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1 Introduction

Since the discovery of the thermodynamical properties of black holes a crucial
open problem has been to find a microscopical structure responsible for the
Bekenstein-Hawking entropy. In the last few years this question has started
to receive some answers. The discovery of D-branes led to an explicit statis-
tical derivation of the black hole entropy for extremal [1] and near-extremal
[2] black holes (see also the reviews [3, 4]). In a different context, Strominger
has proposed [5] a unified way to account for the Bekenstein-Hawking en-
tropy of black holes whose near-horizon geometries are locally similar to the
BTZ black holes [6]. The idea of the approach of [5] is that a conformal
symmetry of the gravity theory can control the asymptotic density of states,
irrespective of the details of quantum gravity theory, thus providing a sta-
tistical explanation to the area formula for the entropy and, in turn, a sort
of universality. Strominger’s argument is based in the holographic relation,
first discovered by Brown and Henneaux [7], between gravity on AdS3 and a
two-dimensional conformal field theory on the boundary. AdS3 gravity pos-
sesses a set of asymptotic symmetries closing down two copies of the Virasoro
algebra with central charge c = 3ℓ

2G
, where G is Newton’s constant and −1/ℓ2

is the cosmological constant. Using Cardy’s formula [8] for the boundary
CFT2 one reproduces the expected entropy. However, the validity of Cardy’s
formula requires that the lowest eigenvalues of the Virasoro operators L0

and L̄0 vanish. As it has been pointed out in [9], this is not the case of the
boundary theory of AdS3 gravity, because it is, up to global issues, Liouville
theory [10]. The asymptotic level density of states is then controlled by the
effective central charge [11] which, for Liouville theory, turns out to be equal
to one and therefore cannot properly account for the entropy. However, the
fact that the entropy fits Cardy’s formula with the ordinary central charge
seems to indicate that gravity theory itself can provide relevant information
about the microscopic theory, but apparently not enough to characterise it
completely. Interesting attempts to avoid the restrictions of 2+1 dimensions
to explain the Bekenstein-Hawking entropy by means of symmetry principles
has been given in [12, 13, 14] by considering the horizon as a boundary.

Among the family of AdSD/CFTD−1 dualities [15], the pure gravity case
AdS3/CFT2 is the best understood. In contrast, the AdS/CFT correspon-
dence in two space-time dimensions is quite enigmatic. Some progress has
been made in [16, 17, 18, 19]. One of the aims of this paper is to further inves-
tigate the AdS2/CFT1 correspondence in terms of asymptotic symmetries. In

1



section 2 we shall analyse the relation between the first sub-leading terms in
the asymptotic expansion of the metric field, obeying suitable AdS2 boundary
conditions, and the stress tensor of the boundary theory, as happen in higher
dimensional situations [20, 21]. Following a similar line of reasoning as in
[5] we shall show that the application of Cardy’s formula to the unique copy
of the Virasoro algebra emerging as an asymptotic symmetry, yields to the
entropy of spinless BTZ black holes. But more interestingly, the AdS2/CFT1

correspondence, implemented via asymptotic symmetries, can be used to
correctly account for the deviation of the Bekenstein-Hawking entropy from
extremality in the near-horizon approximation. On general grounds, two-
dimensional Anti-de Sitter space naturally arises in the near-horizon limit
around the degenerate radius of coincident horizons [22]. Therefore, a way
to study Maldacena’s duality in D=2 and its implication for black holes
is to consider gravity theories having black hole solutions with degenerate
horizons. In section 3 we consider near-extremal BTZ black holes and in
section 4 four-dimensional Reissner-Nordström black holes near extremality.
Finally, in section 5 we show that the above results can be extended to any
black hole with degenerate horizons that can be properly described by a
two-dimensional effective theory.

