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Non local lagrangians: the pion.
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We define a family of non local and chirally symmetric low energy lagrangians motivated by
theoretical studies on Quantum Chromodynamics. These models lead to quark propagators with
non trivial momentum dependencies. We define the formalism for two body bound states and
apply it to the pion. We study the coupling of the photon and W bosons with special attention
to the implementation of local gauge invariance. We calculate the pion decay constant recovering
the Goldberger-Treiman and the Gell-Mann-Oakes-Renner relations. We recover a form of the axial
current consistent with PCAC. Finally we study the pion form factor and we construct the operators
involved in its parton distribution.

PACS numbers: 24.10.Jv, 11.10.St, 13.40.Gp, 13.60.Fz

I. INTRODUCTION.

The strong interaction among hadrons is supposed to be described by Quantum Chromodynamics (QCD) [1] which
is a field theory defined in terms of quark and gluon fields. While the asymptotic behavior of QCD is well understood
and its proponents worthy of the highest recognition [2], the low energy behavior is still a subject of much scientific
endeavor. Low energy physics seems to be ultimately governed by flavor dynamics. Confinement [3], the property of
QCD which describes how the dynamics based on color in the lagrangian transforms into a dynamics based on flavor
for the physical states, and why these cannot exist with color charge, is still a subject of research and debate. This
complex low energy behavior is described conventionally in terms of approximations to the theory, i.e., lattice QCD
[4], non relativistic QCD [5], 1/Nc -expansion [6] or effective theories, i.e. Chiral Perturbation Theory [7], Heavy
Quark Effective Theory [8], etc. Models turn out to be extremely useful in some instances when the other approaches
are too complex, i.e, non-relativistic quark models [9, 10], bag models [11, 12], Nambu-Jona Lasinio (NJL) model [13],
chiral-soliton models [14, 15, 16], etc. Another method to study non perturbative physics in a lagrangian theory like
QCD is to solve the Dyson-Schwinger equations. The application of this formalism to QCD becomes an enormously
difficult task but progress, in understanding the theory from this approach, has been achieved [17, 18, 19]. The global
color model [20], the extended non-local NJL model [21, 22, 23, 24, 25], and models using separable interactions [26]
has been introduced as model realizations of QCD in a field theory formalism.

One major problem is to understand the pion, because it is the system which contains all the ingredient of QCD:
asymptotic freedom, confinement and spontaneously broken chiral symmetry. Chiral symmetry governs the static
properties of the theory, like the quark condensate, the mass and decay constant of the pion. The dynamics fixes the
internal structure of the pion, which is accessible through the pion electromagnetic form factor.

The pion form factor has been a subject of many studies. In relativistic quantum mechanics the pion form factor
has a long history of debate [27, 28, 29, 30, 31]. One of the main problems is the choice of one of the various Dirac
forms [32, 33]. One of the most interesting conclusions is that results of a calculation depend not only on the Dirac
form chosen but also on the frame chosen [34, 35]. The reason for this is that the truncation needed in relativistic
quantum mechanics to calculate form factors breaks Poincaré invariance.

A way to avoid this problem is to work in a field theory formalism. The pion form factor has also been studied
within Dyson-Schwinger Equations schemes by several authors [36, 37, 38]. The starting point is in most treatments
the pion Bether-Salpeter amplitude calculated in the rainbow approximation. The pion form factor is calculated using
the so called impulse approximation which considers only the triangle diagram, and the use of a dressed vertex for
the photon. For the latter the Ball-Chiu [39] expression for the vertex , or modified versions of it, have been used.

The pion form factor has been studied also for the non-local NJL model [22]. In this case the coupling of the photon
is obtained by restoration of the gauge symmetry [21, 24, 40].

Our aim is to construct a model for hadron structure and hadronic interactions developing a formalism which
preserves the fundamental symmetries of the theory (chiral, Poincaré and local electromagnetic gauge invariances)
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and which incorporates information coming from fundamental studies of Quantum Chromodynamics. For this purpose
we want to define a formalism which contains the physical intuition of model calculations and the lagrangian formalism
of the effective theories. To achieve this we have found that the best suited scheme is to describe the physics by mean
of a phenomenological chirally invariant non local lagrangian.

Working in a lagrangian theory, the two main ingredients in a non perturbative analysis involving the pion are: i)
the quark propagator, obeying the Dyson equation; ii) the description of the pion as a bound state of a Bethe-Salpeter
equation (BSE). Due to chiral symmetry the kernels of these two equations are not independent [41]. Solving the
Dyson equation for our lagrangian leads to momentum dependencies in the quark propagators through its mass and its
wave function renormalization. In our scheme the gluons have been integrated out and we have only flavor interaction
between quarks. Confinement is imposed by the structure of the quark propagator and by limiting the Fock space to
color singlet states. The pion is obtained in a consistent way solving the BSE, and the Goldstone character of the
pion is recovered.

Our model can be seen as an extension of the non-local NJL model [21, 22, 24, 25], but with a particular philosophy.
We consider the description of the quark propagator as the main ingredient. This is because the quark propagator is
the first information that can be obtained from fundamental studies, as lattice QCD. Our lagrangian is the minimal
extension which allows to incorporate the full momentum dependence of the quark propagator, through its mass and
wave function renormalization. From this lagrangian we can explore what are the implications for other observables
originated by changes in the quark propagator.

Our formalism implements the coupling of the photon in a gauge invariant manner [21, 24, 40]. This allows to study
the electromagnetic properties of the pion, which depend strongly on the quark-photon vertex. Usually this vertex is
calculated by using the Ward-Takahashi identity [39]. This method fixes the longitudinal part of the vertex leaving
the transverse part unconstrained. We show that this procedure does not guarantee local gauge invariance, while
ours does. As an application we study the pion form factor, showing that the conventional impulse approximation,
in which the form factor is calculated using the triangle diagram, is not consistent with local gauge symmetry.

In models based on field theory formalism, the construction of the axial current and the definition of the pion decay
constant need particular attention. In ref [42] a first expression for the axial current is given. In ref [21, 24] additional
contributions to the pion decay constant are included. In this paper we implement the coupling of quarks to the Wµ

bosons in a gauge invariant manner following a procedure similar to the one used for photons. Then, we analyze the
axial current and the pion decay constant.

Our formalism is very effective for building operators describing observables in a consistent way. As an application
we have studied the operators involved in the parton distribution of the pion.

This paper is organized as follows. In section II we define our lagrangian, we discuss the quark propagator, and
we fix the parameters in order to describe the adequate quark propagator obtained by more fundamental studies
based on QCD. In section III we describe the pion state. In section IV we study the quark-photon vertex and recover
the Ball-Chiu ansatz but with additional contributions. In section V we study the axial current and the pion decay
constant. In section VI we apply the model to the study of the pion form factor. We show that a four quark-one
photon vertex appears in a natural way. In section VII we obtain the contribution of this new term to the parton
distribution operator. The last section contains the conclusions of our investigation.

II. A PHENOMENOLOGICAL NON LOCAL LAGRANGIAN FOR HADRON STRUCTURE.

Let us build a model which produces a non trivial momentum dependence in the quark propagator and preserves
all the required symmetries: Poincaré and chiral symmetry. This momentum dependence will arise from a lagrangian
description and manifests itself as a quark momentum dependent mass and a quark momentum dependent wave
function renormalization. Let us define the non local currents as

JO (x) =

∫

d4y G (y) ψ̄

(

x+
1

2
y

)

Oψ

(

x−
1

2
y

)

, (II.1)

where the operator O is such that

γ0O†γ0 = O . (II.2)

With these definitions the hermiticity of the currents
(

J†
O (x) = JO (x)

)

implies that G† (−y) = G (y) . A local current

corresponds to G (y) = δ4 (y) and thus the natural normalization for the functions G (y) is

∫

d4y G (y) = 1. (II.3)
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FIG. 1: Diagrammatic representation of the quark propagator. The non local four quark vertex is represented by a circle with
structure.

We build a lagrangian in terms of non local currents, preserving UL (2) ⊗ UR (2) chiral symmetry, and producing
the desired momentum dependences as

L (x) = ψ̄ (x) (i /∂ −m0)ψ (x) + g0

[

J†
S (x)JS (x) + ~J †

5 (x) ~J5 (x)
]

+ gpJ
†
p (x) Jp (x) , (II.4)

where the currents are defined by

JS (x) =

∫

d4y G0 (y) ψ̄

(

x+
1

2
y

)

ψ

(

x−
1

2
y

)

, (II.5)

~J5 (x) =

∫

d4y G0 (y) ψ̄

(

x+
1

2
y

)

i~τγ5ψ

(

x−
1

2
y

)

, (II.6)

Jp (x) =

∫

d4y Gp (y) ψ̄

(

x+
1

2
y

)

1

2
i
←→
/∂ ψ

(

x−
1

2
y

)

, (II.7)

where u
←→
∂ v = u (∂v) − (∂u) v. The transformation properties of the non local currents are the same as those of the

local ones. The first and second currents require the same G0 (y) to guarantee chiral invariance. The third current
is self-invariant under chiral transformations. The scalar current, JS , generates a momentum dependent mass, and
the last current, the ”momentum” current, Jp, is responsible for the momentum dependence of the wave function

renormalization. The pseudo-scalar current, ~J5, generates the pion pole. From now on, just for simplicity, we assume
that all the G (y) functions are real.1

The interaction vertex obtained from the Lagrangian (II.4) automatically includes vertex form factors. Let us define

G (p) =

∫

d4y eiypG (y) , (II.8)

with the normalization condition

G (p = 0) = 1. (II.9)

The full quark propagator is obtained from de Dyson equation, represented in Fig. 1,

S (p) =
1

/p−m0 + Σ (p) + iǫ
, (II.10)

with

Σ (p) = −α0 G0 (p)− /p αp Gp (p) , (II.11)

where the first term arises from the scalar current and the second from the momentum current. The constants α0

and αp are directly related to the couplings g0 and gp,

α0 = 2 g0

∫

d4p

(2π)
4G0 (p) Tr (iS (p)) = i 8NcNfg0

∫

d4p

(2π)
4G0 (p)

Z (p)m (p)

p2 −m2 (p) + iǫ
, (II.12)

αp = 2 gp

∫

d4p

(2π)
4Gp (p) Tr (iS (p) /p) = i 8NcNfgp

∫

d4p

(2π)
4Gp (p)

p2Z (p)

p2 −m2 (p) + iǫ
, (II.13)

1 In a previous paper another derivative coupling,
(

ψ̄ (x) 1
2
i
←→

∂µψ (x)
)2
, was introduced [25]. This term is built with vector currents and

therefore, it produces different effects than our term J2
p . In particular, it was used to reproduce vector meson dominance.



