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Departamento de Fı́sica Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC.

Facultad de Fı́sica, Universidad de Valencia, Burjassot-46100, Valencia, Spain.

Abstract

We give a Bäcklund transformation connecting a generic 2D dilaton gravity
theory to a generally covariant free field theory. This transformation provides an
explicit canonical transformation relating both theories.
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Motivated by the two-dimensional model of black holes dynamics introduced by
Callan, Giddings, Harvey and Strominger (CGHS) [1], a lot ofworks in 2D dilaton
gravity has been developed from different viewpoints. A crucial property to under-
stand the CGHS model is given by the fact that it can be mapped,via an off-shell
canonical transformation, into a theory of free fields with aMinkowskian target space
[2]. This, in turns, implies that theory can be quantized using different approaches to
deal with the anomalies [2, 3]. It has been proved in Ref. [4] (see [5] for details) that
this property of the CGHS model is also valid for a generic model of 2D dilaton grav-
ity. Based on properties of the classical equations of motion it was shown that there
exist a canonical transformation converting a generic model into a free field theory
with a Minkowskian target space. However the explicit form of the transformation is
unknown except for those models which can be explicitly solved [6].

The aim of this letter is to provide a more explicit form for the canonical trans-
formations and bypass the problem of solving the classical equations of motion. To
this end we shall introduce a different perspective to that used in [4, 5]. The idea is to
construct a Bäcklund transformation relating the equations of motion of a 2D dilaton
gravity model to free field equations. To obtain the Bäcklund transformation we shall
also demand that the Hamiltonian and momentum constraints of the dilaton-gravity
theory are mapped into those of a generally covariant free field theory. With this re-
quirement the Bäcklund transformation can be promoted to acanonical transformation.

Our starting point is the action functional describing a 2D dilaton gravity model

S =

∫

d2x
√
−g

(

Rφ + 4λ2V (φ) − 1

2
(∇f)2

)

, (1)

whereV (φ) is an arbitrary function of the dilaton field andf is a scalar matter field.
The above expression represent a generic model because one can get rid of the kinetic
term of the dilaton by a conformal reparametrization of the fields and bring the action
into the form (1). In conformal gaugeds2 = −e2ρdx+dx−, the equations of motion
derived from the action (1) are

2∂+∂−ρ + λ2
d

dφ
V (φ)e2ρ = 0 , (2)

∂+∂−φ + λ2V (φ)e2ρ = 0 , (3)

∂+∂−f = 0 , (4)

− ∂2

±φ + 2∂±φ∂±ρ − 1

2
(∂±f)2 = 0 . (5)

By a rather involved manipulation of these equations it was shown in [4, 5] that, irre-
spective of the form of the potential, the solutions define a canonical transformation
mapping the theory (1) into a free field theory with constraints C± = ±1

2
(H ± P )

taking the form

C± = Π±X±′ ± 1

4
(πf ± f ′)2 , (6)
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where(Π±, X±) and (πf , f) are canonically conjugate variables andH and P are
the Hamiltonian and momentum constraints. Obviously the pure gravity and matter
sectors are separately equivalent to free fields. From now weshall restrict our analysis
to the pure dilaton-gravity sector. A further linear canonical transformation [7]

2Π± = −(π0 + π1) ∓ (r0′ − r1′) , (7)

2X±′ = ∓(π0 − π1) − (r0′ + r1′) , (8)

converts finally the constraints into those of a free field theory with a Minkowskian
target space

C± = ±1

4

[

(π0 ± r0′)2 − (π1 ∓ r1′)2
]

. (9)

As we have already mentioned it is in general difficult to get an explicit expression
for this canonical equivalence. In this letter we shall adopt an alternative approach to
improve this situation. We shall consider the canonical transformation of the CGHS
model introduced in [2] and reinterpret it as a Bäcklund transformation. In this new
context we shall be able to generalize this Bäcklund transformation for a generic model
of dilaton gravity. The Bäcklund transformation will define then an explicit canonical
transformation.

