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R. Fioresi♭1, M. A. Lledó♮ and V. S. Varadarajan ♯

♭ Dipartimento di Matematica, Università di Bologna
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C/ Dr. Moliner, 50. 46100 Burjassot (València) Spain.
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Abstract
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1 Introduction

Since the fundamental work of Bayen et al [1] in the seventies, a lot of effort
has been dedicated to show the existence of deformations of a Poisson mani-
fold. Some landmarks in this way were the proof of the existence of differen-
tial star products for symplectic manifolds which was done independently by
De Wilde and Lecomte [2] and Fedosov [3], using different constructions. It
turned out that the star products on a symplectic manifold are classified, up
to equivalence, by the de Rahm cohomology H2(M). Etingof and Kazhdan
showed the existence of star products for another class of Poisson manifolds,
the Poisson-Lie groups. Kontsevich gave the proof of existence and classifi-
cation of star products on an arbitrary Poisson manifolds as a consequence of
his formality theorem [5]. Tamarkin [6] gave another proof of the formality
theorem that relates it to Deligne’s conjecture on Hochschild’s complexes.

More recently, there has grown an interest in translating all the results
mentioned above (valid for C∞ manifolds and differential deformations) to
the algebraic geometric setting [7, 8, 9]. We will comment on these ap-
proaches in Section 2. On the other hand, algebraic star products on the
sphere appeared as soon as in Refs. [10], and later on, a more general con-
struction appeared in Refs. [11, 12]. In these last references, the importance
in physics of algebraic (and not necessarily differential) star products was
stressed, because they are the physical choice in problems as fundamental
as the quantization of angular momentum. As a consequence, they are also
related to geometric quantization. This was not taken into account the orig-
inal papers when the differentiability hypothesis was assumed through the
whole process of deformation quantization.

The relation between algebraic and differential star products was intrigu-
ing, and it was studied in successive papers [13, 14]. The approach followed
in these articles was restricted to coadjoint orbits of semisimple groups (so,
to linear Poisson structures). Explicit algebras, defined by generators and
relations, where considered and this allowed to find some new features in
the algebraic case. One could easily see that there were non isomorphic
deformations even in the simplest case.

It is our intention in this work to extend the approach of of Refs. [11, 12]
to a wider case of affine Poisson algebraic varieties, where the degree of the
Poisson structure is arbitrary. Although working with a restricted class of al-
gebraic varieties, the main advantage of our approach is that the deformation
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is shown explicitly in terms of generators and relations, with no recursion to
gluing procedures. We will construct a suitable non commutative algebra
and then we will show that it is an algebraic deformation of the coordinate
ring of the variety. The precise sense of this statement is explained in Section
2, where we fix the notation and briefly explore other approaches present in
the literature. The starting point is the deformation of the affine space given
by Kontsevich [5]. In Section 3 we present such algebra as a quotient of the
tensor algebra by a certain ideal, very much in the way that the universal
enveloping algebra is presented (which is the deformation of a linear Poisson
structure [15]). In the case of the coadjoint orbits, the deformed algebra was
obtained by quotienting the enveloping algebra by an ideal that it is related
to the ideal of the variety. In Section 4 the same procedure is extended to a
bigger class of algebraic varieties, with no particular restriction on the degree
of the Poisson structure. Some assumptions, nevertheless, must be made in
the course of the proof, but they are of technical nature and it is likely that
they can be dropped. At this moment we do not know if this is possible.

Furthermore, one may think on gluing the deformations obtained for affine
varieties to deform more general algebraic varieties, perhaps with a procedure
à la Fedosov. This is out of the scope of the present paper but may be
approached in other works.

2 Preliminaries

In this section we want to introduce some of the key definitions of the theory
of deformation quantization. In particular we want to compare our definitions
and approach with the ones appearing in the literature.

