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Abstract

Motivated by the quest for black holes in AdS braneworlds, and in particular by the
holographic conjecture relating 5D classical bulk solutions with 4D quantum corrected
ones, we numerically solve the semiclassical Einstein equations (backreaction equations)
with matter fields in the (zero temperature) Boulware vacuum state. In the absence of
an exact analytical expression for 〈Tµν〉 in four dimensions we work within the s-wave
approximation. Our results show that the quantum corrected solution is very similar to
Schwarzschild till very close to the horizon, but then a bouncing surface for the radial
function appears which prevents the formation of an event horizon. We also analyze the
behavior of the geometry beyond the bounce, where a curvature singularity arises. In the
dual theory, this indicates that the corresponding 5D static classical braneworld solution
is not a black hole but rather a naked singularity.

PACS numbers: 04.62.+v, 04.70.Dy, 11.25.Tq

∗afabbri@ific.uv.es
†farese@ific.uv.es
‡jnavarro@ific.uv.es
§olmoalba@uwm.edu
¶helios.sanchis@ific.uv.es

http://arXiv.org/abs/hep-th/0512167v2


1 Introduction

The study of quantum effects in black hole spacetimes comes back to the
early seventies, when Hawking discovered [1] that black holes evaporate by
emission of thermal radiation (see also [2, 3]). This result generated enormous
interest in the subject, especially after Hawking himself speculated [4] that
the evaporation process will lead to the disappearance of the black hole and
the information about its formation will be lost forever. This is a radical
conclusion, as it implies that in the quantum theory the whole process of
black hole formation and evaporation is nonunitary.

It is clear, however, that the approximation considered to derive this re-
sult, i.e. the quantization of matter fields in the fixed classical background
describing the formation of a Schwarzschild black hole, and even the frame-
work used, the semiclassical theory of gravity (see, for instance, [5, 6, 7]),
cannot lead to a reliable resolution of this paradox. At a certain point dur-
ing the evolution the quantum effects will backreact and modify significantly
the background geometry, which therefore cannot be considered as fixed, nor
evolved in a quasi-static approximation. Moreover, once the black hole has
reached the Planck size quantum gravitational effects will become important
and cannot be neglected anymore.‖ Thus it is no wonder that still today
Hawking’s provocation continues to raise much debate and although most
of the people do not want to give up unitarity [8] (and between them, re-
markably, now Hawking himself [9]), a definitive answer on whether and how
information is recovered in black hole evaporation is still lacking.

To take into account self-consistently the backreaction effects one needs
to solve exactly the semiclassical Einstein equations

Gµν(gαβ) =
8πG

c4
〈Ψ|Tµν(gαβ)|Ψ〉 (1)

for the metric gαβ , where the quantity on the right hand side represents the
expectation value of the stress-energy tensor operator of the matter fields in
a suitable quantum state |Ψ〉.

In the fixed Schwarzschild background

ds2 = gschw
µν dxµdxν = −(1 − rS/r)c2dt2 +

dr2

(1 − rS/r)
+ r2dΩ2 , (2)

‖To find a way out to this problem one usually argues that quantum gravitational
effects should always be negligible compared to those due to a large number N of matter
fields.

1



where rS = 2GM/c2 is the Schwarzschild radius, three inequivalent quan-
tum vacuum states can be defined. The first is the Boulware state |B〉 [10],
probably the most natural one, constructed by requiring that in the asymp-
totic region, where the metric becomes minkowskian, it reduces to Minkowski
ground state |M〉. It has the property that 〈B|Tµν |B〉 vanishes asymptoti-
cally, but the drawback is a strong divergence at the horizon r = rS [11]. One
can circumvent this difficulty by introducing a new quantum vacuum state
|H〉, called the Hartle-Hawking state [12], such that 〈H|Tµν |H〉 is regular at
the horizon. However one pays a price, i.e. this stress tensor is nonvanishing
at large r and describes thermal radiation at the Hawking temperature

T =
~c3

GkB

1

8πM
, (3)

where kB is Boltzman’s constant. The associated physical situation is that
of a black hole in a cavity, in thermal equilibrium with its own radiation.
The third possibility, the Unruh state |U〉 [13], is constructed in such a way
as to reproduce the late time behaviour of the quantum matter fields in the
classical background of a collapsing star forming a black hole. By requiring
that no particles are present at infinity in the past and that 〈U |Tµν |U〉 is
regular at the future horizon one finds, as a consequence, an outgoing flux of
thermal radiation (the Hawking flux) in the asymptotic future.

By inserting the fixed background expression 〈Ψ|Tµν(g
schw
αβ )|Ψ〉 in the right

hand side of Eqs. (1) one can solve perturbatively the backreaction equations
at O(~) to find the first order quantum corrections δgαβ to the Schwarzschild
metric, i.e. gαβ = gschw

αβ + δgαβ. This is a good approximation to the full

solution of (1) only when δgαβ ≪ gschw
αβ , i.e. when the quantum terms are

small compared to the background.∗∗ In the case of large mass being the
Hawking temperature very small this condition is satisfied, for an evaporat-
ing black hole, for most of its lifetime, but eventually at the late stages of the
evaporation one faces the problems mentioned above. Turning to the static
configurations, this is a good approximation in the Hartle-Hawking case since
〈H|Tµν |H〉 never gets large, while for Boulware it is certainly valid at infinity
but not at the horizon due to the divergence of the quantum stress tensor
there. The problem of understanding how, in this case, the quantum effects

∗∗The natural coordinates to be used in this context are the Schwarzschild ones given
in (2). In more general terms, this approximation scheme is valid whenever the quantum
terms generate a correction to the curvature which is small compared to its background
value.
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modify the structure of the classical horizon is not an easy one. One usually
disregards this question since Boulware state describes the vacuum polariza-
tion around a static star whose radius is bigger than rS, and therefore this
divergence is not physically relevant.

