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1 Introduction

For along time it has been a remarkable puzzle to unraveltgmof the Bekenstein-
Hawking entropy of a black hole. One would expect that stthrepry, as a theory of
guantum gravity, could offer a microscopic explanation laick hole entropy. How-
ever, only recently it has been possible, by applying D-erthniques, to perform
precise calculations which succeed in reproducing the Bstken-Hawking entropy
for extremal [IL[R] and near-extremal black hole solutig@j$ee also[]J4[]5]). On the
other hand three-dimensional gravity can also be quantizactonsistent way[J €] 7]
and therefore one can expect to find a statistical interpoetéor the BTZ black hole
entropy [B]. Carlip showed]9] that, by counting microsaogegrees of freedom of a
conformal field theory living in an appropriate boundarye@an exactly reproduce the
Bekenstein-Hawking formula for the BTZ black holes. Furthere, Stromingef[10]
has also been able to obtain the entropy formula by exptpitie two-dimensional
conformal algebra arising as an appropriate symmetry @etaimensional gravity
with a negative cosmological constaht][11]. These resuligest that the statistical
explanation of the entropy is not too much tied to the det#ilghe quantum theory,
but rather to general symmetry properties of the quantuwitgréneory. This point of
view has been put forward if [ILZ,]13] 14].

The holographic correspondence between gravity on;Aai8 a two-dimensional
conformal field theory, discovered by Brown and Henneaus kgalized in terms of
asymptotic symmetries at spatial infinity. This type of ization of the AAS/CFT cor-
respondencd 1%, [L6] was analyzed for the Jackiw-Teitelbabde of 2D gravity in
[L7,[18] and further studied if [IL9] in connection with gtantheories around extremal
black hole solutions. The extremal BTZ and four-dimensidR@issner-Nordstrom
black holes possess geometries of the form AdS and AdS xS? respectively. It
was shown in[[19] that the AGBCFT, correspondence, implemented via asymptotic
symmetries, can be used to exactly reproduce the devidtibe 8ekenstein-Hawking
entropy from extremality. As it was argued inJ20], the synumelgebra of a one-
dimensional conformal field theory is just a copy of the Vimasalgebra. The finite-
dimensional conformal part of this Virasoro algebra, thd23R) symmetry, is the
isometry group of anti-de Sitter space in two dimensionsweieer, we can alterna-
tively regard the SL(R) symmetry as the isometry group of de Sitter space in two
space-time dimensions and consider the Virasoro algehta aatural enlargement to
the conformal group in one dimension. One of the aims of thpsp is to point out that
the realization of the AdSCFT,; correspondence in terms of asymptotic symmetries
can also be reformulated as adSFT, correspondence, providing, in turn, a statistical
description of the entropy of Schwarzschild-de Sitter blacles [Z]] near the degen-
erate solution (i.e. the Nariai solutiop [22]), which has theometry dg<S*. This
way, the explanation of the entropy for two physically diffet situations, near ex-
tremal Reissner-Nordstrom and near degenerate Schwédzge Sitter black holes,
is similar and seems to indicate the universality of the ma@m. The second goal



of this paper is to show that this result is valid in any dimensthus reinforcing the
idea that the Bekenstein-Hawking entropy can be just deifir@m symmetry consid-
erations.

The paper is structured as follows. In Sect.2 we review, iraltel way, the
Reissner-Nordstrom and Schwarzschild-de Sitter blad& kolutions and the corre-
sponding degenerate limits: the Robinson-Bertotti (AdS?) [B3, [24] and Nariai
(dS,xS?) solutions, respectively. These degenerate solutionesept either black
holes of minimum size (for a given electrical charge) or klholes of maximum size
(for a given cosmological constart > 0). In both cases these solutions are sta-
ble. The degenerate Reissner-Nordstrom solution is meirand the Schwarzschild-
de Sitter solution possesses two horizons (the Schwatddalaick hole horizon and
the cosmological one) with the same size and the same tetaperdnus being in ther-
mal equilibrium. In Sect.3 we shall show, also in a parallaiwthat the deviation of
the Bekenstein-Hawking entropy of nearly degenerate btabés from the entropy of
the degenerate solution can be derived, via Cardy’s forrfdd from the Virasoro
algebra of asymptotic symmetries. We shall emphasize ttigHat this mechanism,
already introduced in[J19], works for both situations: f@ymptotic geometries of
the form AdS xS? and also d$xS?. In Sect.4 we shall generalize the above results
for Reissner-Nordstrom and Schwarzschild-de Sitterklames in any dimension.
Finally, in Sect.5, we state our conclusions.

