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Abstract

We consider the semiclassical dynamics of CGHS black holes with a Weyl-
invariant effective action for conformal matter. The trace anomaly of Polyakov
effective action is converted into the Virasoro anomaly thus leading to the same
flux of Hawking radiation. The covariance of semiclassical equations can be
restored through a non-local redefinition of the metric-dilaton fields. The re-
sulting theory turns out to be equivalent to the RST model. This provides
a mechanism to solve semiclassical equations of 2D dilaton gravity coupled to
conformal matter for classically soluble models.
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1 Introduction

Since the pioneer work of Hawking [1], the formation and subsequent evapora-
tion of a black hole has provided an excellent scenario to study the interplay
between gravity and quantum mechanics. In recent years it has been a revival
of interest in the subject, due to the emergence of simplified (two-dimensional)
models sharing basic features with the four-dimensional theory. The model
proposed by Callan, Giddings, Harvey and Strominger [2] (CGHS-model), in-
volving gravity coupled to a dilaton and N massless scalar fields fi, i = 1, . . . , N ,
describes, at the classical level, the formation of a black hole by incoming con-
formal matter. Hawking radiation in the classical background geometry can be
computed from the trace anomaly of the matter fields [3]

< T f α
α >=

N

24
R , (1)

and back-reaction can be incorporated by adding to the classical action the
Polyakov effective action [4]

SP = − N

96π

∫

d2x
√−gR�

−1R . (2)

The new equations of motion have the quantum stress tensor of matter as the
source for the classical gravity dilaton fields. Although the semiclassical equa-
tions have not been solved in closed form, a special modification of the model
[5] allows to construct exact solutions and, therefore, to study the evolution of
a quantum black hole analytically.

The trace anomaly equation (1) is a direct consequence of the breaking of
Weyl symmetry in the definition of the functional measure for the conformal
matter fields,

||δfi||2 =

∫

d2x
√−gδfiδfi ; (3)

the above definition respects diffeomorphism invariance of the classical theory
but sacrifices Weyl symmetry. The former symmetry leads to the standard
covariant conservation of the quantum energy-momentum tensor

∇µ < T f µν
>= 0 , (4)

and the effective action capturing the equations (1) and (4) is given by the
induced gravity action (2).

Recently, it has been advocated an alternative definition of the measure (3)
that preserves Weyl invariance [6, 7]. Diffeomorphism invariance is partially
lost and only area-preserving diffeomorphisms are maintained. In this note
we shall develop further this alternative approach and explore the relationship
between the diffeomorphism and Weyl invariant schemes in the context of the
semiclassical theory of 2D gravity.
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2 The Weyl-invariant effective action and the Vira-

soro anomaly

The Weyl-invariant effective action proposed in [6, 7] can be obtained from the
Polyakov action replacing gµν by

√−ggµν :

SW = − N

96π

∫

d2xR(
√−ggµν)(

√−g�)−1R(
√−ggµν) , (5)

where � = (
√−g)−1∂µ

√−ggµν∂ν . To study the relation between the action
(5) and (2) in a simple way it is convenient to introduce an auxiliary field Φ
verifying the equation

�Φ = R . (6)

In terms of gµν and Φ the Polyakov action can be rewritten as (see, for instance,
[8])

SP = − N

96π

∫

d2x
√−g(−Φ�Φ + 2RΦ) . (7)

The equation (6) follows from the action (7) and inserting (6) into (7) we recover
(2). The metric-dependent Weyl transformation gµν → √−ggµν induces the
following transformation for the scalar curvature and the auxiliary field Φ

R → (R + � log
√−g)

√−g , (8)

Φ → Φ + log
√−g . (9)

Using (8) and (9) it is easy to find that the Weyl-invariant action SW is given
by

SW = − N

96π

∫

d2x
[√−g(−Φ�Φ + 2RΦ)

+ ∂µ(
√−g(log

√−g
↔
∂µΦ))

+
√−g(log

√−g� log
√−g + 2R log

√−g)
]

. (10)

Therefore, SW and SP differ, up to total derivative terms, by a local action

SW = SP − N

96π

∫

d2x
√−g(log

√−g� log
√−g + 2R log

√−g) . (11)

The energy-momentum tensor TW
µν = − 2π√

−g
δSW

δgµν coming from (11) can be

easily computed. It admits the following decomposition

TW
µν = (TP

µν − N

48
gµνR)

−N

48

[

∂µ log
√−g∂ν log

√−g − 1

2
gµν∂α log

√−g∂α log
√−g

]

