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The effect of storage on sterol oxidation of ready-to-eat infant foods was evaluated. Two different
liquid infant foods (honey or fruits flavors), prepared with milk and cereals, were stored for 0, 2, 4, 7
and 9 months at 25 °C. Sterol oxidation products (SOP) were isolated by cold saponification, purified
by silica solid-phase extraction, and analyzed by gas chromatography (GC) and GC-mass
spectrometry. 3-Sitosterol was the most representative sterol, followed by cholesterol and campesterol.
No significant differences in the total and single SOP content (0.8—1 mg/kg of product) were observed
with respect to storage time and type of sample; the main SOP found was 7-ketositosterol (<0.2
mg/kg of product). The extent of stigmasterol oxidation (2.9%) was higher than that of cholesterol
(1.9%) and p-sitosterol (1.4%). The type and quality of raw materials, as well as the processing
conditions, seem to greatly influence SOP formation and accumulation in infant foods.
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INTRODUCTION

Sterols (cholesterol and phytosterols) are unsaturated mol-
ecules prone to oxidation, which can generate sterol oxidation
products (SOP). Cholesterol and phytosterols are subjected to
oxidation when exposed to air, which can be further enhanced
by heating, ionizing radiation, chemical catalysts, fatty acid
unsaturation level, and exposure to light. In general, oxidation
of sterols is a free-radical chain reaction that begins with the
formation of hydroperoxides, which may decompose into
various compounds. The main oxidation products are hydroxy,
keto, epoxy and triol derivatives. Enzymes, reactive oxygen
species, and the photosensitizers may also induce lipid oxidation.
Because oxidation can follow several reaction and isomerization
mechanisms, a large number of different sterol oxides can be
formed, many of which have already been identified (/).

Over the past few years, attention has been focused on the
study and determination of cholesterol oxidation products (COP)
rather than in phytosterol oxidation products (POP) (2), because
of the asserted negative biological effects of COP (3-5). On
the other hand, data and methods for the evaluation of POP
concentration levels in food products of mixed origin are scarce,
due to the inherent complexity of the analytical determination.
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POP have been mostly analyzed in frying oils, fried products,
margarines, bakery products, cereal-based foods, infant formulas,
coffee, and biological samples (6—11). However, interest in POP
has increased as a result of food supplementation with phy-
tosterols and phytosterols esters because of their blood cholesterol-
lowering effect (/2). Although some studies have recently shown
POP absorption from diet, results on their potential biological
effects are still scarce and sometimes contradictory (/3-16).

Most infant foods contain sterols from both vegetable and
animal sources. The preparation of these food products involve
heating and drying cycles that require elevated temperatures,
often in the presence of oxygen. In addition, during storage,
the contact with air and/or light and high temperatures could
further enhance fatty acid and sterol oxidation. SOP have been
found in infant milk formulas and milk cereals (6, /7-19), and
meat- and fish-based infant foods (20, 21); the main SOP were
7-ketositosterol and 7-ketocholesterol. These milk and cereal-
based baby foods are largely consumed during infancy and
could, thus, be potentially harmful for children health.

The aim of this study was to evaluate the oxidative stability
of sterols in two types of ready-to-eat milk and cereal-based
infant food during storage, as related to their fatty acid
composition. To the authors” knowledge, this is the first time
that the different classes of sterol oxidation derivatives have
been quantified in liquid infant foods, thus providing a more
complete picture of their oxidation status. A validated gas
chromatography (GC) method (/0) was applied for this scope.
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MATERIALS AND METHODS