2 Degenerate horizons and (A)d$Sx S? geometries

First of all we shall briefly review the basic facts concegniine emergence of AdS S
and d$xS? geometries in the near-horizon limit of Reissner-Nomistend Schwarz-
schild-de Sitter black holes. The Reissner-Nordstrom)(BBck hole can be described
by the metric

ds* = =V (r)dt* + V(r)~'dr? + r?dQ°, (2.1)
where om? 2
Vi) =1-"— 4+ (2.2)
T r

q is the electrical charge arid = G is four-dimensional Newton’s constant. For
m? > ¢*, V(r) has two positive roots corresponding to the inner and eatdyiack
hole horizons. But in the limit:? — ¢? the two roots coincide and the horizons appatr-
ently merge. However, this is nothing but an artifact of aqmmmrdinate choice. In this
degenerate case the Schwarzschild coordinates beconprapaiate sincé’(r) — 0
between the two horizons. To see what really happens, leyus t

2
%g:1+5% (2.3)



so that the degenerate case is recovered in the dimit 0. We can now define new
coordinates) andy by

t:% , r=|q|(1+ dsiny). (2.4)

The resultant metric, a first order dnis

sin y — sin 3y

ds* = ¢* |(cos* x — dsin y cos 2x)dp® — (1 +6 )dx* +dQ* |, (2.5)

2cos? y

and whenj = 0 there is a non-trivial geometry between the horizons
ds® = —¢*(— cos® xdy? + dx?) + ¢*dQ? . (2.6)

This is the Ad$xS? Robinson-Bertotti geometry describing the gravitatidieltl of

a covariantly constant electrical field J23, 24]. The tramsfation [2Z.4) possesses a
remarkable similarity to the Ginsparg-Perry ofg [26] fae ttegenerate horizon case
in the Schwarzschild-de Sitter (SdS) black hole, where #a-horizon geometry is
the dS xS Nariai geometry[[22]

ds* = A7 (—sin? xydy? + dx?) + A1dQ?, (2.7)

andA > 0 is the cosmological constant. In bofh {2.6) ahd](2.7) cabesyeometry is
given by the product of two constant-curvature spaces.

We shall now rederive the above results in a more generaigeWe start consid-
ering the most general spherically symmetrical metric

d$2 = _Az(rv t)dt2 + B2(T7 t)d?“2 + D2(7“, t)sz . (28)

If D(r,t) # const. in the above metric, we can perform a coordinate fisamgtion
r — r = D(r,t) and, after further coordinate redefinitions, we can writ dbove
metric in the well known form

ds® = =01 + ANV dr? 4 r2d0? (2.9)
The only thing that remains to be done is to impose Einsteiggations
G+ ANgu = 87Tl2TW , (2.10)

where A is the cosmological constant. For a cosmological chargesty l{d, =
(£,0,0,0)) the solution (generalized Birkhoff’s theorem) reads as

dr?

ds* = =U(r; A dt* + —————
S (Y WX

+ r2dQ?, (2.11)



where o2 A 2

AL S S (2.12)
r 3 r
andm is the mass of the black hole. Far= ¢ = 0 we recover the Schwarzschild

black hole, forA = 0 the RN black hole and fay = 0 the SdS black hole.

U(r;A,qg,m) =1-—

It is interesting to comment that, in a different way from ®ehwarzschild black
hole, theA, ¢ # 0 cases possess aricher physics. Whereas for the first cdsadtien
U(r;m) only has one zero (the black hole horizon), the presencewfpagameters
provides more complexity so that the functidiir; A, ¢, m) can have different roots,
simple or multiple roots, depending in which way we adjust different parameters.
One can find some degenerate cases in which two differertdrebecome coincident
for certain relations between the parameters; andA. Two simple examples of this
feature are the RN and SdS black holes. In the second exangpéedre also two roots
(corresponding to the black hole and the cosmological bajifor0 < m < #A‘%

(A > 0) that become coincident & A‘%) in the limitm — 3%A‘%.

