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Abstract

Cylindrically reduced Einstein gravity can be regardedras' &(2, R)/S0O(2) sigma
model coupled to 2D dilaton gravity. By using the correspog@D diffeomorphism
algebra of constraints and the asymptotic behaviour of tmstEequation we show
that the theory can be mapped by a canonical transformattorai set of free fields
with a Minkowskian target space. We briefly discuss the gaation in terms of these
free-field variables, which is considerably simpler thathie other approaches.
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Two Killing vector reductions of 4D Einstein equations axa&ly integrable 2D
models [1L[R[B[]4,]5], and therefore offer an interestingare investigate the quan-
tization of the gravitational fieldJq] 7] 8]. These models described by a 4D line-
element of the form

ds? = G (z)datdz” + gp(x)Aab(x)ande , (1)

wherex* are the 2D coordinate$,/0x“ are the Killing vectors andet A = 1. The
corresponding Einstein equations can be derived from aorefcir a 2D dilaton grav-
ity coupled to anSL(2, R)/SO(2) coset space-model [9]

S = / d*x\/—gp [R — itr(A‘1V”AA‘1VMA) . (2)

Depending on the choice of the coordinates and the spagialdgy one can describe
cylindrical gravitational wavegc” = (t,r), x* = (z, ¢)), axisymmetric stationary so-
lutions (z* = (z,7), x* = (t,¢)) or Gowdy cosmologiesz” = (t,z), x* = (y, 2)
x,y, 2z € S') wheret is a time coordinate while, ¢, » are cylindrical coordinates and
x,y, z are Cartesian coordinates.

The usual approach to study (2) is to work in the reduced pbpaee formalism
(¢ = r gauge for cylindrical waves), so that the complete dynarmsicentained in the
Ernst equation for the matrix

V. (pAIVPA) =0 3)

Note that [B) has a duality symmetry, so that if

L [ R*+A* h

=1 (M) @
is a solution then , ~
AR S h

()

is also a solution, provided thath = +zdh. This symmetry implies thais* can
have the asymptotic behaviour of a flat metric in cylindricabrdinates, i.eds? ~
—dt? + dr? + r2d¢® + dz?, which is relevant for the case of cylindrical waves, which
we are going to study in detail.

The aim of this letter is to show that there is a considerathl@atage if one does
not fix the gauge completely, and consequently uses theapeoperties of the 2D
diffeomorphism algebra of the constraints. The specia ofl2D diffeomorphisms
has been already recognized [h [8], although in that workréticed phase space
formalism and an abelianized form of the constraints wasl.ubethis paper we em-
ploy the full constraint structure, which generalizes #ehhique used for the case of



cylindrical gravitational waves with one polarizatign[[1®hen the matrix\ takes the

diagonal form
F0
A:<60 e_f). (6)

In that case it is possible to show that a canonical transiton exists which maps
the constraints into a free-field form. We will show that tlaen® can be done in the
case of two polarizations, so that the theory is mapped itheary of four free fields.

This looks as a surprising result, but there are generalnaegts which suggest
that this is possible. The Poisson bracket algebra of thetaants for [R) is the 2D
diffeomorphism algebra. This algebra admits represemtatquadratic in canonical
variables

1. L ;
Go=5 (1"PP +1,Q"Q") . Gi=PQ" )

whereG) is the hamiltonian constraint aid¢), is the spatial diffeomorphism constraint.
The prime denotes differentiation with respect to the ghatiordinate in our case),
i,7 = 1,...,n andn,; is a flat Minkowskian metric. The quadratic representatianes
not possible in higher dimensions, since then the constafgebra has structure func-
tions which are not constant. The representatipn (7) iraphiatQ’ are free fields and
since [R) is an integrable 2D theory one then expects to firchartcal transformation
from the initial canonical variables 1@7;, Q°) variables. This argument also explains
why it was possible to find free field canonical variables f@myexamples of inte-
grable 2D dilaton gravity theorie§ J1[[,]10]. Also note thgtviriting ¢, = €*,.,
whereg,, is a fixed background metric, the actidf (2) becomes a naalinenodel
with a four-dimensional target space

S = / xr/—g [GU(XWNXZ'WXJ' +(I>(X)f%] . (8)

The general covariance df| (2), or equivalently the backgdomdependence of](8),
implies that the theory is a conformally invariant field theoln fact, the couplings
G,;(X) and®(X) satisfy the lowest ordes-functions equations in the standard loop
expansion for dilaton-gravity. Since in the abelian casedbnformal field theory is a
free-field theory, one also expects that this will happemernon-abelian case. In the
abelian casd](6) the Ernst equation reduces to the cyladraplace equation and the
theory can be explicitly solved. Furthermore, the asymtmhaviour of the solutions
allows one to show that the theory is equivalent to a theotyi&e free fields with a
Minkowskian target-space. Although the Ernst equatiomoéame explicitly solved
in the general case, the asymptotic behaviour of the soisitio the weak coupling
regimeyp — oo is enough to show that the underlying conformal field theerstill
described by a set of free fields.

