estuarine
environments. The species is present in high numbers in filtering
organisms, such as oysters, especially in warmer months (Oliver,
2006). V. vulnificus is a potent human pathogen, and is responsible
for more than 95% of all seafood-related deaths (Jones and Oliver,
2009). Isolated incidents of V. vulnificus infections occur globally,
with cases frequently reported in the U.S.A., Europe and the Far East
(Dalsgaard et al., 1996; Chuang et al., 1992; Hlady and Klontz, 1996;
Baker-Austin et al., 2010a). Human infections typically occur after
ingestion of raw or undercooked shellfish, particularly oysters, or
through entry via a flesh wound (Oliver, 2005; Jones and Oliver,
2009). Significantly, V. vulnificus-associated primary septicemia
carries the highest fatality rate of any foodborne pathogen (Rippey,
1994). A review of 459 U.S. cases reported by the Food and Drug
Administration between 1992 and 2007 revealed that 51.6% of the
ax: þ44 0 1305 206601.
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patients infected with V. vulnificus died (Jones and Oliver, 2009).
Most cases of infection (w95%) occur in males, who are immuno-
compromised or who have underlying diseases/syndromes which
result in elevated serum iron levels, primarily liver cirrhosis
secondary to alcohol abuse/alcoholism (Oliver and Kaper, 2001).

V. vulnificus is currently subdivided into three biotypes based on
genetic, biochemical and serological features, as well as host range
(Bisharat et al., 1999; Tison et al., 1982). Biotype 1 strains are human
pathogens and are responsible for the vast majority of V. vulnificus
infections reported worldwide. Biotype 2 contains strains which
cause disease and infections in aquatic animals such as eels and
occasionally in humans (Amaro and Biosca, 1996). A further biotype
(biotype 3) was discovered in 1996 after an outbreak of V. vulnificus
infections in an Israeli fish market, and was later found to be
a hybrid of biotypes 1 and 2 (Bisharat et al., 2005). Not all strains of
V. vulnificus appear to be able to cause disease in humans and
aquatic animals, and there is a need for the development of accu-
rate and rapid methods to distinguish virulent and avirulent
isolates. V. vulnificus is phenotypically and serologically heteroge-
neous, has a wide host range encompassing different biotypes
capable of infecting humans and aquatic animals, and this
complexity has hampered efforts to provide a reliable assay to
rights reserved.
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identify pathogenic and non-pathogenic variants. Several studies
have utilised different molecular markers in biotype 1 V. vulnificus
as a proxy for potential human virulence, with varying degrees of
success. Differences in the sequence of the small subunit 16S rRNA
gene, as correlating with either clinical (pathogenic) and environ-
mental (non-pathogenic) origin have been utilised previously
(Aznar et al., 1994; Nilsson et al., 2003; Vickery et al., 2007).
V. vulnificus biotype 1 strains have also been classified into two
genotypes based on a virulence-correlated gene, vcg (Rosche et al.,
2005). This genotype has been correlated with human infection for
90% of isolates from human cases having the vcgC sequence type
and 87% of environmental strains having the vcgE variant (Rosche
et al., 2005). Both 16S and vcg polymorphism can be used as
a predictive assay to distinguish pathogenic potential in biotype 1
V. vulnificus strains, but have failed to adequately identify biotype 2
and biotype 3 strains, which are also potentially pathogenic to
humans (Sanjuan et al., 2009; Roig et al., 2010).

A recent report by Roig et al. (2010) demonstrated that a poly-
morphism in the pilus-type IV assembly protein of V. vulnificus can
be utilised as a potential marker to distinguish pathogenic and non-
pathogenic V. vulnificus strains, irrespective of biotype. The authors
found that V. vulnificus strains appeared to be divided into two
groups in terms of sequence variability in the pilF gene, which
correlated strongly with potential pathogenicity (as ascertained by
human serum sensitivity). PilF is a protein required for pilus-type
IV assembly whose mutation in some bacterial pathogens results
in attenuated virulence in mice models (Chakraborty et al., 2008).