The motivation for our work comes from braneworld physics, where much
work is being done on the search for black hole solutions in the Randall-
Sundrum model RS2 [14]. This is technically a very involved situation and
nobody so far has achieved the goal of finding a five-dimensional solution
describing a black hole localized on the brane [16]. An interesting physical
interpretation of this fact comes from the application of the holographic
AdS/CFT correspondence [15], for which classical 5D bulk solutions are dual
to 4D self-consistent semiclassical configurations where gravity is coupled to
quantum matter fields [17]. If this is so then a classical static 5D “ black
hole” will be mapped to a 4D static solution of the backreaction equations.
Staticity naturally selects the Hartle-Hawking and Boulware states. If, in
addition, we require that the 4D configuration be asymptotically flat then
the choice must be the Boulware state. That this is the correct choice is
supported by the fact that for large radius the corrections to the Newtonian
potential in this state match those calculated classically in 5D [18].

In order to solve the backreaction equations in the Boulware vacuum
the exact expression of 〈B|Tµν(gαβ)|B〉 for an arbitrary geometry is needed.
No such expression exists in four dimensions (an analytic approximation
for static spherically symmetric spacetimes has however been developed in
[19]). The situation greatly improves if one restricts to the s-wave approx-
imation for spherically symmetric backgrounds. Within this context, in
section 2 we review the classical and semiclassical theory of gravity cou-
pled to a massless and minimally coupled scalar field. Since in this case
the expression of 〈B|Tµν(gαβ)|B〉 is available, we end the section by writing
down the relevant backreaction equations. These equations cannot be ex-
actly solved analytically, and we approach the problem in two steps. First,
in section 3, we consider the equations arising in the Polyakov theory, which
can be derived from ours using a near-horizon approximation for the scalar
field (this amounts to neglecting backscattering effects in the propagation
of the matter fields). These equations are decoupled, in the sense that
one can derive an equation relating the conformal factor of the metric ρ
(ds2 = e2ρ(−c2dt2 + dx2) + r2dΩ2) as a function of the radius r only (or φ
or z through the definitions r = r0e

−φ = r0z according to the convenience)
which is then integrated numerically and from which one can derive the de-
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pendence on the spatial coordinate ρ = ρ(x) and r = r(x). The quantum
corrected solution is very similar to the Schwarzschild solution from infinity
till very close to the classical horizon r = rS, where, as expected, big differ-
ences emerge. In particular, there exists a timelike surface r = rB where the
radial function r bounces (i.e. the two-spheres reach a minimum radius rB

and then they start to increase) and, beyond it, a null curvature singularity
with infinite radius at a finite affine distance. Armed with these techniques
and results we face, in section 4, the full backreaction equations in the s-wave
approximation, which are much more complicated. The differences with re-
spect to the previous case are that the bounce is located closer to the classical
horizon r = rS and that the curvature singularity is now timelike and has
finite radius. Finally, in section 5 we summarize our conclusions.

2 Gravity coupled to a massless scalar field

in the s-wave approximation

It is convenient, in the context of the s-wave approximation, to work with
spherically reduced theories. Under the spherically symmetric ansatz

ds2
(4) = ds2

(2) + r2dΩ2, (4)

the Hilbert-Einstein action

S(4)
g =

c3

16πG

∫

d4x
√

−g(4)R(4) (5)

reduces to

Sg =
c3

4G

∫

d2x
√−g

[

r2R + 2
(

1 + |∇r|2
)]

, (6)

where the geometrical quantities refer to the radial part ds2
(2) of the four-

dimensional metric. Note that the radial variable r here plays the role of
a scalar field with a non-trivial coupling to the radial sector of the metric.
Einstein’s equations for spherically symmetric configurations in vacuum can
be rewritten as

2√−g

δSg

δgab
≡ c3

4G

[

−2r∇a∇br + gab

(

2r�r − 1 + |∇r|2
)]

= 0 , (7)

2√−g

δSg

δr
≡ c3

G
[rR − 2�r] = 0 . (8)
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The solution of these equations is the Schwarzschild geometry

ds2
(2) = −(1 − 2GM

c2r
)(dt2 − dr∗2)

r∗ = r +
2GM

c2
ln(1 − 2GM

c2r
) , (9)

where r∗ is the so-called “tortoise” coordinate.
Turning to the matter sector, let us consider the action for a minimally

coupled massless scalar field (in Gaussian units)

S(4)
m = − 1

8π

∫

d4x
√

−g(4)(∇f)2 . (10)

In the background ds2
(4) = gabdxadxb + r2dΩ2 the field f can be expanded in

spherical harmonics, of which we pick up only the s-wave component

f = f(xa) ≡ fl=0

r
Y00. (11)

Under this assumption, integration of the angular variables in (10) leads to

Sm = −1

2

∫

d2x
√−gr2(∇f)2 . (12)

Varying this action with respect to the radial part of the metric we obtain a
two-dimensional stress-energy tensor

− 2c√−g

δSm

δgab
≡ Tab , (13)

which is related to the radial components of the corresponding four-dimensional
one by the relation