Now we consider the ca$eD?(r,¢t) = rZ = const. In this case the spacetime
decomposes into the product of a two-dimensional manifottithe two-dimensional
spherical surface (M=M,xS?); M, with coordinates, r, and S with coordinates,

. We can now proceed in a similar way as thér, ¢) # const. case. By means of
some coordinate redefinitions we get the following metric

d82 _ _6V(r,t)dt2 + 6)\(T’t)d’f’2 + 7’ng2 ) (213)

Note that bothD(r,t) # const. andD(r,t) = const. are different solutions not being
diffeomorphism connected. Thus, the crucial pointis tac&tae Einstein equationsin
order to look for possible solutions to thér, t), A(r, t) functions. As in theD(r, t) #
const. case we immediately obtain that the above metricldhmaistatic. Further-
more it is worthwhile to remark that these kinds of solutidosnot always exist. The
simplest example emerges in the vacutim = 0 and with a vanishing cosmological
constant\ = 0. The non-vanishing components of the Einstein tensor are

1 1 1, 1,

Gl =GP = e MV + 02— VN, (2.14)

Gl=G'=—=,
0 ! r 2 2 2

and it is immediately noticeable that andG,' do not satisfy the vacuum Einstein
equations[(Z2.10). Instead, if we consider a non-vanishimegs tensor or a cosmolog-
ical constant, the situation changes and new solution$functions/(r) and A(r)
appear. We can get more global information about theseisntuby taking the trace
of (£-10), being the curvatutg = R + R, where

R _ —6_)‘(1// + 1,/2 . EV/X) R _

2 2 ’ r3’
I This case was already noted [27].

(2.15)




are respectively the curvatures of,nd S. It follows immediately that? = 4A and
then M, is also a constant curvature space. Let us analyze two sanplevell-known
examples.

#1.1," =

In this case the componerts” = G,' satisfy the equation§ (Z]10) far> 0 being the
constant? = A~!. Thus M, is a positive constant-curvature space and the remaining
equations solve for the de Sitter space. The global topagyen dSxS* and the
metric is nothing but the Nariai metrig (2.7).

#2.A=0
Now R = 0, 3 = ¢~% and equationg (Z-]L0) solve for a constant stress tensousd.et
consider the tensor of a constant electrical field

1
Smq?

T, =T"'=-T,> = T, = (2.16)

Thus M, becomes the anti-de Sitter space being the global topolai$;:AS* and the
metric given by [[2]6).

In the two above examples the(t,r) = const. solutions are just the geome-
tries that we found previously around the degenerate horcamfigurations in the
D(t,r) # const. solutions. We shall show this in a more general corntethe re-
maining part of this section. Let us consider again the gestatic solution[(Z]9) with
Ar) = —p(r) = InU(r;m, &), wherem is the mass and's are parameters such as
the cosmological constant, electrical charge, etc. Thizbos are the roots df (r).
Solutions with horizon degeneracy will be givenyr) with two or more roots when
two neighbouring roots become coincident, in sgy,for some determined relations
between the parameters, = m(§) as it is shown in Fig. 1.

Sincer is a double root ot/ (r; m, &) for m = my, it follows
U(ro;mo,ﬁ) = U/(Tmmo,@ =0, U”(To;movf) = —Rm (2.17)

where primes denote derivatives with respect to the radiatdinater, and R, is a
constant. Now we perform a perturbative transformatiomadathe degenerate radius
ro by introducing a new pair of coordinateés®

, r=rg+ar, (2.18)

where0 < o < 1. We also writem = mg(1 + ka*) wherek is an arbitrary dimen-
sionless constant being positive 85 < 0 and negative fofz, > 0. The degenerate
case is recovered when= 0. Expanding in powers of — r in a similar way to what



Figure 1: Multi-horizon solutions for different parametelations. Dotted and dashed
lines are degenerate-horizon configurations.

was found in [ZB], the metri¢ (4.9) turns into

dr? ) )
= + (rg + O(w)) d9?
— 272+ 0(a)
(2.19)
wherea? = kmd,,U(rg, m, ), and still remains a non -trivial geomgtry in the near-
horizon limita. — 0 with constant curvatur® = R, + . Note thatR, is positive

(negative) depending on the timelike (spacelike) charaudtdahe region between the
horizons (see Fig. 1) and, in fact, it can be written/as= if . Concerning the

ds* = — <—a2—£7‘ + O(« )) dt* +
2 —a2

two examples considered earlier, we haye= A=z, my = 1A~ for the SdS gravity,
whereas, = |q| = m, for the EM gravity.