Reagents. Chloroform (p.a.), n-hexane (p.a.), methanol (Lichrosolv),
diethyl ether, anhydrous sodium sulfate, potassium chloride, potassium
hydroxide, and silica-gel thin-layer chromatography (TLC) plates (20
cm x 20 cm x 0.25 mm film thickness), were supplied by Merck
(Darmstadt, Germany). Acetone (AnalaR) was purchased from BDH
(VWR International Ltd., Leicestershire, UK). Double distilled water,
2',7'-dichlorofluorescein (sodium salt), silver nitrate, and silylating
agents (pyridine, hexamethyldisilazane, and trimethylchlorosilane), were
supplied by Carlo Erba (Milano, Italy). (24 R)-Ethylcholest-5-en-3/3-
ol (f3-sitosterol, purity: 60% f-sitosterol and 30% (24 R)-methylcholest-
5-en-3[3-ol (campesterol)) was purchased from Research Plus (Bayonne,
New Jersey). (24 S)-methylcholest-5,22-dien-33-ol (brassicasterol,
purity: 99%), cholest-5-en-33,7a-diol (7o-hydroxycholesterol, purity:
99%) and (24 S)-ethylcholest-5,22-dien-3-o0l-7-one (7-ketostigmasterol,
purity: 99%) were supplied by Steraloids (Newport, Rhode Island). (24
S)-Ethylcholest-5,22-dien-3/-ol (stigmasterol, purity: 93%), cholest-
5-en-33-0l-7-one (7-ketocholesterol, purity: 99%), cholest-5-en-33-ol
(cholesterol, purity: 99%), cholest-5-en-34,7/3-diol (7f-hydroxycho-
lesterol, purity: 99%), 50,60-epoxy-cholestan-3-ol (o-epoxycholes-
terol, purity: 87%), 53,63-epoxy-cholestan-33-ol (-epoxycholesterol,
purity: 80%), cholestan-33,50.,6p-triol (cholestanetriol, purity: 99%),
cholesten-5-en-33,19-diol (19-hydroxycholesterol, purity: 99%), 5a-
cholestane (purity: 97%), and tridecanoic acid methyl ester were
purchased from Sigma (St. Louis, Missouri). The purity of the standards
was determined by GC. A standard mixture of fatty acid methyl esters
(GLC 463) was purchased from Nu-Chek (Elysian, Minnesota).

Silica solid phase extraction (SPE) cartridges (Supelclean LC-Si,
500 mg/3 mL) from Supelco (Bellefonte, Pennsylvania) were used for
SOP purification.

Samples. Two types of liquid infant foods were used for this study.
They mainly contained skimmed milk (88%), hydrolyzed 8-cereals flour
(wheat, corn, rice, oat, barley, rye, sorghum, and millet) (8.8%), and
vegetable oils; they differed in their minor ingredients (honey, 0.9%;
LH) and fruits (banana, orange, and apple, 1.1%; LF). The declared
fat content of both products was 2.6% (w/w). The products were
supplied by the manufacturer (Hero Espana S.A.).

Both products were obtained by a preheating at 90 °C and a following
ultra-high-temperature (UHT) sterilization. Infant foods were packed
in a commercial 250 mL tetra brick in an air-free atmosphere and stored
at 25 °C for 9 months. They were analyzed just after being produced
(zero time) and after 2, 4, 7, and 9 months of storage.

For each infant food type and storage point, three bricks from the
same batch were sampled.

Lipid Extraction. Lipids were extracted according to a modified
version (22) of the method described by Folch et al. (23).

Preparation and GC Analysis of Total Fatty Acid Methyl Esters
(FAME). Fatty acids (FA) were determined as suggested by Cercaci
et al. (/7). The limit of quantitation (LOQ) was 0.01 g/100 g of FA.

Silver-lon TLC-GC Analysis of Trans Fatty Acids (TFA). To
accurately quantify the TFA isomers, silver-ion TLC-GC was performed
according to Cercaci et al. (/7). The LOQ was 0.01 g/100 g of FA.

Isolation of Sterols and Sterol Oxides (SOP) (10). Sterols and SOP
were isolated from about 600 mg of lipid, which were extracted from
25 g of sample. For the determination of sterols, /10 of the unsaponi-
fiable matter was subjected to silylation (24), dried under nitrogen
stream, and dissolved in 250 uL of n-hexane; 1 uL of the silylated
sterols was injected into gas chromatograph—flame ionization detector
(GC-FID) and gas chromatograph—mass spectrometry (GC-MS) for
quantification and identification purposes, respectively.

Regarding the determination of the sterol oxides, the remaining %o
of the unsaponifiable matter was divided into two portions and purified
by silica SPE according to Guardiola et al. (25). SOP were eluted with
acetone. The purified fraction was then silylated, dried under nitrogen
stream, and dissolved in 40 uL of n-hexane. A 1 uL portion of the
silylated sterols was injected into GC-FID and GC-MS under the same
analytical conditions used for the determination of sterols.

To further confirm that there were no overlappings with peaks due
to matrix interferences, the purified SOP fraction was separated by TLC
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(10). The TLC bands of the oxide derivatives were scrapped off,
extracted with diethyl ether, silylated, and injected into GC-FID and
GC-MS.