2 Dimensional reductions of AdS3 gravity and

the AdS2/CFT1 correspondence

Einstein gravity on AdS3 is described by the action

S =
1

16πG

∫

d3x
√−g(R +

2

ℓ2
) (2.1)

and we can dimensionally reduce the theory [23, 24] via a decomposition of
the metric of the form

ds2
(3) = gµνdxµdxν + ℓ2φ2(x)(dθ + Aµ(x)dxµ)2 , µ, ν = 0, 1 (2.2)

where ds2 = gµνdxµdxν is a two-dimensional metric, φ a scalar (dilaton)
field and Aµ a Kaluza-Klein U(1) gauge field. The two-dimensional effective
theory is governed by the action

ℓ

8G

∫

d2x
√−gφ(R +

2

ℓ2
− ℓ2

4
φ2FµνF

µν) . (2.3)
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The equations of motion of the gauge field imply that

2
ℓ3φ3

√−g
F+− = constant , (2.4)

where x± = x0 ± x1 and F+− = ∂+A− − ∂−A+. Moreover, by varying the
dilaton one obtains

R +
2

ℓ2
− 3

4
ℓ2φ2F 2 = 0 , (2.5)

and using (2.4) one gets

R = − 2

ℓ2
− 3

2

J2

ℓ2φ4
, (2.6)

where J is related with the integration constant of (2.4). The action (2.3)
turns out to be then

ℓ

8G

∫

d2x
√
−g(φR + V (φ)) , (2.7)

where

V (φ) = φ

(

2

ℓ2
− J2

2ℓ2φ4

)

. (2.8)

The most general solution of (2.7) with a linear dilaton corresponds to the
dimensional reduction of the BTZ black hole which, in the Schwarzschild
gauge, takes the form (with At = −4GJ

r2 )

ds2 = −
(

r2

ℓ2
− 8GM +

16G2J2

r2

)

dt2 +
dr2

(

r2

ℓ2
− 8GM + 16G2J2

r2

) , (2.9)

φ =
r

ℓ
. (2.10)

The two event horizons are located at

r2
± = 4GMℓ2



1 ±

√

1 −
(

J

Mℓ

)2


 (2.11)

and the outer horizon give rise to the entropy [24]

S =
2πr+

4G
= π

√

ℓ(ℓM + J)

2G
+ π

√

ℓ(ℓM − J)

2G
, (2.12)
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which reproduce as expected the entropy of the original three-dimensional
theory. To get a two-dimensional AdS geometry from (2.6) we have two
different ways. We can restrict the theory to the spinless sector J = 0 with

R = − 2

ℓ2
, (2.13)

or we can fix the value of the dilaton in a way consistent with the equation
of motion [22]

⊔⊓φ = V (φ) , (2.14)

where V (φ) is given by (2.8). This implies that the value of the dilaton
φ = φ0 should be a zero of the potential

V (φ0) = φ0

(

2

ℓ2
− J2

2ℓ2φ4
0

)

= 0 , (2.15)

and then

R = −V ′(φ0) = − 8

ℓ2
. (2.16)

In the remaining part of this section we shall study the first possibil-
ity, which is equivalent to consider the Jackiw-Teitelboim model of two-
dimensional gravity [25]. The second way to get an AdS2 geometry (AdS2×S1

from the three-dimensional point of view) will be widely analysed in the next
section, although the basic features of the AdS2/CFT1 correspondence con-
sidered in our approach will be presented here.

The reduced theory with J = 0 coincides with the Jackiw-Teitelboim
model

S =
ℓ

8G

∫

d2x
√−gφ(R +

2

ℓ2
) , (2.17)

whose solutions are of the form

ds2 = −(
x2

ℓ2
− a2)dt2 + (

x2

ℓ2
− a2)−1dx2 , (2.18)

φ =
x

ℓ
, (2.19)

with a2 = 8GM . The metrics (2.18) are locally AdS2 and in order to define
a quantum theory we have to specify boundary conditions for the fields at
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infinity. Mimicking the analysis of three-dimensional gravity [20] we shall
assume the following asymptotic behaviour of the metric ‡

gtt = −x2

ℓ2
+ γtt(t) + O(

1

x2
) , (2.20)

gtx =
γtx

x3
+ O(

1

x5
) , (2.21)

gxx =
ℓ2

x2
+

γxx

x4
+ O(

1

x6
) , (2.22)

where we have now introduced the first sub-leading terms in the expansion
aiming to relate them with a conformal field on the boundary.