The high mortality rates coupled to the rapidity of V. vulnificus
infections underlie the need for additional assays to detect and
enumerate these pathogens in a timely manner. The goal of the
current study was the development and evaluation of a real-time
PCR assay that would provide a rapid, sensitive and quantitative
method for the detection of V. vulnificus strains encompassing the
entire genetic diversity of human pathogenic isolates. A further
objective of this work was the development of an assay that could
be used successfully on extracted DNA, boiled cells, as well as
directly in artificially spiked shellfish matrices.

2. Materials and methods

2.1. Bacterial strains and growth conditions

V. vulnificus strains, encompassing biotype 1, 2 and 3 isolates,
were grown at 28 �C for 24 h in tryptone soy broth or on solid agar
media, supplemented with 5 g/liter NaCl. Strains were
Fig. 1. Alignment of pilF gene sequences from a range of clinical and environmentally
cryogenically stored at�80 �C prior to use, supplemented with 20%
(vol/vol) glyerol. A total of 69 bacterial strains, including
V. vulnificus (n¼ 47), other Vibrio species (n¼ 13), and distantly
related reference strains (n¼ 9) were used to assess the specificity
of the oligonucleotide probe and primer sets used.

2.2. DNA isolation from individual strains

Late-logarithmically grown bacterial suspensions were pelleted
and DNA extracted using a Mini-prep protocol (Ausubel et al.,
2007). The quality and quantity of DNA was subsequently ascer-
tained spectrophotometrically using a NanoDrop ND1000 (Nano-
Drop Technologies, Wilmington, DE). Extracted DNA samples were
coded to conceal their identity, and a separate laboratory scientist
conducting the real-time PCR testing per strain was “blind” to the
original identifier to minimize response measurement bias.

2.3. Sequence analysis and TaqMan probe design

The complete nucleotide sequences (open reading frame
regions only) for all full length pilF nucleotide sequences, deposited
by Roig et al. (2010), and encompassing GenBank accession
numbers FJ756476eFJ756489 and FJ899603eFJ899608, were
aligned using clustalW (Thompson et al., 1994). A region of the pilF
genes (approximate position 481e601) was analysed using primer
express software from DNASTAR (Madison, WI, USA). Initial
sequence alignment comparisons identified a variable region, at
approximate positions 534e571 in the pilF gene that demonstrated
significant polymorphism for the design of an appropriate TaqMan
probe (Fig. 1), targeting a sequence specific to human serum-
resistant strains. The probe and primers were subsequently
assessed for species as well as strain specificity using a BLAST
search against publically available databases (Table 1).

2.4. Production of positive control material

To produce appropriate positive control material for the pilF
real-time PCR, the generation of cloned positive PCR was adopted.
Briefly, for conventional PCR 50 ml per reaction mixes consisted of
30.65 ml molecular grade water, 10 ml 5� Green GoTaq� Flexi Buffer
(Promega), 0.62 ml dNTP mixture (100 mM each); 1.2 ml of the pilF
primers (100 mM each, Table 1), 5 ml of MgCl2 (25 mM), 0.25 ml Taq
flexi polymerase and 2.5 ml of extracted DNA samples. The
temperature profile for this assay consisted of 3 min denaturation
at 94 �C, followed by 30 cycles of 95 �C for 45 s, 45 s at 55 �C and
-derived V. vulnifius isolates, indicating primer binding regions used in this study.



Table 1
Primers and probes used in this study.