The existence of a connection between the presence of btdeksblutions with
horizon degeneracy and (A)gSS* decomposed solutions is now clear. The con-
struction of these kinds of solutions from Birkhoff’s thear is associated with the
existence of multi-horizon black hole solutions, and thisp arise as the near-horizon
geometries around degenerate horizons.

3 Holography and entropy of nearly degenerate RN and
SdS black holes

In this section we shall explain how the deviation of the Betein-Hawking entropy
from extremality for four-dimensional Reissner-Nordstrblack holes can be derived
in terms of the asymptotic symmetries of the correspondiggy4morizon geometry.
Moreover, we shall also show, in a parallel way, that this Ima@ism can be used to
obtain the deviation of the entropy of SdS black holes fromeahtropy of the degen-
erate solution. In both cases the near-horizon geometrythe leading order metric



in power expansion with respect to the parameteran be written as
ds* = —(—a® — %xz)dﬁ + (—a® — %gﬁ)-ldx? + r2dQ? . (3.1)

Assuming the following boundary conditions for the asyntigtexpansion of the two-
dimensional metric

Ry _
g = ?Oxz—i—’yg—i—..., (3.2)
g = =4 (3.3)
T
2 1 Tz
Jzz = ___+’y oy (3.4)

Roz® %
it is not difficult to see that the infinitesimal diffeomorghis(“(z, ¢) preserving the
above boundary conditions are

t 2 " 1
¢ = )= 040 () 35)
" = —zd{t)+0 (%) , (3.6)

where the prime means derivative with respect to tfietordinate, which is a time-
like coordinate for Ad$ (R, < 0) and space-like for dS(R, > 0). The O (&)
terms in thet component are arbitrary and represent the pure gaugedrareions.
Choosing for instance

_ £(t)
f = 2 (3.7)
)
¢ = —, (3.8)
i
one can show that, vz and~z; transform as follows
g = —Roa”, (3.9)
8
gt R (3.10)
2 o
iz = —a® +2Ryat, (3.11)
Ry

and this implies that one can make the gauge choice

v =0. (3.12)

1/ R\’
O =~ (%7 - 5 (70) %x) ) (3.13)

Moreover it is just



wherex is a constant coefficient, the unique gauge invariant qtyeautid it transforms
according to the rule

5.0 = e(D)O + 20¢ () — Zie"'(a | (3.14)
0
Therefore®;; behaves as the stress-tensor of a (one-dimensional) coalffield the-
ory living on the boundary of (A)dS

A puzzling feature of these two-dimensional geometriespintrast to the higher-
dimensional anti-de sitter spaces, is the emergence of iseonhected boundaries at
T = t+oo. For AdS, regarded as part of the near-horizon geometry of neaemstir
Reissner-Nordstrom black holes, one of the boundariessdigside the black hole
horizon (in the asymptotic flat region) while the other boanyds inside the horizon.
According to the results of J10], where the Ad§eometry is generated as the near-
horizon around extremality of BTZ black holes, the one-digienal conformal group
is generated by one chiral component (i.e. one copy of thasdho algebra) of the
two-dimensional conformal group. In terms of asymptotimayetries, this Virasoro
algebra lives on the outer boundany{~ oc) and this suggest a similar interpretation
for Reissner-Nordstrom black holes (see afsp [29]). Meeedrom a general point of
view, if the boundary has several components the Hilbetepathe CFT is a tensor
product [3D]. In our case this means that the Hilbert spacthefinner boundary
should be trivial, without any contribution to the entropye must also note that the
boundaries of dSare spacelike and thinking in terms of the Schwarzschil&itker
geometry the relevant boundary — oo lives outside the cosmological horizon (in
the asymptotically de Sitter region). Therefore, the hodpdic description of the
gravitational degrees of freedom of near-extremal Reislloedstrom black holes are
physically different. However, mathematically we can tigath situations in a similar
way. The Fourier components of the vector fief€ig,, whent is considered a compact
parameter, close down a Virasoro algebra with a vanishingralecharge. Note that
for AdS, it is natural to consider periodicity in the coordinaté tvhile for dS, the
natural periodicity is in the space-liké™coordinate. However it is well known that a
canonical realization of these types of asymptotic symie®is allowed to have a non-
zero central charge. In fact the expression (3.14)) imphiasthe Fourier components
L% of O (when( < t < 273) are