Definition 2.1 Let (A, { , }) be a Poisson algebra over a field k. We say
that the associative algebra A[h] over k[[h]] is a formal deformation of A if

1. There exists an isomorphism of k[[h]]-modules ψ : A[[h]] −→ Ah;
2. ψ(f1f2) = ψ(f1)ψ(f2) mod(h), ∀f1, f2 ∈ A[[h]];
3. ψ(f1)ψ(f2)− ψ(f2)ψ(f1) = hψ({f1, f2}) mod(h2), ∀f1, f2 ∈ A[[h]]. �

If AC is the complexification of a real Poisson algebra A we can give the
definition of formal deformation of AC by replacing R with C in Definition
2.1. A reality condition on the star product may be required in order to have
a star product defined also over R.
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The associative product in A[[h]] defined by

f ⋆ g = ψ−1(ψ(f) · ψ(g)), f, g ∈ A[[h]] (1)

is called the star product on A[[h]] induced by ψ.
A star product on A[[h]] can be also defined as an associative k[[h]]-linear

product given by the formula

f ⋆ g = fg +B1(f, g)h+B2(f, g)h
2 + · · · ∈ A[[h]], f, g ∈ A (2)

where the Bi’s are bilinear operators. The associativity of ⋆ implies that
{f, g} = B1(f, g)− B1(g, f) is a Poisson bracket on A. So this definition is
a special case of the previous one where Ah = A[[h]] and ⋆ is induced by
ψ = Id.

Two star products on A[[h]], ⋆ and ⋆′ are said to be equivalent (or gauge
equivalent) if there exists a linear map T : A[[h]]→ A[[h]] of the form

T = Id +
∑

n>0

hnTn

with Tn linear operators on A[[h]], such that

f ⋆ g = T−1(T (f) ⋆′ T (g)).

Two star products that are equivalent are isomorphic and have the same first
order term, so they are formal deformations of the same Poisson structure.

If A ⊂ C∞(M) and the operators Bi’s are bidifferential operators we say
that the star product is differential. If in addition A = C∞(M) and M is
a real Poisson manifold, we will say that ⋆ is a differential star product on
M . The set of (gauge) equivalence classes of differential star products on a
manifold M has been classified by Kontsevich in terms of equivalence classes
of formal Poisson structures (modulo formal diffeomorphisms) [5].

Let MC be a complex algebraic affine variety defined over R, whose real
points are a real algebraic Poisson variety M . We denote by AC = C[MC]
its coordinate ring, which is a Poisson algebra. We will say that a formal
deformation of AC is a formal deformation of the algebraic variety MC.

We have an algebraic star product on M (or MC) if the bilinear operators
Bi in (2) are algebraic operators.

A special example of algebraic Poisson varieties are the coadjoint orbits
Lie groups. They are the symplectic leaves of the Kirillov Poisson structure
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in the dual of the Lie algebra, which is a linear Poisson structure. In Refs.
[11, 12] the case of a compact semisimple group was considered and a a family
of algebraic deformations of the coadjoint orbits was constructed. This was
done using the embedding of the coadjoint orbit in the affine space as an
affine algebraic, Poisson subvariety.

In [7] Kontsevich gives a definition of semiformal deformations of alge-
braic varieties. Basically, the deformed algebra must have a filtration and
at each step it should be finitely generated. Adapted to our notation the
definition is the following.

Definition 2.2 Let (A, {, }) be a finitely generated Poisson algebra over a
field k. We say that the associative algebra Ah over k[[h]] is a semiformal
deformation of A if

1. A ≃ Ah ⊗k[[h]] k (i.e. Ah/(h) ≃ A). We denote by π : Ah → Ah/(h) ∼= A
the natural projection.
2. There exists on Ah an exhaustive increasing filtration, compatible with the
product, and admitting a splitting as a filtration of k[[h]]-modules. In other
words Ah = ∪nA

n with An · Am ⊂ Am+n, where An are finitely generated
free k[[h]]-modules, each a direct addend of Ah. This means that there exists
a k[[h]]-module Bn such that Ah = An ⊕ Bn.
3. f1 ⋆ f2 − f2 ⋆ f1 = h{π(f1), π(f2)} mod(h2), ∀f1, f2 ∈ Ah. �

The concept of semiformal deformation differs from the formal one. Let
A be a commutative graded algebra and let

Ah = A⊗ k[[h]], with An = {f ∈ A⊗ k[[h]] | deg f ≤ n}.