T
(4)
ab =

Tab

4πr2
. (14)

Moreover, by varying (12) with respect to r we get the expression for the
angular components of the four-dimensional stress-energy tensor

T
(4)
θθ =

T
(4)
ϕϕ

sin2 θ
= − rc

8π
√

−g(2)

δSm

δr
. (15)
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2.1 Semiclassical theory

The advantage of the approximation considered is that in this case, unlike
the full four-dimensional treatment, one can provide an analytic expression
for the expectation values of all components of the stress-energy tensor. We
shall briefly review the main steps involved. The details can be found in [7].
To this end it is very convenient to parameterize the radial part of the four
dimensional metric in conformal gauge as

ds2
(2) = −e2ρdx+dx−, (16)

and moreover it is also useful to parameterize the radial coordinate as follows

r = r0e
−φ. (17)

One can univocally provide an expression for 〈T (4)
±±〉 and 〈T (4)

θθ 〉 by impos-
ing two simple conditions:

• the covariant conservation laws

∇µ〈T (4)
µν 〉 = 0, (18)

which can be rewritten as

∇a〈Tab〉 = ∇bφ
1√−g

〈δSm

δφ
〉 ; (19)

• at an arbitrary point X of the spacetime manifold the expectation
values of the quantum stress-energy tensor 〈T±±(x±(X))〉 reduce to
the normal ordering ones 〈: T±±(x±(X)) :〉 when using a locally inertial
frame ξα

X based on that point

〈T±±(ξα
X(X))〉 = 〈: T±±(ξα

X(X)) :〉. (20)

These two conditions are strong enough to provide a generic expression
for the expectation values of the stress-energy tensor. In particular, the
breaking of the classical Weyl symmetry (meaning that classically gabTab =
0), produces a non-vanishing trace anomaly which can be derived from the
above conditions. One easily obtains that

〈T 〉 =
~

24π
(R − 6(∇φ)2 + 6�φ) . (21)
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The full expression for the expectation values of the stress-energy tensor
components, in an arbitrary conformal coordinate system, is

〈Ψ|T±±(x±)|Ψ〉 = − ~

12π
(∂±ρ∂±ρ − ∂2

±ρ) +
~

2π
(∂±ρ∂±φ + ρ(∂±φ)2)

+ 〈Ψ| : T±±(x±) : |Ψ〉 , (22)

〈Ψ|T+−(x±)|Ψ〉 = − ~

12π
(∂+∂−ρ + 3∂+φ∂−φ − 3∂+∂−φ) , (23)

〈Ψ|δSm

δφ
|Ψ〉 = 〈Ψ|δSm

δφ
|Ψ〉ρ=0 −

~

2π
(∂+∂−ρ + ∂+ρ∂−φ + ∂−ρ∂+φ

+ 2ρ∂+∂−φ) . (24)

The dependence on the quantum state is all contained in the three func-
tions 〈Ψ| : T±± : |Ψ〉 and 〈Ψ| δSm

δφ
|Ψ〉ρ=0. These functions are not independent

and verify the following relations

∂∓〈Ψ| : T±± : |Ψ〉+∂±φ〈Ψ|δSm

δφ
|Ψ〉ρ=0−

~

4π
∂±(∂+φ∂−φ−∂+∂−φ) = 0 . (25)

2.2 Backreaction equations in the Boulware state

In a dynamical scenario such as black hole evaporation it is highly nontrivial
to unravel the precise form of the state-dependent functions 〈Ψ| : T±± :
|Ψ〉 and 〈Ψ| δSm

δφ
|Ψ〉ρ=0. However, in this paper we are interested in static

configurations, for which ρ and φ are functions of the spatial coordinate
x = (x+ − x−)/2 only, i.e. ρ = ρ(x) and φ = φ(x). This coordinate x
reduces, in the classical limit, to the tortoise coordinate r∗ given in (9). For
the Boulware state it is natural to impose that

〈B| : T±±(t, x) : |B〉 = 0 . (26)

This allows to determine, from Eqs. (25), the function 〈Ψ| δSm

δφ
|Ψ〉ρ=0

〈B|δSm

δφ
|B〉ρ=0 = − ~

16π

(φ2
x − φxx)x

φx
, (27)

where the index x means derivative with respect to the coordinate x. Thus we
have all the ingredients we need to write down the backreaction equations in
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the Boulware state, which describe how the Schwarzschild solution is modified
due to pure vacuum polarization effects

2c√−g

δSg

δg±±
= 〈Ψ|T±±|Ψ〉 ,

2c√−g

δSg

δg+−
= 〈Ψ|T+−(x±)|Ψ〉 ,

−δSg

δφ
= 〈Ψ|δSm

δφ
|Ψ〉 , (28)

where

2√−g

δSg

δg±±
=

c3r2
0e

−2φ

G

(

∂2
±φ − 2∂±ρ∂±φ − (∂±φ)2

)

,

2√−g

δSg

δg+−
=

c3r2
0e

−2φ

G
(−∂+∂−φ + 2∂+φ∂−φ +

1

4r2
0

e2(ρ+φ)) ,

−δSg

δφ
= 2

c3r2
0e

−2φ

G
(∂+∂−ρ + ∂+φ∂−φ − ∂+∂−φ) . (29)

It is convenient to fix the constant scale r0 as follows: r0 ≡
√

λ =

√

l2
Planck

12π
=

√

~G
12πc3

.