4

where Tr represents the trace in Dirac, color and flavor indices. For simplicity we work from now in the large Nc

limit. This is equivalent to the Hartree approximation which implies that only direct terms are taken into account.
We can rewrite the momentum dependence of the quark propagator in a more standard way through a momentum

dependence in the quark mass and in the quark wave function renormalization,

S (p) = Z (p)
/p+m (p)

p2 −m2 (p) + iǫ
. (II.14)

with

m (p) =
m0 + α0G0 (p)

1− αpGp (p)
, (II.15)

Z (p) =
1

1− αpGp (p)
. (II.16)

These relations between (G0 (p) and Gp (p)) and (m (p) and Z (p)) assures the self consistency of the solution of the
Dyson equation.

Eqs. (II.15) and (II.16) show that the scalar current can give a mass to the quark even if the lagrangian contains
no mass term, m0 = 0. This phenomenon is the spontaneous symmetry breaking mechanism which is similar to
that taking place in the Nambu-Jona Lasinio model [13]. On the other hand, the momentum current gives rise to a
momentum dependent wave function normalization. However, although it contributes to the mass, it is not able by
itself to break spontaneously chiral symmetry.

We shall be guided by fundamental studies of QCD and lattice parametrizations for building models for G0 (p)
and Gp (p). The natural way to proceed is to use the information coming from these studies to write ansätze for
m (p) and Z (p). Then, transposing Eqs.(II.15) and (II.16) we obtain G0 (p) and Gp (p) . The values for α0 and αp are
determined from the normalization condition equation (II.9)

α0 =
m (0)

Z (0)
−m0 , (II.17)

αp = 1−
1

Z (0)
, (II.18)

and, from Eqs. (II.12) and (II.13), we obtain the values for g0 and gp.
These studies are performed in Euclidean space and therefore we will perform our calculations in this space. We

use pE to represent the momentum in Euclidean space.
Here G0 (pE) , Gp (pE) , Z (pE) and m (pE) are functions of p2

E . We impose that for p2
E →∞, the mass goes to the

current mass and the wave function renormalization to 1,

m (pE) −→
p2

E
→∞

m0 , (II.19)

Z (pE) −→
p2

E→∞
1 . (II.20)

Assuming that the integrals in Eqs. (II.12) and (II.13) are convergent, and looking at the behavior of the integrands
for large values of p2

E we obtain that

G0 (pE) −→
p2

E
→∞

p−α
E with α > 2 + ε (II.21)

Gp (pE) −→
p2

E→∞
p−α

E with α > 4 + ε . (II.22)

Let us define G0 (pE) and Gp (pE) or alternatively m (pE) and Z (pE) . Much research has been carried out in
the study of their functional shapes. We extract from these studies two well known scenarios based on different
philosophies but equally consistent.

The first scenario, which we will call S1, is based on the work of Dyakonov and Petrov [43]. They provide us with
the momentum dependence of the quark mass term coming from an instanton model. They assume Z (pE) = 1 and
work in the chiral limit (m0 = 0). Their results are well described by the expression

m (pE) = m0 + αm

(

Λ2
m

Λ2
m + p2

E

)3/2

, (II.23)
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Case 〈q̄q〉1/3 (MeV) m0 (MeV) mπ (MeV) fπ(MeV) < r2 > (fm2)

S1 −303. 2.3 137. 82. 0.41 (0.41)

S2 −285. 3.0 139. 81. 0.36 (0.40)

Exp. −250. ∼ −300. 1.5 ∼ 8. 135. ∼ 140. 92. 0.44

TABLE I: Results for < qq >1/3 , m0, the corresponding pion mass, the pion decay constant and the mean square radius,
< r2 >, for the full vertices given by Eq. (IV.10) and, between brakets, the Ball-Chiu ansatz for the two scenarios described
in the main text.

with Λm = 0.767 GeV and αm = 0.343 GeV .
The second scenario, which we call S2, corresponds to an alternative mass function obtained from lattice calculations

as proposed by Bowman et al. [44, 45],

m (pE) = m0 + αm
Λ3

m

Λ3
m + (p2

E)
1.5 , (II.24)

with Λm = 0.719 GeV and αm = 0.302 GeV . In their lattice analysis the authors also look for the wave function
renormalization constant. Their values are reasonably reproduced by

Z (pE) = 1 + αz

(

Λ2
z

Λ2
z + p2

E

)5/2

, (II.25)

with αz = −0.5 and Λz = 1.183 GeV .
In table I we show the values of some observables for the different scenarios. Among them, the quark condensate

is defined by

〈q̄q〉 = −i 4Nc

∫

d4p

(2π)
4

(

Z (p)m (p)

p2 −m2 (p) + iǫ
−

m0

p2 −m2
0 + iǫ

)

. (II.26)

We stress that these values are obtained without any free parameter and therefore they are model predictions.

III. THE PION MASS.

In our formalism the Bethe-Salpeter amplitude in the two body pion channel is defined as

χi (p, P ) = i S

(

p+
1

2
P

)

i γ5 τ
i φπ (p) i S

(

p−
1

2
P

)

, (III.1)

where φπ (p) is given by

φπ (p) = −i 2 g0G0 (p)

∫

d4p′

(2π)4
G0 (p′) Tr

(

i γ5τ
ii S

(

p′ +
1

2
P

)

i γ5 τ
i φπ (p′) i S

(

p′ −
1

2
P

))

(III.2)

which is represented in Fig. 2. Note that in equation (III.2) there is no summation with respect to the isospin index
i.

The solution of equation (III.2) is straightforward and gives

φπ (p) = gπqqG0 (p) . (III.3)

The pion mass is obtained from the BSE, which can be easily rewritten in terms of the pseudo-scalar polarizability

δijΠPS

(

P 2
)

= −i

∫

d4p′

(2π)
4G

2
0 (p′) Tr

(

i γ5τ
ii S

(

p′ +
1

2
P

)

i γ5τ
ji S

(

p′ −
1

2
P

))

(III.4)

and equation (III.2) becomes

1 = 2 g0 ΠPS

(

P 2 = m2
π

)

. (III.5)
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FIG. 2: Diagramatic representation of the Bethe Salpeter equation.

The normalization constant gπqq is obtained by the usual normalization condition of the BSE which can be rewritten
as

1

g2
πqq

= −

(

∂ΠPS

∂P 2

)

P 2=m2
π

. (III.6)

As shown in table I we obtain the physical pion mass for reasonable values of the current quark mass m0.
The model realizes the Goldstone theorem. To see it explicitly we can go to the exact chiral limit, by choosing the

reference frame where Pµ =
(

M,~0
)

and taking the limit M → 0. The explicit realization of the Goldstone theorem

arises because chiral symmetry implies that we must use the same kernel in the Dyson equation for the mass, equation
(II.12), and in the BSE for the pion, equation (III.2) [41]. Notice that Gp (p) is not constrained in the procedure.

IV. THE QUARK-PHOTON VERTEX.

In order to study the electromagnetic properties of the pion we describe the coupling of the dressed quarks to the
photon. The usual approach to the quark photon vertex is to exploit the Ward-Takahashi Identity (WTI), which is
a consequence of gauge invariance in QED. The WTI is satisfied order by order in perturbation theory and must be
satisfied also non perturbatively in order to have the right normalization for the quark-photon vertex.

The WTI for the fermion-photon vertex is

(p1 − p2)µ Γµ (p1, p2) = S−1 (p1)− S
−1 (p2) . (IV.1)

This equation constrains only the longitudinal component of the proper vertex and therefore provides no information
on the transverse part of Γµ (p1, p2).

Ball and Chiu [39] have given the form of the most general fermion-photon vertex that satisfies the WTI. It consists
of a longitudinally-constrained part given by

Γµ
BC (p1, p2) =

1

2

[

1

Z (p1)
+

1

Z (p2)

]

γµ +
1

2

[

1

Z (p1)
−

1

Z (p2)

]

(p1 + p2)
µ

p2
1 − p

2
2

( 6 p1+ 6 p2)

−

[

m (p1)

Z (p1)
−
m (p2)

Z (p2)

]

(p1 + p2)
µ

p2
1 − p

2
2

, (IV.2)

and a transverse part which is described in term of a basis of eight transverse vectors T µ
i (p1, p2) given in appendix

A. The full quark-photon vertex can be written as

Γµ (p1, p2) = Γµ
BC (p1, p2) +

8
∑

i=1

Vi (p1, p2) T
µ
i (p1, p2) , (IV.3)

where Vi (p1, p2) are not constrained scalar functions of p1 and p2 with the correct C, P, T invariance properties.
In our scheme the coupling of photons to quarks arises automatically by implementing gauge invariance in our

lagrangian. The usual way to proceed is to introduce path ordered exponentials in the definition of the currents and
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FIG. 3: Four quark- photon vertex Γ
(4qγ)
i,µ (p1, p2; p3, p4) where i = S, 5, p recalls the current from which the vertex originates

therefore they become

JS (x) =

∫

d4y G0 (y) ψ̄

(

x+
1

2
y

)

P

(

e
−iQ

∫ x+ 1
2

y

x−
1
2

y
dzµAµ(z)

)

ψ

(

x−
1

2
y

)

, (IV.4)

~J5 (x) =

∫

d4y G0 (y) ψ̄

(

x+
1

2
y

)

P

(

e−iQ
∫ x+1

2
y

x dzµAµ(z)

)

i~τγ5 P

(

e
−iQ

∫

x

x−
1
2

y
dzµAµ(z)

)

ψ

(

x−
1

2
y

)

, (IV.5)

Jp (x) =

∫

d4y Gp (y)
1

2

[

ψ̄

(

x+
1

2
y

)

P

(

e
−iQ

∫ x+ 1
2

y

x−
1
2

y
dzµAµ(z)

)

i /D ψ

(

x−
1

2
y

)

− iψ̄

(

x+
1

2
y

)

←−
/D P

(

e
−iQ

∫ x+1
2

y

x−
1
2

y
dzµAµ(z)

)

ψ

(

x−
1

2
y

)

]

, (IV.6)

where the quark charge is Q = e (~τ.n̂+ 1/3)/2 with n̂ = (0, 0, 1) , /Dψ (x) = /∂ψ (x) + iQ/A (x)ψ (x) and ψ̄ (x)
←−
/D =

∂µψ̄ (x) γµ − iψ̄ (x) /A (x)Q. In this way JS and Jp and ~J 2
5 become invariant under local gauge transformations.

The evaluation of the zµ integrals in Eqs. (IV.4-IV.6) implies a choice of path. The path dependence is implicit
in the non locality of the interaction and cannot be avoided. The difference of the contribution between two paths is
a gauge invariant quantity which is associated with the magnetic flux through any closed surface defined by the two
paths. However, when the photon momentum vanishes the path dependence disappears.

