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Abstract

We show that a canonical transformation converts, up to a boundary term,

a generic 2D dilaton gravity model into a bosonic string theory with a

Minkowskian target space.
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and DGICYT

†
cruz@lie.uv.es

‡
jnavarro@lie.uv.es

http://arxiv.org/abs/hep-th/9705145v1


The interest of studying two-dimensional theories of gravity has been

growing in the last years. The main motivation is to study quantum gravi-

tational effects in a more simplified setting. In two dimensions the Einstein

tensor vanishes identically and a natural analogue of the Einstein equations

is given by the constant curvature equation. This equation can be obtained

from a local action [1] if a scalar field φ is introduced in the theory

S =

∫
d2x

√
−g
(
R + 4λ2

)
φ . (1)

The constant curvature equation can also be derived from the non-local

Polyakov action [2], which can be converted into a local one by introducing

a scalar field φ

S =

∫
d2x

√
−g
(
2Rφ + (∇φ)2 + 4λ2

)
. (2)

More recently, the model introduced by Callan, Giddings, Harvey and Stro-

minger (CGHS) [3]

S =

∫
d2x

√
−g

[
e−2φ

(
R + 4 (∇φ)2 + 4λ2

)
− 1

2
(∇f)2

]
, (3)

where f is a massless scalar field, has been extensively studied because it

describes the formation and evaporation of black holes in a simple way [4].

The gravitational part of the action (3) can be seen as a simplification of

the spherically reduced Hilbert-Einstein action in four-dimensions [4]

S =

∫
d2x

√
−ge−2φ

(
R + 2 (∇φ)2 + 2λ2e2φ

)
, (4)

where the 4D metric ds2
4 is related to the 2D metric ds2 by

ds2
4 = ds2 +

e−2φ

λ2
dΩ2 . (5)
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All the above models are particular cases of a large class of dilaton-gravity

theories considered in [5]. It is well-known that, by a conformal reparametriza-

tion of the fields, one can eliminate the kinetic term for the dilaton and

rewrite the action in the form [5, 6]

S =

∫
d2x

√
−g (Rφ + V (φ)) , (6)

where V (φ) is an arbitrary function of the scalar field. For the Jackiw-

Teitelboim model (1) we have V = 4λ2φ, while V = 2λ2e−2φ for the induced

gravity (2), V = 4λ2 for the CGHS model (3) and V = 2λ2

√
φ

for the spherically

reduced Einstein gravity (4).

In [7] it was shown that a non-local canonical transformation converts

the constraints of the CGHS theory into those of a bosonic string theory with

a Minkowskian target space. So, the hamiltonian and momentum constraint

functions read as follows

H =
1

2

(
π2

0 +
(
r0′)2)− 1

2

(
π2

1 +
(
r1′)2) , (7)

P = π0r
0′ + π1r

1′ , (8)

and the corresponding quantum constraints Ĉ± = ±1
2

(
Ĥ ± P̂

)
generate an

anomalous algebra

[
Ĉ± (x) , Ĉ± (x̃)

]
= i

(
Ĉ± (x) + Ĉ± (x̃)

)
δ′ (x − x̃)

∓ i

24π
(c0 + c1) δ′′′ (x − x̃) . (9)

It was also pointed out in [7] that the value of the central charge c = c0 + c1

depends on how the vacuum is defined. The positively signed gravity vari-

able contributes with c0 = 1 but the negatively signed one gives a negative

contribution c1 = −1 in the Schrodinger representation [7]. Therefore, both
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contributions cancel and the theory can be quantized without obstruction.

In fact, in terms of the geometrical variables, or in the gauge-theoretical

formulation [8], explicit expressions for the wave functions have been ob-

tained [6, 9]. However solutions to the quantum constraints of pure gravity

were obtained in [6] for a generic model of 2D dilaton gravity. This suggests

that the equivalence of the CGHS model and a conformal theory of two free

scalar fields with opposite contributions to the hamiltonian constraint could

also be valid for a general dilaton gravity theory.

