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Evaporation of near-extremal Reissner-Nordstdm black holes
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The formation of near-extremal Reissner-Nordstrom bllacles in the S-wave approximation can be de-
scribed, near the event horizon, by an effective solvabldehoThe corresponding one-loop quantum theory
remains solvable and allows to follow analytically the ewaion process which is shown to require an infinite
amount of time.
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Black holes are the most fascinating objects in General Relf we consider the physics in the S-wave approximation, near
ativity. Since Hawking discovered that they emit thermal ra the horizon we can describe it by an effective model (the
diation |ﬂ], it has been a long standing puzzle to explaiirthe Jackiw-Teitelboim model|ﬂ2]) which is solvable even when
thermodynamical properties, in terms of some microscopiback-reaction effects are included.
structure, and to understand the dynamical evolution betyon
Hawking initial scheme where the gravitational field was Let us consider the solutions of Einstein-Maxwell gravity
treated as a fixed background. Extremal and near-extremailith null infalling matter
charged black holes have recently played a fundamental role

in String Theory, where in some special cases it has been j52 — _ (r - 7”+)§7" —r) dv? + 2drdv + r2d0%, (1)
possible to give a statistical explanation of the Bekenstei r
Hawking area law for their entrop [2]. Moreover, the scatte F = qes, )

ing of low-energy particles off extremal black holes also-pr
vides a convenient setting to study the evaporation praness
cluding back-reaction effects. By throwing a long-wavejém
particle into an extremal hole, a non-extremal configureigo Oy (ry(v) +1_(v))
created and quantum-mechanically one expects it to deeay vi Tow = S7l2r2 ’
Hawking emission back to extremality. To render this prob- ) o

lem tractable one can boil it down considering largand ~ Wherel> = G'is Newton’s gravitational constant. One can de-
incoming neutral matter with zero angular momentum. In thisScribe the formation of a non-extremal black hole by sending
context, dilatonic black hole§|[3] were extensively coesatl 2@ low-energy shock wave
since the scattering particle-hole and the ensuing infaoma Am,
loss problem can be analyzed in an analytical framework. Ty = )
This is so because the problem can be reduced to study a two- ™
dimensional effective theory][4] which turns out to be solv-in the extremal geometry(< vo). This model can be de-
able both at the classical and at the one-loop quantum levécribed by an effective two-dimensional theory given by
[B-81 (see also the reviewf [9] for a more detailed desanipti )

and as usefullreferences_for the methods us_ed in this work). 1 = /d%c\/__g [R¢ + 1*2v(¢) — —|Vf|2 , (5)
Among the ‘nice’ properties of these dilatonic black holes, 2

making the problem l_Jnder study rather special, the extrem%here the fieldf represents the null matter witi, f)2 =
black holes are classically completely regular and, maggov T — 4T and

the temperature near extremality is constant. In contthst, ~ ¥ vy

Reissner-Nordstrom (RN) black holes always have singular r2 . ) s

ities (extremal casém = ¢ included) and the temperature ¢=1m> V()= T ¢ (4e)7 2. (6)
goes asly ~ /Im — q/q? near extremality. This case was ) ) o o
reconsidered after the improvements in the physical underl € two-dimensional metric is related to the- v projection
standing obtained with dilatonic black holes. Howeveryon| Of (@) by the conformal rescaling
partial analytic (obtained by means of the adiabatic approx _
mation) and numerical answers have been obtailﬁ 0,11]. ds® = \/Ed82‘ )

The purpose of this letter is to present the first exact resultThe extremal black hole is recovered for the zero of the poten
on the evaporation process of a near-extremal RN black holgjg) V(o) = 0, which corresponds to, = ¢2/4. This fact

wheree, is the volume element of the unit?S The only
nonzero component of the stress tensor is given by

®3)

5(’0 - UO) s (4)
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suggests us to consider the effective near-horizon and neaWe observe that this flux is constant and coincides with the

extremal theory defined by the expansmnﬂ)f (5) arovmnd thermal value of Hawking flux for near-extremal RN black
. holes, wherdl'y; is Hawking’s temperature. This fact can be
¢ =do+ 9, m=lqg+ Am. (8)  understood easily since the Ag€S? geometries associated