The quantization of the photon field in Eqs.(IV.4 -IV.6) leads to the new vertex shown in Fig. 3, whose contribution
has been fully worked out in Appendix A. The full quark-photon vertex can be constructed in two steps. The first
consists in the renormalization of the bare quark-photon vertex by the 4 quarks one photon vertex. Let us call the
new vertex, shown in Fig. 4, Γµ

0 (p1, p2). Using Eqs.(A.7) and (A.10) of Appendix A we get

Γµ
0 (p1, p2) = γµ − α0 [(p1 + p2)

µ
V0a (p̄, k) + kµ

V0b (p̄, k)]−

αp
1

2
[Gp (p1) +Gp (p2)] γ

µ−

αp
/p1 + /p2

2
[(p1 + p2)

µ
Vpa (p̄, k) + kµ

Vpb (p̄, k)] (IV.7)

with k = p2−p1, p̄ = p1+p2

2 and V0a, V0b, Vpa and Vpb given in Eqs (A.6) and (A.11) of Appendix A. Both the scalar
and momentum currents contribute to this vertex.

The second step consists in the insertion of Γµ
0 (p1, p2) in the equation for the quark-photon vertex, represented in

Fig. 5, which produces the dressed quark-photon vertex,

iΓµ (p1, p2) = iΓµ
0 (p1, p2) + i2g0G0

(

p1 + p2

2

)
∫

d4p

(2π)
4G0 (p) Tr

[

i S

(

p−
k

2

)

i S

(

p+
k

2

)

iΓµ

(

p−
k

2
, p+

k

2

)]

+i2gp

(

/p1 + /p2

2

)

Gp

(

p1 + p2

2

)
∫

d4p

(2π)4
Gp (p) Tr

[

i S

(

p−
k

2

)

/p i S

(

p+
k

2

)

iΓµ

(

p−
k

2
, p+

k

2

)]

. (IV.8)
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FIG. 4: Diagramatic representation of eq. (IV.7).

FIG. 5: Diagramatic representation of eq. (IV.8).

It is easy to show that the solution of equation (IV.8) is just

Γµ (p1, p2) = Γµ
0 (p1, p2) . (IV.9)

In agreement with our previous discussion, the quark-photon vertex can be rewritten in the form given by equation
(IV.3),

Γµ (p1, p2) = Γµ
BC (p1, p2) + V1 (p1, p2)T

µ
1 (p1, p2) + V2 (p1, p2)T

µ
2 (p1, p2) , (IV.10)

where

V1 (p1, p2) =
2α0

p2
2 − p

2
1

V0b (p̄, k) , (IV.11)

V2 (p1, p2) =
2αp

p2
2 − p

2
1

Vpb (p̄, k) . (IV.12)

In summary, we have constructed a dressed quark-photon vertex which has all the desired properties. It is gauge
invariant in the local sense, without being obtained from the WTI. Two new terms appear from the restoration of the
local gauge symmetry. The simplest expressions for these terms can be built assuming that a straight line joins the
two points characterizing the non local currents. For that simple input we obtain

V1 (p1, p2) =
1

p2
2 − p

2
1

∫ 1

−1

dλ λ

[

d

dp2

m (p)

Z (p)

]

p2=(p̄−λ
2

k)2

, (IV.13)

V2 (p1, p2) =
−1

p2
2 − p

2
1

∫ 1

−1

dλ λ

[

d

dp2

1

Z (p)

]

p2=(p̄−λ
2

k)2

, (IV.14)

which can be directly evaluated from the form of the quark propagator.

V. THE AXIAL CURRENT AND fπ.

Lets us now turn to the coupling of the axial current to quarks. The WTI in this case is

(p2 − p1)µ Γµ
5 (p1, p2) τ

i = S−1 (p2) γ5τ
i + γ5τ

iS−1 (p1)− 2m0i Γ5 (p1, p2) τ
i . (V.1)

The last term, proportional to m0, disappears in the chiral limit.
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FIG. 6: Diagramatic representation of the pion decay process corresponding to eq. (V.8).

Our first step is to obtain Γ5 (p1, p2) τ
i, which corresponds to the dressing of the vertex iγ5τ

i. Now the external

probe is a pseudoscalar-isovector therefore we will have contribution from the pseudoscalar current, ~J5,

Γ5 (p1, p2) τ
i = iγ5τ

i + i2g0G0 (p̄) iγ5τ
j

∫

d4p

(2π)
4G0 (p) (−) Tr

[

i S

(

p−
k

2

)

iγ5τ
j i S

(

p+
k

2

)

Γ5

(

p−
k

2
, p+

k

2

)

τ i

]

. (V.2)

with p1 = p̄− k
2 and p2 = p̄+ k

2 . This equation can be easily solved obtaining

Γ5 (p1, p2) = iγ5

[

1 + 2g0 G0 (p̄)
F0

(

k2
)

1− 2g0 ΠPS (k2)

]

(V.3)

where F0

(

k2
)

is defined by

δijF0

(

k2
)

= −i

∫

d4p

(2π)
4G0 (p) Tr

(

i γ5τ
ii S

(

p−
1

2
k

)

i γ5τ
ji S

(

p+
1

2
k

))

. (V.4)

We will obtain the dressed vertex Γµ
5 (p1, p2) applying to the W± bosons the same procedure developed for photons

in the previous section. The explicit calculation is given in Appendix B. The final result, given in equation (B.14),
can be rewritten in the following way:

Γµ
5 (p1, p2) = Γ̃µ

5 (p1, p2)

+A1 (p1, p2)T
µ
1 (p1, p2) γ5 + V2 (p1, p2)T

µ
2 (p1, p2) γ5 , (V.5)

where

A1 (p1, p2) =
2α0

p2
2 − p

2
1

[

2G0 (p̄)−G0 (p1)−G0 (p2)

(p1 − p2)
2 + A0b (p̄, k)

]

, (V.6)

with A0b (p̄, k) given in eq (A.9b), and

Γ̃µ
5 (p1, p2) =

1

2

[

1

Z (p1)
+

1

Z (p2)

]

γµγ5 +
1

2

[

1

Z (p2)
−

1

Z (p1)

]

(p1 + p2)
µ

p2
2 − p

2
1

( 6 p1+ 6 p2) γ5

−

[

m (p1)

Z (p1)
+
m (p2)

Z (p2)

]

(p2 − p1)
µ

(p2 − p1)
2 γ5 − i2m0Γ5 (p1, p2)

(p2 − p1)
µ

(p2 − p1)
2 , (V.7)

is the longitudinally constrained part of Γµ
5 (p1, p2) .

Let us now to look for the pion decay constant. In this calculation only the longitudinal current is needed and so
we do not need to choose a particular path. There are several equivalent ways for obtaining the pion decay constant,
depending where the quark-quark interaction is included. The simplest one is through the diagram depicted in figure
6, in which all the qq̄ bubbles are included in the Bethe-Salpeter pion amplitude. The axial vertex includes those
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vertex corrections which can not be included in the bound state amplitude, which in our case corresponds to those
depicted in Fig 4. Therefore, the pion decay constant is defined by,

i δi,j fπ Pµ =
∫

d4p

(2π)
4 (−)Tr

[

i φπ (p, P ) iγ5 τ
i i S

(

p−
1

2
P

)

Γµ
5,0

(

p+
1

2
P, p−

1

2
P

)

τ j

2
i S

(

p+
1

2
P

)]

, (V.8)

where Γµ
5,0 (p1, p2) is given in equation (B.11) of Appendix B and φπ (p, P ) given by equation (III.3). A direct

calculation gives the result,

fπ =
gπqq

P 2

{

1

2

(

1− 2g0ΠPS

(

P 2
))

F1

(

P 2
)

+m0F0

(

P 2
)

}

. (V.9)

with F0 given in equation (V.4) and

F1

(

P 2
)

= −

∫

d4p

(2π)4

(

G0

(

p+
P

2

)

+G0

(

p−
P

2

))

Tr [i S (p)] . (V.10)

We have two clearly distinguishable situations. In the chiral limit fπ is determined by the term with F1

(

P 2
)

. In
this limit, F1 (0) is the integral evaluated in equation (II.12). Using in the latter equations (III.5) and (III.6) and
substituting, we obtain

fπ =
α0

gπqq
=

m (0)

gπqqZ (0)
. (V.11)

The last form of fπ is the Goldberger-Treiman relation. The crucial point for obtaining this result is the chiral
symmetric structure of the interaction, which connects the kernel present in the calculation of fπ, associated with
the pseudoscalar-isovector current present in our lagrangian, with the one present in the evaluation of the mass term
m (0) , associated to the scalar-isoscalar current.

If we work with physical pions (m0 6= 0), the pion decay constant is given by

fπ =
m0

m2
π

gπqqF0

(

m2
π

)

. (V.12)

In this case the surviving contribution arises from the pion pole present in Γ5 (p1, p2).
Using equations (V.4), (II.15) and (II.26) we can obtain approximative expressions for F0

(

m2
π

)

which lead directly
to the Gell-Mann-Oakes-Renner relation

f2
π = −Nf 〈q̄q〉

m0

m2
π

+O
(

m0,m
2
π

)

. (V.13)

We have seen that we have different expressions for fπ in the chiral limit and in the physical case. They originate
from different terms of the axial current. Nevertheless, chiral symmetry guarantees that (V.11) is the limit of equation
(V.12) when m0 goes to zero.

In table I we give numerical values for fπ for scenarios S1 and S2 previously discussed. They are in reasonably
good agreement with the experimental results. Moreover, this two scenarios are describing the same physics, even if
they have a very different origin.

From reference [42] we can infer that the pion decay constant is determined using equation (V.8) with the approx-
imated expression for the axial vertex,

Γ′µ
5 (p1, p2) =

1

2

[

1

Z (p1)
+

1

Z (p2)

]

γµγ5 +
1

2

[

1

Z (p1)
−

1

Z (p2)

]

(p1 + p2)
µ

p2
1 − p

2
2

(/p1 + /p2) γ5 +O (p1 − p2) . (V.14)

In this expression O (p1 − p2) implies that (p1 − p2)µ Γ′µ
5 (p1, p2) is determined up to terms of order (p1 − p2)

2
= P 2.

This expression is the minimal generalization of the bare γµγ5 vertex in the case where Z (p) 6= 1. It is straightforward
to proof that the fπ obtained in this way differs from the exact one by corrections of order m2

π. Therefore, equation
(V.14) gives the right result in the chiral limit and a good approximation to the exact value in the physical case. The
Gell-Mann-Oakes-Renner relation is also well reproduced in this approximation. Nevertheless, equation (V.14) is not
a good expression for the axial vertex, for instance the pion pole is not present in this expression. So we conclude that
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FIG. 7: Triangle diagram contributing to the pion form factor.