The canonical transformation for the CGHS theory proposed in [2] makes use of
the following auxiliary canonical variablesη0, η1, p0, p1 defined by

ra =
1√
2
ηa , (10)

πa =
√

2(pa −
1

2
ǫabη

b′) , (11)

whereǫab is the antisymmetric tensor withǫ01 = −1. In terms of the canonical vari-
ables(ηa, pa) the constraints have the form

H = η0′p1 + η1′p0 − (p2

1 − p2

0) , (12)

P = η0′p0 + η1′p1 . (13)

The canonical transformation is then defined by the following relations

η0 =
1

2λ
e−ρ (πρ sinh θ − 2φ′ cosh θ) , (14)

η1 =
1

2λ
e−ρ (πρ cosh θ − 2φ′ sinh θ) , (15)

p0 = 2λeρ sinh θ , (16)

p1 = −2λeρ cosh θ , (17)

whereθ = 1

2

∫ x

−∞
dx̃πφ. This transformation is canonical because it can be obtained

from a generating functional. It is interesting to point outnow that the above field re-
definition can be regarded as a Bäcklund transformation connecting the dilaton-gravity
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equations (2), (3) for the CGHS model with free field equations

∂+∂−η0 = 0 = ∂+∂−η1 . (18)

We want now to generalize the above transformation for a generic model. It is easy
to see that a transformation of the form

η0′ = F̃−1

[

(H + F̃ 2) cosh θ + P sinh θ
]

, (19)

η1′ = F̃−1

[

(H + F̃ 2) sinh θ + P cosh θ
]

, (20)

p0 = −F̃ sinh θ , (21)

p1 = F̃ cosh θ , (22)

where F̃ and θ are arbitrary functions, bring the constraints of a generictheory to
the form (12), (13). Because the canonicity of the transformation requires that the
fields η0 andη1 verify free field equations, a natural generalization of theBäcklund
transformation defined by (14)-(17) is given by the following ansatz

η0′ = − 1

2λ
F−1e−ρ

[

(H + 4λ2F 2e2ρ) cosh θ + P sinh θ
]

, (23)

η̇1 = −2λFeρ cosh θ , (24)

where

H(ρ, φ) = −2φ̇ρ̇ + 2(φ′′ − φ′ρ′) − 4λ2V (φ)e2ρ , (25)

P (ρ, φ) = −2(φ̇ρ′ − φ̇′ + φ′ρ̇) , (26)

F (ρ, φ) = exp

{

λ2

2
∂−1

+ ∂−1

−

(

d

dφ
V (φ)e2ρ

)}

, (27)

θ(ρ, φ) = −
∫ x

−∞

dx̃(ρ̇ +
Ḟ

F
) . (28)

The main goal of this letter is the following result:

The transformation defined by (23), (24) is a Bäcklund transformation that relates the
solutionsρ, φ of a generic dilaton gravity theory and the solutionsη0, η1 of a free field
theory.

Proof: First of all, we observe the relation that there exists between the functionsF
andθ. Taking derivatives in expression (27) we can rewrite (2) as

∂+∂−(ρ + ln F ) = 0 . (29)

Using (28) we then obtain the following identities

∂+(ρ + ln F ) = −∂+θ , (30)

∂−(ρ + ln F ) = ∂−θ . (31)
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Now we take derivatives in (23), (24)

∂+∂−η0′ = −1

2λ
F−1e−ρ {∂+∂−P sinh θ + ∂+∂−H cosh θ +

[F 2e2ρ (∂+(ρ + ln F )∂−θ + ∂−(ρ + ln F )∂+θ + ∂+∂−θ) +

∂+H∂−θ + ∂−H∂+θ − ∂+P∂−(ρ + lnF ) − ∂−P∂+(ρ + ln F )−
P (∂+∂−(ρ + ln F ) − ∂+(ρ + ln F )∂−(ρ + ln F ) − ∂+θ∂−θ)−
H (∂+(ρ + lnF )∂−θ + ∂−(ρ + ln F )∂+θ − ∂+∂−θ)] sinh θ+

[F 2e2ρ (∂+∂−(ρ + ln F ) + ∂+(ρ + ln F )∂−(ρ + ln F ) + ∂+θ∂−θ) +

∂+P∂−θ + ∂−P∂+θ − ∂+H∂−(ρ + ln F ) − ∂−H∂+(ρ + ln F )−
H (∂+∂−(ρ + ln F ) − ∂+(ρ + ln F )∂−(ρ + ln F ) − ∂+θ∂−θ)−
P (∂+(ρ + ln F )∂−θ + ∂−(ρ + ln F )∂+θ − ∂+∂−θ)] cosh θ} , (32)