The static differential equations corresponding to Eqs. (28) can then be
written as

φxx − φ2
x − 2ρxφx = e2φ

[

ρxx − ρ2
x + 6ρxφx + 6ρφ2

x

]

(30)

φxx − 2φ2
x +

e2(φ+ρ)

λ
= e2φ

[

ρxx − 3(φxx − φ2
x)

]

(31)

φxx − φ2
x − ρxx = e2φ

[

3ρxx + 6ρxφx + 6ρφxx +
3

2

(φxx − φ2
x)x

φx

]

. (32)

To solve these equations we have to add boundary conditions which, in the
present context, are naturally given by imposing that for very large r the
solution approaches the classical one (9), i.e.,

ρ =
1

2
ln(1 − 2GM

c2r
) , (33)

r∗ ≡ x = r +
2GM

c2
ln(1 − 2GM

c2r
) . (34)
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We shall investigate how the relations ρ = ρ(r) and r = r(x) are modified by
(static) quantum effects.

It is convenient to analyze first what happens in a simplified context,
defined by neglecting the coupling of the scalar field with the radial function
r in the classical matter action (12).

3 Polyakov theory’s approximation

In this section we shall study a simplified version of the problem outlined in
the previous section. As already mentioned we shall replace the action (12)
by a new one obtained by fixing the radial function r = rS = constant. We
then obtain

Smatter = −1

2

∫

d2x
√
−g|∇(rSf)|2 . (35)

This approximation is usually motivated by arguing that, in the vicinity of
the classical horizon r ∼ rS = 2GM/c2, the wave equation for the scalar field

(− ∂2

∂t2
+

∂2

∂r∗2
− V (r))(rf) = 0 , (36)

where V (r) is the s-wave potential

V (r) = (1 − rS

r
)
rS

r3
, (37)

reduces to the two-dimensional free wave equation

(− ∂2

∂t2
+

∂2

∂r∗2
)(rSf) = 0 . (38)

This latter equation can indeed be derived by varying the action (35).
The expression for 〈Ψ|Tab|Ψ〉 can be derived in a number of different ways.

Following the arguments of subsection 2.1 one arrives at

〈Ψ|T±±|Ψ〉 = − ~

12π

(

(∂±ρ)2 − ∂2
±ρ

)

+ 〈Ψ| : T±± : |Ψ〉 , (39)

〈Ψ|T+−|Ψ〉 = − ~

12π
∂+∂−ρ , (40)

which are obtained from (22), (23) by neglecting the terms depending on
φ (note that in this approximation 〈Ψ| δSm

δφ
|Ψ〉 = 0). Note that the above

9



expressions can be also obtained from the effective Polyakov action

SP = − ~

96π

∫

d2x
√−gR�

−1R . (41)

The dependence on the quantum state is contained in the functions 〈Ψ| :
T±±(x±) : |Ψ〉, which are taken to be zero in the Boulware vacuum, i.e.

〈B| : T±±(x±) : |B〉 = 0 . (42)

In the Schwarzschild background ((33) and (34)) x± denote the Eddington-
Finkelstein coordinates and the components of the quantum stress tensor
read

〈B|T±±|B〉 =
~

24π
[− rS

2r3
+

3

8

r2
S

r4
] ,

〈B|T+−|B〉 = − ~

24π
[1 − rS

r
]
rS

2r3
. (43)

At infinity 〈B|Tab|B〉 → 0 (where |B〉 reduces to the Minkowski ground
state |M〉), while on the horizon 〈B|T±±|B〉 → −~c4/768πM2G2. These
quantities are strongly divergent when expressed in Kruskal coordinates U ∼
e−x−/2rS , V ∼ ex+/2rS regular on the future and past horizons (H+ and H−,
respectively)

〈B|TUU |B〉 ∼H+

〈B|T−−|B〉
(r − rS)2

, 〈B|TV V |B〉 ∼H−

〈B|T++|B〉
(r − rS)2

. (44)

This, in turn, means that quantum backreaction effects are strong at the
classical horizon r = rS.

The semiclassical equations in the Boulware vacuum can then be written
as follows

c3r2
0e

−2φ

G

(

∂2
±φ − 2∂±ρ∂±φ − (∂±φ)2

)

= − ~

12π

(

(∂±ρ)2 − ∂2
±ρ

)

(45)

c3r2
0e

−2φ

G
(−∂+∂−φ + 2∂+φ∂−φ +

1

4r2
0

e2(ρ+φ)) = − ~

12π
∂+∂−ρ (46)

2
c3r2

0e
−2φ

G
(∂+∂−ρ + ∂+φ∂−φ − ∂+∂−φ) = 0 (47)
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and repeating the steps that led to Eqs. (30), (31) and (32), we rewrite them
as

φxx − φ2
x − 2ρxφx = e2φ

(

ρxx − ρ2
x

)

, (48)

φxx − 2φ2
x +

e2(φ+ρ)

λ
= e2φρxx , (49)

φxx − φ2
x − ρxx = 0 . (50)

We note that when the right hand side of the above equations vanishes, while
keeping finite the quotient e2φ/λ ≡ r−2, we recover the classical equations and
therefore the Schwarzschild solution. Due to the divergent behavior in (44),
when r approaches the classical horizon rS we expect non-trivial corrections
to the classical metric.