Name Sequence (5’e3’) Reference

Pil F-F GATTGACTACGAYCCACACCG This study
Pil F-R GRCGCGCTTGGGTGTAG This study
PilF Probe (FAM)-TGCTCAACCTCGCTAAGTTGGAAATCGATAC-(TAMRA) This study
vvC-F MMAAACTCATTGARCAGTAACGAAA Baker-Austin et al. (2010b)
vvC-R AGCTGGATCTAAKCCCAATGC Baker-Austin et al. (2010b)
vcgC Probe (TAMRA)-AATTAAAGCCGTCAAGCCACTTGACTGTAAAGAA-(FAM) Baker-Austin et al. (2010b)
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72 �C for 45 s with a final extension step of 72 �C for 2 min.
Following PCR, amplicons were visualised by ethidium bromide
staining (0.5 mg/l) on 2.0% (wt/vol) agarose gels. Positive PCR
amplicons of predicted size were subsequently purified using
a Qiagen PCR purification kit (Qiagen, Valencia, CA) following the
manufacturer’s recommendation and cloned into a TOPO� TA
cloning kit (K4530-20, Invitrogen, Carlsbad, CA). Putative clones
were tested by PCR and positive transconjugants were subse-
quently plasmid extracted using a Qiagen mini-prep kit (Qiagen,
Valencia, CA). Plasmid DNA was subsequently serially diluted, and
standard weight/volume concentrations were converted to pilF
copies/microlitre concentrations by using the calculation: Copies
per microliter¼ grams per microliter/FW� 6.0221415�1023,
where FW¼Amplicon Length (in Base Pairs)� 660. Known
concentrations of pilF copies/microlitre were subsequently used for
quantification purposes (Section 2.5).

2.5. TaqMan PCR assay

For real-time PCR experiments, the assay comprised of a total
reaction of 25 ml, consisting of 12.5 ml TaqMan Universal PCRMaster
Mix (Applied Biosystems), 0.45 ml each of forward and reverse
primer (as appropriate), V. vulnificus pilF and vcgC primers
(100 nM), 5.6 ml nuclease-free water, and 1 ml of probe (500 nM,
Table 1). Five microliters of template (either chromosomal DNA,
plasmids, boiled cell lysate) was subsequently added, and each
reaction was performed in triplicate. Amplification was performed
using an Applied Biosystems SDS 7900 real-time PCRmachine with
the following cycling parameters: 1 cycle at 95 �C for 10 min fol-
lowed by 50 cycles at 95 �C for 15 s and 60 �C for 90 s. For each
assay, samples generating a positive reaction result (sigmoid-sha-
ped amplification curve rising above the threshold) in any replicate
were considered positive. For each TaqMan sample replicate, a PCR
unit quantity (genome copies of cloned pilF per reaction) was
calculated using the slope of a standard curve of target DNA, with
a Cp value of 42.75 representing the theoretical limit of detection of
the assay equalling 1 genome copy of target per PCR reaction.
Standard curves for the determination of pilF DNA copy number
(per PCR reaction) were constructed using the average of duplicate
Cp values encompassing a concentration range of four serially
diluted clonedmaterial samples (typically from�4 to�8 dilution of
cloned material). Curves with r2 values of <0.99 were not used for
quantification purposes. Analysed TaqMan sample replicates that
did not generate positive amplification curves were omitted from
final analyses, and the average from the three replicates was
calculated to give an overall quantity for that sample. To ascertain
potential PCR inhibition, a commercially available amplification
control was utilised (TaqMan� Exogenous internal positive control
reagents, Applied Biosystems), with minor modifications. Briefly,
each sample of extracted shellfish and extracted water (5 ml) were
analysed as above in triplicate, with the addition of 2.5 ml of 10�
EXO IPC mix, 0.5 1 ml of 50� EXO IPC DNA, 12.5 ml TaqMan Universal
PCR Master Mix (Applied Biosystems), and 4.5 ml of nuclease-free
water. Inhibition in this context was defined by the absence of
target amplification.
2.6. Shellfish bioaccumulation and DNA extraction procedures

