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The Hawking effect can be rederived in terms of two-point functions and in such a way that
it makes it possible to estimate, within the conventional semiclassical theory, the contribution of
ultrashort distances at I+ to the Planckian spectrum. The analysis shows that, for Schwarzschild
astrophysical black holes, the Hawking radiation (for both bosons and fermions) is very robust up
to very high frequencies (typically two orders above Hawking’s temperature). Below this scale, the
contribution of ultrashort distances to the spectrum is negligible. We argue, using a simple model
with modified two-point functions, that the above result seems to have a general validity and that it
is related to the observer independence of the short-distance behavior of the corresponding two-point
function. The above suggests that only at high emission frequencies could an underlying quantum
theory of gravity potentially predict significant deviations from Hawking’s semiclassical result.

PACS numbers: 04.62.+v,04.70.Dy

I. INTRODUCTION

Semiclassical gravity predicts the radiation of quanta by black holes [1, 2]. The emission rate is given by the product
of the Planckian factor times the grey-body coefficient Γlmp(w)

dNlmp(w)

dwdt
=

1

2π
Γlmp(w)

1

e2πκ−1(w−mΩH−qΦH ) ± 1
, (1)

where κ, ΩH and ΦH are the surface gravity, angular velocity and the electric potential of the black hole horizon.
The signs ± in the denominator account for the Bose or Fermi statistics, and m, p and q are the corresponding axial
angular momentum, helicity, and charge of the radiated particle.
The deep connection of this result with thermodynamics [3] and, in particular, with a generalized second law [4]
strongly supports its robustness [5, 6, 7]. However, as stressed in [8], a crucial ingredient in deriving Hawking
radiation via semiclassical gravity is the fact that any emitted quanta, even those with very low frequency at future
infinity, will suffer a divergent blueshift when propagated backwards in time and measured by a freely falling observer.
Also, in the derivation of Fredenhagen and Haag [9], the role of the short-distance behavior of the two-point function
is fundamental. All derivations seem to invoke Planck-scale physics. The exponential blueshift effect of the horizon
of the black hole could thus be regarded as a magnifying glass that makes visible the ultrashort-distance physics
to external observers. According to this reasoning the microscopic structure offered by string theory (or any other
underlying theory) could leave some imprint or signal in the emission rate. However, the results of string theory
seem to agree with Hawking’s prediction. For the emission of low-energy quanta (with wavelength large compared
to the black hole radius), and for some particular near-extremal charged black holes, the prediction of string theory
[10, 11] coincides with the rate (1). This agreement is complete, despite the fact that the two calculations are very
different. For instance, whereas in semiclassical gravity one can naturally split the emission rate into two factors
(pure Planckian black-body term and grey-body factor), in the D-brane derivation one gets directly the final answer
without the above mentioned splitting.

While the calculation of string theory requires low frequencies for the emitted particles, in the arena of semiclassical
gravity the result is valid for all wavelengths, even those smaller than the size of the black hole. The thermodynamic
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picture strongly suggests the robustness of Hawking’s prediction and its interpretation as a low-energy effect, not
affected by the particular underlying theory of quantum gravity (see also [12]), and expected to be valid for a large
range of frequencies. However, from the perspective of quantum field theory in curved spacetime, it is unclear how to
introduce a cutoff in the scheme (parameterizing our ignorance on trans-Planckian physics) in such a way that, for low-
energy emitted quanta, the decay rate (1) is kept unaltered. The aim of this work is to study this issue in some detail1.

In section II we will review the standard derivation of black hole radiation emphasizing the role of ultrahigh
frequencies to get the Planckian spectrum. In section III we rederive the Hawking effect in terms of two-point
functions, instead of Bogolubov transformations (for a general reference see [13]), for both massless scalar and spin-
1/2 fields. The new derivation of the black hole decay rate offers an explicit way to evaluate the contribution of
ultrashort (Planck-scale) distances to the thermal Hawking spectrum. This is the subject of section IV. In section
V we present a simple model, where the two-point functions are deformed with a Planck-length parameter, to show
how the previous results emerge in this new scenario and support their robustness. We point out that a generalized
Hadamard condition plays a fundamental role to keep unaltered the bulk of the Hawking effect. Finally, in section
VI, we summarize our conclusions and make some speculative comments. In the appendices we give details of some
calculations used in the body of the text.

II. BOGOLUBOV COEFFICIENTS AND BLACK HOLE RADIANCE

Let us consider the formation process of a Schwarzschild black hole, as depicted in Fig.1, and a massless real scalar
field φ propagating in this background. The equation of motion obeyed by the field is �φ = 0 and the Klein-Gordon
scalar product is given by

(φ1, φ2) = −i
∫

Σ

dΣµ(φ1∂µφ
∗
2 − φ∗2∂µφ1) , (2)

where Σ is a suitable “initial data” hypersurface. A natural choice for Σ is the past null infinity I− and therefore one
can express the field in a set of modes uin

j (x), which have positive frequency in I−

φ =
∑

i

(ain
i u

in
i + ain†

i uin∗
i ) . (3)

Alternatively, we can choose Σ as Σ = I+ ∪H+, where I+ is the future null infinity and H+ is the event horizon.

Ι

Ι

+   

−

r= 0

Η

vH

+   

Figure 1: Penrose diagram of a collapsing body producing a Schwarzschild black hole.

1 We note that this sort of problem has already been addressed in the context of acoustic black holes by modifying the dispersion relation
of the wave equation obeyed by sonic disturbances [14, 15]. This is naturally justified as an effect of the atomic microscopic structure
of the fluid, and requires a breakdown of Lorentz invariance. The rest frame of the atoms of the fluid plays a privileged role. In this
paper we follow an alternative route.
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According to this we can then expand the field in an orthonormal set of modes uout
i (x), which have positive frequency

with respect to the inertial time at I+ and have zero Cauchy data in H+, together with a set of modes uint
i (x) with

null outgoing component at I+. Therefore we can write

φ =
∑

i

(aout
i uout

i + aout†
i uout∗

i ) + (aint
i uint

i + aint†
i uint∗

i ) . (4)

The particular choice of modes uint
i does not affect the computation of particle production at I+, so we leave them

unspecified.
The modes uout

j (x) can be expressed in terms of the basis uin
i

uout
j (x) =

∑

i

αjiu
in
i (x) + βjiu

in∗
i (x) , (5)

where the coefficients αji and βji are the so-called Bogolubov coefficients and are given by the scalar products

αij = (uout
i , uin

j ) , βij = −(uout
i , uin∗

j ) . (6)

The above expansion leads to an analogous relation for the creation and annihilation operators:

aout
i =

∑

j

(α∗
ija

in
j − β∗

ija
in†
j ) . (7)

When the coefficients βij do not vanish the vacuum states |in〉 and |out〉, defined as ain
i |in〉 = 0 and aout

i |out〉 = 0,
do not coincide and, as a consequence, the number of particles measured in the ith mode by an “out” observer,

Nout
i = ~

−1aout†
i aout

i , in the state |in〉 is given by

〈in|Nout
i |in〉 =

∑

k

|βik|2 . (8)

Let us now briefly summarize the main steps of Hawking’s derivation. Assuming for simplicity that the background
is spherically symmetric we can choose the following basis for the ingoing and outgoing modes

uin
wlm|I− ∼ 1√

4πw

e−iwv

r
Y m

l (θ, φ) , (9)

uout
wlm|I+ ∼ 1√

4πw

e−iwu

r
Y m

l (θ, φ) . (10)

Here Y m
l (θ, φ) are the spherical harmonics. One can evaluate the coefficients βwlm,w′l′m′ according to previous

expressions by making the convenient choice Σ = I−

βwlm,w′l′m′ = i

∫

I−

dvr2dΩ(uout
wlm∂vu

in
w′l′m′ − uin

w′l′m′∂vu
out
wlm) . (11)