3.1 Decoupling the semiclassical equations

We shall exploit the fact that Eqs. (48),(49) and (50) do not have terms that
depend explicitly on the variable x and, also, that (48) and (50) are homo-
geneous differential equations of order two. This allows to write a decoupled
equation for the function ρ(φ). We use the relations

ρx = ρ̇φx , (51)

ρxx = ρ̈(φx)
2 + ρ̇φxx , (52)

where the dot indicates derivative with respect to φ. Equation (48) can be
rewritten as

φxx =
1 + 2ρ̇ + e2φ[ρ̈ − ρ̇2]

1 − e2φρ̇
φ2

x . (53)

Moreover, subtracting Eq.(50) from (48) we get

ρ̈ + ρ̇
φxx

φ2
x

=
ρ̇(2 − e2φρ̇)

1 − e2φ
. (54)

Equations (53) and (54) allow to obtain the desired equation

ρ̈ =
ρ̇

[

1 − 2ρ̇ + e2φ(1 − ρ̇ + ρ̇2)
]

1 − e2φ
(55)

or, going back to the radial coordinate r = r0e
−φ,

ρrr = −(1 + rρr)ρr(2r + λρr)

r2 − λ
. (56)
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The equation for φ(x) can be derived by combining Eqs. (49) and (53)

φ2
x =

e2(φ+ρ)

λ(1 − 2ρ̇ + e2φρ̇2)
, (57)

and, equivalently, for r(x)

(
dr

dx
)2 =

e2ρ

1 + 2rρr + λρ2
r

. (58)

In the classical limit (λ = 0) Eqs. (56) and (58) become

ρrr = −2(1 + rρr)ρr

r
(59)

and

(
dr

dx
)2 =

e2ρ

1 + 2rρr
. (60)

The general solution to Eq. (59) is

ρc =
1

2
ln(A +

B

r
) (61)

where A and B are two integration constants. The Schwarzschild metric
can be easily recovered by setting A = 1 (i.e., the metric is asymptotically
Minkowskian, ρ → 0 as r → +∞) and B = −2GM/c2. Integration of (60)
leads to the identification of x with the tortoise coordinate r∗.

A natural thing would be to try to solve Eq. (56) perturbatively in λ.
This gives a good approximation to the full solution when the quantum terms
are small compared to the classical ones. At O(λ) this is true for large r where

λρr ∼ λ
dρc

dr
=

λGM/c2r2

1 − 2GM/c2r
≪ 2r , (62)

but not in the near-horizon region where the quantum terms instead dom-
inate. In this region backreaction effects are strong and cannot be treated
perturbatively.
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3.2 Numerical solution

The differential equation (56) cannot be solved analytically. It must be stud-
ied numerically and for this it is convenient to rescale the radial coordinate
and introduce the dimensionless parameter z ≡ r/

√
λ. We then get

ρzz = −(1 + zρz)ρz(2z + ρz)

z2 − 1
. (63)

This equation allows to analyze in a non-perturbative way the exact function
ρ(z). However, for reasons that will be clear in a moment, the function
ρ = ρ(z) is not single-valued. Therefore we have to study, instead, the
function z = z(ρ) which verifies the differential equation

zρρ =
(z + zρ)(1 + 2zzρ)

z2 − 1
. (64)

Imposing as boundary condition that the solution behaves, for very large
z, as the classical one

ρ(z → ∞) =
1

2
ln(1 − 2a

z
) (65)

with a ≡ GM/c2
√

λ, we can generate numerically the solution to (64). We
find that the quantum corrected solution is everywhere similar to the classical
one, up to the vicinity of the classical horizon. We can observe this behavior
in Fig.1. We have chosen a black hole of small-size (a = 103) since in this
case the differences between the classical and the semiclassical solutions can
be better appreciated.

We observe that for regions far away from the classical horizon (z >> 1,
i.e. ρ → 0) the numerical solution and the classical one are very similar.
However, in the vicinity of the classical horizon the quantum corrected solu-
tion suffers a bounce, absent in the classical solution, around ρ ∼ −8.3 and
then grows up slowly. This is the reason why we have had to solve numeri-
cally z = z(ρ) instead of ρ = ρ(z). Note that this point appears at a finite
value of ρ, and, therefore, that the time-time component of the metric gtt

does not vanish. The existence of this bouncing point is better represented
in Fig.2, where we plot the derivative zρ in terms of ρ. The existence of a
zero for zρ signals a bouncing point for the radial function.

This qualitative behavior of the radial function is maintained irrespective
of the size of the black hole. For a Solar-mass black hole (a = 1039) the bounce
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Figure 1: Classical (dashed line) and numerical (solid line) plots of the func-
tion z(ρ) for a = 103.
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Figure 2: Plots of zρ(ρ), classical (dashed) and numerical (solid) for a = 1039.
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appears at ρ(zB) ∼ −91. This result implies, as we will see later with more
detail, that the classical horizon is eliminated by the quantum corrections.
However, it is important to remark that the value of the conformal factor of
the metric at the bouncing surface is very small. In fact the redshift for a
signal emitted by a static observer at the bounce and received at infinity

E∞

EBounce
= eρ(zB) (66)

transforms, for instance, a Planckian energy EBounce ∼ 1019GeV into an
energy of the order E∞ ∼ 10−12eV at infinity. Moreover we find that, for
a = 1039, zB = zS + 8.48 × 10−4 , where zS ≡ 2a = 2 × 1039. This shows
that the bouncing surface is indeed very close to the classical horizon (the
difference between zB and zS increases as one reduces the mass).