The infinitesimal diffeomorphisms ζa(x, t) preserving the above boundary
conditions are

ζ t = ǫ(t) − ℓ4

2x2
ǫ′′(t) + O(

1

x4
) , (2.23)

ζx = −xǫ′(t) + O(
1

x
) . (2.24)

Using the ”gauge” diffeomorphisms

ζ t =
αt(t)

x4
+ O(

1

x5
) , (2.25)

ζx =
αx(t)

x
+ O(

1

x2
) , (2.26)

where αt and αx are arbitrary functions, one can easily show that the only
gauge invariant quantity is

Θtt = κ(γtt −
γxx

2ℓ4
) , (2.27)

where κ is a constant coefficient.
The action of the infinitesimal diffeomorphism (2.23-2.24) on the metric

induces the following transformation for the function Θtt:

δǫΘtt = ǫ(t)Θ′
tt + 2Θttǫ

′(t) − κℓ2ǫ′′′(t) . (2.28)

So, the quantity Θtt behaves as the (chiral component of the) stress tensor of
a conformal field theory. To evaluate the central charge we need to know the

‡These boundary conditions where first introduced in [18].
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coefficient κ. To this end we have to work out the Noether charges associated
to the above asymptotic symmetries. Using the decomposition of the metric

ds2 = −N2dt2 + σ2(dx + Nxdt)2 , (2.29)

the bulk Hamiltonian of the theory is given by

H0 =

∫

dx(NH + NxHx) , (2.30)

where the constraints are

H = −ΠφΠσ + (
φ′

σ
)′ − σφ

ℓ2
, (2.31)

Hx = Πφφ
′ − σπ′

σ , (2.32)

and the momenta

Πφ = N−1(σ−1 + (Nxσ)′) , (2.33)

Πσ = N−1(−φ̇ + Nxφ′) . (2.34)

The full Hamiltonian is given by

H = H0 + K , (2.35)

where K is a boundary term necessary to have well-defined variational deriva-
tives. Assuming the boundary condition for the dilaton

φ =
x

ℓ
+

ℓ

2x
γφφ(t) + O(

1

x2
) (2.36)

and imposing that K vanishes for a2 = 0, the boundary term K can be
worked out [18]

K(ǫ) =
ℓ

4G
lim
x→∞

{

−x

ℓ
ζ⊥(φ′ − 1

ℓ
) +

x

ℓ

∂ζ⊥

∂x
(φ − x

ℓ
) +

x3

2ℓ4
ζ⊥(gxx −

ℓ2

x2
) +

ℓ

x
ζ‖Πσ

}

.

(2.37)
Using the asymptotic expansion for the metric and the dilaton we obtain

K(ǫ) =
ǫ

4G

(

1

2ℓ4
γxx + γφφ

)

. (2.38)
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Moreover, the equation for the dilaton

⊔⊓φ =
2

ℓ2
φ (2.39)

allows to relate γφφ with the remaining quantities

γφφ =
(

γtt −
γxx

ℓ4

)

, (2.40)

and then K(ǫ) can be written in terms of the unique gauge invariant quantity

K(ǫ) = ǫ
1

4G

(

γtt −
1

2ℓ4
γxx

)

. (2.41)

The standard identification of K(ǫ) in terms of the stress tensor [26]

K(ǫ) = ǫΘtt (2.42)

allows us to know the coefficient κ, which turns out to be

κ =
1

4G
. (2.43)

We still have to compute the central charge. Defining the Fourier components
LR

n of Θtt as

LR
n =

1

2πℓ

∫ 2πℓ

0

dtΘttℓe
int/ℓ , (2.44)

where we assume periodicity of t in the interval 0 ≤ t < 2πℓ, the Poisson
algebra can be expressed as follows

{LR
n , LR

m} = δǫm
LR

n , (2.45)

where ǫm = ℓeimt/ℓ. Using (2.28) it is easy to get the following Virasoro
algebra

i{LR
n , LR

m} = (n − m)LR
n+m +

c

12
n3δn,−m (2.46)

with central charge

c = 12κℓ =
3ℓ

G
. (2.47)

For the black holes (2.18) we have a constant value of Θtt

Θtt =
κ

2
a2 =

1

8G
a2 (2.48)
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and, in terms of the mass a2 = 8GM , we have

LR
0 = ℓΘtt = Mℓ (2.49)

Observe that to have a Virasoro algebra of the Neveu-Schwartz form we must
shift the Ramond-type generator: LR

0 → LNS
0 = LR

0 + c
24

.
The results (2.47) and (2.49) allows us to compute the asymptotic density

of states using Cardy’s formula

log ρ(∆) ∼ 2π

√

c∆

6
, (2.50)

where ∆ is the eigenvalue of the Virasoro generator LNS
0 . In our case c = 3ℓ

G

and ∆ = Mℓ + ℓ
8G

. For large mass ∆ ≫ c we get the following statistical
entropy

S = 2π

√

Mℓ2

2G
, (2.51)

which coincides with the thermodynamical formula (2.12) with J = 0. We
should stress the fact that, in contrast with the analysis of [18], which uses the
convention 4G = ℓ, we have found an exact agreement between the statistical
entropy of the two-dimensional black hole (2.18) and the corresponding 2D
Bekenstein-Hawking formula. The discrepancy comes from the evaluation of
the central charge. Our result is c = 3ℓ