The SL(2,R)/SO(2) coset space can be parametrized in tlosvioh way

el +h%e ™ e Ih
A= ( e h e/ ' )
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This is the parametrizatiofi(4) with = e/. The action[{2) then becomes

S = / dPav/—gp {R — % (Vf)? — %e‘2f (Vh)?| . (10)
The corresponding equations of motion in the conformal gaarg given by
0.0-¢=0, (11)
40,0_p+ 0y fO_f +e 210, hO_h =0, (12)
O (pO_f) + 0_(p0s f) + 20 20, hO_h =0, (13)
Oy (pe0_h) +0_(pe 0, h) =0, (14)
O =208 — 40400:p+ ¢ [(0f) + e (9:h)°] =0, (15)

whereC,. = %(GO + () are the constraint equations. The free field equafign (14) ha
the obvious solution

o= Au(at) + A (), (16)

with A. two arbitrary chiral functions, while the conformal faciocan be expressed
as

p=a(z)+a_(z7)+ i/ dy+/ dy~ [0+ fO_f +e 20, ho_h] , (17)
zt —00

wherea.. are other two arbitrary chiral functions. By inserting thstltwo expressions
into the constraints, we obtain

C:t = 281Ai—48iAi8iai

xF
LA, / dy [0, fO_f + e 20, hd_h]

Foo

+o [(0sf)’ + e X (0:h)*] = 0. (18)

The Bianchi identitie®.C. = 0 imply thato; Py = 0, where

xF

1
P:t = §a:|:A:|:/ dy:F [8+fa_f + 6_2f0+ha_h]

Foo

by [0+ e (0uh)] (19)

Py (x*) can be evaluated by taking the limits — oo, since then the integral terms
vanish, and hence

Po— Jim 2p[0uf) + e (00h)7] (20)

rF—Foo 2



The main difference with respect to the abelian case () is that the equation$ ([L3)
and [I#) for the fieldg andh can not be solved explicitely. However, for our purposes
it is sufficient to know the asymptotic behaviour of the simng and this can be found
without solving the equations.

If we perform a change of variablgs/p = F, h/p = H whereF, H and their
derivatives are bounded in the limit — oo and A (%) and B (x~) are monotonic
increasing (decreasing) functions which gara$—z~) whenz* — oo (= — —o0),
then the equation§ ([13) and]14) can be written as

0.0_F+0 (%) =0, (21)
0,0_H+0 (%) =0. (22)

Therefore in the limitp — oo, one hasf ~ \/%T andh ~ ﬁ, where F
++A- +

and H are bounded free fields with bounded derivatives. In theiatn;dase this is
explicitly realized because the exact solution for the figld

fo= %/_OO dA Jo <%(A+—|—A_)) [BJF()\)eZ%(A*_A*)
+B_(>\)e—i%(A+—A—>} , (23)

whereB_.(\) are arbitrary coefficients, behaves as

f / d)\(ﬂ')\)_% [BJF()\)ei)‘A*e_ig + B_(\)e M+eld

1
T /AL A

+B(\)e M-e i + B_(\)eM-et] | (24)

whenA, + A_ — oo and therefore is a bounded free field and, F, 0_F, ... are
also bounded. By taking into account the asymptotic beh&awbd f and/, we can
obtain from (2D)

1 1
P = 5(ajEF)2 - 5(ajEH)2 : (25)
If one defines
+ 0t AL
X+ = Ai, H:t = —481% +2 y (26)
0+ AL
the constraints take a free-field form
Cy = L0 X* + (0L F)* + (9L H)?. (27)
In terms of the canonical variable§,(27) can be written as
1 1
Oy =4I X"™* + 7 (p £ F')? + 7 (g & H'Y . (28)
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By performing a canonical transformation
2XF = F(II; — ) — XY — XY | 2lIF = I, - I, 7 (XY = X¥) (29)

the constraints take the forifj (7).

We can also find the exact expressions for the free fieldsmd / in terms of the
initial variables. In order to do this, we split the expressi (IP) as”. = P} + P?
where

1 1 xt xt
PL= 50O+ 50up | dyoufo s [ dyToe o fochoh, (30)

Foo Fo0

1 1 xF xF
P2 = 5@6—2f(aih)2 + 5@0 / dyFe 270, ho_h — / dyFpe 70, fO, hO_h .
e 3F°° (31)
It is easy to check that the equations of motion imply that

0+PL=0-P=0. (32)

Thus we have divide@®,. into two free field contributions, and it is clear that we can
write

1 1
Pl = 5(aiF)2 , Pl= §(aiH)2 : (33)

These two equations can serve as the defining relationsddrdb fieldst" and H in
terms of the initial variables.

