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Abstract

The asymptotic symmetries of the near-horizon geometry of a lifted
(near-extremal) Reissner-Nordstrom black hole, obtained by inverting
the Kaluza-Klein reduction, explain the deviation of the Bekenstein-
Hawking entropy from extremality. We point out the fact that the
extra dimension allows us to justify the use of a Virasoro mode decom-
position along the time-like boundary of the near-horizon geometry,
AdS2×Sn, of the lower-dimensional (Reissner-Nordstrom) spacetime.
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1 Introduction

The universality of the Bekenstein-Hawking area law of black holes could be
explained if the density of the microscopic states is controlled by the con-
formal symmetry [1]. A nice example of this philosophy is provided by the
BTZ black holes [2]. The Bekenstein-Hawking entropy can be derived [3],
via Cardy’s formula, from the two-dimensional conformal symmetry arising
at spatial infinity of three-dimensional gravity with a negative cosmological
constant [4]. Moreover, one can look directly at the black hole horizon and
treat it as a boundary. The constraint algebra of surface deformations of
the boundary, with additional ad-hoc conditions leads to a Virasoro algebra
with a non-vanishing central charge [5, 6, 7]. With the aid of the Cardy for-
mula it is possible to reproduce the adequate density of states leading to the
Bekenstein-Hawking area law. Both approaches can be considered simultane-
ously if one looks at the asymptotic boundary of the near-horizon geometry of
black holes. This way one can also explain the entropy of higher -dimensional
black holes arising in string theory whose near-horizon geometries are similar
to the three-dimensional BTZ black holes.

However, in relevant black holes of general relativity (such as the Reissner-
Nordstrom solutions) AdS3 does not appear in the near-horizon geometry.
It contains, instead, AdS2. The asymptotic symmetries of the AdS2 met-
ric generate a Virasoro algebra [8] with a calculable central charge capable
to reproduce the near-extremal black hole entropy [9, 10]. These Virasoro
symmetries are those (t–r)-diffeomorphisms which leave invariant the large
r behaviour of the AdS2 metric. Therefore the Virasoro generators can be
regarded as living in the boundary of AdS2, and to perform a mode decompo-
sition one has to make an integration in the time direction. But the canonical
formalism requires integration over a space-like slice. So to properly study
the d = 2 case of the AdS/CFT correspondence [11], in terms of asymptotic
symmetries, it is necessary to clarify this question. The problem of this extra
time-integration also appears in the approach of [7], where it is introduced to
properly obtain a central term for a Virasoro algebra. The main aim of this
paper is to improve the understanding of this issue: Why do the Virasoro
modes in the unconventional time-direction produce the adequate central
charge to explain the black hole entropy? We shall focus our attention in the
Reissner-Nordstrom (R-N) black holes (in any dimension) and find a natural
answer in the context of the Kaluza-Klein (KK) theory.

In Section 2 we shall show how the near-horizon configuration of the
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Reissner-Nordstrom solution can be lifted, inverting the Kaluza-Klein de-
composition, to a higher-dimensional metric containing AdS3. In Section 3
we then analyze the AdS3/CFT2 and AdS2/CFT1 correspondences within
this context, showing that, irrespective of the particular realization of the
asymptotic symmetries, the value of the central charge is unique. In Section
4 we argue, from the higher-dimensional point of view, that the mode de-
composition in the time direction can be justified. When we add the extra
dimension the ordinary time coordinate is converted into a null one in the
boundary of the higher-dimensional theory. Therefore one can use Cardy’s
formula to evaluate, as in [3], the asymptotic growth of states reproducing
then the Beckenstein-Hawking formula around extremality. Finally, in Sec-
tion 5, we summarize our conclusions.