Γ′µ
5 (p1, p2) is a good approximation of the longitudinal part of Γµ

5,0 (p1, p2) in the vicinity of the pion mass (P 2 ∼ m2
π),

as it can be see from equation (B.15).
Let us now consider the coupling of the axial current to a line of quarks through the vertex, Γµ

5 (p1, p2) . This
coupling contains the direct coupling and the pion pole contribution. We observe from equations (V.7) and (V.3)
that the pion pole contribution goes trough the Γ5 (p1, p2) term when the chiral symmetry is explicitly broken. In

the chiral limit, the pion pole is present in the term with quark masses in Γ̃µ
5 (p1, p2). The full Γµ

5 (p1, p2) has some
dependence on the choice of path. Nevertheless, the overall procedure preserves all the symmetries and, in particular,
gauge symmetry.

The longitudinal part of the axial current, Γ̃µ
5 (p1, p2) , is path independent. Using equations (V.12) and (V.13),

and assuming that P 2 . m2
π, it can be written in terms of the pion wave function as

Γ̃µ
5 (p1, p2)

τ i

2
=

1

2

[

1

Z (p1)
+

1

Z (p2)

]

γµγ5
τ i

2
+

1

2

[

1

Z (p2)
−

1

Z (p1)

]

(p1 + p2)
µ

p2
2 − p

2
1

(6 p1+ 6 p2) γ5
τ i

2

−

[

m (p1)

Z (p1)
+
m (p2)

Z (p2)

]

(p2 − p1)
µ

(p2 − p1)
2 γ5

τ i

2
+

(

m0 +m2
πfπ

φπ (p)

P 2 −m2
π

)

γ5τ
i (p2 − p1)

µ

(p2 − p1)
2 , (V.15)

with p1,2 = p± 1
2P. Equation (V.15) manifests the pion pole explicitly, as is predicted by PCAC.

VI. ELECTROMAGNETIC PION FORM FACTOR.

We begin by considering the triangle diagram of Fig. 7. In order to fix ideas let us consider the interaction of a
photon with a π+. With the momenta defined as in the figure we have

i e 2 P̄µF (2qγ)
(

k2
)

=

∫

d4p

(2π)
4 (−) Tr

[

i γ5 τ
+φπ

(

p−
1

4
k

)

i S

(

p−
1

2
P̄

)

i γ5

(

τ+
)†
φπ

(

p+
1

4
k

)

i S

(

p+
1

2
P̄ +

1

2
k

)

iQΓµ

(

p+
1

2
P̄ −

1

2
k, p+

1

2
P̄ +

1

2
k

)

i S

(

p+
1

2
P̄ −

1

2
k

)]

+

∫

d4p

(2π)
4 (−) Tr

[

i γ5 τ
+ φπ

(

p+
1

4
k

)

i S

(

p−
1

2
P̄ +

1

2
k

)

i QΓµ

(

p−
1

2
P̄ −

1

2
k, p−

1

2
P̄ +

1

2
k

)

i S

(

p−
1

2
P̄ −

1

2
k

)

i γ5

(

τ+
)†
φπ

(

p−
1

4
k

)

i S

(

p+
1

2
P̄

)]

, (VI.1)

where φπ is the pion Bethe-Salpeter amplitude given in equation (III.3) and Γµ (p1, p2) is the dressed quark-photon
coupling given in equation (IV.10).

There is another contribution to the form factor to be added to the previous one. The ~J 2
5 (x) term produces a four

quark photon vertex evaluated in Appendix A and given by equation (A.8). This four quark photon vertex allows for
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FIG. 8: Contribution to the form factor coming from the four quark-photon vertex displayed in Fig. 3

an additional diagram shown in Fig. 8. This contribution is

i e 2 P̄µF
(4qγ)

(

k2
)

= −

∫

d4p

(2π)
4

∫

d4p′

(2π)
4

[

i S

(

p′ −
1

2
P ′

)

i γ5

(

τ+
)†
φπ (p′) i S

(

p′ +
1

2
P ′

)]

αγ

[

Γ
(4qγ)
5,µ

(

p′ −
1

2
P ′, p′ +

1

2
P ′; p+

1

2
P, p−

1

2
P

)]

αβ,γδ

[

i S

(

p+
1

2
P

)

i γ5 τ
+φπ (p) i S

(

p−
1

2
P

)]

βδ

. (VI.2)

Therefore, the full electromagnetic form factor is F
(

k2
)

= F (2qγ)
(

k2
)

+ F (4qγ)
(

k2
)

.

Global gauge invariance guarantees the right normalization for the form factor, F
(

k2 = 0
)

= 1. For a general
case, the right normalization of the form factor is assured by the Ward identity, equation (IV.1), provided that φπ is
normalized by equation (III.6) and we take into account the two contributions arising from Eqs. (VI.1) and (VI.2).
When the kernel used in the pion BSE, equation (III.5), is independent on the total pion momentum, as it is for our
models, the contribution arising from the triangle diagram, equation (VI.1) will assure the correct normalization of
the form factor. Therefore, in our case this property is guaranteed for the full Γµ (p1, p2) vertex given by equation
(IV.10) and for the Ball-Chiu vertex, Γµ

BC (p1, p2) , given by equation (IV.2). In our expression for Γµ (p1, p2) there
are additional terms besides Γµ

BC (p1, p2) which arise from local gauge invariance. They give contributions to F
(

k2
)

for k2 6= 0 without modifying the value at k2 = 0.
Due to the separable nature in p and p′ and P -independence of the interacting terms in our Lagrangian, one of

the integrals in equation (VI.2) can be done in a trivial manner generating a pion-2 quark-photon vertex. However,
when performing the remaining integrals we realize that this diagram does not contribute to the form factor. This is
not a general result, just a consequence of our particular models. In fact this term will contribute in a significant way
to the parton distribution [46]. Its contribution is crucial to guarantee isospin symmetry in the parton distributions
and to restore the momentum sum rule.

We now proceed to a numerical comparison between the calculations, using the Ball-Chiu vertex, and our full locally
gauge invariant vertex, equation (IV.10), (IV.13) and (IV.14). We show in Fig. 9 the form factor for the two vertices
in scenarios S1 and S2, together with the experimental results [47, 48]. We find no important differences for S1 when
comparing the Ball-Chiu prescription to the full vertex. For S2 the correction, which is small for small k2, becomes
important for k2 ∼ −0.8 GeV2. The difference in the calculations arises because in S2 Z (p) 6= 1. The correction due
to V1 (p1, p2) is about 5-7% at this momentum transfer for both scenarios. The correction due to V2 (p1, p2), present
only in S2, is about 24% for k2 ∼ −0.8 GeV2. Since the two corrections go in the same direction the overall result
changes by about 30%. We have confirmed this conclusion introducing a Z (p) different from 1 in case S1.

Regarding the experimental results we observe that the scenario S1 reproduces well the value of F
(

k2
)

for small

values of k but underestimates the form factor for k2 ∼ 0.8 GeV2 by as much as 12%. For scenario S2 we observe that
the introduction of the full vertex produces a better description of the form factor for k2 ∼ 0.8 GeV2 but a worst in
the small k region. In this last scenario the difference between the calculated form factor and the experimental data
is always less than 5%.

The behavior for small k can be analyzed in terms of the pion radius. In table I we give the mean squared radius
for the full electromagnetic vertex and, between brackets, that of the Ball-Chiu prescription. We observe that the
radius is smaller than the experimental result in all cases. We also observe that the full vertex and the Ball-Chiu
prescription produce the same values since there is no wave function renormalization in the quark propagator, as
in the case S1. In model S2, with non vanishing wave function renormalization, we observe a difference, of about
15%, due to the V2 (p1, p2) term in equation (IV.10), confirming our conclusion from the analysis of the form factors.
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FIG. 9: Comparison of the Pion form factor calculated in the two defined scenarios with the Ball-Chiu ansatz and the full
vertex of the model. Dot-dashed curve corresponds to the scenario S1 with Ball-Chiu ansatz; full curve corresponds to the
same scenario with the full vertex. Dotted curve corresponds to S2 with the Ball-Chiu ansatz; dashed curve corresponds to S2
with the full vertex. Experimental data have been taken from [48] (points) and from [47] (circles).

Summarizing, the use of the full vertex increases the differences between the calculation and the observation. But
this is not unexpected since no vector mesons have been included in the models and previous work indicates that this
contribution can be of the order of 10-20% [38, 49, 50].

We analyze the dependence of the pion radius in m (p) and Z (p) in the chiral limit (m0 = 0). In Fig. 10 we show
the result of rescaling by a generic factor of λ the parameters Λm and αm appearing in Eqs.(II.24) and (II.25). If

Λm increases the interaction ~J 2
5 (x) becomes of shorter range. If we increase αm, g0 increases. In both cases the pion

becomes more bound and its radius smaller.
In Fig. 10 we also show what happens to the mean square radius when Λz and αz are rescaled by a factor of λ.

The system is not very sensitive to changes of Λz, while it is quite sensitive for the rescaling of αz when λ ∼ 2. The
reason for this strong effect is that for this value Z (0) = 0.

VII. PARTON DISTRIBUTION.

In the previous section we have analyzed some numerical aspects of the pion form factor. We have put special
emphasis in the discussion of the terms restoring the local gauge symmetry, V1 (p1, p2) and V2 (p1, p2). We have seen
that we have a second contribution given in equation (VI.2), but this contribution vanishes in our particular model.
Searching for an observable which is sensible to this term, we next discuss the parton distribution. As it is shown
in [51] the operator for the parton distribution can be connected to the electromagnetic operator at zero momentum
transfer. Therefore we are dealing with a property for k2 = 0, where the path dependence is absent and our results
will be valid for any model.