The angular integration is straightforward and leads to delta functions δll′ δm,−m′ for the β coefficients. The relevant
point is to realize that the coefficients can be evaluated and have a unique answer, which turns out to be independent
of the details of the collapse, if uout

i represents a late-time wave-packet mode (i.e., centered around an instant u with
u → +∞ along I+). When these modes are propagated backwards in time they are largely blueshifted when they
approach the event horizon. After passing through the collapsing body they are scattered to I− in a very small
interval just before vH . To know how they behave on I− (as needed to evaluate the scalar product with uin

wlm) one
can apply the geometrical optics approximation since the effective frequency, as measured by freely falling observers,
is very large. The (late-time) mode uout

wlm, which is of the form (10) at I+, evolves and arrives at I− with the form

uout
wlm|I− ∼ tl(w)√

4πw

e−iwu(v)

r
Y m

l (θ, φ)Θ(vH − v) , (12)

where tl(w) is the transmission coefficient for the Schwarzschild metric and the relation between null inertial coordi-
nates u at I+ and v at I− is typically given by the logarithmic term

u = vH − κ−1 lnκ|vH − v| , (13)
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where, for the Schwarzschild black hole, κ = 1/4M and vH represents the location of the null ray that will form the
event horizon H+ (see Fig. 1). One has then all ingredients to work out the (late-time) Bogolubov coefficients

βwlm,w′l′m′ =
−(−)mtl(w)

2π

√

w′

w

∫ vH

−∞
dve−iw(vH−κ−1 ln κ|vH−v|)−iw′vδll′δm −m′ . (14)

They can be evaluated explicitly

βwlm,w′l′m′ =
−(−)mtl(w)

2πκ

√

w′

w

e−i(w+w′)vH

(−κ−1w′i+ ǫ)1+κ−1wi
Γ(1 + κ−1wi)δll′δm−m′ , (15)

where we have introduced a negative real part (−ǫ) into the exponent of (14) to ensure convergence of the corresponding
integrals. To compute the particle production at I+ one has to evaluate the integral (from now on in this section we
shall omit, for simplicity, the subscripts l,m)

∫ +∞

0

dw′βw1w′β∗
w2w′ . (16)

The integration in w′ reduces to

∫ +∞

0

dw′

w′ e
−κ−1w1i ln(−κ−1w′−iǫ)eκ−1w2i ln(κ−1w′−iǫ) = 2πκe−πκ−1w1δ(w1 − w2) , (17)

from which we finally get

∫ +∞

0

dw′βw1w′β∗
w2w′ =

|tl(w1)|2
e2πκ−1w1 − 1

δ(w1 − w2) , (18)

where the coefficient in front of δ(w1 − w2) represents a steady thermal flow of radiation of frequency w = w1

dNlm(w)

dwdt
≡ 1

2π
〈in|Nout

wlm|in〉 =
1

2π

Γl(w)

e2πκ−1w − 1
, (19)

and the grey-body factor is given by Γl(w) ≡ |tl(w)|2. For a generic collapse the result leads to formula (1).

It is important to remark at this point that a basic step to exactly obtain the Planckian spectrum is (17), which
crucially requires an unbounded integration in all frequencies w′. In fact, if we introduce an ultraviolet cutoff Λ for
w′ we should replace (17) by

∫ +Λ

0

dw′

w′ e
−κ−1w1i ln(−κ−1w′−iǫ)eκ−1w2i ln(κ−1w′−iǫ) = e−πκ−1w12πδσ[κ−1(w1 − w2)] , (20)

where we have defined

δσ[κ−1(w1 − w2)] =
sin

[

κ−1(w1−w2)
σ

]

πκ−1(w1 − w2)
(21)

σ =
1

ln[κ−1Λ]
(22)

Note that in the limit as σ goes to zero δσ turns into Dirac’s delta function and we recover (17). The new expression
is, however, qualitatively different from the previous one. To evaluate the new emission rate requires making use of
normalized wave-packet modes. Introducing the standard ones [1]

uout
jnlm =

1√
ǫ

∫ (j+1)ǫ

jǫ

dw e2πiwn/ǫ uout
wlm , (23)

where j ≥ 0 and n are integers, representing wave-packets peaked around the retarded time un = 2πn/ǫ and centered,
with width ǫ, around the frequency wj ≡ (j + 1/2)ǫ; and, accordingly, defining

βjn,w′ =
1√
ǫ

∫ (j+1)ǫ

jǫ

dw e2πiwn/ǫ βww′ , (24)
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the emission rate results (see appendix A):

〈in|Nout,σ
jn |in〉 ≈ |tl(wj)|2

e2πκ−1wj − 1

sin
[(

2πn
ǫ − vH

)

πκσ
2

]

[(

2πn
ǫ − vH

)

πκσ
2

] (25)

From this expression2 we see that the rate of emitted particles depends on the retarded time un = 2πn/ǫ and decays
with time for any small but nonzero value of σ = 1/ ln[Λ/κ]. Only when Λ goes to infinity (no high frequency cutoff)
do we recover the steady thermal flux of radiation.

In conclusion, the above discussion shows that the radiation is now time-dependent and decays for all finite values
of Λ. The decay in time would also occur at low frequencies, where string theory agrees with Hawking’s prediction.
Therefore, as expected from conventional arguments, the mathematical role of the ultrahigh frequencies is very
important for the late-time behavior. Nevertheless, since they only enter as virtual quanta, their actual status is
unclear [16]. A derivation of the Hawking effect based on quantities defined on the asymptotically flat region, where
physical observations are made, would be preferable. This turns out to be possible if, instead of working with
Bogolubov coefficients, one uses two-point functions. They are defined in the I+ region where a Planck-length cutoff
in “distances” can be naturally introduced. This is the task of next sections.

III. TWO-POINT FUNCTIONS AND BLACK HOLE RADIANCE

This section will be devoted to rederive Hawking radiation by means of two-point functions. Intuitively the idea is
simple. In the conventional analysis in terms of Bogolubov coefficients, we first perform the integration in distances
(to compute the scalar product required for the β coefficients) and leave to the end the integration in frequencies
w′. In contrast, we can invert the order and perform first the integration in frequencies (which naturally leads to
introduce the two-point function of the matter field) and perform the integration in distances at the end.

Let us rewrite the basic expression (8), or more precisely, the expectation values of the operator Nout
i1i2

≡
~
−1 aout†

i1a
out
i2

, as follows

〈in|Nout
i1i2 |in〉 =

∑

k

βi1kβ
∗
i2k = −

∑

k

(uout
i1 , uin∗

k )(uout∗
i2 , uin

k ) =

=
∑

k

(
∫

Σ

dΣµ
1u

out
i1 (x1)

↔
∂ µu

in
k (x1)

) (
∫

Σ

dΣν
2u

out∗
i2 (x2)

↔
∂ νu

in∗
k (x2)

)

. (26)

If we now consider the sum in modes before making the integrals of the two scalar products, and take into account
that

〈in|φ(x1)φ(x2)|in〉 = ~

∑

k

uin
k (x1)u

in
k

∗
(x2) , (27)

we obtain a simple expression for the particle production number in terms of the two-point function

〈in|Nout
i1i2 |in〉 = ~

−1

∫

Σ

dΣµ
1dΣ

ν
2 [uout

i1 (x1)
↔
∂ µ][uout∗

i2 (x2)
↔
∂ ν ]〈in|φ(x1)φ(x2)|in〉 . (28)

In the above expression the two-point function should be then interpreted in the distributional sense. The “iǫ-
prescription” (see eq.(35) below) is therefore assumed for the two-point distribution 〈in|φ(x1)φ(x2)|in〉 and it verifies

the Hadamard condition3 [5, 17]. Alternatively, taking into account the trivial identity 〈out|aout†
i1a

out
i2

|out〉 = 0 we
can rewrite the above expression as [18]

〈in|Nout
i1i2 |in〉 = ~

−1

∫

Σ

dΣµ
1dΣ

ν
2 [uout

i1 (x1)
↔
∂ µ][uout∗

i2 (x2)
↔
∂ ν ]〈in| : φ(x1)φ(x2) : |in〉 , (29)

where 〈in| : φ(x1)φ(x2) : |in〉 ≡ 〈in|φ(x1)φ(x2)|in〉 − 〈out|φ(x1)φ(x2)|out〉. Now the Hadamard condition for both
|in〉 and |out〉 states ensures that 〈in| : φ(x1)φ(x2) : |in〉 is a smooth function.

2 We note that the oscillatory behavior in (25) is an artifact of the particular way we have introduced the cutoff. If the cutoff is introduced

in a different way, see appendix A, the oscillatory term disappears but the decay with time is maintained as ∼ e−[(2πn/ǫ−vH )(πκσ/2)]2 .
3 The two-point distribution should have, for all physical states, a short-distance structure similar to that of the ordinary vacuum state

in Minkowski space: (2π)−2(σ + 2iǫt + ǫ2)−1, where σ(x1, x2) is the squared geodesic distance.
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A. Thermal spectrum for a scalar field

Let us now apply this scheme in the formation process of a spherically symmetric black hole and restrict the “out”
region to I+. The “in” region is, as usual, defined by I−. At I+ we can consider the conventional radial plane-wave
modes

uout
wlm(t, r, θ, φ)|I+ ∼ uout

w (u)
Y m

l (θ, φ)

r
, (30)

where uout
w (u) = e−iwu

√
4πw

. We shall now evaluate the matrix coefficients 〈in|Nout
i1i2

|in〉 where i1,2 ≡ (w1,2, l1,2,m1,2).