1 273 _ o
Lt = i% / dtOz 85 | (3.15)
0

where the positive sign is fak, < 0 (AdS,) and the negative one fa¢, > 0 (dS,),
generate a Virasoro algebra

Z{L;Il%? ijl} = ,L.(SE'HLL;? = (n - m)Lf—l—m + 1_C2n36n7_m )

(3.16)



with central charge
24

c=F=— (3.17)

where the positive constantis a coefficient which should be determined by the grav-
itational effective Lagrangian governing the physics reedremality or degeneracy.

At this point we have to remark that although the values ottrral chargg(3.17)
andL, depend on the arbitrary parametgthe quantity:L is independent of. This
remark is important since, strictly speaking, the Cardyrfigla requires, in general,
thatc should be the effective central charge, = c — 24A,, whereA, is the lowest
eigenvalue of the Virasoro generatiyy. Since our approach does not offer an explicit
construction of the boundary theory, but rather some gérerdormal properties of
it, we cannot rigorously determing;,. However, the fact that any physical quantity
should be independent gfsuggests the equality betweeandc. ;. A way to imple-
ment this is to choosg in such a way that.;; = 1 and a one-dimensional conformal
system which leads to this effective central charge is teihdd by the coadjoint or-
bits of the Virasoro groud [B1, B2]. This system preservegatty and leads to the
above asymptotic density of states. In fact its phase sggagssentially equivalent to
the space of diffeomorphisms preserving the asymptotiaesion of the metric.

We shall now evaluate the corresponding central chargdsdibr classes of black
holes. To this end, and due that the variabies)are the relevant ones for the asymp-
totic symmetries, it is quite useful to reduce the theorggnating out the angular
variables. Let us consider the Einstein-Maxwell actiorhveitcosmological constant

= G / 2y —g@(RW — 2A 4 (FW)?) (3.18)
Imposing spherical symmetry on the metric

A8, = gudrtda’ + 2202 (3.19)
@) = I

wherel? = GW, z* are the 2D coordinates, () andd)? is the metric on the two-
sphere, and assuming a radial electric field

124, = (g, 0,0,0), (3.20)
the above action reduces to
W = yiE /az%;\/_z2 2(R+2|VY|* 2 + % —2¢%~* —2A),  (3.21)
and redefining
ds? = /¢d3?, (3.22)
w2
o = —. (3.23)



we arrive at

1Y = / dPr/=g(Ro + 172V (9)), (3.24)
where ) \ .
V(9) = (40)72 — I’¢*(49) "% — I"A(49)% . (3.25)
The solutions in terms of the two-dimensional metyic take the form
ds* = —(J(¢) —Im)dt* + (J(p) — Im) tdr?, (3.26)
6 = (3.27)

whereJ(¢) = [ dpV () and in our case

3
2

7(6) = 5(19)} + LP(19) " — LPA(1G)}. (329)

The degenerate horizons appear for the zexosf the potential ¥'(¢y) = 0). If
we perturb around the degenerate radius of coincidentdvsiz

m = mo(l+ka?), (3.29)
P = b (3.30)
[0
r = ro+al, (3.31)
¢ = ¢o+ao, (3.32)
we have [28]
D ~2
09 = (P g 0T +0(a), (3.33)
2 — 8032 — kmyl
where b
Ry = — (d0) (3.34)

52
We must stress now that the asymptotic symmetries of thedimm@nsional metric
(B:33) are the same as those of the four-dimensional one #iee — ¢ part of both
metrics only differs by a constant factQfg, = % In terms of the two-dimensional
Lagrangian the above expansion reads

W= q / Py =GRS+ 172V (90)d) + O(0?). (3.35)

So the leading order is governed by the Jackiw-Teitelboirdeh{B3] (see alsd[34]).
The central charge can be worked out using canonical metAdasfull Hamiltonian
‘H of the theory, to leading order im, is given by

H=Ho+K, (3.36)

10



whereH,, is the bulk Hamiltonian of the Jackiw-Teitelboim theory d@6ds the bound-
ary term necessary to have well-defined variational deviest Remarkably, the bound-
ary term, after some algebra, turns out to be proportiontidstress-tensd;;

() = )22 (- 5 () ). 337)

where the two-dimensional scalar curvatigs related taR, by the expressioR, =
Ro(gbo)‘% and making use of the identificatiop [35]

K(e(t)) = €(t)Op , (3.38)
we can determine the coefficiemtand hence the central charge, which then becomes

48«
IRy

c=7F (3.39)
Moreover the value of & near extremality or degeneracy can also be calculated with-
out difficulty

LY = +mokaj3, (3.40)

and Neveu-Schwartz’s generatf® is
C

LéVS:L§+24.

