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Insensitivity of Hawking radiation to an invariant Planck-scale cutoff
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A disturbing aspect of Hawking’s derivation of black hole radiance is the need to invoke extreme
conditions for the quantum field that originates the emitted quanta. It is widely argued that the
derivation requires the validity of the conventional relativistic field theory to arbitrarily high, trans-
Planckian scales. We stress in this note that this is not necessarily the case if the question is
presented in a covariant way. We point out that Hawking radiation is immediately robust against
an invariant Planck-scale cutoff. This important feature of Hawking radiation is relevant for a
quantum gravity theory that preserves, in some way, the Lorentz symmetry.

PACS numbers: 04.62+v,04.70.Dy

The Hawking effect [1] plays a pivotal role in the in-
terplay between quantum mechanics and general relativ-
ity and, hence, it is of special relevance in any proposal
for a quantum gravity theory. The original derivation
of Hawking is based on the general framework of particle
creation on curved spacetimes, first developed in a cosmo-
logical setting in [2] (see also [3, 4]). The derivation con-
siders the propagation of modes that represent particles
in the asymptotically flat regions; the first at early times
before a dust cloud has begun to collapse, and the second
at late times long after it has collapsed to form a black
hole as seen by a distant observer. In short, the expan-
sion of a field in two different sets of modes, uin

j (x) (that

are positive frequency on past null infinity) and uout
j (x)

(that are positive frequency on future null infinity) leads
to a relation for the corresponding creation and annihi-

lation operators: aout
i =

∑

j(α
∗
ija

in
j −β∗

ija
in†
j ). When the

coefficients βij do not vanish, the “in” and “out” vac-
uum states do not coincide and, therefore, the number of
particles measured in the ith mode by an “out” observer
in the “in” vacuum state, is given by 〈Ni〉 =

∑

k |βik|2.
For a Schwarzschild black hole, one obtains [1] for the
average number of particles observed at late times in the
state in which no particles are present at early times (we
omit angular quantum numbers)

〈Nw〉 =

∫ +∞

0

dw′|βww′ |2 (1)

where the beta coefficients, up to a transmission ampli-
tude factor and a trivial phase are given by

βw,w′ =
1

2πκ

√

w′

w

Γ(1 + κ−1wi)

(−κ−1w′)1+κ−1wi
, (2)
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where κ is the surface gravity. Since these coefficients
behave like 1/

√
w′ for large w′, the integral (1) diverges.

This is naturally interpreted as the fact that the total
number of created quanta is infinite, as corresponds to
a finite steady rate of emission. The steady rate can be
easily obtained from (1) and turns out to be thermal

〈Ṅw〉 =
1

2π

1

e2πκ−1w − 1
. (3)

However, there is a disturbing point in this derivation.
One needs to perform an unbounded integration in the
frequencies w′ to obtain the steady thermal rate of ra-
diation [5, 6, 7, 8]. Any out-going Hawking quanta at
infinity will have an exponentially increasing frequency
as they are propagated backwards in time to reach the
near-horizon region.

A cutoff in the frequencies w′ of order of the Planck
length (we take units with c = 1) would require that we
consider only early-time frequencies satisfying

w′ < ℓ−1
P , (4)

where ℓP is the Planck length. This will change com-
pletely the Hawking effect. It will introduce a damping
time-dependent factor in formula (3). The Hawking radi-
ation is then converted into a transient phenomena (see,
for instance, [9] and also [10]).

However, as first shown in [11], it is possible to re-
derive the Hawking radiation from a different perspec-
tive. In this derivation it is just the universal Hadamard
short distance behavior of the two-point function for all
physically allowed states near horizon, namely

G(x1, x2) ≈
~

4π2σ
, (5)

where σ is the squared geodesic distance between x1 and
x2, that is responsible for the steady thermal emission. A
somewhat related approach was developed in [9, 12]. The
mean number operator at late times can be expressed, in
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general, as [9, 12]

〈Ni〉 = ~
−1

∫

Σ

dΣµ
1dΣν

2 [uout
i (x1)

↔

∂ µ][uout∗
i (x2)

↔

∂ ν ]G(x1, x2).

(6)
After some algebra, one arrives at the expression

〈Nw〉 = − 1

4π2w

∫ 0

−∞

dU1dU2
e−iw(u(U1)−u(U2))

(U1 − U2 − iǫ)2
, (7)

where U is the null Kruskal coordinate U = −κ−1e−κu

and u = t − r∗ is the corresponding retarded time of a
Schwarzschild black hole. The double integral above is
divergent, but this divergence is expected due to the infi-
nite number of quanta emitted in the infinite amount of
time involved in the formula. Restricting the computa-
tion to the mean particle number per unit time one gets
the finite thermal result

〈Ṅw〉 = − 1

4π2w

d

du

∫ 0

−∞

dU1dU2
e−iw(u(U1)−u(U2))

(U1 − U2 − iǫ)2

=
1

2π

1

e2πκ−1w − 1
. (8)

Again, the disturbing point in the above derivation is
that a cutoff in distances requiring that

(U1 − U2)
2 > ℓ2

P , (9)

turns the otherwise steady Hawking radiation into a
transient phenomenon. One notices immediately that
the common point in the cutoff (9) and that of (4) is
that both are not Lorentz-invariant. Since we have put
an upper limit, w′ ∼ 1/ℓP , on the early-time frequencies,
the “in” modes remaining after this amputation are not
sufficient to generate the radiated “out” modes at late
times. This produces the described decay of Hawking
radiation with time as a consequence of breaking the
principle of relativity by means of a non-invariant cutoff.