3.3 Behavior of the metric around the bounce

Around the bounce zB the function z(ρ) behaves

z(ρ) ≈ zB +
1

2
A(ρ − ρB)2 + ... . (67)

Plugging this expansion into (64) we get immediately that

A =
zB

z2
B − 1

. (68)

Therefore

ρ(z) ≈ ρ(zB) ±
√

2(z2
B − 1)(z − zB)

zB
, (69)

and

ρz ≈ ±
√

z2
B − 1

2zB(z − zB)
. (70)

To estimate the form of the metric at r ∼ rB

ds2
(4) ≈ −e2ρc2dt2 + e2ρ

(

dx

dr

)2

dr2 + r2dΩ2 (71)

we need to find the relation between r and x. From Eq. (58) we have that

e2ρ

(

dx

dr

)2

= 1 + 2zρz + ρ2
z = 1 + 2rρr + λρ2

r . (72)
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In the region r ∼ rB the right hand side is dominated by the pure quantum
term ρ2

z = λρ2
r , with ρz given in (70), and so we have

r ≈ rB +
1

2

rB

r2
B − λ

e2ρ(zB)(x − xB)2 + ... . (73)

Therefore the form of the metric is approximated by

ds2
(4) ≈ −e2ρc2dt2 +

r2
B − λ

2r2
B

dr2

(1 − rB

r
)

+ r2dΩ2 . (74)

The quantum corrected geometry is not singular at the bounce, as it can be
checked that all curvature invariants are regular at r = rB. Note that r is
not the good spatial coordinate to extend the metric (74) beyond rB, one
should rather use x (see (73)).

Finally we should briefly note that the surface r = rB is not an event
horizon since gtt(rB) 6= 0. However, there g−1

rr (rB) = 0 and this means that
∂+r2 < 0 for points x inside rB and only for r = rB we have ∂+r2|rB

= 0.
This means that the surface r = rB still plays the role of an apparent horizon
for outgoing radiation.

3.4 The geometry beyond the bounce

We shall now investigate the geometry beyond the bouncing surface. To this
end we study the 2D curvature for ρ < ρ(zB). Starting from the expression
of the 2D curvature

R = 8e−2ρ∂+∂−ρ = −2e−2ρρxx , (75)

where ρxx is given by (see Eq. (52) where here and in the next formulas ρ̇
and ρ̈ are written in terms of derivatives with respect to z)

ρxx = (zρz + z2ρzz)φ
2
x − zρzφxx , (76)

and from (53) we get

R = −2z2 zρzz + (2z + ρz)ρ
2
z

z + ρz
e−2ρφ2

x . (77)
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We can get a simplified expression for the curvature taking into account our
basic differential equation (63) for ρ(z)

R = −2z2 ρzz

1 + zρz
e−2ρφ2

x

= 2z2 ρz(2z + ρz)

z2 − 1
e−2ρφ2

x . (78)

Moreover from (58) we have

e−2ρφ2
x =

1

λz2(1 + 2zρz + ρ2
z)

=
z2

ρ

λz2(1 + 2zzρ + z2
ρ)

, (79)

and therefore the final expression for the curvature is

R =
2

λ(z2 − 1)

ρz(2z + ρz)

(1 + 2zρz + ρz
2)

=
2

λ(z2 − 1)

(2zzρ + 1)

(1 + 2zzρ + z2
ρ)

. (80)

The natural singularity at z = 1 (r =
√

λ), which mimics the classical
singularity at r = 0, does not belong to the physical spacetime because of
the existence of the bounce rB encountered before. Singularities can only be
generated by zeroes of the denominator in (80). Before rB we have zρ > 0,
so 1 + 2zzρ + z2

ρ can never be zero. At z = zB we have zρ = 0, so

R =
2

λ(z2
B − 1)

. (81)

After the bounce zρ < 0 and, therefore, one can potentially encounter a cur-
vature singularity. The numerical analysis indicates that such a singularity
can be found only when z → +∞. For this we need that (1 + 2zzρ + z2

ρ) ∼ 0
when z → +∞. The zeroes of the above second order polynomial zρ = −z ±√

z2 − 1 are an exact solution to the differential equation (64). Since the nu-
merical analysis shows that, for large z in the interior region, zρ ∼ −1/2z+ ...
this means that asymptotically we have zρ ∼ −z +

√
z2 − 1 + f(z), where

znf(z) → 0 as z → +∞ for every positive integer number n.†† The behavior
of the curvature is then

R ∼ − 1

z5f(z)
, (82)

††We note that the solution zρ = −z +
√

z2 − 1 corresponds to the one found in [20]
as an exact solution to Eqs. (48), (49) and (50) where the exponential term e2(φ+ρ)/λ is
neglected.
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which clearly shows the existence of a singularity at z = +∞. A detailed
computation, using (53), shows that (for z → +∞)

z ∼
√
−x . (83)

Using Eq. (72) it is easy to realize that in the limit z → +∞ we have
f(z) ∼ e−2z2

and this implies that the scalar curvature goes to −∞ there as

R ∼ −e2z2

z5
. (84)

Moreover, such a singularity is null (i.e. e2ρ → 0 as z → +∞) and is
located at a finite affine distance from any finite z. Finally we remark that
the singularity arises due to the the branching point for the radial function
r ≡ z

√
λ, with respect to the spatial coordinate x, displayed in (83). This

is the underlying reason for the generation of the curvature singularity at
x = −∞.

4 Quantum corrections in the s wave approx-

imation.