(3.41)

If LI > cthe asymptotic density of states given by Cardy’s formula is

LNS k 2
AS = om0 o [BM0kAT (3.42)
6 —Rol

Let us now check first that this expression exactly accouwntshfe deviation of
the near-extremal Bekenstein-Hawking entropy from exalégn For the Reissner-
Nordstrom black hole we have

~ 2l 4
Ry = RO(T_O) = T FlP (3.43)
and
12q3
e ey 3.44
3 (3.44)
Ly = lqlkag, (3.45)
moko®? = m—mg=Am. (3.46)
So, therefore
AS =21/ 2|q|Pl*Am, (3.47)

11



and, as it was pointed out iff J19], this is just the leadingntén the Bekenstein-
Hawking entropy

SBH — 712(|q| + Am + \/2|q|Am + (Am)?)?, (3.48)
from the extremal case
SEH — 71?|q|. (3.49)

We shall now analyze with more detail the Schwarzschilditter®lack hole near
degeneracy. The potential function is given by

V(p) = W —2I°A/9, (3.50)
S0 ¢y is
b0 4;A ) (3.51)
which corresponds to X
= (3.52)

The curvatureR, is given by

2 V'(¢0)

Ry= ——5 = AIAZ (3.53)
which implies that
_ 2o (3.54)
I2Az (3
The Cardy formula leads ta\(m = m — mqg < 0)
AS = 2r, [ 25T (3.55)
Az[?

and this is exactly the deviation of the Bekenstein-Hawldntyopy from the degener-
ate solution. Let us see this explicitly. The entropy assed with the cosmological
and black hole horizons, locatedrat andr_ respectively, is given by

7TT':2|:

SBH = % (3.56)

R
wherer,, r_ are the two positive roots of the polynomial

%7“3 —r—=2%m=0. (3.57)

12



The solutions are

ry = iA cos g , (3.58)
r. = % cos(g + 4%) , (3.59)
wherecos # = —3m+/Al%. The degenerate case corresponds to
! (3.60)
my = ————, .
EWINE
1
rg = —, 3.61
0 7x (3.61)
so, ifm < myg
cosf ~ —1 — 3VAPAm, (3.62)
then
1
e~ —(1+ —212\/KAm) , 3.63
FTVA ( (3:69)

therefore the deviation from the entropy of the degene@tdisn is

/—22A YN
|ASEH ;32 FAm ‘/ m (3.64)

which agrees with the statistical entropy (3.55).

To end this section we would like to comment briefly on the igieeln solutions of
the above near degenerate black holes. The degeneratessigtthe product of two
spheres with radius = r, and the near degenerate solutions have conical singakariti
at the horizons. However the near horizon (AdB dS;) geometries[(3.33) leads, in
both cases, to euclidean geometi$&sx S? if the euclidean time has period

-2

_ 9 .
0= AT,

(3.65)

The inverse3—! = AT gives rise to the deviation of the temperature from that of
the degenerate solution in accordance, via the second léneohodynamics, to the
entropy deviation[(3.42). This unravel a common origin ofhbsystems (AdSand
dS,) for the deviation of thermodynamical variables.

13



4 Entropy of near-extremal RN and near-degenerate
SdS black holes in any dimension

The aim of this section is to generalize the results of se@itor arbitrary space-time
dimensions. Let us start with the Einstein-Maxwell actiathva positive cosmological
constant inn + 2) dimensions

](n+2) _ 161l /dn+2{L’ /—g("+2) (R(n+2) —2A + (F(n+2))2) ’ (4_1)
T n

where[” is Newton’s constan (2. The line element of spherically symmetric
solutions i§

ds%nJrz) = —U(r)dt* + 00 + rde%n) , (4.2)
where . 2 2 .
"m "q T
=1- — 4.
U(T) T"_lr(n) + Tz(n—l)A(n) n(n+ 1) ) ( 3)
ny ) n
Ly = Ay = 4.4
V(" is the area of the unit’Ssphere
nﬂ_n+l
() — —~ 4.5
T o)
and the electromagnetic field is given by
lqg
Ap: W,O,...,O 5 p:(],l,,n—l—l (46)
l