G
and the authors of [18] claim that

c = 24( ℓ
4G

).
We must stress now the important fact that the statistical entropy is

independent of the length of the interval of the compactified parameter t. If
we choose a different periodicity for t: 0 < t < 2πβ, the central charge shift
c → c ℓ

β
, but LR

0 get modified LR
0 → β

ℓ
LR

0 in such a way that cLR
0 , and hence

the entropy, is not sensitive to the compactification scale.

3 Near-extremal BTZ black holes

The second possibility to get a AdS2 geometry in AdS3 gravity is by means of
a constant dilaton solution. This can be obtained performing a perturbation
around the degenerate radius of the extremal solutions, keeping the angular
momentum | J

ℓ
|= M0 fixed, (see [22] for the general case):

M =| J/ℓ | (1 + kα2) , (3.1)

8



where α is an infinitesimal parameter 0 < α ≪ 1 and k is an arbitrary
positive constant. Introducing the coordinates (t̃, x̃) defined by

t =
t̃

α
, r = r0 + αx̃ , (3.2)

where r0 = r+ = r− = 2ℓ
√

GM0, the solutions (2.9-2.10) have a well-defined
limit when α → 0:

ds2 = −
(

4x̃2

ℓ2
− a2 + O(α)

)

dt̃2 +

(

4x̃2

ℓ2
− a2 + O(α)

)−1

dx̃2 , (3.3)

φ =
r0

ℓ
+

α

ℓ
x̃ , (3.4)

with a2 = 8M0Gk. This way we recover, in the α → 0 limit, an AdS2

geometry with curvature R = − 8
ℓ2

. Arguing now as in the previous section
and assuming analogous boundary conditions for the asymptotic expansion
of the two-dimensional AdS2 metric

gt̃t̃ = −4x̃2

ℓ2
+ γt̃t̃ + O(

1

x̃2
) , (3.5)

gt̃x̃ =
γt̃x̃

x̃3
+ O(

1

x̃5
) , (3.6)

gx̃x̃ =
ℓ2

4x̃2
+

γx̃x̃

x̃4
+ O(

1

x̃6
) , (3.7)

we find that
Θt̃t̃ = κ(γt̃t̃ −

γx̃x̃

2(ℓ/2)4
) (3.8)

transforms as

δǫΘt̃t̃ = ǫ(t)Θ′
t̃t̃ + 2Θt̃t̃ǫ

′(t) − κℓ2

4
ǫ′′′(t) . (3.9)

Observe that the modification of the above expression with respect to the
case J = 0 is due to the shift in the two-dimensional curvature, R = − 8

ℓ2

instead of R = − 2
ℓ2

for J = 0.
Since the AdS2 codifies in some sense the black hole geometry in the

near-extremal situation

M − M0

M0
= kα2 ≪ 1 , (3.10)
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the idea now is to exploit this feature to explain the near-extremal entropy
in terms of the asymptotic symmetries of AdS2. To evaluate the central
charge when we approach to the extremal black hole we have to work out the
Noether charges. The calculation is similar to that given in section 2, since
only the derivative term in the action (2.7) is relevant, and it coincides with
that of Jackiw-Teitelboim theory. Therefore, the Noether charges, to leading
order in α, are

K(ǫ) = ǫ(t̃)
αℓ

4G

1

ℓ

(

γt̃t̃ −
γx̃x̃

2(ℓ/2)4

)

, (3.11)

and this implies that the coefficient κ is

κ =
α

4G
. (3.12)

Assuming t̃ varies in the interval 0 < t̃ < 2π(R/2)−1/2 = πℓ, the central
charge is

c = 6κℓ =
3ℓ

2G
α . (3.13)

We also want to compute the value of LR
0 in the near-extremal black hole

solutions. Since LR
0 = ℓ

2
K (ǫ(t̃) = 1) we find that

LR
0 =

ℓ

2

α

4G

1

2
a2 =

1

2
M0kαℓ . (3.14)

It is interesting to observe that, with respect to the time t = t̃
α
, the generators