In a recent work [10] a first step in this direction was done by construct-

ing explicit canonical transformations which convert the Jackiw-Teitelboim

model and the model with an exponential (Liouville) potential into a bosonic

string theory with a Minkowskian target space. In this paper we shall ex-

tend the results of Ref [10] for a general model of 2D dilaton gravity. We

shall demonstrate the existence of a canonical transformation mapping, up

to a boundary term, a generic model of 2D dilaton gravity into a bosonic

string theory with a flat target space of indefinite signature.

Let us consider the action (6) minimally coupled to a massless scalar

field f . Parametrizing the two-dimensional metric as [6]

gµν = e2ρ


 v2 − u2 v

v 1


 , (10)

the hamiltonian form of the action read as

S =

∫
d2x

(
πρρ̇ + πφφ̇ + πf ḟ − uH − vP

)
, (11)

where the constraint functions H and P are given by

H = −1

2
πρπφ + 2

(
φ′′ − φ′ρ′

)
− e2ρV (φ) +

1

2

(
π2

f + f ′2) , (12)
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P = ρ′πρ − π′
ρ + φ′πφ + πff ′ . (13)

Our strategy to prove the existence of a canonical transformation converting

an arbitrary 2D dilaton-gravity model into a bosonic string theory will follow

the procedure used in [10]. In doing so we should find the general solution to

the equations of motion of the model in conformal gauge ds2 = −e2ρdx+dx−,

8e−2ρ∂+∂−ρ = −V ′ (φ) , (14)

− 4e−2ρ∂+∂−φ = V (φ) , (15)

∂2
±φ − 2∂±φ∂±ρ = T

f
±± =

1

2
(∂±f)2 , (16)

in terms of four arbitrary chiral functions and employ it to construct a

canonical transformation mapping the theory into a parametrized scalar

field theory [11]. However a general solution to this system of equations

remains elusive, so we shall first consider the situation when one chiral sec-

tor of matter is trivial. In this case one can explicitly relate the fields ρ,

φ and ∂±φ with two chiral functions. This relation turns out to be suf-

ficient to show the existence of a canonical transformation which converts

the constraint functions (12-13) into those of a parametrized chiral scalar

field theory. This result can be extended immediately to the general sit-

uation, without imposing any restriction to the matter energy-momentum

tensor. Finally, a canonical transformation relating a parametrized scalar

field theory to a bosonic string theory with a Minkowskian target space will

complete the proof.

Therefore, let us start our analysis considering a generic theory with

the restriction T
f
−− = 0. It is not difficult to check that the solution to

the equations (14-16) can be alternatively expressed as the solution to the
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equations

e−2ρ∂−φ = a , (17)

∂+φ = A − 1

4a
J (φ) , (18)

where dJ(φ)
dφ

= V (φ). The functions A, a are related to the non-trivial com-

ponent of the energy momentum tensor in the following way

T
f
++ = ∂+A +

A

a
∂+a . (19)

Equation (18) defines φ implicitly as a functional φ = φ (A, a, β) where β is a

function of the x− coordinate which appears as a constant of integration. We

introduce now a definition which will be useful in the following. The symbol

˜ affecting any functional of the chiral functions A, a, β means that they are

converted into Ã, ã, β̃ which are now arbitrary (not chiral) functions and

that the possible derivatives or integrations have been replaced according

to the rule ∂± −→ ±∂x

(
∂−1
± −→ ±∂−1

x

)
. Taking into account that the

dependence of φ on β must be ultralocal it is straightforward to prove that
(
φ̃
)′

= φ̃′ and
(
∂̃−φ

)′
= (̃∂−φ)′. Following the lines of [10] we consider now

a transformation to the new set of variables Ã, ã, b̃

φ = φ̃ , (20)

πφ = −2˜̇ρ =
1

4ã
V
(
φ̃
)

+
ã′

ã
−
(̃

∂2
−φ

∂−φ

)
, (21)

ρ =
1

2
log

∂̃−φ

ã
, (22)

πρ = −2
˜̇
φ = −2Ã +

1

2ã
J
(
φ̃
)
− 2∂̃−φ , (23)

After a long computation the symplectic 2-form on the unconstrained phase

space

ω =

∫
dx (δφ ∧ δπφ + δρ ∧ δπρ + δf ∧ δπf ) , (24)
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becomes (from now on the exterior product will be omited)