The approximation used in the previous section consists, essentially, in ne-
glecting the effects of the potential barrier for the wave equation (36). In
this way we have simplified considerably the technical problem. It is natural
at this point to ask whether the results obtained are maintained when the
effects of the potential are included. The detailed analysis presented before
has allowed to introduce all the techniques that we shall use to attack the
full problem in the s-wave approximation. The equations to solve are now
more involved. However, since the conceptual line to follow should be clear
we will focus only on the most important points.

In the Schwarzschild spacetime the expectation values of the stress tensor
components in the Boulware state (see (22)-(26) and (27)) are

〈B|T±±|B〉 =
~

24π
[−2rS

r3
+

15

8

r2
S

r4
] +

~

16πr2
(1 − rS

r
)2 ln(1 − rS

r
) ,

〈B|T+−|B〉 =
~

12π
[1 − rS

r
]
rS

2r3
,

〈Ψ|δSm

δφ
|Ψ〉 = − 7~

16π

rS

r3
+

~

2π

r2
S

r4
+

~

8πr2
(1 − 2rS

r
)(1 − rS

r
) ln(1 − rS

r
) . (85)
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All these quantities vanish asymptotically, while on the horizon the leading
divergence is the same as in the Polyakov case (44). Again, this means
that to inspect the near-horizon region r ∼ rS we need to solve exactly the
backreaction equations.

4.1 Decoupling the semiclassical equations

We shall now proceed in parallel to Section 3 to decouple the system of
differential equations (30)-(32) to generate a single equation for ρ = ρ(r).
Using the relations ρx = ρ̇φx and ρxx = ρ̈(φx)

2 + ρ̇φxx we transform them
into

φxx − φ2
x − 2ρ̇φ2

x = e2φ
[

ρ̈φ2
x + ρ̇φxx − ρ̇2φ2

x + 6ρ̇φ2
x + 6ρφ2

x

]

(86)

φxx − 2φ2
x +

e2(φ+ρ)

λ
= e2φ

[

ρ̈φ2
x + ρ̇φxx − 3(φxx − φ2

x)
]

(87)

φxx − φ2
x − ρ̈φ2

x − ρ̇φxx = e2φ[3ρ̈φ2
x + 3ρ̇φxx + 6ρ̇φ2

x + 6ρφxx

+
3

2

(φxx − φ2
x)x

φx
]. (88)

From (86) and (87) we get

φxx(1 − ρ̇e2φ) =
[

1 + 2ρ̇ + e2φ(ρ̈ − ρ̇2 + 6ρ̇ + 6ρ)
]

φ2
x (89)

φxx(1 − (ρ̇ − 3)e2φ) =
[

2 + (ρ̈ + 3)e2φ
]

φ2
x −

e2(φ+ρ)

λ
, (90)

which can be rewritten as

φ2
x =

(1 − ρ̇e2φ)e2(φ+ρ)

λD
, (91)

φxx =

[

1 + 2ρ̇ + e2φ(ρ̈ − ρ̇2 + 6ρ̇ + 6ρ)
]

e2(φ+ρ)

λD
, (92)

where

D = −
[

1 − (ρ̇ − 3)e2φ
] [

1 + 2ρ̇ + e2φ(ρ̈ − ρ̇2 + 6ρ̇ + 6ρ)
]

+
[

1 − ρ̇e2φ
] [

2 + (ρ̈ + 3)e2φ
]

. (93)

Taking into account that
φxxx

φx

= φ̇xx , (94)

19



and plugging the expressions (91) and (92) into (88) we obtain, after a
straightforward but very long calculation, a third-order differential equation
relating ρ and r

[

r2 + 3λ − 6λρ + rρr(2r
2 + 6λ + rλρr)

]

×
[

72λ2ρ2(r2 + 3λ + rλρr) +

+6rλρ
(

12rλ − ρr(6r
4 + 40r2λ + 63λ2 + 2rλρr(4r

2 + 14λ + rλρr)) +

+rλ(2r2 + 15λ + 2rλρr)ρrr

)

+ r2
(

rλ(6r4 + 56r2λ + 93λ2)ρ3
r +

+2r2λ2(r2 + 6λ)ρ4
r + ρ2

r(4r
6 + 54r4λ + 162r2λ2 + 162λ3 − 9r2λ3ρrr) +

+r2(2(r4 + 5r2λ + 12λ2)ρrr + 9λ3ρ2
rr − 3rλ2ρrrr) + rρr(4r

4 − 6r2λ −
72λ2 + λ(2r4 − 14r2λ − 69λ2)ρrr − 3rλ3ρrrr)

)]

= 0 (95)

The second factor in the above equation is the relevant one since it leads
directly, when λ = 0, to the classical equation (59). The quantum corrections
to the Schwarzschild metric should be then computed by exactly solving
the above differential equation. Introducing the dimensionless coordinate
z = e−φ = r/

√
λ we get an ordinary differential equation for ρ = ρ(z).