The first step is to obtain the electromagnetic operator at zero momentum transfer. This operator has a one body
term which can be obtained directly from Ward identity

Γµ (p, p) =
∂S−1 (p)

∂pµ
, (VII.1)

and a two body term which corresponds in our particular lagrangian to the equation (VI.2). To be precise, let us
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FIG. 10: Sensitivity of
〈

r2
〉

in fm2 for the pion in relation with the propagator parameters in the scenario S2. On the left we

have
〈

r2
〉

in relation with λ ·Λm for λ = 0.5, 1, 1.5 and 2 (dashed curve) and
〈

r2
〉

in relation with λ ·αm for the same values of

λ (full curve). On the right, the dotted curve represents the
〈

r2
〉

in relation with λ · Λz and the full curve gives the
〈

r2
〉

for

the pion in relation with λ ·αz, for λ = 0.5, 1, 1.5 and 2. The full curve gives the msr in fm2 for the pion in relation with λ ·αz

for the same values of λ.

proceed to a general discussion. We start from an action of the form

S =

∫

d4xψ̄ (x) (i 6 ∂ −m0)ψ (x) +

∫

d4x1 d
4x2 d

4x3 d
4x4Gαβγδ (x1, x2, x3, x4) ψ̄δ (x4)ψβ (x2) ψ̄γ (x3)ψα (x1) , (VII.2)

where the greek indices characterize all symmetries, i.e spinor, color and flavor. Let us define the following variables,

x = (x3 − x1) , x′ = (x4 − x2) ,

X ′ =
1

2
(x3 + x1 − x4 − x2) , X =

1

4
(x3 + x1 + x4 + x2) . (VII.3)

Translational invariance imposes that Gαβγδ (x1, x2, x3, x4) cannot depend on X. We introduce

Gαβγδ (x1, x2, x3, x4) = Gαβγδ (x, x′, X ′) =

∫

d4p

(2π)
4

d4p′

(2π)
4

d4P

(2π)
4 e

−ixpe−ix′p′

e−iX′PGαβγδ (p, p′, P ) . (VII.4)

Hermiticity and all internal symmetries, such as parity, charge conjugation and time reversal, impose relations between
the different components of the interaction term Gαβγδ (p, p′, P ) .

We are interested in the mesonic bound state described in Fig. 2. The Bethe-Salpeter amplitude for this meson is
defined by (we identify p2 = p′ + P/2, p4 = p′ − P/2, p3 = p+ P/2, p1 = p− P/2)

ΓM
γα (p, P ) = −2i

∫

d4p′

(2π)
4Gαβγδ (p, p′, P )

(

i S

(

p′ +
1

2
P

)

ΓM (p′, P ) i S

(

p′ −
1

2
P

))

βδ

, (VII.5)

with the standard normalization condition given in the Appendix C, equation (C.1).
Regarding the charges of the fields in equation (VII.2), we can assume that Qα = Qδ = Q1 and Qγ = Qβ = Q2. We

observe that the interaction term in equation (VII.2) is invariant under global gauge transformations but not under
local gauge transformations. One way to make it locally invariant is by incorporating some links. The interaction
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term becomes,

Si =

∫

d4x d4x′ d4X ′ d4X Gαβγδ (x, x′, X ′) ψ̄δ

(

1

2
x′ −

1

2
X ′ +X

)

e−iQ1

∫

1
2

x′
−

1
2

X′+X

X
dzµAµ(z)

e
−iQ2

∫

X

−
1
2

x′
−

1
2

X′+X
dzµAµ(z)

ψβ

(

−
1

2
x′ −

1

2
X ′ +X

)

ψ̄γ

(

1

2
x+

1

2
X ′ +X

)

e−iQ2

∫

1
2

x+ 1
2

X′+X

X
dzµAµ(z)

e
−iQ1

∫

X

−
1
2

x+1
2

X′+X
dzµAµ(z)

ψα

(

−
1

2
x+

1

2
X ′ +X

)

. (VII.6)

We now expand this expression in powers of the photon field. The first term is already included in equation (VII.2).
The second term is linear in the photon field and is the one of interest. We can evaluate it in the k → 0 limit without
having to define a specific path for the integrals present in equation (VII.6). From this last result it is easy to obtain
that the quantity to add in the limit of k→ 0 to each vertex of the type of Fig. 3 is

−iQ1

[

Γ
(4qγ)
1,µ (p1, p3; p2, p4)

]

αβ,γδ
− iQ2

[

Γ
(4qγ)
2,µ (p1, p3; p2, p4)

]

αβ,γδ
, (VII.7)

with
[

Γ
(4qγ)
1,µ (p1, p3; p2, p4)

]

αβ,γδ
= 2

(

d

dpµ
1

+
d

dpµ
4

)

Gαβγδ

(

p1 + p3

2
,
p2 + p4

2
,
p2 + p3 − p1 − p4

2

)

,

[

Γ
(4qγ)
2,µ (p1, p3; p2, p4)

]

αβ,γδ
= 2

(

d

dpµ
2

+
d

dpµ
3

)

Gαβγδ

(

p1 + p3

2
,
p2 + p4

2
,
p2 + p3 − p1 − p4

2

)

. (VII.8)

The details of the calculation are given in Appendix C, where we also discuss the implication of this term to the form
factor for a BSE with a P−dependent kernel.

In [51], the operator for the parton distribution has been connected with the electromagnetic operator in the
following way

q (x) = −

∫

d4p

(2π)
4 Tr

[

iS

(

p−
1

2
P

)

Γ̄M (p, P ) i S

(

p+
1

2
P

)

Γµ

(

p+
1

2
P, p+

1

2
P

)

nµi S

(

p+
1

2
P

)

ΓM (p, P )

]

δ
(

x−
n

2
· (2p+ P )

)

, (VII.9)

where Γµ (p, p) is the dressed photon vertex of the selected parton, equation (VII.1). This expression can be generalized
from the one body coupling to include the two body coupling in the following way

q (x) =

∫

d4p

(2π)4

∫

d4p′

(2π)4

[

i S

(

p′ −
1

2
P

)

Γ̄M (p, P ) i S

(

p′ +
1

2
P

)]

αγ
[

Ou

(

p′ −
1

2
P, p′ +

1

2
P ; p+

1

2
P, p−

1

2
P

)]

αβ,γδ

[

i S

(

p+
1

2
P

)

ΓM (p, P ) i S

(

p−
1

2
P

)]

βδ

, (VII.10)

with

[Ou (p1, p3; p2, p4)]αβγδ = − [Γµ (p2, p3)n
µ]γβ δ

(

x−
n

2
· (p2 + p3)

)

(−i)S−1
δα (p1) (2π)

4
δ4 (p4 − p1)

+
[

δ
(

x−
n

2
· (p2 + P ′ + p4)

)

+ δ
(

x−
n

2
· (p3 + P + p1)

)] 1

2
nµ

[

Γ
(4qγ)
2,µ (p1, p3; p2, p4)

]

αβ,γδ
. (VII.11)

The corresponding diagrams are those shown of Figs. 11 and 12.
We can split the parton distribution into two one body and one two body contributions

q (x) = q(1) (x) + q̃(1) (x) + q(2) (x) . (VII.12)

The first contribution, q(1) (x) , is the one appearing in equation (VII.9) and corresponds to the diagram shown in
Fig. 11. The second term is also a one body term,

q̃(1) (x) =

∫

d4p

(2π)4
1

4
δ
(

x−
n

2
· (2p+ P )

)

Tr

[

inµ
dΓ̄M (p, P )

dpµ
i S

(

p+
1

2
P

)

ΓM (p, P ) i S

(

p−
1

2
P

)

+ i S

(

p−
1

2
P

)

Γ̄M (p, P ) i S

(

p+
1

2
P

)

inµ
dΓM (p, P )

dpµ

]

, (VII.13)
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FIG. 11: Diagrammatic contributions to the parton distributions of the pion.

FIG. 12: Diagrammatic contributions to the parton distributions of the pion.

while the third term is a genuine two body term given by,

q(2) (x) =

∫

d4p

(2π)
4

∫

d4p′

(2π)
4

[

i S

(

p′ −
1

2
P

)

Γ̄M (p′, P ) i S

(

p′ +
1

2
P

)]

αγ

1

2
nµ

{[

δ
(

x−
n

2
· (2p+ P )

)

(

d

dp′µ
+ 2

d

dPµ

)

+ δ
(

x−
n

2
· (2p′ + P )

)

(

d

dpµ
+ 2

d

dPµ

)]

Gαβγδ (p′, p, P )

}

[

i S

(

p+
1

2
P

)

ΓM (p, P ) i S

(

p−
1

2
P

)]

βδ

. (VII.14)

These last two contributions correspond to the diagram of Fig 12 . In q̃(1) (x) the bubble integral has been performed
using the BSE, that is the reason for appearing as a one body term.

The whole contribution coming from the diagram of Fig 12 has a non-vanishing contributions to q (x) , nevertheless,
when we integrate over x the only non-vanishing contribution that can survive is the one associated to the derivative
of the total momentum, which contributes to the form factor. An analysis of this operator in the scenarios here
considered is done in [46].

Summarizing, we have three contributions: the standard one, associated with the handbag diagram, and defined
in equation (VII.9) and two new contributions defined in Eqs. (VII.13) and (VII.14). These contributions are a
consequence of the non locality of the currents involved in our model. From the point of view of QCD they are also
handbag diagrams, but in terms of the BS amplitudes they have a different structure.

VIII. CONCLUSION.

We have defined a family of phenomenological chirally invariant non local lagrangians to describe hadron structure.
They lead to non trivial momentum dependencies in the quark propagator parametrized by momentum dependent
quark mass terms and wave function renormalization constants. We have shown that the formalism is able to emulate
any propagator obtained from more fundamental studies. In particular we have studied two scenarios obtained from
low energy models of QCD [43], and lattice QCD [44, 45]. As a first goal, our lagrangian description allows a
careful study of the properties of any observable. In particular we have applied it in detail to the study of the pion
electromagnetic form factor with special emphasis to the consequences of the local gauge invariance.

Several authors have previously used non local models, in particular the non local generalization of the Nambu- Jona
Lasinio model [21, 22, 25, 52, 53] and the instanton liquid model [54], and have studied electromagnetic properties
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[49, 55]. There are main differences between these approaches and ours. The momentum dependence in our case
arises from QCD and appears not only in the mass but also in the wave function renormalization. Moreover, we do
not use a separable approximation of the interaction kernel in each particle momentum.

In order to test the consistency of the model, we have studied the basic properties of the theory, i. e. effective
current masses and quark condensate. We have constructed, using our models, the two body quark anti-quark bound
state equation and solved for the pion obtaining its mass and its Bethe-Salpeter amplitude.

We have implemented the electromagnetic coupling in this theory. The construction of the dressed quark-photon
vertex is complicated and the WTI do not solve the problem completely. In particular the transverse propagator has
been a subject of much debate. In our lagrangian formalism it is natural to implement local gauge invariance through
links between the points where the quark fields act. We find that two new terms appear in the quark-photon vertex
which restore local gauge symmetry. We have obtained simple expressions for these two new terms choosing the link
between the two points characterizing the non local currents as a straight line. They appear as derivatives of the
mass, m (p), and wave function renormalization, Z (p), of the quarks. We apply our formalism to the pion form factor
and find out that the local gauge restoring terms could amount to as much as 20-30%. Our analysis is applicable to
previous work, where the Ball-Chiu prescription for the electromagnetic vertex were used.