It is possible, however, to introduce a cutoff in an in-
variant way. On dimensional grounds, one can demand
that the two-point function G(x1, x2) that appears in our
integrals does not exceed the inverse of Newton’s con-
stant

|G(x1, x2)| < ~ℓ−2
P ≡ G−1

N . (10)

It is not difficult to show, as we will see, that this condi-
tion translates into a restriction in the integration range
of the U1, U2 coordinates in (8) given by

(U1 − U2)
2 > ℓ2

P κ2U1U2/4π2 . (11)

The factor κ2U1U2 on the right hand side of (11) is absent
in Eq. (9). This factor is required to have an invariant
cutoff for all locally inertial observers and immediately
ensures the robustness of Hawking radiation.

An understanding of how (11) follows from (10) can
be obtained in a simple way by considering the Unruh

effect [13]. A detector held at constant r just outside
the horizon behaves like a uniformly accelerated detector
in Minkowski space (equivalence principle). The thermal
radiation detected by the accelerated observer can be re-
lated to the Hawking emission. The detector will have
some internal energy states |E〉 and it can interact with
the field by absorbing or emitting quanta. The interac-
tion can be modeled in the standard way by coupling the
field φ(x) along the detector trajectory x = x(τ) (τ is
the detector proper time) to some operator m(τ) acting
on the internal detector eigenstates

g

∫

dτ m(τ)Φ(x(τ)) , (12)

where g is the strength of the coupling. The probabil-
ity for the detector to make the transition from |Ei〉
to |Ef 〉 is given by the expression P (Ei → Ef ) =
g2|〈Ef |m(0)|Ei〉|2F (∆E), where F (∆E) is the so-called
response function

F (∆E) =

∫ +∞

−∞

dτ1dτ2e
−i∆E∆τ/~〈0M |Φ(x(τ1))Φ(x(τ2))|0M 〉 ,

(13)
where ∆τ = τ1 − τ2. For a massless field the Wightman
two-point function in (13), where |0M 〉 is the Minkowski
vacuum, is given by

〈0M |Φ(x1)Φ(x2)|0M 〉 = − ~

4π2[(∆t − iǫ)2 − (∆~x)2]
.

(14)
For trajectories having a proper-time translational sym-
metry under τ → τ + τ0, it is natural to consider the
constant transition probability per unit proper time and
the corresponding response rate per unit proper time

Ḟ (∆E) =

∫ +∞

−∞

d∆τe−i∆E∆τ/~〈0M |Φ(x(τ1))Φ(x(τ2))|0M 〉 .

(15)
Both the inertial detector and the uniformly acceler-
ated detector possess proper-time translational symme-
try. For an inertial detector trajectory, the response rate
is given by

Ḟ (∆E) = −
∫ +∞

−∞

d∆τe−i∆E∆τ/~

[

~

4π2(∆τ − iǫ)2

]

= −∆E

2π
θ(−∆E) , (16)

in agreement with the principle of relativity. If the de-
tector’s initial state is the ground state Ei = E0, then
∆E > 0 and the probability for an inertial detector to
be excited is exactly zero, irrespective of the velocity of
the detector. (When ∆E < 0 the result is non-vanishing
and this leads to the expected non-zero probability for
the spontaneous decay Ei → Ef < Ei.)

For a uniformly accelerated trajectory in Minkowski
spacetime

t =
1

a
sinh aτ , x =

1

a
coshaτ , (17)
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where a is the acceleration, the response function is then

F (∆E) =

∫ +∞

−∞

dτ1dτ2e
−i∆E∆τ

~

−~(a/2)2

4π2 sinh2
[

a
2 (∆τ − iǫ)

] .

(18)
The corresponding response rate function turns out to
be Ḟ (∆E) = (∆E/2π)(e2π∆E/~a − 1)−1, which im-

plies, via the detailed balance relation, Ṗ (∆E) =

Ṗ (−∆E)e−2π∆E/a~, that a uniformly accelerated ob-
server in Minkowski space feels himself immersed in a
thermal bath at the temperature kBT = a~

2π .
Performing the change of variable

U ≡ t − x = −a−1e−aτ , (19)

one can rewrite the integral (18) in the form

F (∆E) = −
∫ 0

−∞

dU1dU2e
−i∆E∆τ/~

~

4π2(U1 − U2 − iǫ)2
.