For shellfish bioaccumulation experiments, four 50 litre capacity
tanks (3 experimental and 1 control) were filled with 22 l (�0. 5 l)
sterile seawater and maintained at 15 �C (�1 �C) with constant air
sparging. Twenty-five un-depurated live Pacific oysters (Crassostrea
gigas) were obtained from a local wholesaler (Weymouth, UK),
evenly distributed into each tank and left for 24 h to acclimatise,
prior to the addition of bacterial amendments. For bioaccumulation
experiments, V. vulnificus strain E12 (a strain previously identified
pilF positive by real-time PCR, Table 2) was grown up overnight in
alkaline saline peptone water ASPW (Oxoid, Basingstoke, United
Kingdom), and added to the test tank. The required quantities of
bacterial amendments were assessed by analysing the cell cultures
spectrophotometrically, and by adjusting the concentration of
strain E12 in appropriate volumes of sterile ASPW prior to use. A
spiking volume of strain E12 (optical density of 1) corresponding to
approximately 109 cells was added to the test tank and mixed. Ten
C. gigas were removed after 6 h of exposure, and opened. For each
sample, the digestive glands (stomach and digestive diverticula)
were removed from each animal and weighed. The digestive glands
were subsequently pooled together, and then finely chopped using
a sterile razor blade. Homogenates were then prepared by treating
the chopped digestive glands with 100 mg/ml Proteinase K solution
(30 U/mg; Promega) as previously described (Jothikumar et al.,
2005; Baker-Austin et al., 2010b). Homogenates were stored at
4 �C prior to testing. For each shellfish sample, 500 ml of homoge-
nate was processed using the NucliSens magnetic extraction kit
(BioMerieux, Lyon, France) essentially following themanufacturer’s
instructions. Extracted samples (final volume 100 ml) were subse-
quently used directly in real-time PCR experiments.

3. Results and discussion

To date, no single molecular approach has been developed that
can determine potential human pathogenicity in V. vulnificus
strains with 100% accuracy and confidence, although recent studies
have demonstrated the utility of combining several molecular
virulence testing approaches simultaneously (Han and Ge, 2010). In
this regard, we believe that pilF is a useful and reliable additional
target for epidemiological and diagnostic tests alongside other re-
ported assays for virulence testing in V. vulnificus, such as 16S rRNA
(Aznar et al., 1994; Nilsson et al., 2003; Vickery et al., 2007),
capsular polysaccharide genes (Han et al., 2009), and vcgC and vcgE
analysis (Rosche et al., 2005; Baker-Austin et al., 2010b;Warner and
Oliver, 2008).

Initial experiments using a cloned pilF fragment from strain E12,
a previously identified pathogenic and vcgCþ V. vulnificus isolate,
showed excellent linear agreement (r2 0.999) between the ex-
pected standard curve and detection of the pilF target (Fig. 2, inset
B). Subsequent analysis of DNA diluted over 10 orders of magnitude
was capable of reliably identifying this target using real-time PCR.
Repeated analysis of highly diluted cloned material indicated that
the observed limits of detection correspond to less than 5 copies of
pilF per reaction, demonstrating optimum reaction kinetics of the



Table 2
Bacterial strains analysed in this study.

Strain Isolation/origin vcgC RT-PCR pilF RT-PCR Human
serum resistancea

Vibrio vulnificus biotype 1 strains
ATCC 33816 Human blood (USA) þ þ þ
E12 Oyster (USA) þ þ þ
CECT 5168 Human blood (USA) þ þ þ
CECT 529 Human blood (USA) � � �
V4 Human blood (Australia) þ þ þ
N87 Human blood (Japan) þ þ þ
KH03 Human blood (Japan) þ þ þ
YJ106 Human blood (Taiwan) þ þ þ
CECT 4867 Diseased eel (Sweden) � � �
PD-1 Eel tank water (Spain) � � �
L49 Brackish water (Japan) � � �
Riu1 Seawater (Spain) � þ �
CECT 4608 Eel farm water (Spain) � þ þ
CG100 Oyster (Taiwan) þ þ þ
CS9133 Human blood (South Korea) þ þ þ
CG106 Oyster (Taiwan) þ þ þ
CECT 4606 Eel (Spain) � � �

Vibrio vulnificus biotype 2 strains
CECT 5198 Diseased eel (Spain) � � �
A13 Diseased eel (Spain) � � �
CECT 5769 Diseased eel (Spain) � � �
A11 Diseased eel (Spain) � � �
A14 Diseased eel (Spain) � � �
21A Diseased eel (Denmark) � �b �
22 Diseased eel (Denmark) � � �
27 Diseased eel (Denmark) � � �
CECT 4862 Diseased eel (Japan) � þ þ
CECT 4604 Diseased eel (Spain) þ þ þ
CECT 4999 Diseased eel (Spain) � þ þ
CECT 5763 Eel tank water (Spain) � þ þ
CIP8190 Human blood (France) � þ þ
CECT 4866 Human blood (Australia) � þ þ
CECT 5762 Healthy eel (Spain) � þ þ
Riu-2 Seawater (Spain) � þ þ
CECT 4868 Diseased eel (Norway) � þ þ
90-2-11 Diseased eel (Denmark) � þ þ
94-8-112 Human wound (Denmark) � þ þ
94-9-123 Seawater (Denmark) � þ þ
CECT 4865 Diseased shrimp (Taiwan) � þ þ
UE516 Diseased eel (Taiwan) � þ þ
CECT 897 Diseased eel (Japan) � þ þ
95-8-162 Diseased eel (Denmark) � þ þ
95-8-6 Diseased eel (Denmark) � �b �

Vibrio vulnificus biotype 3 strains (Serovar O)
11028 Human disease (Israel) � þ þ
162 Human disease (Israel) � þ þ
12 Human disease (Israel) � þ þ
32 Human disease (Israel) � þ þ
97 Human disease (Israel) � þ þ

Other Vibrio spp.
V. fluvialis VF10 Type strain NCTC 11327 � � NA
V. cholerae VC9 Type strain NCTC 80442 � � NA
V. alginolyticus 05/073 � � NA
V. cholerae V05/086 � � NA
V. fluvialis Type strain NCTC 11327 � � NA
V. parahaemolyticus V05/070 � � NA
V. parahaemolyticus V05/086 � � NA
V .parahaemolyticus Type strain NCTC 10885 � � NA
V. parahaemolyticus V05/062 � � NA
V. furnissi V06/003 � � NA
V. cincinnatiensis V06/001 � � NA
V. metschinovii V06/004 � � NA
V. mimicus V06/300 � � NA

Other bacteria
S. paucimobilis SP21 Type strain NCTC 11030 � � NA
S. nottingham Type strain NCTC 7832 � � NA
R. planticola Type strain NCTC 9528 � � NA
P. aeruginosa PA20 Type strain NCTC 10332 � � NA
P. mirabilis PM22 Type strain NCTC 10975 � � NA
E .coli E012 Type strain NCTC 12241 � � NA
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Table 2 (continued )

Strain Isolation/origin vcgC RT-PCR pilF RT-PCR Human
serum resistancea

E .coli ECL13 Type strain NCTC 13216 � � NA
K. aerogenes KA23 Type strain NCTC 9528 � � NA
E. faecalis EF9 Type strain NCTC 775 � � NA