LR
m(t̃)

shift into LR
m(t) = αLR

m(t̃)
, and then LR

0(t) is equal to one half of the

deviation of the mass from the extremal case:

LR
0(t) =

1

2
M0ℓkα2 =

1

2
(M − M0)ℓ . (3.15)

From (3.13) and (3.14) we can evaluate, via Cardy’s formula, the degen-
eracy of states if M − M0 is large in the microscopic sense

2π

√

cLR
0

6
= π

√

ℓ2(M − M0)

2G
, (3.16)

which turns out to be just the difference between the entropy of a nearly
extremal black hole and a extremal one

∆S = S − Se = π

√

ℓ2(M − M0)

2G
. (3.17)

Therefore, the statistical entropy (3.16) just account for microscopic excita-
tions from the extremal macroscopic state.
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4 Near-extremal Reissner-Nordström black holes

Let us start with the Einstein-Hilbert action in 3+1 dimensions

1

16πG

∫

d4x
√

−g(4)(R(4) − G(F (4))2) . (4.1)

Imposing spherical symmetry on the electromagnetic field and on the metric

ds2
(4) = gRN

µν dxµdxν +
1

2
ℓ2φ̄2(x)dΩ2 , (4.2)

where dΩ2 is the metric on the two-sphere and ℓ is the Planck length (ℓ2 = G),
the action (4.1) reduces to

∫

d2x
√−g

[

1

2

(

φ̄2

4
R +

1

2
| ∇φ̄ |2 +

1

ℓ2

)

− ℓ2

8
φ̄2F µνFµν

]

. (4.3)

To perform a similar analysis to that of section 3 we need to reparametrise
the fields to eliminate the kinetic term in (4.3) and bring the action to the
more reduced form (2.3). To this end we introduce the new fields

φ =
φ̄2

4
, (4.4)

gµν =
√

2φgRN
µν . (4.5)

The two-dimensional effective action becomes

1

2

∫

d2x
√−gφ

(

R +
1√

2ℓ2φ3/2
−
√

2φ1/2ℓ2F µνFµν

)

(4.6)

and the equations of motion of the electromagnetic field yield to

4
√

2ℓφ3/2

√−g
F+− = Q , (4.7)

where Q is an integration constant. Plugging (4.7) into (4.6) we get

1

2

∫

d2x
√−g(φR + V (φ)) , (4.8)

where

V (φ) =
1

ℓ2

(

1√
2φ

− ℓ2Q2

(2φ)3/2

)

. (4.9)
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The general solution with a non-constant dilaton is

ds2 = −(
√

2φ +
ℓ2Q2

√
2φ

− 2Mℓ)dt2 + (
√

2φ +
ℓ2Q2

√
2φ

− 2Mℓ)−1dx2 (4.10)

φ =
x

ℓ
. (4.11)

Note that the rescaling (4.4-4.5) map the above solutions into the standard
form

(ds2)RN = −
(

1 − 2GM

r
+

Q2G2

r2

)

dt2 (4.12)

+

(

1 − 2GM

r
+

Q2G2

r2

)−1

dr2 (4.13)

φ̄ =
√

2
r

ℓ
. (4.14)

As is well known, there are two event horizons, located at
√

2φ = ℓ(M ±
√

M2 − Q2) . (4.15)

Perturbing the solution (4.10) around the degenerate radius x0 = 1
2
ℓ3M2

0 of
the extremal solution M0 =| Q |

M = M0(1 + kα2) , (4.16)

t =
t̃

α
, x = x0 + αx̃ , (4.17)

we get in the near-horizon limit α → 0

ds2 = −
(

1

ℓ5 | Q |3 x̃2 − 2 | Q | kℓ

)

dt̃2 +

(

1

ℓ5 | Q |3 x̃2 − 2 | Q | kℓ

)−1

dx̃2 .

(4.18)
So, the curvature is R0 = 2

ℓ5M3

0

and a2 = 4M0ℓ. Note that for the metric gRN
µν

the curvature is 2
ℓ4M2

0

, which corresponds to that of the Robinson-Bertotti
geometry.