−N

24

[

∇µ∇ν log
√−g − 1

2
gµν� log

√−g

]

, (12)
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where TP
µν is the energy-momentum associated with the Polyakov effective ac-

tion

TP
µν =

N

48

[

∂µΦ∂νΦ − 1

2
gµν∂αΦ∂αΦ

]

−N

24

[

∇µ∇νΦ − 1

2
gµν�Φ

]

+
N

48
gµνR . (13)

Note that TP µ
µ = N

24R is consistent with (1).
Due to the breakdown of reparametrization invariance TW

µν is not covariantly
conserved, in general. Instead, we have

∇µTW
µν = −N

48

[

∂ν(R + � log
√−g) + (R + � log

√−g)∂ν log
√−g

]

, (14)

and taking into account that

R + � log
√−g =

1√−g
R(

√−ggµν) , (15)

we can rewrite (14) as

∇µTW
µν = −N

48

1√−g
∂νR(

√−ggµν) . (16)

This formula has been obtained in [7] in a different way. However, in special
gauges the stress tensor TW

µν can be conserved. For metrics of the form

ds2 = −e2ρ
(

dx+dx− + c (x−)2(dx+)2
)

, (17)

where c is a constant, the r.h.s. of (16) vanishes. In the conformal gauge the
conservation equations take the simple form

∇+TW
++ = 0 = ∇−TW

−− , (18)

which implies that

TW
++ = TW

++(x+) , (19)

TW
−− = TW

−−(x−) . (20)

Despite of the covariant conservation equations (18) the transformation law of
TW
±± is anomalous. Under conformal coordinate transformations x± → y±(x±),

TW
µν transforms as

TW
x±x± =

(

dy±

dx±

)2

TW
y±y± − N

24

{

y±, x±} , (21)

where

{y, x} =
∂3y
∂x3

∂y
∂x

− 3

2

(

∂2y
∂x2

)2

(

∂y
∂x

)2 (22)

is the Schwartzian derivative. Note that the expression (21) coincides with
the well-known transformation law of the normal-ordered energy-momentum
tensor of a conformal field theory. Therefore we can conclude that the local
counterterm in (11) converts the trace anomaly into the Virasoro anomaly.
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3 Semiclassical 2D black holes. Field redefinitions

and covariance

The action of the CGHS model is [2]

S =
1

2π

∫

d2x
√−g

[

e−2φ(R + 4(∇φ)2 + 4λ2) − 1

2

N
∑

i=1

(∇fi)
2

]

. (23)

The classical solutions describe the formation of a black hole by gravitational
collapse. In conformal gauge, ds2 = −e2ρdx+dx− (x± = x0 ± x1), and in
Kruskal coordinates, ρ = φ, the black hole formation from the vacuum by left
moving incoming matter fi = f+

i (x+) is described by the solution

e−2φ = e−2ρ = −λ2x+(x− +
1

λ2
P (x+)) +

M(x+)

λ
, (24)

where

M(x+) = λ

∫ x+

0
dx̃+x̃+T f

++ , (25)

P (x+) =

∫ x+

0
dx̃+T f

++ , (26)

and

T f
++ =

1

2

N
∑

i=1

(∂+f+
i )2 . (27)

This solution corresponds to a black hole of mass M = M(x+ → ∞) with an
event horizon located at x− = − 1

λ2 P (x+ → ∞). In the semiclassical approxi-
mation the Hawking radiation at future null infinity can be obtained from the
trace anomaly [2], and the back-reaction is incorporated [2] by adding to the
classical action S the Polyakov term (2).

Let us consider an f shock wave travelling in the x−-direction, described by
the stress tensor

1

2
∂+f∂+f = a δ(x+ − x+

0 ) . (28)

For x+ < x+
0 the classical solution is the linear dilaton vacuum (LDV). In this

region the natural coordinate system is the Minkowskian one. We assume, as
boundary condition of the gravitational collapse, that the outgoing energy flux
measured by the Minkowskian observer σ± vanishes,

TW
σ−σ− = 0 . (29)

After the collapse, x+ > x+
0 , the classical solution describes a black hole of

mass M = ax+
0 λ with a horizon at x− = − a

λ2 (= − P
λ2 ). But then the nat-

ural coordinates are the Schwarzschild type coordinates σ̃±. The coordinate
transformation

σ̃+ = σ+ , (30)

σ̃− = − 1

λ
log
(

e−λσ− − a

λ

)

, (31)
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allows to evaluate the energy flux measured by the Schwarzschild-type observer
(σ̃±). It is given by

TW
σ̃−σ̃− = −N

24

{

σ−, σ̃−} , (32)

TW
σ̃+σ̃+ = 0 , (33)

and hence

TW
σ̃−σ̃− =

λ2N

48

(

1 − 1

(1 + 1
λ
Peλσ̃−)2

)

, (34)

in agreement with the result predicted by the trace anomaly. The reason of this
is that the difference between TW

µν and TP
µν vanishes at infinity in asymptoti-

cally flat coordinates. So both TW and TP yield to the same flux of Hawking
radiation.