Taking as the initial value hypersurface I− and integrating by parts we obtain

〈in|Nout
i1i2 |in〉 =

4

~

∫

I−

r21dv1dΩ1

∫

I−

r22dv2dΩ2u
out
w1
uout∗

w2
×

Y m1

l1
(θ1, φ1)

r1

Y m2∗
l2

(θ2, φ2)

r2
∂v1∂v2〈in|φ(x1)φ(x2)|in〉 . (31)

The two-point function above can be now expanded at I− as

〈in|φ(x1)φ(x2)|in〉 = ~

∫ ∞

0

dw
∑

l,m

e−iwv1

√
4πw

Y m
l (θ1, φ1)

r1

eiwv2

√
4πw

Y m∗
l (θ2, φ2)

r2
. (32)

Recall that the radial part of the late-time “out” modes uout
wlm, when they are propagated backward in time and reach

I−, takes the form

uout
w |I− ∼ tl(w)

e−iwu(v)

√
4πw

Θ(vH − v) (33)

where u(v) ≈ vH − κ−1 lnκ(vH − v). Performing now angular integrations and taking into account that

∂v1∂v2

∫ ∞

0

dw
e−iw(v1−v2)

4πw
= − 1

4π

1

(v1 − v2 − iǫ)2
, (34)

we get

〈in|Nout
i1i2 |in〉 = −

tl1(w1)t
∗
l2

(w2)

4π2√w1w2

∫ vH

−∞
dv1dv2

e−iw1u(v1)+iw2u(v2)

(v1 − v2 − iǫ)2
δl1l2δm1m2 , (35)

where the limit ǫ → 0+ is understood. Alternatively, since we are interested in quantities measured at Σ = I+, we
could use this latter hypersurface to carry out the calculations. In this case, the expression for the particle production
rate becomes

〈in|Nout
i1i2 |in〉 = −

tl1(w1)t
∗
l2

(w2)

4π2√w1w2

∫ ∞

−∞
du1du2

dv
du (u1)

dv
du (u2)

[v(u1) − v(u2) − iǫ]2
e−iw1u1+iw2u1δl1l2δm1m2 , (36)

and leads to

〈in|Nout
i1i2 |in〉 =

−tl1(w1)t
∗
l2

(w2)

4π2
√
w1w2

∫ +∞

−∞
du1du2

(κ
2 )2e−iw1u1+iw2u2

[sinh κ
2 (u1 − u2 − iǫ)]2

δl1l2δm1m2 . (37)

This last expression is more convenient for computational purposes. Since the function in the integral depends only
on the difference z ≡ u2 − u1, the integral in u2 + u1 can be performed immediately and leads to a delta function in
frequencies

〈in|Nout
i1i2 |in〉 = −

tl1(w1)t
∗
l2

(w2)δ(w1 − w2)

2π
√
w1w2

∫ +∞

−∞
dze−i

w1+w2
2 z (κ

2 )2δl1l2δm1m2

[sinh κ
2 (z − iǫ)]2

, (38)

Performing the integration in z we recover the Planckian spectrum and the particle production rate

〈in|Nout
wlm|in〉 =

|tl(w)|2
e2πκ−1w − 1

. (39)
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This derivation of black hole radiation is somewhat parallel to the one given in [9]. The emphasis is in the two-point
function of the quantum state, instead of the usual treatment in terms of Bogolubov transformations. It is worth
noting that (35) displays an apparent sensitivity to ultrashort distances due to the highly oscillatory behavior of the
modes in a small region before vH . A similar conclusion can be obtained from (38) when z → 0. The sensitivity to
short distances is, however, less apparent if we repeat the above calculations using the expression (29) instead of (28).
In this case, we find

〈in|Nout
i1i2 |in〉 = −

tl1(w1)t
∗
l2

(w2)

4π2√w1w2

∫ vH

−∞
dv1dv2e

−iw1u(v1)+iw2u(v2) ×
[

1

(v1 − v2)2
−

du
dv (v1)

du
dv (v2)

[u(v1) − u(v2)]2

]

δl1l2δm1m2 , (40)

where we have dropped the iǫ terms since they are now redundant. Note that the short-distance divergence of

1/(v1−v2)2 in (40) is exactly cancelled by
du
dv (v1) du

dv (v2)

[u(v1)−u(v2)]2
for any smooth choice of the function u(v). This cancellation is

a consequence of the Hadamard condition that verify both “in” and “out” vacuum states. It is also important to remark
that the above formula exhibits the absence of particle production under conformal-type (Möbius) transformations

v =
au+ b

cu+ d
(41)

where ab− cd = 1.4

If the calculation is performed using Σ = I+, one finds

〈in|Nout
i1i2 |in〉 = −

tl1(w1)t
∗
l2

(w2)

4π2
√
w1w2

∫

I+

du1du2e
−iw1u1+iw2u2 ×

[

dv
du (u1)

dv
du (u2)

(v(u1) − v(u2))2
− 1

[u1 − u2]2

]

δl1l2δm1m2 , (42)

which leads to

〈in|Nout
i1i2 |in〉 = −

tl1(w1)t
∗
l2

(w2)δ(w1 − w2)

2π
√
w1w2

∫ +∞

−∞
dze−i

w1+w2
2 z ×

[

(κ
2 )2

(sinh κ
2 z)

2
− 1

z2

]

δl1l2δm1m2 . (43)

The integral in distances z also leads, as expected, to the Hawking formula5

〈in|Nout
wlm|in〉 = −|tl(w)|2

2πw

∫ +∞

−∞
dze−iwz

[

(κ
2 )2

(sinh κ
2 z)

2
− 1

z2

]

=
|tl(w)|2

e2πwκ−1 − 1
. (44)

B. Thermal spectrum for a s = 1/2 field

In this subsection we shall extend the analysis of the scalar field to a fermionic s = 1/2 field. For simplicity we take
a massless Dirac field, obeying the wave equation

γµ∇µψ = 0 , (45)

4 This leads, immediately, to the expected result that there is no particle production under Lorentz transformations.
5 For Kerr-Newman black holes the calculation is similar up to a shift in the wave function e−iwz , which should be now replaced by

e−i(w−mΩH−qΦH )z , as an effect of wave propagation through the corresponding potential barrier.
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where γµ = V µ
a γ

a are the curved space counterparts of the Dirac matrices γa (see appendix B for calculations omitted
in this section). The Klein-Gordon scalar product (2) is now replaced by

(ψ1, ψ2) =

∫

Σ

dΣµψ̄1γµψ2 . (46)

Therefore the expression for the expectation values (28) is replaced by

〈in|Nout
i1i2 |in〉 = ~

−1

∫

Σ

dΣµ
1dΣ

ν
2 [ūout

i2 (x2)γν ]b[γµu
out
i1 (x1)]

a〈in|ψ̄a(x1)ψ
b(x2)|in〉 . (47)

At I+ we can consider the normalized radial plane-wave modes6

uout
wκjmj

(t, r, θ, φ)|I+ ∼ e−iwu

√
4πr

(

η(r̂)
mj
κj

(r̂~σ)η(r̂)
mj
κj

)

, (48)

where η(r̂)
mj
κj are two-component spinor harmonics (see appendix B). Note that the angular momentum quantum

number j is uniquely determined by the relation κj = ±(j + 1/2). The above modes, when propagated backwards in
time and reach I−, turn into

uout
wκjmj

(t, r, θ, φ)|I− ∼ tκj (w)
e−iwu(v)

√
4πr

(

η(r̂)
mj
κj

−(r̂~σ)η(r̂)
mj
κj

)

Θ(vH − v)

√

du(v)

dv
, (49)

where the last term
√

du(v)/dv appears due to the fermionic character of the field7. Proceeding as in the bosonic
case we can expand the two-point function as

〈in|ψ̄a(x1)ψ
b(x2)|in〉 = ~

∑

k

v̄in
k,a(x1)v

in,b
k (x2) (50)

where vin
k are negative-energy solutions which in I− take the form

vin
k → vin

wκjm(t, r, θ, φ)|I− ∼ eiwv

√
4πr

(

η(r̂)
mj
κj

−(r̂~σ)η(r̂)
mj
κj

)