We have applied the same ideas to the axial current, implementing local gauge invariance under SUL (2) transfor-
mations in the lagrangian. We have obtained the full dressed axial vertex. We have discussed several equivalent ways
for calculating the pion decay constant. The calculated pion decay constant is in reasonably good agreement with the
experimental result. Moreover, we can observe that the two scenarios studied in the paper describe the same physics.
It must be emphasized that this two scenarios have a quite different origin.

The basic relations from chiral symmetry, the Goldberger-Treiman and the Gell-Mann-Oakes-Renner relations, have
been recovered.

The simplest expression for the axial current, given in equation (V.14), is a good approximation for the calculation
of fπ. Nevertheless it does not include the pion pole contribution. Equation (V.15) provides an expression for the
longitudinal part of the axial current consistent with PCAC.

Another effect of local gauge invariance is that a new vertex with four quark lines and one photon line appears.
The contribution of this vertex to the pion form factor vanishes for our models. This is not a general result, but a
consequence of the separable nature and P−independence of the interacting terms in our lagrangian. For a general
kernel we have seen that this term is necessary in order to guarantee the normalization of the form factor, F (0) = 1.

Searching for an observable which is sensitive to this term we have studied the parton distribution. Following the
ideas of ref [51] we have obtained the related operator which is path independent and therefore can be used in any
other model. The new two body term will give a non vanishing contribution to the parton distribution even within
our models [46].

Regarding the numerical values we observe that the two studied scenarios give quite similar results. We only fit m0

in order to reproduce mπ. Their analytic form for the mass, given in equation (II.23) and (II.24), are quite different,
but their numerical value in the region p2

E < 6 GeV2 is similar. We regard these expressions as approximations of
more realistic expressions for the propagator. In this way, their unwanted analytic properties are not considered.
We conclude that both scenarios provide an overall good agreement with the data. The value of the condensate is
well reproduced, the value of m0 is in agreement with the quark current mass, the value of the pion decay constant
is 10% smaller than the experimental value, and both scenarios give similar results. We observe that the fact that
Z (p) 6= 1 in the second scenario is not important in these observables. The mean square radius discriminates between
these scenarios. In the S1 (S2) we obtain a value which is 10% (20%) smaller than the experimental one. Our
analysis shows that this difference is not associated to the different choice of the mass expression but to the fact that
in the S2 Z (p) 6= 1. The electromagnetic radius of the pion will be affected by the coupling of the photon to the
meson vectors. This contribution has been estimated to be around the 10-20% [38, 50]. The intermediate region,
k2 ∼ 0.6−0.8 GeV2, will be also affected by these vector currents through axial components in the pion Bethe-Salpeter
amplitude. Therefore we cannot conclude which of the two models is more accurate at present.

In summary we have set the formalism for the description of non local models of hadron structure and have used
them to analyze past developments and propose future studies. In particular, it has been already applied for the
study of the parton distribution of the pion [46].
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APPENDIX A: THE QUARK PHOTON VERTEX

Let us detail here some intermediate steps related with section IV.
The set of eight basic transverse tensors T µ

i (p1, p2) we use in equation (IV.3) are those defined by Ball and Chiu
[39] with some minor modifications (k = p2 − p1),

T µ
1 (p1, p2) = pµ

1 (p2.k)− p
µ
2 (p1.k) ,

T µ
2 (p1, p2) = [pµ

1 (p2.k)− p
µ
2 (p1.k)]

(/p1 + /p2)

2
,

T µ
3 (p1, p2) = k2γµ − kµ/k ,

T µ
4 (p1, p2) = −i [pµ

1 (p2.k)− p
µ
2 (p1.k)] p

λ
1p

ν
2σλν ,

T µ
5 (p1, p2) = −iσµλkλ , (A.1)

T µ
6 (p1, p2) = γµ

(

p2
2 − p

2
1

)

− (p1 + p2)
µ /k ,

T µ
7 (p1, p2) =

p2
2 − p

2
1

2
[γµ (/p1 + /p2)− p

µ
1 − p

µ
2 ]− i (p1 + p2)

µ pλ
1p

ν
2σλν ,

T µ
8 (p1, p2) = iγµpλ

1p
ν
2σλν + pµ

1/p2 − p
µ
2/p1 .

Looking at the four quark photon vertex, we must expand the exponential with the Aµ (z) field in the currents of
Eqs.(IV.4-IV.6). Let us start with the scalar current equation (IV.4)

JS (x) = J
(0A)
S (x) + J

(1A)
S (x) + .... =

∫

d4y G0 (y) ψ̄

(

x+
1

2
y

)

ψ

(

x−
1

2
y

)

+ (A.2a)

∫

d4y G0 (y) ψ̄

(

x+
1

2
y

)

(

−iQ

∫ x+ 1
2
y

x− 1
2
y

dzµAµ (z)

)

ψ

(

x−
1

2
y

)

+ ... . (A.2b)

Inserting this expansion in the J†
S (x) JS (x) term of equation (II.4), the first crossed term, J

(0A)†
S (x)J

(1A)
S (x) +

J
(1A)†
S (x)J

(0A)
S (x) , leads to the 4 quarks-photon vertex. An evaluation of this vertex needs to specify the path from

x− 1
2y to x+ 1

2y followed by the evaluation of the integral on zµ in equation (A.2b). This path can be parameterized
as

zµ = xµ +
λ

2
yµ + cµ

S
(λ) with λ ∈ [−1, 1] and cµ

S
(−1) = cµ

S
(1) = 0 . (A.3)

The current J
(1A)
S (x) between states of 1 quark of momentum p1, and 1 photon-1 quark of momentum k and p3,

respectively gives

〈

p3

∣

∣

∣
J

(1A)
S (x)

∣

∣

∣
p1k
〉

= ū (p3) (−iQ)u (p1) e
i(p3−k−p1)xǫµ (k, ξ)

∫

d4t

(2π)
4G0 (t)

∫

d4y

(
∫ 1

−1

dλ

(

1

2
yµ + c′Sµ

)

e−ikcS

)

eiy( p1+p3−λk

2
−t)

= ū (p3) (−iQ)u (p1) e
i(p3−k−p1)xǫµ (k, ξ)

∫ 1

−1

dλ eikcS

(

−

(

p1 + p3 − λk

2

)

µ

iG′
0 (t) + c′SµG0 (t)

)

t=
p1+p3−λk

2

, (A.4)

where Q = e (~τ .n̂+ 1/3) /2 is the charge of the quark, G′
0 (t) = dG0 (t) /dt2 and ǫµ (k, ξ) is the photon polarization.

For the sake of simplicity we take cSµ = 0 which corresponds to linking the two points of the non local current by a
straight line. We can write the matrix element in the following way

〈

p3

∣

∣

∣
J

(1A)
S (x)

∣

∣

∣
p1k
〉

= −ū (p3) Q u (p1) e
i(p3−k−p1)xǫµ (k, ξ)

[

(p1 + p3)µ V0a

(

p1 + p3

2
, k

)

− kµV0b

(

p1 + p3

2
, k

)]

, (A.5)
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where

V0a (p̄, k) =

∫ 1

−1

dλ
1

2
G′

0

(

p̄− λ
k

2

)

, (A.6a)

V0b (p̄, k) =

∫ 1

−1

dλ
λ

2
G′

0

(

p̄− λ
k

2

)

. (A.6b)

Using the current given in equation (A.5) we obtain the vertex associated to the interacting term

g0

(

J
(0A)†
S (x)J

(1A)
S (x) + J

(1A)†
S (x)J

(0A)
S (x)

)

of the Lagrangian,

[

Γ
(4qγ)
S,µ (p1, p3; p2, p4)

]

αβ,γδ
= −i2g0G0

(

p2 + p4

2

)

δβδQγα

[

(p1 + p3)µ V0a

(

p1 + p3

2
, k

)

− kµV0b

(

p1 + p3

2
, k

)]

+ (p1α, p3γ ↔ p2β, p4δ) , (A.7)

with k = p3 + p4 − p1 − p2.

We apply the same ideas to the pseudoscalar current (IV.5) obtaining the vertex associated to the interacting term

g0

(

J
(0A)†
5 (x)J

(1A)
5 (x) + J

(1A)†
5 (x)J

(0A)
5 (x)

)

of the Lagrangian,

[

Γ
(4qγ)
5,µ (p1, p3; p2, p4)

]

αβ,γδ
= −i2g0G0

(

p2 + p4

2

)

(iγ5~τ )δβ

{

(

iγ5
1

2
{Q,~τ}

)

γα

[

(p1 + p3)µ V0a

(

p1 + p3

2
, k

)

− kµV0b

(

p1 + p3

2
, k

)]

+

(

iγ5
1

2
[Q,~τ ]

)

γα

[

(p1 + p3)µ A0a

(

p1 + p3

2
, k

)

− kµA0b

(

p1 + p3

2
, k

)]

}

+ (p1α, p3γ ↔ p2β, p4δ) , (A.8)

with

A0a (p̄, k) =

∫ 1

0

dλ
1

2
G′

0

(

p̄− λ
k

2

)

−

∫ 0

−1

dλ
1

2
G′

0

(

p̄− λ
k

2

)

, (A.9a)

A0b (p̄, k) =

∫ 1

0

dλ
λ

2
G′

0

(

p̄− λ
k

2

)

−

∫ 0

−1

dλ
λ

2
G′

0

(

p̄− λ
k

2

)

. (A.9b)

and V0a and V0b given in equations (A.6a) and (A.6b).

The momentum current equation (IV.6) produces the interacting term gp

(

J
(0A)†
p (x) J

(1A)
p (x) + J

(1A)†
p (x) J

(0A)
p (x)

)

.

The associated vertex is
[

Γ(4qγ)
p,µ (p1, p3; p2, p4)

]

αβ,γδ
= −i2gpGp

(

p2 + p4

2

)(

/p2 + /p4

2

)

δβ

(Qγν)γα

{

gνµ
1

2

[

Gp

(

p1 + p3 + k

2

)

+Gp

(

p1 + p3 − k

2

)]

+
(p1 + p3)ν

2

[

(p1 + p3)µ Vpa

(

p1 + p3

2
, k

)

− kµVpb

(

p1 + p3

2
, k

)]}

+ (p1α, p3γ ↔ p2β, p4δ) , (A.10)

whith

Vpa (p̄, k) =

∫ 1

−1

dλ
1

2
G′

p

(

p̄− λ
k

2

)

, (A.11a)

Vpb (p̄, k) =

∫ 1

−1

dλ
λ

2
G′

p

(

p̄− λ
k

2

)

. (A.11b)
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APPENDIX B: THE QUARK W µ VERTEX.