Assume that we have a product in Ah compatible with the filtration. This
is a prototype of a semiformal deformation. If A is not finite dimensional
the k[[h]]-module A⊗ k[[h]] is strictly contained in A[[h]], the k[[h]]-module
underlying a formal deformation of A.

In some cases, given a formal deformation of A, it is possible to find a
semiformal deformation sitting inside. This happens for example when the
the k[[h]]-module A⊗ k[[h]] is closed under the star product.

In Ref.[7], §2.3, Kontsevich discusses this situation for the algebra A =
Sym(V∗), where V ∗ is a finite dimensional vector space over k. It appears that
only Poisson structures with degree up to 2 admit semiformal deformations.
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Kontsevich also proposes in §4.1 the problem of finding a semiformal de-
formation of regular coadjoint orbits of semisimple Lie groups. Remember
that in this case the Poisson structure is linear. The problem was indeed
already solved in [11, 12], where formal deformations of the polynomial al-
gebra of coadjoint orbits were explicitly constructed. The deformations are
also semiformal, in the sense that the subspace A⊗C[[h]] is closed under the
star product.

Another approach to the deformation of algebraic varieties is taken in Ref.
[8]. It is shown there that any smooth, Poisson algebraic variety (with some
topological requirements) admits a deformation. Also, such deformations are
classified in terms of formal Poisson structures (up to gauge equivalence), in
the same way that deformations of differential manifolds where classified
by Kontsevich [5]. The basic idea is to endow the smooth variety with a
differential trivialization or étale coordinates. In each open set the local
result of Ref. [5] can be reformulated in ring theoretic terms. Then, one
can glue the star products in different open sets using a procedure analogous
to the procedure that Fedosov used to show the existence of star products
on symplectic manifolds [3]. This procedure was extended to general Poisson
manifolds by Cattaneo, Felder and Tomassini [16] using the notions of formal
geometry by Gelfand and Kazhdan [18]. The extension of these methods to
the algebraic geometrical setting is non trivial.

The work by Bezrukavnikov and Kaledin [9] deals also with quantization
in the algebro-geometric context. In particular, it deals with symplectic
smooth varieties, and shows that the Fedosov quantization procedure can be
translated into this context with appropriate cohomological assumptions

3 Deformation quantization of affine space

with a Poisson structure

We consider an open domain in Rn with an arbitrary differential Poisson
structure. Let us denote by {xi}

n
i=1 the coordinates in such open domain and

let
α = αij(x)∂i ⊗ ∂j

denote the Poisson structure. We want to briefly describe Kontsevich’s local
formula for the star product canonically associated to α (for a full description,
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we shall refer to the original paper [5]).
The star product is given in terms of certain admissible graphs, each of

which has associated a bidifferential operator contributing to the sum (2)
with an appropriate weight.

The bidifferential operators at order n are constructed with the products
of n factors α acted by partial derivatives ∂i (up to 2n-2), and the indices
contracted in appropriate way. For example, at order n = 3 one such operator
could be

∑

i1, i2, i3
j1, j2, j3

(∂i2∂j3α
i1j1)(∂i1α

i2j2)(αi3j3)∂i3 ⊗ ∂j2∂j1

We are interested in Poisson structures on the whole affine space Rn

such that αij(x) are polynomial functions. Then, the Poisson structure is
algebraic and the operators Bn in (2) are bidifferential operators with poly-
nomial coefficients. Moreover, denoting by deg(f) the maximum degree of
the polynomial f we have deg(Bm(f, g)) ≤ deg(f) + deg(g) + (p − 2)n, be-
ing p = max(i,j)(deg(αij)). The star product of two polynomials will be
an infinite series in h with coefficients in R[x1 . . . xn], i.e. an element of
R[x1 . . . xn][[h]]. Then, Kontsevich’s star product is an algebraic star prod-
uct.