_ o (1) and [(I2) represent indeed the near-horizon limit of

We obtain the RN geometried](1) due to the shock wafle (4). So the

constant thermal flux for every value ofcorresponds to the
/de\/_ [(R+ 12—3)¢ - —|Vf|2 +0(¢%), (9) flux measured by an inertial observer at future null infinity
approaching the event horizon of the RN black hole. In the
light of this remark it is interesting to point out that thethie-
ory also describes the dynamics of extremal and near-eatrem
RN black holes close to the horizon in the presence of a spher-
ically symmetric Klein-Gordon field. This is so because, as
it is well-known, the scalar field propagates freely near the
horizon.

where the leading order term is just the Jackiw-Teitelboim
(JT) model, which now arises as the effective theory govern:
ing the dynamics near extremality and close to the horizon,
A d = 1 realization of the Ad$,,/CFT, correspondence
[@] in the JT model exactly accounts for the deviation from
extremality of the Bekenstein-Hawking entropy of RN black
holes ]. Therefore one can also expect to obtain an ex- . . .
act picture of the evaporation process near the horizon. Th % Our purpose now is to analyze the back-reaction effects in
formation of a near-extremal black hole due to a shock Wavé € evaporation process. The one-loop effective theorpis o
@) can be pushed down to the JT metrics of constant negatl\}\‘%l ined by adding the non-local L|ou;/|ll_eg Polyakov termhet
curvature. Fow < v, we have the extremal RN configura- classical action. We then get{=1 )

tion and its near-horizon geometry is given by the Robinson-

Bertotti anti-de Sitter geometry [[15] /dzx\/— Ré+ 4024 — = Z V12
2
ds® = ——dt2 D 4 12d0? 10 Nh N
s r2 F2 0 T Tods, (10) - S6r /dQ:m/_RD 1R+§ /d%/_v (16)

wherer, is the extremal radius. After the rescalirly (7) the yhere we have considered the presenc¥ etalar fields. The
two-dimensional metric in null conformal coordinates be'parametelN allows us to consider the theory in the larye

comes limit, keepingN 72 fixed. Moreover we have also added a local
) 2 conterterm (in the form of a 2d cosmological constant which
ds” = gt dudv (11)  corresponds to the freedom of adding a constant to the 2d con-

formal anomaly), mimicking the analysis of dilaton gravity
theory [$], to ensure that the extremal geometry remains an
exact solution of the one-loop theory &t= 1. Our results

are the same irrespective of the valuecofWe should men-

with u = v + £, & = [¢. Proceeding in a similar way for
the near- extremal configuratien> vy, we obtain

) ) tion now that for the region we are interested in, the confdrm
ds® = —(12—30 — lAm)dudv (12)  factory/3 of () is almost constant and therefore the semiclas-
sical quantization in terms of the Einstein-Maxwell actéomd
with the JT action are equivalent. Far from the horizon this is no

more true. The equatlons of motion derived frcEi (16) in con-

_ [2lg® [ 2 - formal gaugels? = —e?’dzdxz~ are (from now on we take
u=v-+ Earctanh m X . (13) 6 — 1)

The coordinate$v, «) and (v, @) are the radial null coordi- 20,0_p+ Ne¥ =0, 17)
nates corresponding to those of RN+ r*, ¢ — r*) before and 040_d + N2ge? =0, (18)
after the shock wave. Imposing the continuity[of](11) gn¢) (12 9.0 =0 (19)

alongv = vy one obtains T N
S — 2030 +40:p0:d =TI, — ——ts — (20)

_ 0 127

u = vy + a cotanh , (14) Nk
a

o (0ep)* = 02p) .

wherea = \/%. From this relation we can work out im-

mediately the outgoing energy flux of Hawking radiation in
terms of the Schwarzian derivative between the coordinates
andu