Let us decompose the quark field in its left a right parts, ψL,R (x) = 1
2 (1∓ γ5)ψ (x) . Under a local SUL (2) gauge

transformations we have

ψL (x) −→ eigw
~τ
2

.~α(x)ψL (x) ψR (x) −→ ψR (x) (B.1)

~τ ~Wµ (x) = ~τ ~Wµ (x)− ∂µ~α (x) .~τ − gw

(

~α (x) × ~Wµ (x)
)

.~τ . (B.2)

Our lagrangian model defined in (II.4) is invariant under infinitesimal global gauge SUL (2) transformation. Now we
are interested in making this lagrangian invariant under local transformations. We proceed in a similar way as in the
electromagnetic case. The main difficulty is on the fact that our currents are built with fields in different points, thus
the value of ~α (x) will be different for each point. To avoid this difficulty let us introduce the following product of
fields

P
(

e−i gw
2

∫

x
y

dzµ ~τ ~W µ(z)
)

ψL (y) (B.3)

which transform covariantly at least for infinitesimal transformations,

[

e−i gw
2

∫

x
y

dzµ ~τ ~W µ(z) ψL (y)
]

−→ ei gw
2

~τ.~α(x)
[

e−i gw
2

∫

x
y

dzµ ~τ ~W µ(z)+O(g2
w) ψL (y)

]

(B.4)

Then, we can define the currents

JS (x) =

∫

d4y G0 (y)

[

ψ̄R

(

x+
1

2
y

)

P

(

e
−i gw

2

∫

x

x−
1
2

y
dzµ ~Wµ(z)~τ

)

ψL

(

x−
1

2
y

)

+ ψ̄L

(

x+
1

2
y

)

P

(

e−i gw
2

∫ x+ 1
2

y

x dzµ ~Wµ(z)~τ

)

ψR

(

x−
1

2
y

)]

, (B.5)

~J5 (x) =

∫

d4y G0 (y)

[

−i ψ̄R

(

x+
1

2
y

)

~τ P

(

e
−i gw

2

∫

x

x−
1
2

y
dzµ ~Wµ(z)~τ

)

ψL

(

x−
1

2
y

)

+ i ψ̄L

(

x+
1

2
y

)

P

(

e−i gw
2

∫ x+ 1
2

y

x dzµ ~Wµ(z)~τ

)

~τ ψR

(

x−
1

2
y

)]

, (B.6)

Jp (x) =

∫

d4y Gp (y)
1

2

[

ψ̄L

(

x+
1

2
y

)

P

(

e
−i gw

2

∫ x+ 1
2

y

x−
1
2

y
dzµ ~Wµ(z)~τ

)

i /D ψL

(

x−
1

2
y

)

− iψ̄L

(

x+
1

2
y

)

←−
/D P

(

e
−i gw

2

∫ x+1
2

y

x−
1
2

y
dzµ ~Wµ(z)~τ

)

ψL

(

x−
1

2
y

)

+ iψ̄R

(

x+
1

2
y

)

←→
/∂ ψR

(

x−
1

2
y

)]

, (B.7)

where the covariant derivative is Dµψ (x) =
[

∂µ + igw
~Wµ (z) ~τ

2

]

ψL (x) . With these definitions, the combination

J2
S (x) + ~J 2

5 (x) is invariant under local infinitesimal gauge transformations. The momentum current, JP (x) , is
self-invariant.

Once we have the invariant lagrangian we proceed for obtaining the 4quarks-Wµ vertex. The procedure is exactly
the same as in the previous appendix, expanding the currents in the number of W mesons, and we write directly our
results.

The vertex associated to the interacting term g0

(

J
(0W )†
S (x)J

(1W )
S (x) + J

(1W )†
S (x) J

(0W )
S (x)

)

of the Lagrangian,
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in which a boson of type W 1 is involved, is
[

Γ
(4qW )
S,µ (p1, p3; p2, p4)

]

αβ,γδ
= −i 2g0

gw

2
G0

(

p2 + p4

2

)

δβδ

{[

(p1 + p3)µ V0a

(

p1 + p3

2
, k

)

− kµV0b

(

p1 + p3

2
, k

)](

1

2
τ1

)

γα

+

[

(p1 + p3)µ A0a

(

p1 + p3

2
, k

)

− kµA0b

(

p1 + p3

2
, k

)](

1

2
τ1γ5

)

γα

}

+ (p1α, p3γ ↔ p2β, p4δ) . (B.8)

The vertex associated to the interacting term g0

(

J
(0W )†
5 (x)J

(1W )
5 (x) + J

(1W )†
5 (x) J

(0W )
5 (x)

)

of the Lagrangian is

[

Γ
(4qW )
5,µ (p1, p3; p2, p4)

]

αβ,γδ
= −i 2g0

gw

2
G0

(

p2 + p4

2

)

(

iγ5τ
j
)

βδ

{

i

[

(p1 + p3)µ V0a

(

p1 + p3

2
, k

)

− kµV0b

(

p1 + p3

2
, k

)](

1

2

{

τ1, τ j
} 1

2
γ5 +

1

2

[

τ1, τ j
] 1

2

)

γα

+

[

(p1 + p3)µ A0a

(

p1 + p3

2
, k

)

− kµA0b

(

p1 + p3

2
, k

)](

1

2

{

τ1, τ j
} 1

2
+

1

2

[

τ1, τ j
] 1

2
γ5

)

γα

}

+ (p1α, p3γ ↔ p2β, p4δ) . (B.9)

The vertex associated to the interacting term gp

(

J
(0W )†
p (x)J

(1W )
p (x) + J

(1W )†
p (x) J

(0W )
p (x)

)

of the Lagrangian is

[

Γ(4qW )
p,µ (p1, p3; p2, p4)

]

αβ,γδ
= −i2gpgwGp

(

p2 + p4

2

)(

/p2 + /p4

2

)

δβ

(

τ1γν 1

2
(1− γ5)

)

γα

{

gνµ
1

2

[

Gp

(

p1 + p3 + k

2

)

+Gp

(

p1 + p3 − k

2

)]

+
(p1 + p3)ν

2

[

(p1 + p3)µ Vpa

(

p1 + p3

2
, k

)

− kµVpb

(

p1 + p3

2
, k

)]}

+ (p1α, p3γ ↔ p2β, p4δ) , (B.10)

In all these expressions, the momentum transferred is defined as k = p3 + p4 − p1 − p2. The functions V0a, V0b, A0a,
A0b, Vpa and Vpb are defined in equations (A.6a), (A.6b), (A.9a), (A.9b), (A.11a) and (A.11b).

The W 1 boson couples to quarks through the dressed vertex (Γµ (p1, p2)− Γµ
5 (p1, p2)) τ

1. As in the quark photon
vertex discussed in section IV, the full quark W vertex is constructed in a two steps process. The first one is shown
in fig. 4 and it consists in the renormalization of the bare quark-W vertex by the 4 quarks one W vertex. The change
in the vector part of the vertex is given in equation (IV.7). The axial part is

Γµ
5,0 (p1, p2) = γµγ5 + α0 [(p1 + p2)

µ
A0a (p̄, k) + kµ

A0b (p̄, k)] γ5+

2 G0

(

p1 + p2

2

)

(p1 − p2)
µ

(p1 − p2)
2 γ5 [α0 + g0F1 (k)]−

αp
1

2
[Gp (p1) +Gp (p2)] γ

µγ5−

αp
/p1 + /p2

2
γ5

[

(p1 + p2)
µ

Vpa

(

p1 + p2

2
, k

)

+ kµ
Vpb

(

p1 + p2

2
, k

)]

(B.11)

with F1 (k) given by equation (V.10). It is interesting to note that the longitudinal part of Γµ
5,0 (p1, p2),

(p2 − p1)µ Γµ
5,0 (p1, p2) = S−1 (p2) γ5 + γ5S

−1 (p1) +

(

2m0 − 2g0G0

(

p1 + p2

2

)

F1

(

k2
)

)

γ5 , (B.12)

does not satisfy the WTI (V.1).
The second step is represented in Fig. 5. The associated equation for the vector part of the vertex is given in

equation (IV.8) and the final form of the solution is given in equation (IV.10). The axial part of the vertex is
governed by the equation

iΓµ
5 (p1, p2)

τ1

2
= iΓµ

5,0 (p1, p2)
τ1

2
+

i 2 g0G0

(

p1 + p2

2

)

iγ5τ
j

∫

d4p

(2π)4
G0 (p) (−)Tr

[

i S

(

p−
k

2

)

iγ5 τ
j i S

(

p+
k

2

)

iΓµ
5

(

p−
k

2
, p+

k

2

)

τ1

2

]

(B.13)
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with k = p2 − p1. This equation can be solved obtaining

Γµ
5 (p1, p2) = Γµ

5,0 (p1, p2) + 2g0G0

(

p1 + p2

2

)

[

F1

(

k2
)

+ 2m0

F0

(

k2
)

1− 2g0 ΠPS (k2)

]

kµ

k2
γ5 (B.14)

This expression can be rewritten in the form given by equation (V.5).

In equation (V.14) we give an approximated expression for the longitudinal part of Γµ
5,0 (p1, p2) . From equations

(V.14) and (B.12) we have

(p1 − p2)µ

(

Γµ
5,0 (p1, p2)− Γ′µ

5,0 (p1, p2)
)

=
[

α0 G0 (p1) + α0 G0 (p2) + 2g0 G0 (p) F1

(

P 2
)]

γ5 (B.15)

with p1,2 = p±P/2. Inserting equation (B.15) in (V.8) we can evaluate the numerical error produced in the calculation

of fπ through the use of Γ′µ
5,0 (p1, p2) . Expanding in powers of P 2 it is straightforward to obtain that ∆fπ = O

(

m2
π

)

.
There are alternatives ways for calculating the pion decay constant in which we cannot use the approximated

expression (V.14). For instance, we can consider an interacting pair qq̄ which a some point couples to a W boson.
We can describe the interaction between the qq̄ by the scattering amplitude or using the dressed vertex. This two
descriptions must be equivalents and in the proximity of the pion pole we have

iPµfπ
i

P 2 −m2
π

Γπ
γα (p′, P ) =

(−)

∫

d4p

(2π)
4 2iGαβγδ (p′, p, P )

(

i S

(

p−
1

2
P

)

Γµ
5

(

p+
1

2
P, p−

1

2
P

)

τ j

2
i S

(

p+
1

2
P

))

βδ

(B.16)

Where, in our model, the interaction is

Gαβγδ (p′, p, P ) = g0 G0 (p′)G0 (p)
[

δγαδδβ + (i~τγ5)γα (i~τγ5)δβ

]

+ gp Gp (p′)Gp (p) (/p′)γα (/p)δβ , (B.17)

and the pion amplitude is

Γπ
αγ (p, P ) = i gπqq G0 (p)

(

i γ5 τ
i
)

αγ
(B.18)

In the right hand side of equation (B.16) we must consider only the pion pole contribution. It is easy to reproduced
the result obtained in equation (V.9) for fπ, and is also obvious that we cannot use of the expression (V.14), because
we lost the pion pole in the right hand side of equation (B.16).