, (51)

Performing first the angular integrations and taking into account the orthonormality relations of the spinor harmonics
η(r̂)

mj
κj , the above formulas get simplified and become

〈in|Nout
i1i2 |in〉 = −i

tκj1
(w1)t

∗
κj2

(w2)

4π2
δmj1mj2

δκj1κj2
×

×
∫ vH

−∞
dv1dv2

√

du(v1)

dv

du(v2)

dv

e−iw1u(v1)+iw2u(v2)

(v1 − v2 − iǫ)
(52)

As in the bosonic case, we rewrite this expression as an integral over I+

〈in|Nout
i1i2 |in〉 = −i

tκj1
(w1)t

∗
κj2

(w2)

4π2
δmj1mj2

δκj1κj2
×

×
∫ ∞

−∞
du1du2e

−iw1u1+iw2u2
(κ

2 )

sinh[κ
2 (u1 − u2 − iǫ)]

(53)

We can also split the integral in a product of a function dependent on u2 + u1 and another function which depends
on z ≡ u2 − u1. The former leads to a delta function in frequencies and we are left with

〈in|Nout
i1i2 |in〉 = − i

2π
tκj1

(w1)t
∗
κj2

(w2)δmj1mj2
δκj1κj2

δ(w1 − w2) ×

×
∫ +∞

−∞
dze−i

w1+w2
2 z (κ

2 )

sinh[κ
2 (z − iǫ)]

, (54)

6 On physical grounds we should use left-handed spinors uout
L,wjmj

≡ 1√
2
(uout

w |κj |mj
− uout

w −|κj |mj
). The final result is not changed. See

appendix B.
7 The vierbein fields needed to properly write the field equation in a curved spacetime have been trivially fixed in the asymptotic flat

regions, so its transformation law under change of coordinates is then translated to the spinor itself (see also appendix B).



9

Performing now the integration in z

−i
2π

∫ +∞

−∞
dze−iwz (κ

2 )

sinh[κ
2 (z − iǫ)]

=
1

e2πwκ−1 + 1
, (55)

we recover the Planckian spectrum, with the Dirac-Fermi statistics, and the corresponding particle production rate

〈in|Nout
wmjκj

|in〉 =
|tκj (w)|2

e2πκ−1w + 1
. (56)

Analogously as in the bosonic case, if we use the normal-ordering prescription instead of the iǫ one we find

〈in|Nout
i1i2 |in〉 = −i

tκj1
(w1)tκj2

(w2)
∗

4π2

∫ vH

−∞
dv1dv2

√

du(v1)

dv

du(v2)

dv
× (57)

e−iw1u(v1)+iw2u(v2)





1

[v1 − v2]
−

√

du(v1)
dv

du(v2)
dv

[u(v1) − u(v2)]



 δκj1κj2
δmj1mj2

.

Changing the integration surface to I+ we get

〈in|Nout
i1i2 |in〉 = −i

tκj1
(w1)tκj2

(w2)
∗

4π2

∫

I+

du1du2

√

dv(u1)

du

dv(u2)

du
× (58)

e−iw1u1+iw2u2





√

dv(u1)
du

dv(u2)
du

[v(u1) − v(u2)]
− 1

[u1 − u2]



 δκj1κj2
δmj1mj2

.

Note again that the short-distance divergence of the two-point function of the “out” state 1
[u1−u2] is exactly cancelled

by the corresponding one of the “in” state

q

dv(u1)
du

dv(u2)
du

[v(u1)−v(u2)]
, since both vacua are Hadamard states. After some algebra

we get

〈in|Nout
wκjmj

|in〉 = −i |tκj(w)|2
2π

∫ +∞

−∞
dze−iwz

[

(κ
2 )

sinh(κ
2 z)

− 1

z

]

, (59)

and taking into account

−i
2π

∫ +∞

−∞
dze−iwz

[

(κ
2 )

sinh(κ
2 z)

− 1

z

]

=
1

e2πwκ−1 + 1
, (60)

we newly recover the fermionic thermal spectrum.

IV. SHORT-DISTANCE CONTRIBUTION TO THE PLANCKIAN SPECTRUM

A. Bosons

We have seen in the previous section that it is possible to rederive the Hawking effect in terms of two-point functions.
Either via expressions (28), (36) or, equivalently, via expressions (29),(42). Both prescriptions are equivalent and lead
to the Planckian spectrum modulated by grey-body factors. The advantage of the final expression (44) is that it offers
an explicit evaluation of the contribution of distances to the Planckian spectrum. To be more explicit, the integral8

IB(wκ−1, ακ) = − 1

2πw

∫ +α

−α

dze−iwz

[

(κ
2 )2

(sinh κ
2 z)

2
− 1

z2

]

, (61)

8 We have intentionally omitted the grey-body factors |tl(w)|2 in (61) because they are irrelevant for the discussion of this section.
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can be interpreted as the contribution of short-distances z ∈ [−α, α] to the (bosonic) thermal spectrum when α is
close to the Planck length lP . One could, alternatively, be tempted to propose, according to (36), the integral

IB
iǫ (wκ−1, ακ) ≡ −1

2πw

∫ +α

−α

dze−iwz (κ
2 )2

[sinh κ
2 (z − iǫ)]2

(62)

as a legitimate expression to account for the short-distance contributions. However, this interpretation is not physically
sound. In the absence of a black hole, when there is no radiation at all, the above expression becomes

−1

2πw

∫ +α

−α

dze−iwz 1

(z − iǫ)2
. (63)

For α → +∞ this expression vanishes, as expected due to the absence of radiation. However, for finite α it is
non-vanishing. In contrast, the proposed expression (61), does not suffer from this weird behavior, due to the
presence of the second term.

In conclusion, the calculation of black hole radiation using the prescription (29) offers the possibility to re-evaluate
Hawking radiation by removing the range of distances where physics can be dominated by an underlying theory
beyond field theory. We shall now work out explicitly the short-distance contribution to Hawking radiation to see
whether it is fundamental or not in order to obtain the thermal spectrum. The integral (61) can be worked out
analytically

IB(wκ−1, ακ) = −Si(αw)

π
− κ

4πw
{eiαw(F [1,−iwκ−1, 1 − iwκ−1, e−ακ]

−F [1, iwκ−1, 1 + iwκ−1, eακ]) + e−iαw(F [1, iwκ−1, 1 + iwκ−1, e−ακ]

−F [1,−iwκ−1, 1 − iwκ−1, eακ])} +
1

2παw
cos(αw)

[

ακ
(1 + eακ)

(eακ − 1)
− 2

]

(64)

where F is a hypergeometric function and Si(x) =
∫ x

0 dt
sin t

t . To get some insight about the properties of this formula,

we find useful to expand it in powers of wκ−1 and ακ. The expansion in ακ assumes that the microscopic length
scale α ∼ lP is much smaller than the typical emission wavelength ∼ κ−1 of the black hole, whose (macroscopic)
temperature is TH = κ/2π. For a Solar-mass black hole ακ ∼ 10−40 and for a primordial black hole of 1015 g
ακ ∼ 10−21. The expansion in wκ−1 means that we are looking at frequencies below the typical emission frequency,
wtypical ∼ TH , of the black hole. The result is as follows

IB(wκ−1, ακ) =

(

1

12π
ακ− 1

720π
(ακ)3 + O[(ακ)5]

)

κ

w

−
(

1

72π
(ακ)3 +O[(ακ)5]

)

w

κ
+

(

O[(ακ)5]
)

(
w

κ
)3 + . . . (65)

From this expansion we conclude that the contribution of short distances to the spectrum is completely negligible in
the very low energy regime w/κ ≪ 1 since

lim
wκ−1→0

IB(wκ−1, ακ)

(e2πwκ−1 − 1)−1
=
ακ

6
≪ 1 . (66)

Moreover, due to the smallness of ακ, we find that IB(wtypicalκ
−1, κα) can be well approximated by (65) even for

frequencies close to the typical emission frequency, which leads to

IB(wtypicalκ
−1, ακ)

(e2πwtypicalκ−1 − 1)−1
∼ 0.3 ακ ≪ 1 . (67)

Again, since ακ ≪ 1, we find a negligible contribution at wtypical ∼ TH . To be precise, for a Schwarzschild black
hole of three solar masses, when α is around the Planck length lP = 1.6 × 10−33cm, the relative contribution to the

Planckian distribution IB(wκ−1,ακ)

(e2πwκ−1−1)−1
is, for w = wtypical, of order 10−38%. For primordial black holes, M ∼ 1015 g,

the relative contribution is still insignificant: 10−19%. Even more, using the expansion (65) we easily get

IB(wκ−1, ακ)

(e2πwκ−1 − 1)−1
≈ ακ(e2πwκ−1 − 1)

12πwκ−1
, (68)
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and we find that, for a black hole of three solar masses, we need to look at the high frequency region, w/wtypical ≈ 96,
to find that the contribution of Planck distances IB(wκ−1, lPκ) is of order of the total spectrum itself9 . For primordial
black holes we find w/wtypical ≈ 52. The same numerical estimates can be found using the exact analytical expressions.