GC-FID and GC-MS Analysis of Sterols and SOP. Quantification
of sterols and SOP was performed by GC-FID. A Carlo Erba HRGC
5300 Mega Series (Rodano, Milan, Italy) was equipped with a
split—splitless injector and a FID. A fused silica capillary column (50
m x 025 mm id. x 0.25 um film thickness) coated with 5%
phenyl—95% dimethyl-polysiloxane (CP-Sil 8CB, Chrompack-Varian,
Middelburg, The Netherlands) was used. The oven temperature was
programmed from 280 °C (kept for 20 min) to 290 °C at a rate of 0.2
°C/min and held for 2 min; the oven temperature was then raised to
320 °C at a rate of 30 °C/min and held for 10 min. The injector and
detector temperatures were both set at 325 °C. Helium was used as a
carrier gas at a flow rate of 2.6 mL/min; the split ratio was 1:20.

Identification of sterols and SOP was performed by GC-MS. An
Agilent 6890N GC coupled to a 5973N mass-selective detector (Agilent
Technologies, California) was used. The system was fitted with a
capillary column (30 m x 0.25 mm i.d. x 0.25 um film thickness)
coated with 5% phenyl—95% dimethyl-polysiloxane (HP-5MSi, Agilent
Technologies, California), and helium was used as carrier gas at a flow
rate of 1 mL/min. The oven temperature was programmed to go from
250 to 310 °C at 0.8 °C/min. The injector and transfer line temperatures
were set at 310 and 280 °C, respectively. Manual injection of 1 uL
was performed in the split mode with a 1:10 split ratio. The filament
emission current was 70 eV. A mass range from 40 to 650 m/z was
scanned at a rate of 1500 amu/s.

Quantification and Identification of Sterols and SOP. Sterols and
SOP were quantified by the internal standard method, using So-
cholestane and 19-hydroxycholesterol as internal standards (IS),
respectively. The GC-FID response factors of sterols and SOP with
respect to their corresponding IS were considered equal to 1. The LOQs
of the GC-FID analysis of sterols and SOP were 0.1 mg/100 g of sample
and 0.5 ug/100 g of sample, respectively, which were calculated at a
signal-to-noise ratio equal to 6:1.

Identification of sterols was performed by comparing the retention
time and mass spectra with those of the commercial sterol standards.
SOP were identified by comparing their retention time and mass spectra
with those of commercial COP and 7-ketostigmasterol standards, as
well as with those of SOP synthesized as suggested by Conchillo et al.
(10). The mass spectra of SOP were also compared with those reported
in literature (7).

Data Analysis. One lipid extraction was carried out per sample.
Each parameter was determined twice per each lipid extraction. GC
data were stored and processed with a Turbochrom Navigator acquisi-
tion system (Ver. 6.1.1.0.0:K20, Perkin-Elmer Instruments, Norwalk,
Connecticut). Mean and standard deviation data of the SOP contents
determined in each sample are shown in Table 3. Statgraphics v. 3.1
(Rockville, Maryland) was used to perform two-way (sample type and
storage time) analysis of variance (ANOVA) and Tukey’s honest
significant difference test (HSD) at a 95% confidence level (p < 0.05)
to identify differences among samples.

RESULTS AND DISCUSSION

To better understand the oxidative behavior of ready-to-eat
infant foods, as well as to obtain more information about the
quality and unsaturation degree of their lipid fraction, total FA
composition of these food products was determined (Table 1).
Because no significant differences were found between the FA
composition of LH and LF, only the FA content of LH is
reported. The most abundant FA was oleic acid, followed by
linoleic, palmitic, lauric, myristic, and stearic acids. Unsaturated
FA accounted for approximately 60% of total FA, resulting in
a linoleic/o-linolenic ratio of 18.2, higher than the one suggested
by the European Commission (EC) Directive for infant
formulas (5—15, 26).

The total FA composition of the samples here analyzed
displays a wide range of FA, which reflects the original
composition of the raw materials and/or ingredients. Short-chain
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Table 1. Fatty Acid Composition (g/100 g of Lipids) of LH Sample?, FA
classes (g/100 g of Lipids), and Their Ratios?
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Table 2. Main Sterols (mg/100 g of Product) Found in LH and LF
Samples?