The functionst . (z*) are related with the boundary condi-
tions of the theory and depend on the quantum state of the
system. The Liouville equatiof ([L7) has the general satutio

) ) b 04AL0 A

TRV S S — T etda (21)
M) = g (0@ = g = 15Th (9) (L4544



AdS boundary

F(z™)
- —at

1
= + _F/(I+)a

5 (26)

¢

I = 1¢, where the functior (1) satisfies the following dif-
ferential equation

Ni [ F" 1 (F\°
F'= —|-——+=(—= 27
247 < F 2 (F ) ) ’ 27)
and relates the* andv coordinates
dv g3
— = . 28
dxt F (28)
FIG.1. Kruskal diagram of near-extremal black hole. The tiwe-
like boundaries of near-horizon geometry AdS8e represented by The evaporating mass is then given by
the vertical linez~ = z*. The infalling shock wave emerges
from one boundary (left side af~ = z* line) and, crossing the o 24T o 29
outer and inner horizons, reaches the other boundary (sigbtof m(a™) = Nhlg3 ’ (29)
z~ =z line).
whereA , (z*) are arbitrary chiral functions. We can choose a@nd can be related to the boundary functipn
particular form of the functiond . as a way to fix completely 5 N N N
the conformal coordinates. We find convenient to choose t = lgm(z")O(z" — zy) (30)
” 2F? '
-2
A+:I+, Asz (22)
N The fact that the functions. can be discontinuous for coor-

Before the shock wave these coordinatéscorrespond to the
RN coordinategv, u) and after ¢ > v,) the relation is

+
_xo

3

+

v =z + a arctanh (23)

together withu = 2. Then both metricg[(11) anfi {12) are

brought into ) and the physical information is encoded in

the fieldg. At the classical level the solution for it is given by

G 1-0Gt — ) gt — )@ — )
¢ =1g’ o - (24)

After the shock waves(™ > z{) the extremal radius is given
by curveg = 0: (¢t — z8)(z~ — ) = a2, and the outer
and inner apparent horizons= r.. are given by the condition
0rdp =02 = x4 + a. The corresponding Kruskal diagram
(in this region the coordinatest are regular at the horizon
and therefore they represent a sort of Kruskal frame) isrgive

by Fig.1.

At the quantum level we have to solve equatiohd [(1]7-20

and the crucial point is to choose the adequate functions

ty(x%) for the physical situation. The natural choice is
t, = t,+ = 0 andt, = t,- = 0 before the shock-wave
andt,+ = %{v,x*} andt,- = 0 after, where now is the
light-cone coordinate of the evaporating Vaidya-type metr

22

ds? = _(W —Im(v))dv?® + 2dzdv . (25)

dinatesr* associated to free (or Liouville) fields was pointed
outin [[L§]. The expressiof (B0), and also the functie),
admits a series expansion in powersipfvhere the classical
term, obtained using the classical relatiEI (23),is givenb

a?O(zt —zf)

foy = . (31)
(a2 — (z+ — z7)?)?
As before, the curve = 0
T =2t — 2F_1T , (32)

represents the location of the extremal radius pg = 0
defines the inner and outer apparent horizons in the spazetim
of the evaporating black hole

72— 2FF"
X

F//

r =

FI
_ﬁ

" (33)
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he intersection of these three curves takes place when

F? - 2FF" =2l¢*m(z") =0, (34)

i.e. at the end of the evaporation. On the other hand , it ig eas

to show thato,m(x™) —%m(ﬁfﬂ which can be readily
(v—w0)

integrated inv coordinate givingn(v) = Ame” 7inia?
and som = 0 is given byv = +o0 and not before (had we

The remarkable property of the equations of the near-horizostarted with the classical boundary terﬂ(Sl) we would have
effective theory is that one can solve them also in conformabbtained a finite evaporation time). From the numericallgrap
gauge. We find that of the functionF'(z ™) it is clear that this happens at a finite



AdS boundary as with those obtained using the adiabatic approximaftigh [1
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