In the following we will take the Poisson structure fixed and Kontsevich’s
star product will be denoted simply by ⋆. We will always work with the
complexifications of the Poisson structure and star product. In the affine
space An we choose coordinates {xi}

n
i=1 so C[An] =def C[x1 . . . xn] (. The

Poisson bracket is determined by its values on the generators of this algebra,

{xi, xj} = αij(x1, . . . , xn)

and we have
⋆ : C[An][[h]]× C[An][[h]] −→ C[An][[h]].

Our goal in this section is to give a presentation of the deformed algebra
(C[An], ⋆) in terms of generators and relations. That is, we want to present
it as a quotient of the ring of formal power series in h with coefficients in
the full tensor algebra T (X1 . . .Xn) generated by X1 . . .Xn and a two-sided
completed ideal J .

(C[An], ⋆) ≃ T (X1 . . .Xn)[[h]]/J
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When the Poisson structure is of degree 0, (p = 0, αij constant), then the
star product is the Moyal star product.

When the Poisson structure is homogeneous of of degree 1 we have

{xi, xj} = ckijxk

and the star product algebra is isomorphic to the enveloping algebra over
C[[h]] [15, 5] of the Lie algebra defined by the structure constants ckij .

The case of a homogeneous quadratic Poisson structure is studied by
Kontsevich in Ref.[7], pg 11. In that paper it is shown that the algebra
(C[An]⊗C[[h]], ⋆), which is strictly smaller than the one we are considering,
is closed under the star product and that it can be given in terms of generators
and (quadratic) relations. A similar presentation for Poisson structures of
higher degree is not provided in that paper.

Our strategy in solving this problem proceeds as follows:
1. Let I = (i1, i2, . . . , in) be a multiindex with ij = 1, . . . n. We will prove
that the ordered star monomials i.e. the monomials

x⋆I = xi1 ⋆ · · · ⋆ xim i1 ≤ · · · ≤ im

are a basis for the C[[h]]-module C[An][[h]]. (Notice that when we write
xi1 ⋆ · · · ⋆ xim omitting the parenthesis we are making an implicit use of the
associativity of ⋆).
2. Using part 1. we will find an algebra isomorphism

C[An][[h]] −−−→ T (X1 . . .Xn)[[h]]/J

xi1 ⋆ · · · ⋆ xim −−−→ Xi1 . . .Xim

i1 ≤ · · · ≤ im

where J is a two-sided completed ideal (completed in the h-adic topology).
J is generated by the relations obtained expressing the non ordered star
monomials in terms of the ordered ones.

We start applying the procedure to the C[[h]]-module C[An][[h]]/(hN ) ≃
C[An][h]/(hN). Then we will show that the inverse limit of the algebras
obtained is a formal deformation of C[An].

Proposition 3.1 Let N ∈ N be fixed. The ordered star monomials:

x⋆I = xi1 ⋆ · · · ⋆ xim , I = (i1 . . . im), i1 ≤ · · · ≤ im

form a basis for the C[[h]]-module C[An][h]/(hN ).
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Proof. The ordered commutative monomials xI = xi1 . . . xim , i1 ≤ · · · ≤
im form a basis for C[An]. By Kontsevich formula we can express any ordered
star monomial as an infinite series in h with coefficients in C[An]. Modulo hN

the series becomes finite and can be rearranged as a finite C[h]/(hN )-linear
combination of the commutative monomials. We denote it as

x⋆I =
∑

J

AJI xJ ,

where AJI ∈ C[h]/(hN ). Let us take an ordering in the set of multiindices
I = (i1 . . . im), i1 ≤ · · · ≤ im. With this ordering we denote by and X⋆ and X
the (infinite) column vectors of ordered star monomials and of commutative
monomials respectively. Then we have an infinite C[h]/(hN)-linear system:

X⋆ = AX

where A is the infinite matrix with entries AJI . We notice two crucial facts:

(i) The matrix A has only a finite number of entries different from zero in
each row (as we stated before, this is because we are taking Kontsevich’s
formula modulo hN).

(ii) A = Id+hB, since by Kontsevich formula the term of order 0 in h is the
commutative product.