The effective theory of the spherically symmetric secto(foll) can be obtained
by dimensional reduction. Decomposing the metric as fatlow

ds?, 0y = A&y (t,7) + PYP(t,7)d2, (4.7)

WheredQ%n) is the metric on the n-sphere, the actipn](4.1) redudgs to

Vn
e = ln/dzx\/—l" " (B nn — DIV

"("l; Doy o(n — 1220 — QA) , (4.8)

2See [3p] for RN solutions.
3Theq = A = 0 case was already consideredEl[S?].
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and performing a redefinition af and a conformal rescaling of the metric

n no_ _
oY = DW=, (4.9)
dstyy = QP(¢)dsyy, (4.10)
wherg]
9 n—1
YL 8(n—1) n
we can eliminate the kinetic term in the acti¢gn [4.8) and then
1072 = % / I’z/=g(Rp +17°V(9)), (4.12)
where nar
G = CETR (4.13)

and the potential’(¢) is given by

Vie) = (n-1) (8(n—1)¢)%_

n

1) 1242 (8(n—1)¢)% 2PA (8(n—1)¢>% a1

A n n n

The solutions[(4]2) transforms into the following solusoof the effective theory

EI2)
dsty = —(J(¢) —2GIm)dt* — (J(¢) — 2Glm)‘da? (4.15)
6 = -, (4.16)

~| 8

whereJ(¢) = [ doV (¢) reads

n—1

o) = " (8(”‘1)¢)"+

8(n —1) n
nljlq2 (S(n - 1)¢> o 2;1[2/\ (8(n — 1)¢) T  @17)
n n—1 n

The degenerate solutions appear for the zeros of the patenti

V(o) = J'(¢0) =0, (4.18)

4See Appendix A for more details.
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and the two-dimensional geometry around the degeneraizondnas a constant cur-
vature

~ Jl/
Ry = — l(j’O) . (4.19)
A canonical analysis leads to the central charge
24
c=F 2 (4.20)
IGRyS
and a value of f given by
LY = +mokaf3, (4.21)

where we have assumed a periodicity2af3 in £. With the above values the Cardy

formula leads to
2
AS = o, [ Hmoka® (4.22)
—RylG

and taking into account that
moka® =m —mg = Am, (4.23)

AS = or, | 22M (4.24)
—RolG

We shall now check explicitly that this expression exactlye@s with the deviation of
the Bekenstein-Hawking entropy

we get

SBH B V(n),rn

o (4.25)
of a near-degenerate geometry from the entropy of the deggersolution
Yo
Sy = o (4.26)
The deviation is then
ympn=l o
AgBH = MY To VAm + O(Am). 4.27
T ovanla (Am) (4.27)
4.1 Reissner-Nordstdbm black holes
The radius of the extremal black hole is the double root of
B 167l"my  2(n—1) I*"¢?
Ur)=1- ey ) (4.28)
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where
n q

n
is the mass for the extremal case. Then the radius reads
Sml™m,
n—1 __ 0
We also get
— . 4.31
%0 8(n—1) <z(n— 1)l2q2) (4.31)
Expanding around the extremal radius
ot 2 ST O A1+ O(Am)), (4.32)

LAY e
the entropy deviatior{(4.27), to leading ordenfii\m, is

2r2moAm n? 2(n —1)12¢? o0 [Am
BH _ 0o _
ASPT =27 (=172 2W\/4(n — 1y ( - o (4.33)

But this exactly coincides with the statistical entropy?@).since, by a straightforward
computation, we have that

_1+n

_ n—1)3 n 2177,71
2Ry = J"(60) = 16(n — 1) (2( )pqz) D (4.34)

n? n—1

4.2 Schwarzschild-de Sitter black holes

Now we have
167" my 2A7r?