ω =

∫
dx

(
2
δã

ã
δÃ + δfδπf

)
+ ωb , (25)

where ωb is a boundary term

ωb =

∫
d

(
δφ̃

δã

ã
+ δφ̃

δ∂̃−φ

∂̃−φ

)
, (26)

and the light-cone combinations C± = ±1
2 (H ± P ) of the constraints (12-

13) turn out to be

C+ = Ã′ + Ã
ã′

ã
+

1

4

(
πf + f ′)2 (27)

C− = 0 . (28)

Equation (28) is consistent with the assumption of chirality
(
T

f
−− = 0

)
. At

this point, it is clear that defining

X+ = log ãÃ, Π+ = 2Ã , (29)

the 2-form (25) becomes

ω =

∫
dx
(
δX+δΠ+ + δfδπf

)
+ ωb , (30)

and, therefore, (X+,Π+) become canonical coordinates for the gravity-sector

up to a boundary term ωb. Moreover the constraints (27-28) are now the

constraints of a parametrized chiral scalar field theory

C+ = Π+X+′ +
1

4

(
πf + f ′)2 , (31)

C− = 0 . (32)

We shall now show that the canonical equivalence of a chiral 2D dila-

ton gravity model and a parametrized chiral scalar field theory can be ex-

tended to the non-chiral situation. In the general case, the classical solutions
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are parametrized by four arbitrary chiral functions A (x+) , a (x+) , B (x−),

b (x−). We can choose A, a,B, b in such a way that when T
f
−− = 0 the

equations of motion are equivalent to (17-18) and when T
f
++ = 0 they are

equivalent to

∂−φ = B − 1

4b
J (φ) , (33)

e−2ρ∂+φ = b . (34)

The classical solution φ = φ (A, a;B, b), ρ = ρ (A, a;B, b) defines a transfor-

mation: φ = φ̃, πφ = −2˜̇ρ, ρ = ρ̃, πρ = −2˜̇φ, which reduces to (20-23) for

B = 0 and to the analogous chiral transformation for A = 0. It is then clear

that the only possible form for the constraint functions consistent with the

previous result is

C± = Π±X±′ ± 1

4

(
πf ± f ′)2 , (35)

where X+,Π+ are given by (29) and X− = log b̃B̃, Π− = 2B̃. All we

need now is to see that the transformation (φ, πφ, ρ, πρ) −→ (X±,Π±) is

canonical up to a boundary term. This follows immediately because the

unique expression for ω in terms of X±,Π± which leads to the hamiltonian

equations of motion in conformal gauge, ∂∓X± = ∂∓Π± = 0, and is the

integral of a scalar density is (omiting the matter contribution and boundary

terms)

ω =

∫
dx
(
δX+δΠ+ + δX−δΠ−

)
. (36)

A further linear canonical transformation [12]

2Π± = − (π0 + π1) ∓
(
r0′ − r1′) , (37)

2X±′ = ∓ (π0 − π1) −
(
r0′ + r1′) , (38)
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converts the constraints of a parametrized scalar field theory into those a

bosonic string theory with a Minkowskian target space. The boundary term

ωb of the symplectic form can be treated in two different ways. Either

impossing appropriated boundary conditions to the X± fields to cancel it

when the spatial section is closed [10] or introducing new variables to ac-

count for the asymptotic behaviour of the fields when the spatial section

is open [13, 14]. In the absence of matter fields the equivalence of a dila-

ton gravity model and a set of two free fields of opposite signature explains

why there is no obstruction in the quantization of a generic model in the

functional Schrodinger approach [6]. When matter fields are present the

quantum constraints require a modification to cancel the anomaly. Remark-

ably, the addition of a X±-dependent term to the quantum constraints (35)

(motivated by a covariant factor ordering [12]) produces a cancellation of

the anomaly allowing to solve all the Dirac quantum conditions [14, 15]

maintaining the unitarity of the theory. Therefore it is possible to consis-

tently quantize a matter-coupled dilaton gravity theory in the functional

Schrodinger approach.
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