However, as we have already explained in the analysis of the Polyakov theory,
since the function ρ = ρ(z) could not be one-to-one it is more appropriate
to work directly with the differential equation for the function z = z(ρ). It
reads as follows

18ρ(−21 + 4ρ)zz4
ρ + 216ρ2z5

ρ + 2z8z2
ρ(2zρ − zρρ) + 2z7zρ(3zρ + 2z3

ρ

−zρρ) + 3z3zρ

(

(31 − 4ρ)zρ − 8(3 + 10ρ)z3
ρ + (23 − 4ρ)zρρ

)

+6z2z2
ρ

(

(27 − 28ρ)zρ + 12ρ(1 + ρ)z3
ρ − 15ρzρρ

)

+ 2z6zρ(1 + 27z2
ρ

−5zρzρρ) − 3z4
(

− 3zρρ + 2zρ(−2 + (−27 + 8ρ)z2
ρ + 2(2 + ρ)zρzρρ)

−zρρρ

)

+ z5
(

56z2
ρ − 6(1 + 6ρ)z4

ρ − 9z2
ρρ + zρ(14zρρ + 3zρρρ)

)

= 0 . (96)

4.2 Numerical solution

We solve numerically the above equation by imposing that, for very large
z and ρ → 0, the solution approaches the classical one. We find that the
solution is almost identical to the classical one up to the vicinity of a surface,

20



which we also denote as zB, located very close to the classical horizon. The
result (for a Solar-mass black hole a ≡ GM/c2

√
λ = 1039) is depicted in

Fig. 3 which shows the existence of a bounce for the radial function at
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Ρ

-5·10-39

5·10-39

1·10-38

1.5·10-38

2·10-38
zΡ

Figure 3: Plots of the function zρ(ρ), classical (dashed line) and numerical
(solid line) for a = 1039.

ρB ≈ −89.69, where

z(ρ) ≈ zB +
1

2
A(ρ − ρB)2 + ... , (97)

and A is a positive coefficient to be computed numerically. Moreover, we
find that zB ≈ zS +1.76×10−37. Therefore, its location is much closer to the
classical horizon than in the Polyakov theory approximation of section 3.

4.3 Branching point for the radial function

The main difference with respect to the Polyakov theory appears in the re-
lation between r and x. In terms of the function z(ρ) we have

e2ρ(
dx

dr
)2 =

zzρD

(1 + zzρ)
(98)

e2ρ(
dx

dρ
)2 =

λzz3
ρD

(1 + zzρ)
(99)
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where

D =
1

z4z4
ρ

{ − [z2zρ + z + 3zρ][z
2z3

ρ − 2z3z2
ρ − z2zρρ − 5zz2

ρ − z2zρ + 6ρz3
ρ]

+ [z2zρ + z][2z2z3
ρ + 3z3

ρ − z2zρρ + zz2
ρ ]} . (100)

In Fig. (4) we show the typical behavior of the function D in terms of ρ.
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Ρ
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D

Figure 4: For a = 1039 the bounce of the radial function (D = +∞) is located
at ρ ∼ −89.69. At ρ ∼ −89.72 the function D vanishes.

Note that in the vicinity of the bounce zρ → 0, and from (100) we have
D ∼ z−3

ρ . Therefore

e2ρ(
dx

dr
)2 ∼ 1

z2
ρ

, (101)

and hence
dr

dx
∼ zρ . (102)

In other words, the expansion of r in terms of x has to be of the form
r ≈ rB +α(x−xB)2 + ..., where α is a numerical constant, in agreement with
the analytic behavior encountered in (73).

A similar argument allows to determine the behavior of r in terms of x

around the zero of the function D. This happens at ρ = ρM
<∼ ρB, just after

the bounce. Around the zero of D we have D(r) ∼ rM − r. Therefore

dx

dr
∼ −

√
rM − r , (103)
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and hence
r ≈ rM − β(x − xM)2/3 (104)

where β is a numerical positive constant. The radial function has a branching
point at x = xM , which turns out to be the minimum possible value for the
“tortoise” coordinate x.

The form of the metric in this region is

ds2
(4) ≈ e2ρ(r)(−c2dt2 + dx2) + (rM + B(x − xM)2/3)2dΩ2 (105)

where, according to our previous analysis, the function ρ(r) is finite and
regular at rM . The above metric has a singularity at r = rM , which cannot
be avoided by a change of coordinates. It is indeed a curvature singularity
as we now show. The 4D scalar curvature can be expressed, in terms of ρ
and φ, as follows

R(4) = −2e−2ρ
[

ρxx − 2φxx + 3φ2
x

]

+ 2e2φ . (106)

The first term is just the two-dimensional scalar curvature R = −2e−2ρρxx,
which according to (76), (91) and (92) is

R = − 2

λz2D

−z3zρρ + 2z3zρ + z2 + 6zzρ − 6ρzρ

zz3
ρ

. (107)

At x = xM , where D(xM) = 0, R and also the second and third terms in
(106) are divergent. Finally we note, from (105), that this singularity is
timelike, has finite radius rM and is located at a finite affine distance away.

5 Conclusions

The existence of a bounce for the radial function r, prior to the emergence of a
spacetime singularity, is perhaps the most significative result of our analysis.
It already appears in the simplified Polyakov theory and it is still there in
the most accurate s-wave approximation. It is natural to expect it to persist
in a full treatment of the problem.

Our results are perhaps not surprising from the semiclassical point of
view, where due to the strong divergence of the Boulware stress tensor at the
Schwarzschild horizon important deviations from the classical behavior are
indeed expected to arise. However they constitute an important prediction
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for the search of static 5D braneworld configurations with asymptotically flat
boundary conditions on the brane: such solutions are not black holes, but
rather naked singularities. In the 4D semiclassical context this reinforces
the idea that the Boulware state describes the vacuum polarization around
a static star, not a black hole. Indeed the natural thing for a black hole is to
be time dependent and to evaporate via the Hawking effect.

Finally we point out that our analysis does not exclude the existence of
static braneworld black holes, but the price to pay is to give up asymptotic
flatness on the brane. This means, in the dual 4D theory, to replace Boul-
ware with the Hartle-Hawking state.
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