This implies that A is invertible. Its inverse in C[An][[h]]/(hN ) can be written
as

A−1 = (Id + hB)−1 =
N−1∑

m=0

(−1)mhmBm

Notice that Bm makes sense because of property 1. In fact all powers Bm

have only a finite number of entries different from zero in each row. We have
X = A−1X⋆, hence the ordered star monomials generate C[An][[h]].

We want now to prove linear independence. Let us assume that there is
a relation

∑

I

aIx⋆I = 0 mod (hN ), i.e.
∑

aIx⋆I = hNq

with aI ∈ C[h]/(hN) and q ∈ C[An][[h]].
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We have that max{I}(deg(aI)) ≤ N . Specializing h to zero we have

∑

I

aI(0)xI = 0 ⇒ aI(0) = 0

Hence we have that our relation can be written:

h
∑

I

bIx⋆I = hNq

with aI = hbI , with max{I}(deg(bI)) < max{I}(deg(aI)). Since C[An][[h]] is
an integrity domain this implies

∑
bIx⋆I = hN−1q.

We can again specialize to h = 0, which will imply bI(0) = 0, so bI = hcI ,
with max{I}(deg(cI)) < max{I}(deg(bI)). In each step we reduce the degree
of the coefficients, so repeating the argument a sufficient number of times we
obtain our result. �

Let R ⊂ C[An][h]/(hN) be the (infinite) set of linear relations expressing
the non ordered star monomials in terms of the ordered ones.

x⋆I =
∑

J

dJI x⋆J , j1 ≤ · · · ≤ jm and i1, . . . im arbitrary

Let T (X1, . . . , Xn)[h] be the free tensor algebra generated over C[h] by
X1 . . .Xn. We denote

TN =def T (X1, . . . , Xn)[h]/(h
N )

Denote by JN the two-sided ideal generated in TN by the relations in R
mod(hN), where we replace ⋆ with the tensor multiplication.

Proposition 3.2 The C[h]/(hN) linear morphism:

TN/JN
ψN−−−→ C[An][h]/(hN )

Xi1 ⊗ · · · ⊗Xir −−−→ xi1 ⋆ · · · ⋆ xir

i1 ≤ · · · ≤ ir

is well defined and it is an algebra isomorphism.
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Proof. Consider the surjective linear map

TN
φN−−−→ C[An][h]/(hN)

Xi1 ⊗ · · · ⊗Xir −−−→ xi1 ⋆ · · · ⋆ xir i1, . . . ir arbitrary.

Notice that it defines an algebra morphism. Moreover, JN ⊂ ker(φN). Hence
the maps φN for all N induce a family of surjective algebra homomorphisms

TN/JN
ψN

−−−→ C[x1 . . . xn][h]/(h
n)

Xi1 ⊗ · · · ⊗Xir −−−→ xi1 ⋆ · · · ⋆ xir

It is easy to see that ordered monomials in TN/JN form a basis. Because of
the definition of JN , it is clear that they are a system of generators. Moreover,
they are linearly independent. In fact if there were a relation:

∑
aIXI = 0 ⇒

∑
aIψn(XI) = 0 ⇒ aI = 0

due to Proposition 3.1.
So we have obtained a surjective C[[h]]/(hN)-linear map ψN which sends

a basis into a basis. It is a linear isomorphism. Since it also preserves the
product, it is also an algebra isomorphism. �

We want to consider now the limit N →∞.

Theorem 3.3 Let JN be the family of ideals defined above, and let J =
lim←−JN be its inverse limit. Then we have an algebra isomorphism

(C[An][[h]], ⋆) ∼= T (X1, . . . , Xn)[[h]]/J.

Proof. Consider the exact sequence:

0 −−−→ JN −−−→ TN −−−→ C[An] −−−→ 0

This is an exact sequence of inverse systems, i.e. it well behaves with respect
to the sequences defining the inverse systems.

In general an exact sequence of inverse systems does not automatically
give an exact sequence of the corresponding inverse limits. However in this
case it happens, since Jn is a surjective system i.e.