Proceeding in a parallel way as in the case of near-extremal BTZ black
holes, we find here that the Noether charges are

K(ǫ) = ǫ(t̃)
α

ℓ

(

γt̃t̃ −
1

2ℓ10Q6
γx̃x̃

)

, (4.19)
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and these yield to the central charge

c = 12 | Q |3 ℓ4α

β
(4.20)

if t̃ ∈ [0, 2πβ]. The value of LR
0 near extremality is

LR
0 =| Q | kαβ (4.21)

and using Cardy’s formula we obtain

∆S = 2π

√

cLR
0

6
= 2π

√

2Q3ℓ4∆M , (4.22)

where
∆M =| Q | kα2 = M − M0 . (4.23)

It is now easy to see that the statistical expression (4.22) exactly agrees with
the deviation of the Bekenstein-Hawking entropy of near-extremal black holes
from the extremal case Se = πQ2ℓ2

S = πℓ2(| Q | +∆M +
√

2 | Q | ∆M + (∆M)2)2 = Se + ∆S + O((∆M)3/2) .
(4.24)

5 AdS2/CFT1 correspondence and near-extremal

black holes

In this section we shall generalise the argument leading to the statistical
explanation of the near-extremal Bekenstein-Hawking entropy of BTZ and
Reissner-Nordström black holes to a wider family of black holes. We shall
consider a generic black hole solution, in an arbitrary dimension n, which
can be described by the metric

ds2 = gµνdxµdxν +
1

2
ℓ2φ2dΩn−2 (5.1)

where ℓ is the Planck length of the theory. By dimensional reduction and
integrating the equations of motion of any abelian gauge field we can arrive
at an effective two-dimensional theory. An additional conformal rescaling of
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the metric and a redefinition of the dilaton field yield into an action of the
form [28, 29]

1

2G

∫

d2x
√−g(Rφ + ℓ−2V (φ)) , (5.2)

where V (φ) is a potential function parametrising the original theory and
G is a dimensionless constant playing the role of Newton constant in two-
dimensions. The solutions for the 2D effective metric are

ds2 = −(J(φ) − 2Mℓ)dt2 + (J(φ) − 2Mℓ)−1dr2 , (5.3)

φ =
r

ℓ
, (5.4)

where V ′(φ) = J(φ). The horizons are the solutions of the equation J(φ) =
2Mℓ and we have a degeneration at the zeros of the potential

V (φ0) = J ′(φ0) = 0 . (5.5)

If we perturb around the degenerate radius of coincident horizons

M = M0(1 + kα2) , (5.6)

t =
t̃

α
, (5.7)

r = r0 + αx̃ , (5.8)

the two-dimensional metric transforms into

ds2 = −(−R0

2
x̃2−2kM0ℓ+O(α))dt̃2+(−R0

2
x̃2−2kM0ℓ+O(α))−1dx̃2 , (5.9)

where

R0 =
J ′′(φ0)

ℓ2
. (5.10)

Imposing boundary conditions of the form

gt̃t̃ =
R0

2
x̃2 + γt̃t̃ + ... , (5.11)

gt̃x̃ =
γt̃x̃

x̃3
, (5.12)

gx̃x̃ = − 2

R0

1

x̃2
+

γx̃x̃

x̃4
+ ... , (5.13)

(5.14)
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and working in the gauge γt̃x̃ = 0, the Noether charges can be worked out
without difficulty because of the simple form of the two-dimensional effective
action (5.2).

K(ǫ) = ǫ(t̃)Θt̃t̃ , (5.15)

where Θt̃t̃ is the stress tensor

Θt̃t̃ =
α

ℓG

(

γt̃t̃ −
1

2
(
R0

2
)2γx̃x̃

)

. (5.16)

Assuming a periodicity of 2πβ in t̃, we obtain

c =
24α

ℓGR0β
, (5.17)

LR
0 =

M0kαβ

G
. (5.18)

Applying now Cardy’s formula we get

∆S = 2π

√

4M0ℓkα2

R0ℓ2G2
(5.19)

and, taking into account (5.10)and that

M0ℓkα2 = (M − M0)ℓ =
1

2
(J(φh) − J(φ0)) , (5.20)

where φh is the value of the dilaton at the outer horizon, we can rewrite
(5.19) as

∆S =
2π

G

√

2M0(J(φh) − J(φ0))

J ′′(φ0)
. (5.21)

On the other hand, the Bekenstein-Hawking entropy for the two-dimensional
effective theory is given by the simple expression [29]

S =
2π

G
φh , (5.22)

and therefore,

∆S =
2π

G
(φh − φ0) . (5.23)
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Expanding J(φ) around the extremal situation (J ′(φ0) = 0)

J(φh) = J(φ0) +
1

2
J ′′(φ0)(φh − φ0)

2 + ... (5.24)

and, in the near-extremal approximation, we have

2(J(φh) − J(φ0))

J ′′(φ0)
= (φh − φ0)

2 , (5.25)

implying the equality between the statistical expression (5.21) and the ther-
modynamical one (5.23).