We can also naturally ask about the contribution to the spectrum of large distances. This question is immediately
answered using our analytical expression (64). The contribution of distances up to α = 20rg, where rg is the
gravitational radius, represents 90% of the thermal peak at wtypical. For α = 200rg we obtain 99.7% and for
α = 2 × 104rg the percentage is around 99.99998% .

Summarizing, we have provided a quantitative estimate of how much of Hawking radiation is actually due to
Planckian distances. It turns out that the contribution of ultrashort distances is negligible and thermal radiation
is very robust up to frequencies of order 96TH (for Schwarzschild black holes of three solar masses) or 52TH (for
primordial black holes). In parallel and dual to this, the contribution of large distances is also insignificant.

It is interesting to repeat the same calculations with the iǫ-prescription. As we have already stressed with this
prescription one cannot expect a meaningful result. The outcome is completely different. The contribution of distances
in the interval z ∈ [−α,+α] is now

IB
iǫ→0(wκ

−1, ακ) =
eακ(1−iwκ−1) + eiαw

2πwκ−1(eακ − 1)
+

1

2π(i+ wκ−1)
{eακ(1−iwκ) ×

F [1, 1 − iwκ−1, 2 − iwκ−1, eακ] − e−ακ(1−iwκ) ×
F [1, 1 − iwκ−1, 2 − iwκ−1, e−ακ]} (69)

Here, even in the very low energy regime, the contribution of short distances is not negligible. In fact, it is much
bigger than the thermal spectrum itself. To see this we can approximate IB

iǫ (wκ−1, ακ) as

IB
iǫ (wκ−1, ακ) =

(

1

πακ
+

ακ

12π
− (ακ)3

720π
+O((ακ)5)

)

κ

w
− 1

2

+

(

ακ

2π
− (ακ)3

72π
+O((ακ)5)

)

w

κ
−

(

(ακ)3

72π
+O((ακ)5)

)

(
w

κ
)3 + ... (70)

Note that in this case the dominant term is of order 1/ακ, therefore

lim
κ−1w→0

IB
iǫ (wκ−1, ακ)

(e2πwκ−1 − 1)−1
=

2

ακ
≫ 1 . (71)

A similar behavior can be found for w ≈ wtypical.
We illustrate the difference between both calculations in Fig.2. With the normal-ordering prescription the short-

distance contribution is small, in contrast with the iǫ-prescription. We have chosen a large surface gravity and different
values of α to better show the effect in the drawings. We clearly observe that, although both prescriptions lead to
the thermal result when α→ +∞, they do the job in very different ways.

9 The exponential behavior in frequencies of the ratio (68) explains why potential deviations from thermality arise at frequencies much
lower than w ∼ 1/lP .
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Figure 2: Plot comparing the Planckian spectrum N(w, κ) = (e2πwκ−1

− 1)−1 (solid line) with the contributions IB (dashed
line) and IB

iǫ (dotted line) coming from distances |z| . α according to the normal-ordering prescription and the iǫ prescription,
respectively . We have taken κ = 0.1 and α = 1, 10, 30 and 100 (in Planck units), respectively.

B. Fermions

We shall extend the previous analysis to fermions. The integral involved is

IF (wκ−1, ακ) ≡ −i
2π

∫ +α

−α

dze−iwz

[

(κ
2 )

(sinh κ
2 z)

2
− 1

z

]

=

Si(αw)

π
+

1

2π(1 + 4w2κ−2)
{(−i+ 2wκ−1)(e−ακ/2+iαw ×

F [1,
1

2
− iwκ−1,

3

2
− iwκ−1, e−ακ] − F [1,

1

2
− iwκ−1,

3

2
− iwκ−1, eακ] ×

eακ/2−iαw) + (i+ 2wκ−1)(e−ακ/2−iαwF [1,
1

2
+ iwκ−1,

3

2
+ iwκ−1, e−ακ]

−eακ/2+iαwF [1,
1

2
+ iwκ−1,

3

2
+ iwκ−1, eακ])} . (72)

See Fig. 3 for a graphical representation. Taking into account that ακ≪ 1 we can expand IF (wκ−1, ακ) as

IF (wκ−1, ακ) =

(

(ακ)3

72π
+O[(ακ)5]

)

w

κ
+O[(ακ)5](

w

κ
)3 + ... (73)

Note that the term proportional to κ/w, appearing in the bosonic case, has disappeared. Therefore, for very low
frequencies

IF (wκ−1, ακ)

(e2πwκ−1 + 1)−1
∼ (ακ)3

36π

w

κ
≪ 1 . (74)

This shows that the contribution of ultrashort distances is negligible, like in the bosonic case. Moreover, for typical
Hawking frequencies, wtypical = TH , we have

IF (wtypicalκ
−1, ακ)

(e2πwtypicalκ−1
+ 1)−1

∼ 3 · 10−3(ακ)3 ≪ 1 . (75)
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This rate is again very small, but the above expressions unravel the fact that the short-distance contribution for
fermions seems to be smaller than that of bosons. For the latter the contribution of short distances is proportional
to the first power of κα while for fermions it is the third power.
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Figure 3: Plot comparing the Dirac-Fermi distribution (solid line) N(w, κ) = (e2πwκ−1

+1)−1 with the contribution IF coming
from distances |z| < α according to the normal-ordering prescription (dashed line). For completeness we have also plotted the
result obtained with the iǫ-prescription (dotted line). We have taken κ = 0.1 and α = 1, 40, 103 and 104 (in Planck units),
respectively.

Finally, let us give numerical estimates for relevant astrophysical black holes using the expansion (73)

IF (wκ−1, ακ)

(e2πwκ−1 + 1)−1
≈ α3wκ2(e2πwκ−1

+ 1)

72π
. (76)

For a black hole of three solar masses, the relative contribution to the total Planckian spectrum is, for w = wtypical,
of order 10−118% and one must go to frequencies of order w/wtypical ≈ 270 to find contributions IF (wκ−1, lPκ) of
the same order as the total spectrum. For primordial black holes, M ∼ 1015 g, the relative contribution is 10−62%
at wtypical and we have to reach frequencies of order 142wtypical to get a short-distance contribution of order of the
thermal distribution. In addition to the conclusions stressed in the bosonic case, namely the robustness of Hawking
thermal radiation for wavelengths of order of the size of the black hole, we have a new result. Fermions seem to be
less sensitive to ultrashort distance physics than (spinless) bosons.

V. MODIFYING THE TWO-POINT FUNCTIONS AT SHORT-DISTANCES

In the previous section, we have investigated the contribution to the Hawking spectrum coming from distances
z < lP at I+ assuming that the physical laws are not modified at such scales. We found that potential deviations
from thermality only manifest themselves at high frequencies. One can legitimately wonder, however, why we looked
at distances at I+ instead of at I−, where the sensitivity of the “in” state to short distances is more apparent. In
fact, imposing naively a cutoff at I− has dramatic effects on the radiation due to the enormous redshift caused by
the horizon (see section II). We were motivated to impose the cutoff at I+ in order to find agreement with the view
offered by string theory. The purpose of this section is to shed light on the roles played by distances at I+ and I− by
using a simple model with a modified two-point function. We shall investigate the potential effects on the radiation
due to the modified short-distance behavior of the matter field, supposedly coming from unknown physics at the
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Planck scale. We shall see how our model maintains the robustness of the Hawking thermal spectrum at I+, while
at the same time being insensitive to sub-Planckian distances at I−.