JN+1 −−−→ JN
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is surjective (see Ref. [20] pg 104).
So we have:

0 −−−→ lim←−JN −−−→ lim←−TN −−−→ lim←−C[An] −−−→ 0

which is what we wanted to prove. �

In general, to obtain explicitly the generators of the ideal J = lim←−Jn
one needs to know the full star product series. In the particular case of a
quadratic Poisson structure, they reduce to quadratic generators [7], but in
the more general case we don’t even know if the number of generators is
finite.

Since

C[x1, . . . xn] ≃ T (X1, . . . , Xn)/(Xi ⊗Xj −Xj ⊗Xi)

we have

T (X1, . . . , Xn)[[h]]/J −−−→
h→0

T (X1, . . . , Xn)/(Xi ⊗Xj −Xj ⊗Xi), (3)

which is another way of expressing condition 2. in Definition 2.1.

4 Deformation quantization of regular affine

Poisson varieties

We want to construct an explicit algebraic deformation quantization of the
ring of polynomial functions C[X] of a regular affine Poisson variety. We
assume that X is a Poisson subvariety of some Poisson structure defined in
the affine ambient space An. We denote by I the ideal in C[An] defining the
variety X. By assumption, we have that I is also a Poisson ideal, that is,

{I, f} ⊂ I, ∀f ∈ C[An].

Let {p1, . . . pm} be a basis of the ideal, so I = (p1, . . . pm). Let Ah =
T (X1, . . . , Xn)[[h]]/J be the quantization of the affine space as presented
in Section 3. We want to construct an ideal Ih ∈ Ah such that Ah/Ih is a
deformation quantization of the Poisson algebra C[An]/I.

The general idea is the same than the one used for coadjoint orbits of
semisimple groups in Refs. [11, 12]. In that case we had two advantages:
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one is the fact that the Poisson structure in the ambient space is linear,
which roughly allows to make inductions on the degree of the polynomials;
the other is that the existence of the action of the semisimple group provides
some tools that are not available in the general case. Nevertheless, assuming
some technical conditions it is possible to overcome the difficulties.

The precise result is as follows:

Theorem 4.1 Let X be an affine Poisson variety with ideal I = (p1 . . . pm)
and Poisson structure induced from a Poisson structure in C[An]. Let Ah be
an algebraic deformation of the the Poisson algebra C[An], as constructed in
Section 3. Assume that
1. The polynomials {p1, . . . pn} are such that the matrix (dp1, . . . dpn) has
maximal rank on the points of X.
2. There exists liftings P1, . . . , Pm ∈ Ah of p1, . . . pm,

P1, . . . , Pm −−−→
h→0

p1, . . . pm

such that the following left and right ideals coincide:

Ih = (P1, . . . , P2)left = (P1, . . . , Pm)right.

Then Ah/Ih is an algebraic deformation quantization of C[X]. �

Before going to the the proof, we want to make remarks on the hypothesis
2. For regular coadjoint orbits we can always fulfill this condition. It is
enough to take pi invariant, which is always possible, and then to consider
the Weyl map (or symmetrizer) from polynomials into the enveloping algebra,

W : C[An] ≃ Sym(X1, . . . , Xn)→ Uh.

Then Pi = W (pi) are in the center of the enveloping algebra and become
adequate liftings. For non regular orbits p1, . . . pm can be chosen spanning
a finite dimensional representation of the group, which is always possible.
Then, lifting with the Weyl map we obtain elements in the enveloping algebra
satisfying condition 2. Even when condition 1. is not satisfied in this case,
this lifting was used in Ref. [12] to construct a deformation quantization.

Another case where the lifting is available is when the generators p1, . . . , pn
are Casimirs of the Poisson structure, that is

{pi, f} = 0, ∀f ∈ C[An], i = 1, . . . n.
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Indeed, it was found in Ref. [16] (Theorem 5.1) the explicit form of map
R : C[x1, . . . xn][[h]] → C[x1, . . . xn][[h]] which is the identity when h → 0 (a
quantization map) that is an algebra isomorphism between the Casimirs of the
Poisson structure and the center of the star product algebra. It is constructed
in terms of the L∞-morphism which gives the formality theorem [5], and when
applied to polynomials gives a formal series in h with polynomial coefficients.
Then it follows that R(p1), . . . , R(pm) also satisfy condition 2. in Theorem
4.1.