6 Conclusions and final remarks

We have shown that the asymptotic symmetries of BTZ and Reissner-Nordström
extremal black holes, whose near-horizon geometry is AdS2×Sn (n=1,2 re-
spectively) are powerful enough to control the deviation of the Bekenstein-
Hawking entropy of nearly extremal black holes from the extremal situation.
We have also argued that the above results can be generalised for arbitrary
black holes near extremality if they can be described by an effective two-
dimensional dilaton gravity theory.

Our approach is based on a realization of the boundary conformal field
theory in terms of the sub-leading terms in the asymptotic expansion of
the metric field. The evaluation of the Noether charges associated with the
asymptotic symmetries near extremality allows to compute the central charge
and the value of LR

0 . These values depend on an arbitrary parameter β in such
a way that cLR

0 , and hence the statistical entropy, has an absolute meaning
§. However, in the present context the physical excitations are associated
to the ”would-be gauge” diffeomorphisms characterised by the functions ǫ(t̃)
and these degrees of freedom have an effective central charge ceff = 1 (see
[27]). Therefore, it could appear natural to choose β in such a way that c = 1
and bypass the question of the discrepancy between c and ceff . This type
of argument was put forward in 2+1 gravity in [30, 31] and could have some
unexpected consequences.

§A similar situation appears in [12, 14]
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[6] M. Bañados, C. Teitelboim and J. Zanelli, Phys. Rev. Lett. 69 (1992)
1849

[7] J. D. Brown and M. Henneaux, Commun. Math. Phys. 104 (1986) 207

[8] J. A. Cardy, Nucl. Phys. B270 (1986) 186

[9] S. Carlip, Class. Quant. Grav. 15 (1998) 3609, hep-th/9806026

[10] O. Coussaert, M. Henneaux and P. van Driel, Class. Quant. Grav. 12
(1995) 2961, gr-qc/9506019

[11] D. Kutasov and N. Seiberg, Nucl. Phys. B358 (1991) 600

[12] S. Carlip, ”Black hole entropy from conformal field theory in any di-
mension”, hep-th/9812013

[13] S. Carlip, ”Entropy from conformal field theory at Killing horizons”,
gr-qc/9906126

17

http://arXiv.org/abs/hep-th/9601029
http://arXiv.org/abs/hep-th/9602043
http://arXiv.org/abs/hep-th/9602043
http://arXiv.org/abs/hep-th/9607235
http://arXiv.org/abs/hep-th/9712253
http://arXiv.org/abs/hep-th/9712253
http://arXiv.org/abs/hep-th/9712251
http://arXiv.org/abs/hep-th/9806026
http://arXiv.org/abs/gr-qc/9506019
http://arXiv.org/abs/hep-th/9812013
http://arXiv.org/abs/gr-qc/9906126


[14] S. N. Solodukhin, ”Conformal description of horizon states”, hep-
th/9812056

[15] J. M. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231, hep-th/9711200

[16] A. Strominger, ”AdS2 Quantum Gravity and String Theory”, JHEP
9901 (1999) 007, hep-th/9809027

[17] J. Maldacena, J. Mickelson and A. Strominger, ”Anti-de Sitter fragmen-
tation”, hep-th/9812073

[18] M. Cadoni and S. Mignemi, ”Entropy of 2D black holes from counting
microstates”, hep-th/9810251; ”Asymptotic symmetries of AdS2 and
conformal group in d=1”, hep-th/9902040

[19] G. W. Gibbons and P. K. Townsend, ”Black holes and Calogero models”,
hep-th/9812034

[20] J. Navarro-Salas and P. Navarro, Phys. Lett. B439 (1998) 262, hep-
th/9807019

[21] V. Balasubramanian and P. Kraus, ”A stress tensor for Anti-de Sitter
Gravity”, hep-th/9902121

[22] J. Cruz, A. Fabbri, D. J. Navarro and J. Navarro-Salas, ”Integrable
models and degenerate horizons in two-dimensional gravity”, hep-
th/9906187, to appear in Phys. Rev. D
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