Therefore we have constructed a transformation leadingretcaints quadratic in
chiral variables and this implies that the transformat®oanonical[[J0], since there
is no other expression for the symplectic form that togettién (28) reproduces the
Hamiltonian equations of motion for the free fields, X+, F' and H. Alternatively,
one can examine the symplectic form on the space of solutiboan be written as

1 1
vmwete =g [ wtaag [ st @
z— =00 zt=—0c0

where) stands for the exterior derivative on the space of solutamds/“ is the sym-
plectic current potentia[[12]. The coefficients of one hal{84) come from the re-
flecting boundary conditions at = 0. The light-cone components of the one-form
currentj# can be easely calculated from the actipr (10)

J5 = —400_6p — O_fof — pe M O_hih, (35)

§T =40,00p — 00, f6f — e 20, héh. (36)



By taking into account the asymptotic behaviourfaind#h it is easy to see that

w = %/ dl'+ [5X+6H+ + 6F+68+F + 6H+60+H]
| =—00

+ 3 / dz~ [6X6I_ + 6F_60_F + 6H_60_H|
zt=0c0

_ / dr [—5)(05)'(0 4 SXSXT 4 SFOF + 6H6H} @7
t=const

where Fy (z*), Hy(2*) are the chiral parts of the free fielddand H, (F = F, +
F_,H = H, + H_) and dots represent thialerivatives.

Note that the defining relations for the free fieldd (26) arg) é8e also valid in the
case whemr is compact, and therefore one can have free fields in the ¢aSevaedy
cosmologies. In that case the corresponding free-fieldryhisa string theory in 4D
Minkowski space.

Since the cylindrically symmetric gravity can be mapped iatset of four free
fields with a Minkowskian target space, the quantizatioreimis of the free-field vari-
ables is considerably simpler than if one uses the obsevaittained from the Ernst
equation [[B], since the later lead to a non-linear Yangigelada. A less straightfor-
ward task will be finding the expectation values of the ordjivariables, since they
become complicated functionals of the free fields. The @mbbf expressing the
original variables in terms of the observables is in genarabmplicated problem.
However, in our case the existence of the free figidand H implies that one can
write an asymptotic series expansions

F F F
+1+2

f \/7 gp\/@_'_”‘ , (38)

and " H, "
h=—+— 2 : 39
\/@+ +90\F : (39)

where F; and H; are functions off" and H, which can be determined frorh {33). In
this way one obtains recurrence relations for higher-ofdeand H; in terms of the
lower order ones, which can be solved order by order. For pigm; = —%Hz and
H, = FH,and soon. Whe# = 0, one recovers in this way the asymptotic expansion
of the Bessel function, which is the exact solution in the lerecase. Hence the
relations [[38) and[(39) can serve as explicit expressiong fand 7 in terms of the
free fields/” and H. Note that the asymptotic flatness of the dual metric give(@y
requires thatf — 0 andh — 0 for r — co. Since asymptoticallp,h ~ Frdh
andh ~ ﬁ, we then obtain thatf = O(r¢), wheree < —1/2. Note that this
asymptotic behaviour foff corresponds to square integrable functions onvthee.
This is relevant for the quantum case, since this asymgtagiives the Fock space
representations.



Note that in the free-field approach the quantum constrgenerate a 2D confor-
mal algebra with a central charge= 4, if the standard quantization of a conformal
field theory is used. Consistent quantization can be theieasth via the introduction
of ghost fields and background charges in order to have viagist the total central
charge. Alternatively, if the theory is quantized in the @clinger representation, the
value of the central charge is = 2, because the scalar field with negative kinetic
energy contributes with = —1 to the Virasoro anomall[11]. In order to have a con-
sistent Dirac quantization one has to modify the quantunsitamts in such a way
that the anomaly cancels. The addition to the constraingstefm depending on the
pure 2D dilaton gravity variable§* ensures that

5 2 X X E 2
Cizci+—[ —< )], (40)

48w | X+ X+

form the constraint algebra without the anomaly [11]. Thelified constraints can be
solved in terms of the "gravitationally dressed” oscillat{iL3], defined by

A 1 dk ; x.
A 1 dk  x .
H(X) = NI (™ ay (k) + h.c] . (42)

The Fourier coefficientdr (k) anday (k) constitute a complete set of observables,
so it would be interesting to see how they are related to tiserables obtained from
the Ernst equation. Note that one can construct a2, R) affine algebra from the
Ernst equation observables, and this algebra generat€gtioeh group[[14]5]. On the
other hand, one can easily constructn 2, R) affine algebra froniz (k) andag (k)
via the Wakimoto constructiofi [IL5]. This algebra will beaasdynamical symmetry
algebra. How these two algebras are related would be arstieg problem for further
study.

We expect that our results can be extended to the case of @ragrlcoset space
sigma model coupled to 2D dilaton gravity.
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