Let us briefly analyze a more involved model: spherically symmetric gravity
coupled to 2D conformal matter. After appropriate reduction this model is
described by the two-dimensional action (see, for instance, [9])

S =
1

2π

∫

d2x
√−g

[

e−2φ(R + 2(∇φ)2 + 2λ2e2φ) − 1

2

N
∑

i=1

(∇fi)
2

]

, (35)

where the 4D spherically symmetric metric is related to the 2D metric and
dilaton fields by (4)ds2 = ds2 + e−2φ/λ2dΩ2. This model is classically soluble
and the solutions are the Vaidya space-times. If we consider the collapse of a
null shell of matter, the stress tensor and two-dimensional metric take the form

T f
vv = mδ(v − v0) ,

ds2 = −
(

1 − 2mθ(v − v0)

r

)

dv2 + 2drdv . (36)

In conformal coordinates matching the discontinuity across v = v0 we obtain
for the metric

ds2 = −
[

θ(v0 − v) + θ(v − v0)

(

1 − 2m

r

)(

1 − 4m

v0 − u

)−1
]

dvdu , (37)

where r is defined implicitly by

u − 4m log

(

v0 − u

4m
− 1

)

− v = −2
(

r + 2m log
( r

2m
− 1
))

, (38)

and for the dilaton

e−φ

λ
=

v − u

2
θ(v0 − v) + rθ(v − v0) . (39)

The coordinates (v, u) are Minkowskian inside the shell (v < v0), whereas the
asymptotically flat conformal coordinates (ṽ, ũ) are given by the relations

ṽ = v ,

ũ = u − 4m log

(

v0 − u

4m
− 1

)

. (40)
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Therefore, assuming that TW
uu = 0, the stress tensor evaluated by the Schwarzschild

observer is given by

TW
ũũ = −m(u − v0 + 3m)

3(u − v0)4
. (41)

As the horizon is approached u → v0 − 4m, TW
ũũ builds up to the value (3 ·

28m2)−1, that corresponds to the Hawking temperature T = 1
8πm

.

Our aim now is to study the semiclassical back-reaction, for the CGHS
model, defined by the Weyl-invariant effective action (11), in the large N limit.
Due to Weyl invariance the ρ, φ classical equations are unmodified,

e−2φ
(

2∂+∂−φ − 4∂+φ∂−φ − λ2e2ρ
)

= 0 , (42)

e−2(φ+ρ)
(

−4∂+∂−φ + 4∂+φ∂−φ + 2∂+∂−ρ + λ2e2ρ
)

= 0 . (43)

However, the constraint equations are modified according to

e−2φ
(

4∂±ρ∂±φ − 2∂2
±φ
)

+
1

2

N
∑

i=1

(∂±fi)
2 + TW

±± = 0 . (44)

The components TW
±± of the non-local effective stress tensor are ρ-independent

and have to be adjusted by boundary conditions.
At this point we should note that, although the Virasoro anomaly of TW

±±
accounts for the Hawking radiation, it destroys the covariance of the one-loop
equations (42-44). Moreover, if we select a particular coordinate system (σ± be-
fore the collapse and σ̃± after it) the solution is not continuous at x+ = x+

0 ; and
coordinates that match continuously σ± and σ̃± do no adjust to the gauge (17).
Then, how can we define, in this scheme, a consistent semiclassical theory?. To
gain insights, let us first analyse the question of the vacuum stability.