Let us assume that the standard two-point function for the spin zero “in” and “out” vacuum states at I− and I+,
respectively, gets modified by new physics at very short distances and becomes

Gin|I− ≡ − 1

4π

1

(v1 − v2)2
→ Gin

α |I− ≡ − 1

4π

1

(v1 − v2)2 + α2

Gout|I+ ≡ − 1

4π

1

(u1 − u2)2
→ Gout

α |I+ ≡ − 1

4π

1

(u1 − u2)2 + α2
, (77)

where α is a parameter of order of the Planck length: α ∼ lP . With this modification the expression (40) for the
black hole particle production becomes (we omit the transmission coefficients tl(w) and the angular delta functions
δl1l2δm1m2 since they are also irrelevant for the discussion of this section)

〈in|Nout
i1i2 |in〉 = 4

∫ vH

−∞
dv1dv2u

out
w1

(v1)u
out∗
w2

(v2) ×
[

− 1

4π

1

(v1 − v2)2 + α2
− du

dv
(v1)

du

dv
(v2)G

out
α |I−

]

, (78)

where uout
w and Gout

α |I− are understood to be the “out” modes and the “out” two-point function, respectively, prop-
agated back to I−. Since, according to the standard derivation, the propagation to I− implies a strong blueshift,
the uout

w modes and Gout
α might manifest some dependence on the particular details of the modified theory, which

are unknown to us. Thus, we see no simple way to estimate the form of the uout
w modes at I−. For this reason, it is

preferable to evaluate the particle production as an integral on I+, as in (42),

〈in|Nout
i1i2 |in〉 = 4

∫

I+

du1du2u
out
w1

(u1)u
out∗
w2

(u2) ×

×
[

dv1
du1

dv2
du2

Gin
α |I+ +

1

4π

1

(u1 − u2)2 + α2

]

, (79)

where Gin
α |I+ is understood to be the “in” two-point function propagated to I+. In this region we can use the standard

form of the “out” modes uout
w1

(u1) = e−iw1u1√
4πw

since we are considering emission frequencies much lower than the Planck

frequency wP ∼ 1/lP . We still have to unravel the evolution of Gin
α to evaluate the above expression. The modified

short-distance physics near the horizon could dramatically modify the evolution of the two-point function, so that its
form at I+ could be rather different from the standard one Gin|I− . However, we can make the reasonable assumption
that the propagation to I+ is affected by new physics in such a way that the short-distance behavior of dv1

du1

dv2

du2
Gin

α at

I+ is identical to that of the two-point function for the “out” state

lim
u1→u2

dv

du
(u1)

dv

du
(u2)G

in
α |I+ ∼ lim

u1→u2

Gout
α (u1, u2)|I+ . (80)

The above condition can be seen as a natural generalization of the Hadamard condition, i.e., universality of the
short-distance behavior for all quantum states. The Hadamard condition, which plays a pivotal role in the algebraic
formulation of QFT in curved spacetime [5], ensures the regularity of expression (29) to evaluate the Hawking radiation.
Let us see now how (80) constraints the evolution of Gin

α from I− to I+. Note that Gin
α can be rewritten as

Gin
α =

Gin

1 + α2Gin
, (81)

where Gin is the unmodified two-point function. Since, at late times, Gin evolves according to geometrical optics
approximation

G̃in|I+ ≡ dv

du
(u1)

dv

du
(u2)G

in|I+ = − 1

4π

dv1

du1

dv2

du2

(v(u1) − v(u2))2
, (82)

expression (81) suggests the following evolution for Gin
α

G̃in
α |I+ ≡ dv

du
(u1)

dv

du
(u2)G

in
α |I+ = − 1

4π

dv(u1)
du

dv(u2)
du

(v1 − v2)2 + α2 dv1

du1

dv2

du2

. (83)
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This expression guarantees immediately the Hadamard condition (80). We should stress, however, that the evolution
of the modified two-point function itself is not equivalent, at least for very small point separations (u2 − u1)

2 ∼ α2,
to the ray tracing (or geometrical optics approximation), which would produce instead (91) (see later) and violate
the Hadamard condition. For larger separations (u2 − u1)

2 ≫ α2 the propagation agrees, as it must, with standard
relativistic field theory and is driven by the large redshift (implying then the usual geometrical optics approximation).
Plugging this expression in (79) we obtain

〈in|Nout
i1i2 |in〉 =

−1

4π2√ω1ω2

∫

I+

du1du2e
−i(w1u1−w2u2)

×
[

dv(u1)
du

dv(u2)
du

(v1 − v2)2 + α2 dv(u1)
du

dv(u2)
du

− 1

(u1 − u2)2 + α2

]

. (84)

It is worth noting that the modified term

− 4πG̃in
α |I+ ≡ dv1

du1

dv2
du2

1

(v1 − v2)2 + α2 dv1

du1

dv2

du2

, (85)

which can also be regarded as a transformation law under the change v = v(u), guarantees the absence of particle
production under the same group of symmetry transformations (Möbius rescalings) as those of the theory with
α = 0.10 Assuming that the geometry remains classical (the black hole scale κ is well above the Planck scale α), we
can use in (84) the expression v(u) = vH −κ−1e−κu, which represents the relation between the “in” and “out” inertial
coordinates. Performing then the integration in u2 + u1, we are left with (z ≡ u2 − u1)

〈in|Nout
wlm|in〉 = − 1

2πw

∫ +∞

−∞
dze−iwz

[

(κ
2 )2

(sinh κ
2 z)

2 + (κ
2 )2α2

− 1

z2 + α2

]

. (86)

Finally, performing the integration in the complex plane, the particle production rate becomes

〈in|Nout
wlm|in〉 =

1

(e2πwκ−1 − 1)

1

2wα
√

1 − α2κ2/4
(ewκ−1θ − ewκ−1(2π−θ)) +

e−wα

2αw
(87)

where

θ = arctan
ακ

√

1 − α2κ2/4

(1 − α2κ2/2)
. (88)

The thermal Planckian spectrum is smoothly recovered in the limit α → 0. Moreover, for α ∼ lP , the deviation to
the thermal spectrum is negligible for small values of wκ−1. This deviation can be expanded as

〈in|Nout
wlm|in〉

(e2πwκ−1 − 1)−1
≈ 1 − ακ(e2πwκ−1 − 1)

16wκ−1
. (89)

For astrophysical black holes, κα≪ 1, the second factor is negligible for frequencies up to ∼ 102wtypical, in complete
agreement with the results obtained in section IV (compare, for instance, with (68)).

The above discussion shows that, despite the apparent sensitivity of Hawking radiation to high energy physics (see
section II), a Planck-scale modification of the two-point function does not necessarily imply a substantial change of
the Planckian spectrum. This is so, at least, if the modified two-point function obeys a modified Hadamard-type
condition. The simplest realization of this condition turns out to be equivalent to the preservation of the powerful
conformal (Möbius) symmetry existing in the unmodified theory. This seems an unavoidable requirement if the
corrections to the Planckian spectrum are to be in agreement with the results of string theory in the low-frequency
limit w → 0. The effect of the generalized Hadamard condition is to constrain the short-distance behavior of the
propagated “in” two-point function, G̃in

α |I+ , in such a way that it remains close to −1/(4πα2) through its evolution

10 Even more, it is what exactly guarantees the invariance of the production rate, up to a shift on the emission frequency, under a radial
boost with rapidity ξ: u → ū = eξu, v → v̄ = e−ξv.
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to I+, despite the large blueshift. In fact, G̃in
α |I+ is an observer-independent quantity in the limit x1 → x2, i.e., it

tends to −1/(4πα2) for any function v = v(u). Note in passing that this condition is somewhat related to approaches
to quantum gravity aimed at deforming Lorentz symmetry while keeping the principle of relativity [19].

To conclude, we note that if the deformed two-point function at I−

Gin
α |I− ≡ − 1

4π

1

(v1 − v2)2 + α2
, (90)

is naively propagated (i.e., by ray tracing) to I+ as

G̃in
α |I+ = − 1

4π

dv1

du1

dv2

du2

(v(u1) − v(u2))2 + α2
, (91)

where G̃in
α |I+ ≡ dv

du (u1)
dv
du (u2)G

in
α |I+ , the particle production rate is now time-dependent and the thermal spectrum

is lost for any nonvanishing α.

VI. CONCLUSIONS AND FINAL COMMENTS

It is highly non-trivial [8] to truncate Hawking’s derivation of black hole radiance to account for unknown physics
at the Planck scale. A simple estimate of the contribution of virtual high frequencies apparently shows that they
are essential to produce the thermal outcome. One can then change strategy and try to evaluate the contribution of
Planckian physics in position space, which requires a rederivation of the Hawking calculation in terms of two-point
functions, as we have explicitly shown in section III. When these two-point functions are treated in the distributional
sense, with the usual iǫ prescription, one reproduces exactly the thermal result. However, one can equivalently handle
the divergence of the two-point function by trivially taking normal ordering. The consistency of this procedure
is guaranteed by the Hadamard condition: the short-distance behavior is universal for all physical states. The
advantage of this second option is that it offers a natural way to evaluate the contribution of short distances at I+

to Hawking radiation.