Note that R is an algebra isomorphism but this is not necessary to fulfill
condition 2. The Weyl map, for example, is not an algebra isomorphism.

Unfortunately, when the generators are not central, the same map does
not give an appropriate lifting. Nevertheless, it is very likely that such lifting
exists for every Poisson ideal, but we have not proved it in full generality.

Varieties defined by central elements are typically symplectic leaves of the
Poisson structure in the ambient space, or stacks of such leaves. In partic-
ular, this extends our previous result on coadjoint orbits of semisimple Lie
groups to regular coadjoint orbits of arbitrary (not necessarily semisimple)
Lie groups.

We now return to the main result. We need only to prove that Ah/Ih is
isomorphic, as a C[[h]]-module to A/I[[h]]. Then, properties 2. and 3. in
Definition 2.1 are immediate. We need some lemmas.

Lemma 4.2 Let p1, . . . pm ∈ C[x1 . . . xn] be such that the matrix (dp1, . . . dpm)
has maximal rank on the points p1 = · · · = pm = 0. Then, if

∑

α

aαpα = 0, aα ∈ C[x1 . . . xn],

there exist elements bαβ ∈ C[x1 . . . xn] such that

aα =
∑

j

bαβpβ , with bαβ = −bβα

Proof. This result can be found for C∞ functions in Ref. [19]. We note
that bij are not unique, because one can always add a term b̃ij such that∑

j b̃αβpβ = 0; that is, using the result in [19]

b̃αβ =
∑

γ

cαβγpγ, with cαβγ = −cαγβ .
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It is clear that if pα and aα are polynomials, bαβ can also be chosen polynomial
functions �

Next Lemma tells us that the C[[h]]-module Ah/Ih is torsion free.

Lemma 4.3 Let X, p1, . . . , pm and P1, . . . , Pm be as in Theorem 4.1. Let
Ih = (P1, . . . , Pm) ⊂ Ah. Then, if hA ∈ Ih also A ∈ Ih.

Proof. Assume that hA ∈ Ih. Since Ih is two-sided we can write:

hA =
∑

α

AαPα. (4)

Taking h→ 0 in this relation we get
∑

i

aipi = 0 ⇒ aα =
∑

β

bαβpβ, with bαβ = −bβα

by Lemma 4.2. We can lift this relation,

Ãα =
∑

β

BαβPβ, with Bαβ = −Bβα,

and it is clear that Aα − Ãα = hCα. By substituting in (4) we get

hA =
∑

α

(
∑

β

BαβPβ + hCα)Pα = h
∑

α

CαPα,

and so A ∈ Ih. �

We now want to define a set of elements B∗ in Ah whose images in the
quotient Ah/Ih will turn out to be a topological basis.

We consider a monomial basis for C[x1 . . . xm],

{xJ = xj1 · · ·xjk}, J = (j1, . . . , jk), j1 ≤ · · · ≤ jk,

and the associated topological basis of C[x1 . . . xm][[h]] of star monomials

{x⋆J = xj1 ⋆ · · · ⋆ xjk}, J = (j1, . . . , jk), j1 ≤ · · · ≤ jk,

(see Section 3).
Let B be a set of multiindices with the property the images by π : A →

A/I of the elements in B = {xJ}J∈B form a basis of A/I. Consider the set

B⋆ = {x⋆J}J∈B ⊂ Ah.

Let πh : Ah −→ Ah/Ih. We want to show that the elements in πh(B
⋆) are a

basis of Ah/Ih. We start by showing that they are linearly independent.
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Lemma 4.4 The image under the projection map πh : Ah −→ Ah/Ih of
B⋆ = {x⋆J}J∈B is a linearly independent set in Ah/Ih.

Proof. The argument of Proposition 3.11 in [11] works without changes,
we repeat it here for completeness.