In conformal gauge, the vacuum solution to equations (42-44) is

e−2ρ = e−ωe−2φ ,

e−2φ = u − h+h− , (45)

where ω = ω+(y+) + ω−(y−), u = u+ + u−,

u± = −
∫ y±

eω±

∫

e−ω±TW
±± ,

h± = λ

∫ y±

eω± . (46)

According to (21), TW
y±y± is given by the Schwartzian derivative with respect to

the Minkowskian coordinates σ±. Hence the general solution to the semiclassi-
cal equations in vacuum is found to be

e−2ρ = e−2(ρcl−φcl)
[

e−2φcl +
N

24
(2ρcl − φcl)

+
N

12

∫ y+

e2(ρcl−φcl)

∫

e−2(ρcl−φcl)[∂y+(ρcl − φcl)]
2

+
N

12

∫ y−

e2(ρcl−φcl)

∫

e−2(ρcl−φcl)[∂y−(ρcl − φcl)]
2
]

,(47)
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where ρcl and φcl represent the classical vacuum solutions

ρcl =
1

2
log

dy+

dσ+

dy−

dσ− ,

φcl = −λ

2

(

σ+(y+) − σ−(y−)
)

. (48)

In the light of the above expressions we can conclude that, due to the term
TW
±±(y±), the solutions do no transform covariantly, thus producing some sort

of vacuum instability that makes problematic a Weyl-invariant semiclassical
theory.

A way to construct a sensible semiclassical theory is suggested by the non-
covariant vacuum solutions themselves (47). The non-local field redefinition
ρ → ρ̂, φ → φ̂, defined by

ρ − φ = ρ̂ − φ̂

e−2φ =
[

e−2φ̂ +
N

24
(2ρ̂ − φ̂)

+
N

12

∫ y+

e2(ρ̂−φ̂)

∫

e−2(ρ̂−φ̂)[∂y+(ρ̂ − φ̂)]2

+
N

12

∫ y−

e2(ρ̂−φ̂)

∫

e−2(ρ̂−φ̂)[∂y−(ρ̂ − φ̂)]2
]

, (49)

recovers the classical vacuum solution as a solution of the semiclassical vacuum
equations: ρ̂ = ρcl, φ̂ = φcl, and reestablishes the general covariance as well.

After the redefinitions (49), the constraint equations (44) become

(

e−2φ̂ +
N

48

)

(

4∂±ρ̂∂±φ̂ − 2∂2
±φ̂
)

− N

12

(

∂±ρ̂∂±ρ̂ − ∂2
±ρ̂
)

+
1

2
∂±fi∂±fi + TW

±± = 0 , (50)

and the equations (42-43) can be rewritten as

∂+∂−
(

ρ̂ − φ̂
)

= 0 , (51)

∂+∂−

(

e−2φ̂ +
N

24
ρ̂

)

= −λ2e2(ρ̂−φ̂) . (52)

Remarkably these equations turn out to be equivalent to the equations of motion
of the RST model [5]. Note that in Kruskal coordinates ρ̂ = φ̂ the transforma-
tion (49) is local,

e−2ρ = e−2ρ̂ +
N

24
ρ̂ , (53)

and coincides with the field redefinitions of [5] that maps (50) into a Liouville
theory (see also [10]), where the original variable e−2φ is the analogue of the
√

N
12Ω field.

This intriguing relation between the RST model and the Weyl-invariant
one-loop CGHS model offers a new explanation of the solubility of the former.
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In the Weyl-invariant scheme the semiclassical equations can be solved in a
straightforward way by replacing the classical stress tensor T f

±± by T f
±±+TW

±± in
the expression of the classical solutions. In other words, the classical solubility of
the model together with the field redefinitions that ensure the vacuum stability
allows to solve a related covariant semiclassical model.

4 Final comments

We have exhibit in a simple way the relationship between diffeomorphism and
Weyl-invariant effective actions of conformal matter coupled to 2D gravity.
They differ in a local term that converts the trace anomaly of the effective
stress tensor into the Virasoro anomaly thus yielding to the same flux of Hawk-
ing radiation. In special gauges the semiclassical equations of the Weyl-invariant
effective action are consistent with Bianchi identities although the solutions do
not transform covariantly. A consequence of this is the impossibility of defining
a covariant vacuum solution. To reestablish the LDV as the semiclassical vac-
uum solution of the CGHS model, we are forced to perform specific, non-local
field redefinitions of the metric and dilaton fields. The field redefinitions yields
to new covariant semiclassical equations, which turn out to be the equations of
the RST model. The solubility of the classical model and the Weyl invariance
of the semiclassical correction implies exact solubility of the related semiclassi-
cal covariant model. This mechanism can be applied to solve the semiclassical
theory of more realistic models, as 4D-spherically symmetric gravity coupled
to 2D conformal matter [11]. Moreover, the insights gained in unravelling the
relationship between the Weyl and diffeomorphism invariant schemes could be
of great interest for the non-perturbative canonical approach. There are some
arguments [7] indicating that the Weyl invariant scheme reflects more appro-
priately the exact canonical quantization.
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