fatty acid 9/100 g of lipids sterol mg/100 g of LH sample mg/100 g of LF sample
C4:.0 0.25 (0.04) cholesterol 1.34(0.13) 1.31(0.10)
Cé:0 0.17 (0.02) brassicasterol 0.18(0.02) 0.17 (0.02)
C7.0 0.07 (0.00) campesterol 1.18 (0.09) 1.16 (0.07)
C8:0 1.63 (0.08) stigmasterol 0.37 (0.05) 0.35 (0.04)
C9:0 0.02 (0.00) B-sitosterol 3.47(0.37) 3.37(0.31)
C10:0 1.31(0.10) total phytosterols 5.20 (0.53) 5.06 (0.44)
C12:0 10.52 (0.62) total sterols 6.54 (0.66) 6.37 (0.54)
C12:1 0.02 (0.00)
C14:0 4.40(0.00) 2Values are given as mean and standard deviation, between parentheses, of
g]gé 882 Eggg; three replicates. LOQ = 0.1 mg/100 g of sample.
C16:0 18.55 (1.06) and tissue lipids by unweaning babies, according to the European
22;612;70 8?2 (8-82) Society for Pediatric Gastroenterology, Hepatology, and Nutri-
c17:0 0.05 20.00; tion (ESPGHAN) (27). TFA have been suggested to exhibit
C17:1 0.03 (0.00) potential adverse effects on fetal and infant growth and
C18:0 3.20 (0.01) development, possibly through inhibition of desaturation of the
20183”: 0.17/(0.03) parent n—6 and n—3 fatty acids, linoleic acid and o-linolenic
8121 ‘? 4 3822 (g'gi) acid, respectively, to their respective long-chain polyunsaturated
ZC1‘8:021‘ g ND (0.04) fatty acids metabolites (28). A recent EC Directive states that
c18:2h 18.92 (1.36) TFA content in infant formulas shall not exceed 3% of the total
C20:0 0.27 (0.00) fat content (26); however, no regulations have been published
=C18:3t ND about TFA content in other baby foods yet (29).
C18:3/ 1.04 (0.07 s :
0201 0.5 EO' 03; Table 2 shows the sterol composition of the analyzed infant
C22:0 0.35 (0:02) foods. 3-Sitosterol was the most representative sterol (3.37 and
C22:1 0.04 (0.01) 347 mg/100 g of LF and LH, respectively) followed by
C24:0 0.13(0.02) cholesterol (1.31 and 1.34 mg/100 g of LF and LH, respectively)
SFA 41.85 and campesterol (1.16 and 1.18 mg/100 g of LF and LH,
,\PAllJJl,:: %ig respectively). Stigmasterol and brassicasterol were the less
TFA 0.20 abundant sterols (0.36 and 0.18 mg/100 g, respectively); the
PUFA/SFA 0.49 latter might derive from rapeseed oil added as vegetable oil in
(MUFA + PUFA)/SFA 1.38 the product formulation. Cholesterol occurrence may be at-
(n—6)/(n—3) 18.15 tributed to skimmed milk and palm or palm-kernel oil (up to

@Values are given as mean and standard deviation, in parentheses, of three
replicates. ° Abbreviations: LH, liquid infant food with honey; ND, not detected
(below the limit of quantitation (LOQ = 0.01 g/100 g of lipids)); SFA, saturated
fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids;
TFA, trans fatty acids. ° XC16:1 is the sum of ¢7 C16:1 and ¢9 C16:1. ¢ =C18:1t
is the sum of all positional trans isomers of oleic acid (t4 C18:1—t16 C18:1). ©C18:
1¢9 is the oleic acid. "C18:1¢11 is the cis-vaccenic acid. 9 =C18:2t is the sum of
the positional trans isomers of linoleic acid (c9,t12 C18:2; ¢9,113 C18:2; 8,c12
C18:2; 19,112 C18:2; 19,c12 C18:2). "C18:2 is the linoleic acid. '=C18:3t is the
sum of the positional trans isomers of linolenic acid (c9,c12,t15 C18:3; ¢9,12,¢15
C18:3; 19,¢12,115 C18:3; 19,c12,c15 C18:3). /C18:3 is the linolenic acid.

FA (C4-C8) probably derive from skimmed milk. The high oleic
acid content (35.6 g/100 g lipids), as well as the relatively
limited amount of linoleic acid (18.9 g/100 g lipids), may
correspond to the addition of high-oleic sunflower oil as
ingredient; this can be further confirmed by the occurrence of
7-stigmastenol, which is characteristic of this type of vegetable
oil. Such level of linoleic acid, nevertheless, could also be
attributed to soybean and rapeseed oils. On the other hand, the
presence of large amounts of saturated FA (mainly palmitic,
lauric, and myristic acids) could be ascribable to palm oil or
palm olein (high in palmitic acid) and to coconut or palm kernel
oil (high in lauric and myristic acids).