Suppose that there exists a linear relation among the elements of B⋆ and
let G ∈ Ih be such relation, G = hkF with

F −−−→
h→0

f 6= 0

for some k. By Lemma 4 we have that F ∈ Ih, so

F =
∑

α

AαPα, ⇒ f =
∑

α

aαpα

by taking h → 0. But f is a non trivial relation between the ordinary
monomials in B, which is not possible since B is assumed to be a basis of
A/I. So we have proven linear independence �

To prove that the elements in Lemma πh(B
⋆) are a system of generators

we cannot use the same argument that appears in Proposition 3.13 in Ref.
[11]. The reason is that having a linear Poisson structure would allow us
to use an induction on the degree of the polynomials, so to choose certain
liftings in such way that the “correction” terms would have a degree strictly
smaller than the largest degree appearing in the order h0 term. Such induc-
tion argument is not possible for a Poisson structure with arbitrary degree.
Nevertheless, we have the following

Proposition 4.5 Let the notation be as above. πh(B
∗) is a topological basis

for Ah/Ih.

Proof. We set
(Ah/Ih)N = (Ah/Ih)/(h

N).

It is enough to show that π(B∗) is a basis for (Ah/Ih)N for all N .
Let P be a complement of B in the set of multiindices, and let

P = {xJ}J∈P , P⋆ = {x⋆J}J∈P .

We will prove that any monomial in π(P⋆) is expressible in terms of mono-
mials in πh(B

⋆). This will clearly suffice since we have proven that the mono-
mials in πh(B

⋆) are linearly independent (also in (Ah/Ih)N).
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We consider total lexicographic orderings in the sets B and P . Let a ∈ N

be the position of certain multiindex K ∈ B and let µ ∈ N be the position
of certain multiindex J ∈ P with respect to the chosen orders. It will be
convenient to denote the respective monomials as

ea = xK , ∈ K ∈ B, vµ = xJ J ∈ P

e⋆a = x⋆K , ∈ K ∈ B, v⋆µ = x⋆J J ∈ P.

Each monomial in P can be expressed as a linear combination of mono-
mials in B modulo an element in I

vµ =
∑

a

bµaea +
∑

i

cµi(x)pi,

where bµa ∈ C and cµi(x) ∈ C[An].
We can lift this relation to the deformed algebra Ah in many ways. Each

star monomial v⋆α ∈ π(P⋆) can be expressed as:

v⋆µ =
∑

b

Bµa(h)e⋆a +
∑

i

Cµi(x, h) ⋆ Pi + h
∑

Aµν(h)v⋆ν , (5)

Bµa(h), Aµν(h) ∈ C[[h]] and Cαµ(x, h) ∈ C[An][[h]]. Modulo Ih we have then
a linear system

∑

ν

(δµν − hAµν(h))v⋆ν =
∑

a

Bµa(h)e⋆a, (6)

which in matrix form reads

Dv⋆ = Be⋆, D = Id− hA.

The infinite matrixD, modulo hN , has only a finite number of entries non zero
for each row, and modulo h it is the identity. Hence, by the same reasoning
used in Section 3, we can invert D, and its inverse in C[An][h]/(hN) can be
written as

D−1 = (Id− hA)−1 =
N−1∑

m=0

hmAm.

D−1 has again a finite number of entries different from zero in each row, so
the multiplication D−1B is well defined and

v⋆ = D−1Be⋆

17



as we wanted to prove.
Making the inverse limit we have that π(B⋆) is a topological basis of

Ah/Ih. �

This concludes the proof of Theorem 4.1.
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Department of UCLA for their kind hospitality during the realization of this
work. V. S. V. wants to thank the Dipartimento di Fisica, Politecnico di
Torino and the INFN, Sezione di Torino for their kind hospitality during the
realization of this work.

The work of M. A. Ll. has been supported by the research grant BFM
2002-03681 from the Ministerio de Ciencia y Tecnoloǵıa (Spain) and from
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braic construction of ∗ product on the regular orbits of semisimple Lie
groups. In Gravitation and Cosmology. Monographs and Textbooks in
Physical Sciences. A volume in honor of Ivor Robinson, Bibliopolis. Eds
W. Rundler and A. Trautman, (1987); Non localité d’une déformation
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