∂+∂−η̇1 = −2λFeρ {[∂+(ρ + lnF )∂−θ + ∂−(ρ + ln F )∂+θ + ∂+∂−θ] cosh θ+

[∂+∂−(ρ + ln F ) + ∂+(ρ + ln F )∂−(ρ + ln F ) + ∂+θ∂−θ] sinh θ} , (33)

and taking into account (29), (30), (31) the above expressions become

∂+∂−η0′ =
−1

2λ
F−1e−ρ {∂+∂−P sinh θ + ∂+∂−H cosh θ+

[∂+(H − P )∂−θ + ∂−(H + P )∂+θ] sinh θ +

[∂+(P − H)∂−θ + ∂−(P + H)∂+θ] cosh θ} , (34)

∂+∂−η̇1 = 0 . (35)

Finally, using the Bianchi identities∂±(H ∓ P ) = 0, we see that the r.h.s. of (34)
vanishes and then

∂+∂−η0 = 0 , (36)

∂+∂−η1 = 0 . (37)

Moreover, the above derivation also work on the other way around, so ifη0, η1 satisfy
the free field equations (36), (37) thenρ, φ satisfy the equations of motion (2), (3).

To construct the fully generalized canonical transformation we introduce the cano-
nically conjugated momentaπρ = −2φ̇, πφ = −2ρ̇, p0 = η̇0, p1 = η̇1 as independent
variables. Then we get

η0′ =
−1

2λ
F−1e−ρ

[

(H + 4λ2F 2e2ρ) cosh θ + P sinh θ
]

, (38)

η1′ =
−1

2λ
F−1e−ρ

[

(H + 4λ2F 2e2ρ) sinh θ + P cosh θ
]

, (39)

p0 = 2λFeρ sinh θ , (40)

p1 = −2λFeρ cosh θ , (41)
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whereH, P are given by

H = −1

2
πρπφ + 2(φ′′ − ρ′φ′) − 4λ2V (φ)e2ρ , (42)

P = πρρ
′ − π′

ρ + πφφ
′ , (43)

F is given by (27) andθ = 1

2

∫ x

−∞
dx̃(πφ − 2 Ḟ

F
). We have also seen that this transfor-

mation maps the constraints (42), (43) into the previous free form (12), (13). It is well
known that a Bäcklund transformation can be viewed as a canonical transformation.
This is so because there are no other expressions for the Poisson brackets that repro-
duce the Hamiltonian equations of motion for the free fieldsηa, pa.

The CJZ transformation for the CGHS model is recovered whenF (ρ, φ) = 1. Then
θ = 1

2

∫ x

−∞
dx̃πφ and (38)- (41) read as

η0′ =
1

2λ
e−ρ

[

(
1

2
πρπφ − 2(φ′′ + ρ′φ′)) cosh θ − (πρρ

′ − π′
ρ + πφφ

′) sinh θ

]

(44)

η1′ =
1

2λ
e−ρ

[

(
1

2
πρπφ − 2(φ′′ + ρ′φ′)) sinh θ − (πρρ

′ − π′
ρ + πφφ

′) cosh θ

]

(45)

p0 = 2λeρ sinh θ , (46)

p1 = −2λeρ cosh θ . (47)

It is easy to see that (44),(45) leads to (14), (15).

For the model with an exponential (Liouville) potentialV = eβφ the functionF

is also local. The transformations (38)-(41) withF = e−βφ provides an alternative
canonical transformation for the induced 2D Polyakov gravity, which differs from the
one obtained by using the classical solutions [8]. Another interesting example is the
Jackiw-Teitelboim model (V (φ) = φ). In this case one cannot find a local expression
for the functionF . However, taking into account thatρ verifies a Liouville equation
the fieldρ + ln F coincide with the well known free field associated, via a canonical
transformation, to a Liouville field [9].

In this letter we have constructed a Bäcklund transformation relating a generic 2D
dilaton-gravity model to a generally covariant free field theory. This way we have
provided an explicit canonical transformation connectingboth theories.
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