Trans isomers of C16:1 and C18:1 (mainly vaccenic acid)
were found at concentrations of 0.03 and 0.17 g/100 g of lipids,
respectively, which can be considered within the usual TFA
concentration range for refined, nonhydrogenated fats.

Although total TFA content is relatively low (0.2 g TFA/
100 g lipids), their occurrence should be taken into account since
TFA can be absorbed, metabolized, and incorporated into blood

7% cholesterol, referred to total sterol content, in these oils)
(30), as deduced from the FA composition.

Table 3 reports the amount of sterol oxides found in ready-
to-eat infant foods during storage. The total amount of SOP
ranged from 81.1 to 97.8 ug/100 g in LH and from 77.5 to
96.1 ug/100 g in LF. Brassicasterol oxides were not analyzed
in these samples.

The main SOP found was 7-ketositosterol, followed by the
coeluting pair a-epoxysitosterol + stigmastanetriol and choles-
tanetriol. Other SOP were detected at trace levels by GC-MS:
25-hydroxycholesterol, 7/3-hydroxycampestanol (tentative), 5-hy-
droxy-f-sitosterol, 7/3-hydroxysitostanol (tentative), and 6-keto-
p-sitosterol. Among these SOP, only the latter was quantifiable
and ranged from 2.2 to 2.8 ug/100 g of sample.

[B-Epoxycholesterol coeluted with minor amounts of stigmas-
terol that were not completely separated by the SPE cartridge,
so a correction factor was calculated. This amount of stigmas-
terol was estimated in the SOP fraction of each sample as a
relative percentage of the amount of cholesterol. Preliminary
tests were run to verify that the stigmasterol/cholesterol ratio
in the SPE fractions of SOP, remained constant. Because about
5.7% of the cholesterol peak area in the SOP fraction cor-
responded to the coeluting stigmasterol, this area was subtracted
from the area of S-epoxycholesterol.

The type and total amount of SOP were similar in both types
of infant food, regardless of the flavor ingredients (fruit and
honey). No significant differences (p < 0.05) in the single SOP
content were found with respect to storage time and type of
sample, except for a-epoxycampesterol and sitostanetriol.
However, no clear trends were observed with respect to these
factors.
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Table 3. Amount of SOP («g/100 g of Sample) and Sterol Oxidation Rates (SOP/Sterol in Percentages) Found in Ready-to-Eat Infant Food (LH and LF

Samples) During Storage?