U =1~ St~ ntn 1) (4.35)
To get the horizons we study the roots of the following polymeal
167" m 2A
_ =1 __ 0o n+1
P(ry=r ) nn T 1)7“ , (4.36)
and we find that fof < m < mq, where
V™ (n(n—1) =N
0= ( 2A ) ’ (4.37)
there are two positive roots , r, that become a double rogf in the limitm = my
n(n—1)
- _ 4.38
To A ( )
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Form > m, there is no root. The physical picture is a black hole in amgxgtic de
Sitter spacetimer_ andr, are respectively the radius of the black hole and cosmo-
logical horizons. The degenerate case in which both hosinoerge at is given for

m = my.

Now in order to get the entropy deviatidn (4.27) we expandblgnomial around
the degenerate radius and, taking into accountithat my + Am (0 < Am < 0)
andP(ry) = 0, we get

2
ry—rog== L\/ |Am| . (4.39)

(n — 1)m0

Then the entropy deviatioh (4]27) reads

n+1
BH| n? nn—1)\ 2z [|Am|
[ASPET| = 27r\/4(n —7 ( AT = - (4.40)
But now -
Com oy 16(n—1)% 0 2A2 \TT
PRy = J"(¢g) = — D) , (4.41)
where .
o nin—1)\?2
b0 = 8(n—1) < 2A12 ) ’ (4.42)

and (4.4D) exactly coincides with the statistical entrdhbg4).

5 Conclusions and final remarks

The goal of this paper is to point out that the deviation of Bekenstein-Hawking
entropy of nearly degenerate black holes from the degemnertition can be com-
puted, via Cardy’s formula, from the conformal asymptotimsetry of the geome-
tries (A)dS xS* associated with the degenerate Reissner-Nordstrom amaa®e-
schild-de Sitter black holes. Partial results has beenirddain a previous paper
[L9] and here we have generalized them to arbitrary dimessimd also for geome-
tries with a d$ factor. We have to stress that our approach does not detertimen
boundary theory. However, we have shown that the asympggtiunetries allow us
to determine the general properties of the theory. Maindyttoduct:L, which turns
out to be related with the Bekenstein-Hawking entropy. Owthad offers a uni-
fied treatment of physically different black holes and alsggest that the boundary
theory responsible for the entropy of Schwarzschild-déeShlack hole should be
thought as a conformal (static) field theory rather than daromal quantum mechan-
ics. We can wonder whether these results can also be furthemded to other types
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of black holes. According to the analysis §f][19], this metdke to derive the en-
tropy for nearly degenerate black holes works for a gengr@zdimensional dilaton
gravity theory. Therefore we can conclude that our appraachbe applied to any
higher-dimensional black hole whose thermodynamics caeffbetively described by
the thermodynamics of a two-dimensional dilaton theory, fBoinstance, the string
black holes considered if [B9] are natural candidates tbéuextend our results.
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Appendix A Conformal redefinitions and dimensional
reduction

In section 4, a conformal reparametrizatipn 4.p), (4.18% wsed in order to get the
effective two-dimensional theory that describes the gepnose to the degenerate
horizon. We shall now state precisely some technical aspéat. Let us rewrite the
effective action[(4]8) in the form

1 . N
I=5g [ V=3 (DR HOIVOE 0V W0) . (4
whereD(v)) is given by [4.P) and
2
H(p) = %W‘Q, (A.2)
9 _ n2 -2 1n—2 ’fl(’fl— 1) 2./, —n L n
In order to get[(4.12) we perform the conformal redefinitiBil()) wherep = D(v))
and
V(¥(6)
Vig) = . A4
)= ~opra) (A4)
Finally Q%(¢) can be obtained by means of the the following differentialagpn [33]
1 dDdInQ
5 dd = (A.5)

19



Itis B
2(¢) = C (@aﬁ) . (A6)

whereC' is an integration constant. The new potenfial [A.4) is theitten

1-2n

Vig) = n? (s(n—l)(b)nl n? 12¢? (8(n—1)¢) C a7

@ n B @A(n) n
n o 202\ [8(n— D, "
8n—1) C n '

In order to determine the constant C, recall that4d.@ andds?, are given
\ ; . ) (2)
respectively by[(4]7) and (4]115). It follows immediatelath

J(6) — 2GIm = () U(r) , (A.8)

where

b= —" (5>" (A.9)

0%(p) = (8(n"i 1))20—1 (@@ : (A.10)

thus comparing with[(A]6) we finally obtain

We get

(A.11)

in agreement with[(4.11)
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