APPENDIX C: FOUR QUARKS-PHOTON VERTEX IN THE GENERAL CASE AND THE VALUE OF

THE FORM FACTOR AT k2 = 0.

The standard normalization condition for the Bethe-Salpeter amplitude is

2iPµ =
∫

d4p

(2π)
4 Tr

[

Γ̄M (p, P ) i
∂S
(

p+ 1
2P
)

∂Pµ
ΓM (p, P ) i S

(

p−
1

2
P

)

+ Γ̄M (p, P ) i S

(

p+
1

2
P

)

ΓM (p, P ) i
∂S
(

p− 1
2P
)

∂Pµ

]

−2i

∫

d4p

(2π)
4

d4p′

(2π)
4

[

i S

(

p−
1

2
P

)

Γ̄M (p, P ) i S

(

p+
1

2
P

)]

αγ

∂Gαβγδ (p, p′, P )

∂Pµ
[

i S

(

p′ +
1

2
P

)

ΓM (p′, P ) i S

(

p′ −
1

2
P

)]

βδ

, (C.1)

where

Γ̄M (p, P ) = γ0

[

ΓM (p, P )
]†
γ0 . (C.2)

This normalization condition is equivalent to equation(III.6).
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A minimal test of consistency of our calculation is that the form factor at k2 = 0 must be 1 for an amplitude
normalized with equation (C.1). Usually the form factor is calculated in the impulse approximation, which includes
only the triangle diagram shown in Fig. 7. The use of the Ward identity (VII.1) in order to define the electromagnetic
vertex in this diagram provides a contribution which coincides with the first integral on the right hand side of equation
(C.1). From that we can conclude that the use of the BSE for the pion with a P -independent Bethe-Salpeter kernel
together with the triangle diagram provides a consistent approximation scheme [36]. For a P -dependent kernel this
consistency is lost even at k2 = 0 due to the presence of the second integral on the right hand side of equation (C.1).

Let us proof that F (0) = 1 from equation (VII.6). We need to expand equation (VII.6) in powers of the photon
field. We retain the second term, which is linear in the photon field. We can evaluate it in the limit k2 → 0 without
defining a specific path for the integrals present in equation(VII.6), obtaining

[

Q1

∫
x′

−X′

2
+X

X

dzµAµ (z) +Q2

∫ X

− x′+X′

2
+X

dzµAµ (z) +Q2

∫
x+X′

2
+X

X

dzµAµ (z) +Q1

∫ X

− x−X′

2
+X

dzµAµ (z)

]

−→
k2→0

ǫµ (k, ξ)

[

− (Q1 −Q2)X
′µ +

Q1 +Q2

2
(xµ + x′µ)

]

. (C.3)

From this last result it is easy to see that the quantity to add to each vertex of the type of Fig. 3 in the limit of
k2 → 0, is given by Eqs. (VII.7) and (VII.8).

The electromagnetic form factor in the limit k2 → 0, including the contributions from Figs.7 and 8, is

i e 2 P̄µF (0)

= −iQ2

∫

d4p

(2π)
4 Tr

[

ΓM (p, P ) i S

(

p−
1

2
P

)

Γ̄M (p, P ) i S

(

p+
1

2
P

)

Γµ

(

p+
1

2
P, p+

1

2
P

)

i S

(

p+
1

2
P

)]

− i Q1

∫

d4p

(2π)
4 Tr

[

ΓM (p, P ) i S

(

p−
1

2
P

)

Γµ

(

p−
1

2
P, p−

1

2
P

)

i S

(

p−
1

2
P

)

Γ̄M (p, P ) i S

(

p+
1

2
P

)]

−

∫

d4p

(2π)
4

∫

d4p′

(2π)
4

[

i S

(

p′ −
1

2
P

)

Γ̄M (p′, P ) i S

(

p′ +
1

2
P

)]

αγ
{

−iQ1

[

Γ
(4qγ)
1,µ

(

p′ −
1

2
P, p′ +

1

2
P ; p+

1

2
P, p−

1

2
P

)]

αβ,γδ

−iQ2

[

Γ
(4qγ)
2,µ

(

p′ −
1

2
P, p′ +

1

2
P ; p+

1

2
P, p−

1

2
P

)]

αβ,γδ

}

[

i S

(

p+
1

2
P

)

ΓM (p, P ) i S

(

p−
1

2
P

)]

βδ

. (C.4)

In order to simplify the first two lines of this equation (the one body part) we make use of the WTI, equation (VII.1).
For the two body part of the equation we use
[

−iQ1Γ
(4qγ)
1,µ

(

p′ −
1

2
P, p′ +

1

2
P ; p+

1

2
P, p−

1

2
P

)]

αβ,γδ

= −iQ1

(

d

dp′µ
+

d

dpµ
− 2

d

dPµ

)

Gαβγδ (p′, p, P ) , (C.5)

[

−iQ2Γ
(4qγ)
2,µ

(

p′ −
1

2
P, p′ +

1

2
P ; p+

1

2
P, p−

1

2
P

)]

αβ,γδ

= −iQ2

(

d

dp′µ
+

d

dpµ
+ 2

d

dPµ

)

Gαβγδ (p′, p, P ) . (C.6)

Equation (VII.5) allows to do some of these integrals. Charge conjugation symmetry leads to

∫

d4p

(2π)
4 Tr

[

d Γ̄M (p, P )

dpµ
i S

(

p+
1

2
P

)

ΓM (p, P ) i S

(

p−
1

2
P

)]

=

∫

d4p

(2π)
4 Tr

[

i S

(

p−
1

2
P

)

Γ̄M (p, P ) i S

(

p+
1

2
P

)

d ΓM (p, P )

dpµ

]

= 0 . (C.7)

With these inputs, the normalization condition of the Bethe-Salpeter amplitude, equation (C.1), implies the natural
normalization for the form factor, F (0) = 1. We observe that only the contribution associated with the derivative of
the total momentum in Eqs.(C.5) and (C.6) gives a non vanishing result.

Our results show that consistency between the Bethe-Salpeter normalization condition equation (C.1) and the value
of the meson form factor at k2 = 0 is also attainable for a P -dependent kernel, if we add the contributions coming
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from the diagrams of Figs. 7 and 8. This result is consistent with field theory. We have simply added all the diagrams
with a one photon coupling, no matter where the photon couples in our system, and in this way we have obtained the
gauge invariant contribution to the form factor. Fig. 8 confirms that the use of the Ward-Takahashi identities for the
components of a system is not sufficient to assure that the gauge symmetry is satisfied for the composite system.

[1] H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B47, 365 (1973).
[2] D.J. Gross and F. Wilczek, Phys. Rev. Lett.30, 1343 (1973), Phys. Rev. D8 3633 (1973); H. D. Politzer, Phys. Rev.

Lett.30 1346 (1973), Phys. Rep. 14, 129 (1974).
[3] K.G. Wilson, Phys.Rev. D10, 2445 (1974).
[4] J.B. Kogut and L. Susskind, Phys. Rev D11, 395 (1975).
[5] N. Brambilla, Antonio Pineda, Joan Soto and A. Vairo, Nucl.Phys. B566, 275 (2000).
[6] G. ’t Hooft, Nucl.Phys. B75, 461 (1974); E. Witten, Nucl.Phys. B160, 57 (1979).
[7] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1983).
[8] N. Isgur and M. B. Wise, Phys. Lett. B232, 113 (1989), Phys. Lett. B237, 527 (1990).
[9] A. De Rujula, Howard Georgi and S.L. Glashow, Phys. Rev. D12, 147 (1975); N. Isgur and G. Karl, Phys. Rev. D 18,

4187 (1978); Phys. Rev. D 19, 2653 (1979).
[10] A. Manohar and H. Georgi, Nucl. Phys. B234, 189 (1984).
[11] A. Chodos, R.L. Jaffe, K. Johnson, Charles B. Thorn, V.F. Weisskopf Phys. Rev.D9, 3471 (1974); T. DeGrand, R.L. Jaffe,

K. Johnson and J.E. Kiskis, Phys. Rev. D12, 2060 (1975).
[12] G.E. Brown, M. Rho and V. Vento, Phys. Lett. B84, 383 (1979); V. Vento, M. Rho, E. M. Nyman, J.H. Jun and G.E.

Brown Nucl.Phys. A345, 413 (1980).
[13] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124, 246 (1961).
[14] T.H.R. Skyrme, Proc. Roy. Soc. Lond. A260, 127 (1961); Nucl. Phys.31, 556 (1962).
[15] G.E. Brown, A.D. Jackson, M. Rho and V. Vento, Phys.Lett. B140, 285 (1984).
[16] D. Diakonov, V.Yu. Petrov and P.V. Pobylitsa, Nucl. Phys. B306, 809 (1988).
[17] C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys. 33, 477 (1994), hep-ph/9403224v2 (1997).
[18] R. Alkofer and L. Smekal, Phys. Rep. 353, 281 (2001).
[19] P. Maris and C. D. Roberts, Int. J. Mod. Phys. E12, 297 (2003).
[20] P. C. Tandy, Prog. Part. Nucl. Phys. 39, 117 (1997).
[21] R. D. Bowler and M. C. Birse Nucl. Phys. A582, 655 (1995).
[22] R. S. Plant and M. C. Birse, Nucl. Phys. A628, 607 (1998).
[23] A. H. Rezaeian, N. R. Walet and M. C. Birse, Phys. rev. C70, 065203, (2004).
[24] A. A. Osipov, A. E. Radzhabov, and M. K. Volkov, hep-ph/0603130.
[25] A. A. Osipov, Phys. Lett. B340, 171 (1994); A. H. Blin, B. Hiller, A. A. Osipov, Nucl. Phys. A589, 660 (1995).
[26] H. Ito, W. W. Buck and F. Gross, Phys. Rev. C43, 2483 (1991).
[27] N. Isgur, C.H. Llewellyn Smith, Phys. Rev. Lett. 52, 1080 (1984).
[28] P.L. Chung, F. Coester, W.N. Polyzou, Phys. Lett. B 205, 545 (1988).
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