©g/100 g sample LH

19/100 g sample LF

months 0 2 4 7 9 0 2 4 7 9
Cholesterol
7a-hydroxy 4.1(0.4) 3.1(0.1) 3.5(0.6) 3.6(0.7) 3.0(0.4) 45 (1.6) 3.7(0.8) 2.8(0.5) 2.8(0.8) 3.1(0.1)
7p-hydroxy 0.7 (0.2) 0.5(0.2) 0.5(0.1) 0.5(0.2) ND 0.5(0.1) 0.7 (0.0) 0.5 (0.0) 1.0 (0.1) 0.6(0.2)
f-epoxy 7.3(0.7) 5.8(0.7) 7.1(0.3) 7.0(0.7) 5.9(1.9) 6.4 (0.3) 6.9(0.2) 7.1(0.8) 6.4 (0.1) 49(1.7)
0L-epOXy 3.7(0.2) 2.8(0.2) 35(0.2) 3.8(0.2) 3.1(0.6) 2.8(0.1) 3.7(0.8) 3.7(0.8) 45(0.2) 3.1(0.1)
triol 11.1(1.1) 9.0(0.1) 10.1(0.1) 9.2(0.9) 8.7(1.7) 8.3(0.3) 9.6 (0.9) 8.8(0.2) 9.1(1.1) 8.3(0.1)
7-keto 1.0(0.5) 0.7 (0.4) 0.7 (0.2) 0.9(0.1) 0.7 (0.2) 0.9 (0.0) 1.5(0.3) 0.5(0.2) 0.7 (0.1) 0.6 (0.1)
Campesterol
7a-hydroxy 0.9 (0.0) 0.9 (0.1) 1.0(0.1) 1.3(0.3) 12(02) 1.0 (0.5) 0.7 (0.4) 1.1(0.1) 1.1(0.0 0.9 (0.5)
7p3-hydroxy 2.4(0.1) 2.1(0.2) 2.2(0.6) 2.2(0.5) 2.3(0.9) 2.0(1.2) 2.7(0.1) 2.3(0.1) 2.4(0.1) 2.0(0.3)
-epoxy ND ND ND ND ND ND ND ND ND ND
o-epoxy 1.3(0.3) 1.0(0.1) 0.8(0.3) 0.9(0.1) 0.8(0.4) 1.2(0.0) 0.9(0.1) 0.7 (0.0) 0.7 (0.3) ND
triol ND ND ND ND ND ND ND ND ND ND
7-keto 2.0 (0.6) 2.4(0.1) 2.2(0.2) 2.0(0.3) 1.9(0.5) 1.7(0.0) 2.4(0.3) 2.2(0.0) 2.3(0.1) 2.2(0.1)
Stigmasterol
7a-hydroxy 2.4(0.1) 1.7 (0.0) 2.0 (0.6) 2.2(0.2) 1.9(0.1) 2.1(0.2) 2.3(0.5) 2.0(0.2) 1.9(0.1) 1.4(0.3)
7p-hydroxy 2.0(0.2) 1.8(0.3) 26(1.7) 3.0(0.6) 1.1(0.6) 3.7(0.0) 29(0.2) 4.0 (2.6) 2.7(0.4) 1.8(0.1)
p-epoxy 1.9(0.1) 1.6 (0.4) 1.5(0.3) 1.7(0.1) 1.5(0.6) 1.3(0.0) 1.7(0.1) 1.3(0.2) 1.6 (0.1) 1.4(0.1)
o-epoxy 3.7(0.4) 35(0.3) 36(0.7) 3.1(04) 33(1.2) 2.7(0.1) 35(0.3) 3.3(0.5) 3.1(0.0) 2.5(0.5)
7-keto 1.2(0.4) 1.2 (0.0) 1.4(0.2) 1.3(0.2) 1.2(0.1) 1.5(0.1) 1.4 (0.0) 1.3(0.2) 1.4(0.2) 1.3(0.2)
p-Sitosterol
7a-hydroxy 1.4(0.1) 0.9 (0.1) 1.0(0.2) 1.0(0.1) 1.0 (0.4) 1.2(0.1) 1.3(0.1) 1.2(0.0) 1.1(0.2) 0.9(0.2)
7p3-hydroxy 5.1(0.8) 45(0.3) 4.6 (0.3) 4.4(0.6) 45 (1.3) 45(0.2) 4.8(0.3) 4.8(0.3) 5.0 (0.0) 4.1(0.2)
S-epoxy 5.6 (0.9) 4.7(0.1) 4.9 (0.4) 5.4 (0.1) 4.9 (1.5) 45(0.1) 5.8(0.7) 5.2 (0.0) 5.3(1.0) 46(0.2)
a-epoxy” 127 (22) 10.7 (0.0) 11.9(0.5) 11.0 (1.0) 10.3 (3.5) 10.0 (0.1) 121 (1.4) 11.3(0.2) 11.6(0.2) 10.1(0.5)
triol 11.2(0.3) 8.9(0.8) 10.2 (0.0) 10.9 (1.0) 9.8 (2.5) 12.5(1.5) 11.5(0.6) 10.9 (0.0) 12.1(0.5) 10.0 (0.3)
7-keto 16.1(1.8) 13.3(0.1) 14.4(0.1) 14.4 (0.5) 13.8(2.9) 13.9(0.7) 16.0 (1.5) 14.5(0.8) 14.9 (0.4) 13.7(1.0)
total oxides 97.8 81.1 89.7 89.8 81.3 87.2 96.1 89.5 91.7 715
Oxidation Rates (%)
cholesterol 2.1(0.0) 1.8(0.1) 1.9(0.1) 1.9 (0.0) 1.7 (0.3) 1.8 (0.0) 2.0(0.2) 1.9(0.2) 1.9(0.1) 1.5(0.1)
campesterol 0.6 (0.0) 0.5(0.0) 0.5(0.0) 0.6 (0.1) 0.5(0.2) 0.3(0.1) 0.6 (0.0) 0.5(0.0) 0.6 (0.1) 0.5(0.1)
stigmasterol 2.8(0.2) 2.8(0.2) 3.1(0.6) 2.9(04) 2.3(0.6) 2.8(0.8) 3.1(0.0) 34(1.2) 3.1(0.4) 2.6 (0.0)
p-Sitosterol 1.5(0.2) 1.3(0.0) 1.4 (0.0) 1.4(0.1) 1.3(0.4) 1.4(0.1) 1.5(0.2) 1.4(0.0) 1.5(0.1) 1.3(0.1)

@Values are given as mean and standard deviation, between parentheses, of three replicates. ND, not detected (below the limit of quantitation (LOQ = 0.5 xg/100 g

of sample)). ? a-Epoxysitosterol + stigmastanetriol.