We have found that the contribution of short-distances at low frequencies w ≪ κ is negligible. Our analysis allows
us to go further and investigate the short-distance contribution for frequencies of order the Hawking temperature
TH and beyond. We find that the contribution of ultrashort distances is also negligible for frequencies of order TH .
In fact, for a black hole of three solar masses we need to look at high frequencies, w/wtypical ≈ 96 (for bosons) or
w/wtypical ≈ 270 (for fermions), to find that the contribution of Planck distances is of order of the total spectrum
itself. This suggests that Hawking thermal radiation is very robust, as it has been confirmed in completely different
analyses based on black hole analogues; in string theory (for large wavelength) in near-extremal charged black holes;
and also in some models of canonical quantum gravity [20].

One can legitimately ask why, in section IV, we evaluate distances at I+, instead of just at I−, where the sensitivity
of the “in” state to high energy scales is more apparent, as we showed in section II. Our heuristic motivation is based
on the view offered by string theory, where the Hawking radiation is obtained as the result of collisions between open
string excitations. In that approach, the standard large blueshift of low-energy gravity theory does not seem to play
the pivotal role that it does in the pure semiclassical treatment. The fact that we consider the fundamental Planck
scale at I+ does not immediately guarantee that the Hawking radiation is kept unaltered from Planck-scale physics.
As we show in section IV, with the standard iǫ-prescription the short-distance contribution to Hawking radiation is
not negligible. In contrast, with the normal-ordering prescription the bulk of the Hawking effect is maintained at low
frequencies, in agreement with the results of string theory.

In addition to the above arguments we have approached the problem in section V in a different way. We have
considered an explicit modification of the two-point function at the Planck scale. Motivated by the crucial role played
by the Hadamard condition in the ordinary relativistic theory, we have assumed that the short-distance behavior of
the modified theory should also satisfy a sort of generalized Hadamard condition (universal short-distance behavior).
The simplest realization of this idea turns out to be equivalent to the preservation of the powerful conformal (Möbius)
symmetry existing in the unmodified theory. Armed with this condition, the contribution to the particle production
rate of the “in” and “out” two-point functions in (84) is similar when they are compared in the same ultrashort range of
distances, despite the large blueshift horizon effect. As a result, the two contributions compensate each other and lead
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to an emission spectrum very insensitive to trans-Planckian physics. The generalized Hadamard condition, therefore,
seems to be necessary to maintain the bulk of the Hawking effect. Moreover, it is in this context that the apparent ten-
sion between I+ and I− to measure separations is elliminated since in both we find the same finite short distance limit.

A last comment is now in order. In the string theory analysis one has, at least, two relevant parameters: the surface
gravity κ and the radius rg of the supersymmetric, charged black hole. The surface gravity is assumed to be small, in
comparison with the inverse of the size of the black hole, i.e., κ≪ 1/rg. The emission frequency can reach κ, but can
never reach 1/rg (or become larger) to guarantee the validity of the string theory calculation. Obviously the analysis
of string theory excludes astrophysical black holes of the Schwarzschild type (for which κ ∼ 1/rg). Our results,
however, suggest that one could also expect string theory to predict in this case, in some subtle way, agreement with
Hawking’s results for frequencies around 1/rg and, at least, a few orders beyond. This is so because we do not observe
any significant contribution to the thermal spectrum coming from the short-distance region, where new physics could
arise, up to such high frequencies. This fact offers a very non-trivial challenge for any quantum theory of gravity
having computational rules very different from those of semiclassical gravity (as in string theory or background-
independent approaches), since when w ∼ 1/rg the grey-body factors Γi(w) cannot be computed analytically. They
are only known numerically [21], as a result of solving field wave equations in the black hole background. String theory
manages to account for the greybody factors in the low-energy regime, where they admit an analytic expression. In
fact, for all spherically symmetric black holes, the low-energy absorption cross section is proportional to the area
of the horizon [22, 23]. But for typical Hawking frequencies the grey-body factors remain elusive for any analytic
treatment. Reobtaining them from such a different computation would be extremely impressive.

Appendix A

We will complete here the steps missing in the derivation that led to the emission rate (25). Using the wave packets
(23) we can express it as

〈in|Nout,σ
j1n1,j2n2

|in〉 =

∫ Λ

0

dw′βj1n1,w′β∗
j2n2,w′ = (92)

1

ǫ

∫ (j1+1)ǫ

j1ǫ

dw1

∫ (j2+1)ǫ

j2ǫ

dw2 e
2πiw1n1/ǫ e−2πiw2n2/ǫ

∫ Λ

0

dw′βw1w′β∗
w2w′ .

Using (20) we get

〈in|Nout,σ
j1n1,j2n2

|in〉 =
1

ǫ

∫ (j1+1)ǫ

j1ǫ

dw1

∫ (j2+1)ǫ

j2ǫ

dw2 e
i
2πw1n1

ǫ e−i
2πw2n2

ǫ

tl(w1)t
∗
l (w2)

e−i(w1−w2)vH

2π
√
w1w2

e−πκ−1ω1i−iκ−1(w1−w2)

Γ(1 + iκ−1w1)Γ(1 − iκ−1w2)δσ[κ−1(w1 − w2)] . (93)

This integral can be estimated explicitly when the width ǫ of the frequency interval [jǫ, (j+1)ǫ] is assumed, as usual,
small. In this case, the integral is essentially as follows

〈in|Nout,σ
j1n1,j2n2

|in〉 ≈ δj1j2

|tl(wj)|2|Γ(1 + iκ−1wj)|2
2πwj

e−πκ−1wje
2π(n1−n2)wj

ǫ In1n2(σ) (94)

where

In1n2(σ) =
1

ǫ

∫ ǫ/2

−ǫ/2

dx1

∫ ǫ/2

−ǫ/2

dx2e
i[

2πn1
ǫ −vH ]x1−i[

2πn2
ǫ −vH ]x2−πκ−1(x1+x2)/2δσ[κ−1(x1 − x2)] (95)

and x1,2 ≡ w1,2 − (j + 1/2)ǫ. The factor δj1j2 in (94) is due to the role of δσ, which selects frequencies on a very
narrow band of order |w1 − w2| ∼ κσ. For this reason, it is also convenient to introduce a new variable y = x1 − x2

and rewrite In1n2(σ) as follows

In1n2(σ) ≈ 1

ǫ

∫ ǫ/2

−ǫ/2

dx1e
2π(n1−n2)x1

ǫ

∫ x1+ǫ/2

x1−ǫ/2

dyei[
2πn2

ǫ −vH ]yδσ[κ−1y] . (96)
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In writing this we have neglected the term eπκ−1(x1+x2)/2 which is almost constant (unity) over the integral. We can
now estimate the integral over y having in mind that δσ is very well approximated by a square step of width πκσ and
height 1/(πσ) centered at y = 0. This means that the main contribution comes from the interval [−πκσ

2 , πκσ
2 ]. This

fact makes the outcome of the integral independent of x1, which also allows us to perform the integral in x1. Putting
all together we find

In1n2(σ) ≈ κδn1n2

sin
[(

2πn2

ǫ − vH

)

πκσ
2

]

[(

2πn2

ǫ − vH

)

πκσ
2

] (97)

Plugging this result back into (94) we find (25).

We will now briefly consider the effect of introducing the cutoff in frequencies in a different way. The cutoff was
introduced in (20) in the form

∫ ∞

−∞
d log[w/κ]e−iκ−1(w1−w2) log[w/κ] →

∫ log[Λ/κ]

− log[Λ/κ]

d log[w/κ]e−iκ−1(w1−w2) log[w/κ] (98)

We will now consider the change

∫ log[Λ/κ]

− log[Λ/κ]

dλe−iκ−1(w1−w2)λ →
∫ ∞

−∞
dλe−iκ−1(w1−w2)λe−(λ/Λ̃)2 (99)

where Λ̃ must be of order ∼ log[Λ/κ]. This modification leads to a redefinition of δσ

δσ̃[κ−1(w1 − w2)] =

exp

(

−
[

κ−1(w1−w2)
2σ̃

]2
)

2σ̃
√
π

(100)

which in the limit 2σ̃ → 0 also becomes Dirac’s delta function. One can then proceed as above and define the
corresponding function In1n2(σ̃), which this time can be evaluated extending up to infinity the limits of integration
over the variable y = x1 − x2. This leads to

In1n2(σ̃) = κδn1n2e
−[( 2πn2

ǫ −vH)κσ̃]
2

(101)

The corresponding emission rate is now

〈in|Nout,σ
j1n1,j2n2

|in〉 = δj1j2δn1n2

|tl(wj)|2
e2πκ−1wj − 1

e−[( 2πn2
ǫ −vH)κσ̃]

2

(102)

This expression is always positive definite and exhibits the same decay rate as (25) if we identify 2σ̃ with σ, which in
fact is the right choice for the definition of (100).