NA, not assessed.
a Previously determined by Roig et al. (2010).
b Showed weak non-sigmoidal amplification of pilF.
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real-time PCR assay. The species specificity of the real-time PCR
assay was evaluated by testing pathogenic and non-pathogenic
V. vulnificus strains (deemed pathogenic to humans based on
previous human serum reactivity analysis), as well as a range of
closely and distantly related bacteria. To compare pilF with estab-
lished pathogenicity analysis we analysed strains using vcgC real-
time PCR, an assay previously shown to successfully identify
pathogenic biotype 1 V. vulnificus isolates (Baker-Austin et al.,
2010b). In agreement with previous work (Roig et al., 2010), the
results here demonstrated that the pilF was capable of correctly
identifying the vast majority of human serum-resistant strains,
irrespective of biotype (Table 2). Of the 17 biotype 1 V. vulnificus
strains analysed for pilF and vcgC, 16 strains were correctly identi-
fied by both assays (94.1%). Of the 25 biotype 2 strains analysed,
only 9 strains were correctly identified using vcgC real-time PCR,
compared to 25 using pilF (36% and 100% identifications, respec-
tively). All five biotype three strains were correctly identified using
pilF (100%), whilst no positive results were detected by vcgC (0%),
Table 2. No amplification of closely related vibrio or non-vibrio
strains were observed, indicating the specificity of the pilF real-
time PCR assay (Table 2). The pilF assay thus contrasts with other
targets used to identify pathogenic strains of V. vulnificus, such as
16S rRNA (Aznar et al., 1994; Nilsson et al., 2003; Vickery et al.,
2007) and vcgC polymorphisms (Rosche et al., 2005; Warner and
Oliver, 2008; Baker-Austin et al., 2010b), which have shown
limited usefulness in detecting biotype 2 and biotype 3 V. vulnificus
strains potentially dangerous to human health (Roig et al., 2010;
Sanjuan et al., 2009). Both biotype 2 (serovar E and serovar I) and
biotype 3 V. vulnificus strains represent important human patho-
gens (Amaro and Biosca, 1996; Bisharat et al., 1999), and the ability
to identify potentially virulent strains rapidly is of paramount
Fig. 2. Example of real-time PCR curves generated by a serial dilution range of clonedmateria
importance. We found that a small number of non-pathogenic
V. vulnificus strains (i.e. isolates possessing no serum resistance)
did demonstrate weak amplification when analysed with the pilF
real-time PCR assay (Table 2). However, these strains did not show
true sigmoidal amplification curves, which were evident in all
analysed human serum resistant V. vulnificus strains (data not
shown). The non-specific amplifications are probably caused by the
relatively close sequence homology of the two major poly-
morphisms in the pilF gene, whereby some co-amplification of non-
pathogenic pilF DNA from non-pathogenic strains is difficult to
eliminate. We found that reducing the number of thermal cycles,
increasing the cycle threshold and iterative analysis of all amplifi-
cations during the real-time PCR assay successfully eliminated
these false-positive results. Irrespective, several strains producing
discordant results are currently subject to in-depth characteriza-
tion including additional human serum analysis and genomic
sequencing to glean additional insights into the pathogenic
potential of these isolates.

Real-time PCR demonstrated a strong dynamic range of detec-
tion, with samples reliably detected from cloned plasmid template
diluted to over 9 orders of magnitude in serial dilution experiments
(Fig. 2), corresponding to single number copies of pilF per PCR
reaction. Real-time PCR assays were performed on DNA extracted
from bioaccumulated shellfish samples (Fig. 3). We were able to
identify pilF directly from shellfish matrices (Pacific oyster, average
Ct value 28.99, Fig. 3), whereas no signal was evident from negative
control samples (no vibrio amendment), or from extracted water.
No matrix (shellfish tissue) inhibition was observed during these
experiments. The results from artificially bioaccumulated samples
(Fig. 3) correspond to detection of approximately 7600 genome
copies of pilF per reaction based on cloned pilF target DNA (Section
l (A) and corresponding standard curves for V. vulnificus as detected by real-time PCR (B).



Fig. 3. Detection of pilF in artificially amended shellfish matrices.
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2.5), highlighting the sensitivity of this approach for detection
purposes in shellfish matrices. These results mirror prior findings
(Baker-Austin et al., 2010b) which demonstrated that the nucleic
acid extraction procedure detailed here can be used to directly
extract bacterial nucleic acids from shellfish matrices, without the
need for prior enrichment of samples. Given the promising sensi-
tivity of this assay, the ability to identify pathogenic V. vulnificus
from naturally contaminated rather than artificially spiked samples
is an area that will be further investigated in future work.

In conclusion, this real-time PCR assay represents a rapid means
of distinguishing V. vulnificus strains potentially harmful to human
health, irrespective of biotype. The assay was applied to single
cultures, extracted DNA and to artificially bioaccumulated shellfish
samples, and is an especially useful target to detect potentially
pathogenic biotype 2 and 3 strains of human health relevance. This
tool will enable early detection capability in a range of different
applications, such as food processing, regulatory and clinical
settings.
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