Although 7-keto derivatives of sterols have been previously
used as reliable markers of the extent of sterol oxidation in
foods (11, 19, 31), their formation may vary depending on the
type of food matrices as well as their corresponding oxidation
phase/status (32). In fact, the large quantitative differences found
between 7-ketositosterol (mean value: 14.5 ug/100 g of sample)
and 7-ketocholesterol (mean value: 0.8 ©g/100 g) might be due
to diverse initial levels of sterol oxidation of the raw materials
(milk and vegetable oils), as well as to the processing technolo-
gies and conditions used for their production. Vegetable oils
are usually subjected to refining, which leads to the formation
of different types and amounts of SOP, depending on the initial
sterol content, on the chemical structure of the sterol oxides
(already present and generated), and on the refining process
applied to the oils (9). On the other hand, milk, the other main
ingredient, is also subjected to different processes during
manufacturing, such as pasteurization and spray-drying steps,
which have been reported to cause sterol oxidation in milk
cereals, infant formulas, and powdered milks (6, 17, 18). All
these events may have led to different oxidation stages in
vegetable oils and milk fat.

The very low amounts of SOP found in these infant foods
should not represent a health risk, because negative biological
effects of SOP seem to manifest at relatively high concentrations
in comparison with the daily intake that these foods would
represent (4, 15, 33).

7-Ketositosterol and 7-ketocholesterol detected in ready-to-
eat infant foods here analyzed are apparently much lower than
those found in a previous study on powdered infant milk cereals
(6). Zunin et al. reported that 7-ketositosterol and 7-ketocho-
lesterol contents varied from 5.9 to 49.0 ug/100 g of sample
and from 3.3 to 42.1 ug/100 g of sample, respectively. However,
the powdered samples require water addition (about 19 g of
product/100 mL of water) before consumption, which would
result in a dilution of 7-ketositosterol and 7-ketocholesterol
concentrations (1.1-9.3 and 0.6-8 ug/100 g of reconstituted
product, respectively). Considering the reconstituted samples,
their 7-ketositosterol content was about 3 times lower than those
found in the infant foods here analyzed, even though f-sitosterol
contents of both reconstituted and ready-to-eat samples were
similar. On the other hand, reconstituted samples exhibited
7-ketocholesterol levels about 4 times higher than those detected
in this study, due to their higher cholesterol content. 3-Sitosterol
and cholesterol displayed similar oxidation levels in powdered
samples, whereas 7-ketositosterol was significantly higher in
ready-to-eat infant foods. The greater extent of [-sitosterol
oxidation in the samples here analyzed evinces that the
ingredients from vegetable origin had a higher degree of
oxidation, probably due to the quality of the raw materials and/
or processing conditions.

Table 3 also reports the single sterol oxidation rates (OR)
found for ready-to-eat infant foods. No significant differences
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Figure 1. Relative percentages of 3-sitosterol and cholesterol oxides (expressed with respect to the corresponding unreacted sterol) found in the liquid
infant food with honey (LH) sample at 0 months of storage. Data points represent means (n = 3) 4 standard deviations (some error bars may lay within
the data points). The relative amount of a-epoxysitosterol (*) would likely be overestimated, because of its overlapping with an unknown amount of

stigmastanetriol under the analytical conditions used.

were found among the sterol OR of LH and LF, and no
particular OR trend was observed with respect to storage. In
both types of samples, stigmasterol had the highest OR
(2.4-3.4%), followed by cholesterol (1.5—2.1%) and f3-sitosterol
(1.3—1.5%). Because of its scarce presence, stigmasterol OR
might be more influenced by analytical errors, thus leading to
a relatively higher OR with respect to those of the other sterols.
These remarkable differences might be caused by the different
processing technologies applied to milk and vegetable oils, as
well as to the diverse sterol susceptibility to oxidation. Because
ready-to-eat infant foods are oil-in-water emulsions, oxidation
likely occurs at the emulsion droplet interface. In fact, phy-
tosterols are surface active, so they could be particularly prone
to oxidation (34); this susceptibility also depends on the sterol
relative concentrations at the oil-water interface.

If only 7-keto derivates are considered, cholesterol OR is
drastically reduced to 0.05-0.08% and 0.04-0.11% in LH and
LF, respectively, whereas f3-sitosterol OR decreases to 0.41-0.48%
in both types of samples. Zunin et al. (6) reported 0.02-0.62%
and 0.08-0.46% of cholesterol and j3-sitosterol OR in powdered
infant milk cereals, respectively, which further confirms the
higher extent of oxidation of raw materials from vegetable origin
used in the samples here analyzed.