Appendix B

We will proceed now to solve the massless Dirac equation in a curved background with spherical symmetry. The
equation to solve is11

γµ∇µψ = 0 (103)

where γµ = γaV µ
a (x) satisfy {γµ, γν} = 2gµν, {γa, γb} = 2ηab and V µ

a V
ν
b η

ab = gµν represent the vierbeins
12. Note

that ∇µψ = (∂µ − Γµ)ψ where Γµ = − 1
4γ

bγcV ν
b ∇µVνc represents the spin connection. We will take the curved space

11 For earlier references see [24], and for a more advanced treatment (no needed for the purposed of this paper) see [25].
12 Due to our convention for the metric signature the γa matrices should verify the conditions (γ0)2 = −I, (γi)2 = I. However, to agree

with the standard notation for Dirac matrices in this appendix we have flipped the metric signature to (+,−,−,−). This is, however,
irrelevant for the computations carried out in the body of this paper.
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line element ds2 = e2ρdx+dx− − r2dΩ2, with dx+dx− = dt2 − dr∗2, and ηab = diag(1,−1,−1,−1). Introducing the

ansatz ψ = e−ρ/2

r Φ and making the simplest choice for vierbeins (i.e., to be parallel to the unit vectors in t, r∗, θ, φ
directions), the Dirac equation (103) becomes

γaV i
a∂iΦ +

1

r

[

γ2

sin1/2 θ
∂θ sin1/2 θ +

γ3

sin θ
∂φ

]

Φ = 0 (104)

where the index i runs over the non-angular variables. Since for x± = t ± r∗ we have γaV i
a∂i = e−ρ[γ0∂t + γ1∂r∗ ],

(104) can be written in the more familiar form

∂tΦ = −γ0γ1

[

∂r∗ +
eρ

r

(

γ2γ1

sin1/2 θ
∂θ sin1/2 θ +

γ3γ1

sin θ
∂φ

)]

Φ (105)

The angular part of this equation can be reexpressed as eργ0K/r:

∂tΦ = −γ0γ1

[

∂r∗ − eρ

r
γ0K

]

Φ (106)

where the operator K

K = γ0

(

γ1γ2

sin1/2 θ
∂θ sin1/2 θ +

γ1γ3

sin θ
∂φ

)

(107)

commutes with the Dirac equation as well as ~J2 and J3 and, therefore, its eigenvalues can be used to characterize the
angular part χmjκj of the modes: Kχmjκj = (−κj)χmjκj , with κ2

j = (j + 1
2 )2. Moreover the eigenfunctions χmjκj

admit the following decomposition χmjκj = c+χ+
mjκj

+ c−χ−
mjκj

, with

χ+
mjκj

=





η(r̂)
mj
κj

0



 (108)

χ−
mjκj

=





0

η(r̂)
mj

−κj



 (109)

Therefore, in a stationary spacetime, ρ = ρ(r), a general solution can then be expressed as

ψwκjmj (x) =
e−ρ/2e−iwt

r





Gwκj (r)η(r̂)
mj
κj

−iFwκj (r)σ
1η(r̂)

mj
κj



 (110)

where we have used that σ1η(r̂)
mj
κj = η(r̂)

mj

−κj
and the functions Fwκj (r

∗) and Gwκj (r
∗) satisfy the following equations

(see also [23])

∂r∗Gwκj = −e
ρ

r
κjGwκj + wFwκj (111)

∂r∗Fwκj =
eρ

r
κjFwκj − wGwκj (112)

Adding the time-dependent part, the above equations lead to plane-wave solutions ∼ e−iw(t±r∗) = e−iwx±

for all κj

as r → ∞.

We note that the form of the eigenfunctions χmjκj can be worked out immediately if the vierbeins are chosen to

be parallel to unit vectors in the standard t, x, y, z directions13. The bispinors ηmjκj can be constructed, as it is

13 With this orientation for the vierbeins K can be written as K = γ0(I +2~S · ~L), which is the standard form of this operator in Minkowski
space.
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well-known, using the Clebsch-Gordon rules for addition of angular momentum in terms of spherical harmonics and
two-component spinors, and the result is

η(r̂)
mj

κj<0 =





√

j+mj

2j Y
mj−1/2

j−1/2 (θ, φ)
√

j−mj

2j Y
mj+1/2

j−1/2 (θ, φ)



 (113)

and

η(r̂)
mj

κj>0 =





√

j+1−mj

2j+2 Y
mj−1/2

j+1/2 (θ, φ)

−
√

j+1+mj

2j+2 Y
mj+1/2

j+1/2 (θ, φ)



 (114)

With the modes given in (110) conveniently normalized, the quantized Dirac field can be expanded in modes as

ψ(x) =
∑

κjmj

∫

dw
[

awκjmjuwκjmj (x) + b†wκjmj
vwκjmj (x)

]

(115)

where uwκjmj (x) and vwκjmj (x) represent positive and negative energy solutions respectively. On the other
hand, since we are dealing with massless spinors, it is necessary, on physical grounds, to use states with well
defined helicity. In particular, left-handed spinors can be obtained from (110) by projecting with PL = 1

2 (I − γ5),

where γ5 = iγ0γ1γ2γ3. We will therefore be working with the (normalized) modes ψL
wjmj

= 1√
2
(ψw|κj|mj

−ψw−|κj|mj
).

We will now carry out the calculations that lead to (52) (adapted now for chiral spinors). First thing to note is

that the propagated backwards mode (49) contains a term of the form
√

du(v)/dv. A simple way to realize why this
term arises is that it is necessary to ensure the invariance of the scalar product under time evolution. Putting aside
backscattering effects, the Dirac scalar product for out modes can be written, equivalently, as

∫

I+

dΩdur2ūoutγ+u
out =

∫

I−

dΩr2dvūoutγ−u
out . (116)

The above equality requires, up to relative signs in the spinor components, that

uout(v)|I+ =
√

du(v)/dvΘ(vH − v)uout(u)|I− . (117)

Note that the factor e−ρ/2 in (110) also signals this behavior. Since the spinor ψ(x) does behave as a scalar under
general changes of coordinates, it follows that the functions F and G must somehow compensate the change in e−ρ/2

under conformal transformations.
Let us now focus on the integration over the angular variables prior to (52). This integration can be readily

performed if we put the result of (50) into (47). We then find

〈in|Ni1i2 |in〉 =
∑

k

∫

I−

dv2r
2
2dΩ2

(

ūout,L
i2

(x2)
[γ0 − γ1]

2
vin,L

k (x2)

)

×

×
∫

I−

dv1r
2
1dΩ1

(

v̄in,L
k (x1)

[γ0 − γ1]

2
uout,L

i1
(x1)

)

(118)

where the indices i1, i2 and k denote (w, j,mj). Using the modes of eqs.(49) and (51) it is immediate to verify that

∫

dΩ2ū
out,L
i2

(x2)
[γ0 − γ1]

2
vin,L

k (x2) =
t∗j2(w2)

2πr22

√

du(v)

dv
Θ(vH − v) ×

× eiw2u(v2)+iwv2δmj2mk
δj2jk

(119)

where we have used that
∫

dΩ η
mj†
κj (r̂)η

mj′

κj′
(r̂) = δmjmj′

δκjκj′
. An analogous calculation applies to the second factor

in (118). Plugging these results back into (118) we obtain

〈in|Ni1i2 |in〉 = δmj1mj2
δj1j2

tj1(w1)t
∗
j2

(w2)

4π2

∫ vH

−∞
dv1dv2 (120)

√

du(v1)

dv

du(v2)

dv
e−iw1u(v1)+iw2u(v2)

∫ ∞

0

dwe−iw(v1−v2)
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There remains to perform the integration in w, which yields

∫ ∞

0

dwe−iw(v1−v2) = lim
ǫ→0

−i
(v1 − v2 − iǫ)

(121)

and leads to the sought-after result.
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