(20)
The time derivative of this expression is exactly the same
(up to the factor 1/~w) as (8) obtained before in comput-
ing the expectation value of the number operator in the
Hawking effect (identifying the acceleration a with the
surface gravity κ and the coordinate U with the corre-
sponding Kruskal coordinate). It is now easy to see that
the invariant cutoff condition

∣

∣

∣

∣

~

4π2[(∆t)2 − (∆~x)2]

∣

∣

∣

∣

< G−1
N (21)

on the accelerated trajectory (17) becomes

~(a
2 )2

4π2 sinh2 a
2∆τ

< G−1
N . (22)

Expanding the denominator of (22) to lowest order
in ∆τ and using (19) to express (∆τ)2 in terms of
(∆U)2 ≡ (U1 − U2)

2, it is straightforward to show that
this inequality is equivalent to (11). This confirms our
statement that (10) implies (11).

The natural question now is to see if the invariant cut-
off suffices to preserve the bulk of the Hawking effect.
The answer is in the affirmative, but to see this requires
an additional step [9, 12]. Let us use again the Unruh
effect to illustrate the argument. We want to take advan-
tage of the fact that there is a state of the field, |0A〉, for
which the response function of the accelerated detector
vanishes for ∆E > 0

FA(∆E > 0) =

∫ +∞

−∞

dτ1dτ2e
−i∆E∆τ × (23)

〈0A|Φ(x(τ1))Φ(x(τ2))|0A〉 = 0.

Taking this into account, it is possible to obtain an
equivalent expression for the response function of the

uniformly accelerating detector in the Minkowski vac-
uum, |0M 〉, by subtracting the previous quantity from
the right-hand-side of equation (13)

F (∆E > 0) =

∫ +∞

−∞

dτ1dτ2e
−i∆E∆τ × (24)

[〈0M |Φ(x(τ1))Φ(x(τ2))|0M 〉 − 〈0A|Φ(x(τ1))Φ(x(τ2))|0A〉].

This expression presents several advantages over (13). It
explicitly shows that the difference between two-point
correlation functions of the field in the vacuum states
|0M 〉 and |0A〉 is at the root of a non-vanishing re-
sponse function. (Notice that although the integral
of 〈0A|Φ(x(τ1))Φ(x(τ2))|0A〉 in the response function is
zero, the correlation function itself is not zero.) More-
over, the integrand is now a smooth and symmet-
ric function, thanks to the universal short-distance be-
havior of the two-point functions. Thus, the usual
“iǫ−prescription” in the two-point functions is now re-
dundant and can be omitted. Additionally, expression
(24) shows a remarkable fact when an invariant cut-off is
considered. It manifestly produces a vanishing result in
the limit a → 0, respecting in that way the principle of
relativity that we want to preserve.

Now, one can consistently implement the invariant and
universal cutoff condition

|〈0M |Φ(x(τ1))Φ(x(τ2))|0M 〉| < G−1
N , (25)

and

|〈0A|Φ(x(τ1))Φ(x(τ2))|0A〉| < G−1
N (26)

in (24). The first inequality is equivalent to (22) and the
second one to ∆τ2 > ℓ2

P /4π2. Moreover, both inequali-
ties are essentially equivalent since all quantum states (in
particular |0M 〉 and |0A〉) have the same short distance
behavior, as is seen explicitly from the short distance
asymptotic form of (22).

In the black hole case, the same argument can be ap-
plied for the computation of the mean particle number
[9, 12], and G(x1, x2) in equation (6) can be substituted
by

G(x1, x2) − 〈out|Φ(x1)Φ(x2)|out〉 , (27)

where |out〉 is, as usual, the vacuum state defined by the
modes uout

j (x). This leads to an expression for the mean
particle number per unit time

〈Ṅw〉 = − 1

4π2w

d

du

[
∫ 0

−∞

dU1dU2
e−iw(u(U1)−u(U2))

(U1 − U2)2

−
∫ +∞

−∞

du1du2
e−iw(u1−u2)

(u1 − u2)2

]

, (28)

where now we want to restrict the ranges of integration,
so (U1−U2)

2 > ℓ2
P κ2U1U2/4π2 and (u1−u2)

2 > ℓ2
P /4π2.
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The explicit evaluation of these integrals, with the cor-
responding bounds for (U1 − U2)

2 and (u1 − u2)
2, leads

to

〈Ṅw〉 ≈
1

2π

1

e2πκ−1w − 1
− κℓP

96π4(w/κ)
+ O(κℓP )3 . (29)

For black hole radii much bigger than the planck length
(κ ≪ ℓ−1

P ) and for reasonable values of the frequency,
the correction terms are negligible, which shows the ir-
relevance of ultra-high energy physics in the derivation

of the Hawking effect.

In summary, we have shown that a universal invariant
cutoff condition for two-point functions is able to preserve
the bulk of the thermal Hawking radiation.
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