Figure 1 compares the percentages of [-sitosterol and
cholesterol oxides (expressed with respect to the corresponding
unreacted sterol), detected in LH sample at O months of storage.
Because sterol oxides remain roughly constant during storage
in both LH and LF, data reported in Figure 1 are representative
of sterol oxide percentages (%SO) in these infant foods; sterol
oxide percentages at the beginning of the storage may provide
a better picture of the original sterol oxidation level in the raw
materials utilized for these products. Figure 1 shows that the
percentages of the single S-sitosterol oxides are significantly
different from those of the corresponding cholesterol oxides.
In fact, the ratios between the relative amount of the 7o-/7/-
hydroxy derivatives of cholesterol and fS-sitosterol were 5.99
and 0.27, respectively. The majority of 5,6-epoxy derivatives
of cholesterol were present in their 3 configuration, whereas
those of [-sitosterol were mostly present as o-epoxy; this
influenced the -/a-epoxy derivatives ratios, which were equal
to 0.44 and 2.07 for S-sitosterol and cholesterol, respectively.
It must be pointed out that the %SO of a-epoxysitosterol would

likely be overestimated, because of its overlapping with an
unknown amount of stigmastanetriol under the analytical
conditions here used. The percentages of [-sitosterol and
cholesterol triol derivatives were equal to 0.33% and 0.85%,
respectively. As aforementioned, the large difference between
the relative amounts of 7-keto derivatives of f-sitosterol and
cholesterol further confirms their diverse stage of oxidation.
Besides the 7-keto derivatives, the other S-sitosterol oxides seem
to have reached the most stable forms from the thermodynamics
standpoint (1), that is, 73-hydroxy and a-epoxy rather than 7o.-
hydroxy and 3-epoxy derivatives; however, cholesterol exhibits
the opposite trend. Furthermore, the sums of the relative amounts
of 7o-hydroxy, 75-hydroxy, and 7-keto derivatives were 20.6
and 43.3% for cholesterol and f3-sitosterol, respectively, whereas
the sums of a-epoxy, 3-epoxy, and triol derivatives of choles-
terol and p-sitosterol were 79.4 and 56.7%, respectively.
Considering that 7-hydroxy and 7-keto compounds are generated
by a different oxidation pathway than epoxy and triol derivatives
(1), these results confirm the diverse oxidation stage and origin
of cholesterol and [-sitosterol in samples here analyzed.
Formation of relevant amounts of epoxy derivatives might be
partly due to the interaction of sterols with hydrogen peroxide,
which is released by microbial enzymes naturally present in
milk (35). Under these environmental conditions, epoxide
hydrolysis into triols would likely be unavoidable.

The low sterol oxidation level observed in these ready-to-
eat infant foods might be attributed to the effectiveness of the
packaging system (inert atmosphere), to the slight enrichment
with vitamins having antioxidant properties (vitamins A, C and
E), and to the presence of Maillard reaction products (MRP)
found in these samples (36).

The antioxidant capacity of MRP (37, 38) might have
prevented sterols from oxidizing during storage, thus maintaining
the same oxidative status reached after processing. In addition,
the physical state (liquid) of the milk-cereal-based infant foods
could have also favored MRP solubilization, thus contributing
to the product stability (39).

In conclusion, this study evidences a low sterol oxidation level
in ready-to-eat infant foods, which remains roughly constant
during storage. However, the actual presence of such compounds
confirms the need of monitoring SOP in this type of food
products, because of their potential negative health effects. To
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ensure the best nutritional and safety characteristics in infant
foods, special attention should be devoted to the choice of the
raw materials (in particular oil) and the processing conditions
and technologies, which seem to greatly influence SOP forma-
tion and accumulation in such products.

ABBREVIATIONS USED

COP, cholesterol oxidation products; FA, fatty acids; GC-
FID, gas chromatograph-flame ionization detector; GC-MS, gas
chromatograph—mass spectrometry; IS, internal standard; LF,
liquid infant food with fruits; LH, liquid infant food with honey;
MRP, maillard reaction products; MUFA, monounsaturated fatty
acids; OR, oxidation rate; POP, phytosterol oxidation products;
PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids;
SOP, sterol oxidation products; SPE, solid-phase extraction;
TFA, trans fatty acids.
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