2 Relating near-extremal R-N and BTZ black

holes by inverting the KK mechanism

Let us consider a R-N black hole configuration in (n + 2) dimensions. The
metric field is

ds2
(n+2) = −U(r)dt2 +

dr2

U(r)
+ r2dΩ2

(n) , (1)

where

U(r) = 1 − 2Gn+2M

Γ(n)rn−1
+

G2
n+2Q

2

r2(n−1)∆(n)
, (2)

Γ(n) =
nν(n)

8π
, ∆(n) =

n

2(n − 1)
, (3)

ν(n) is the area of the unit Sn sphere,

ν(n) =
nπ(n+1)/n

Γ
(

n+1
n

) (4)

and the electromagnetic field is given by

A = Gn+2
Q

rn−1
dt . (5)

Q is the electric charge and Gn+2 is the (n+2)-dimensional Newton’s constant
in geometrized units.
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When the R-N configuration is close to extremality and we consider the
near-horizon region as follows (0 < α << 1)

M = M0(1 + kα2) (6)

r = r0 + αx , (7)

where M0 and r0 are the extremal mass and radius

M0 =
|Q|Γ(n)

∆
1/2
(n)

, (8)

r0 =

(

Gn+2M0

Γ(n)

)
1

n−1

, (9)

the leading terms in a series expansion in α of (1) and (5) are

ds2
(n+2) = −

(

(n − 1)2α2x2

r2
0

− 2
∆M

M0

)

dt2 +
α2dx2

(n−1)2α2x2

r2

0

− 2∆M
M0

+ r2
0dΩ2

(n) ,

(10)
where ∆M is de deviation of the mass from extremality, ∆M = M − M0,
and

A =
QGn+2

rn−1
0

(

1 − (n − 1)
αx

r0

)

dt . (11)

The metric (10) is just the Robinson-Bertotti geometry AdS2×Sn, with two-

dimensional curvature (in the t–r plane) R(2) = −2(n−1)2

r2

0

.

The idea now is to construct a higher-dimensional geometry from the
metric and the gauge field by inverting the KK reduction. So the new metric
is

ds2
(n+3) = ds2

(n+2) + µ2(dθ + QAµdxµ)2 , (12)

where the KK radius µ is given by

µ2 =
1

∆(n)Q2
. (13)

At leading order in α we have

ds2
(n+3) = −

(

(n − 1)2α2x2

r2
0

− 2
∆M

M0

)

dt2 +
α2dx2

(n−1)2α2x2

r2

0

− 2∆M
M0

+ r2
0dΩ2

(n)

+ µ2

[

dθ +
Q2Gn+2

rn−1
0

(

1 − (n − 1)
αx

r0

)

dt

]2

. (14)
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The relevant fact is that the three-dimensional (t, r, θ) part of the above
metric is just a BTZ black hole with curvature

R(3) = − 2

l2
(15)

where

l2 =
4r2

0

(n − 1)2
(16)

To explicitly relate the three-dimensional sector of (14) with the BTZ
black hole we have to perform the natural identification

θ +
Q2

rn−1
0

Gn+2t = x+ , (17)

together with
2|Q|∆1/2

(n) t = x− , (18)

and

r̄2 =
(n − 1)

Q2∆(n)r0
αx . (19)

Plugging these changes of coordinates into (14) we get the following three-
dimensional metric

ds2
(3) = −r̄2dx+dx− + γ−−(dx−)2 + γ++(dx+)2 +

l2r̄2dr̄2

r̄4 − 4γ++γ−−

(20)

where

γ−− =
Gn+2

2rn−1
0 Γ(n)Q2∆(n)

∆M , (21)

γ++ =
1

∆(n)Q2
. (22)

It is interesting to remark that for general chiral functions γ++(x+), γ−−(x−)
we have the general solution of three-dimensional gravity with a negative
cosmological constant − 2

l2
. For constant values of γ±± we have BTZ black

holes with
γ±± = 2G3l(MBTZ l ± J) , (23)

where MBTZ and J are the corresponding mass and angular momentum.
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If we could establish a one-to-one correspondence between the near-extremal
R-N and BTZ black holes we could compare the corresponding entropies.
There is a straighforward way to do this by comparing the different actions
obtained by dimensional reduction. Starting from the (n + 3)-dimensional
action

1

16πGn+3

∫

dn+3x
√−gR , (24)

the KK reduction with constant radius (13) implies that

1

Gn+2
=

1

Gn+3
2πµ , (25)

and the factorization of the angular coordinates in the near-horizon region
gives

1

G3
=

1

Gn+3
ν(n)rn

0 . (26)

Using the above expressions one finds that

G3 = Gn+2
2πµ

ν(n)rn
0

. (27)

The entropy formula for tha BTZ black holes is

SBTZ = π

√

l(lMBTZ + J)

2G3

+ π

√

l(lMBTZ − J)

2G3

(28)

whereas the formula for R-N black holes is

SRN =
ν(n)rn

+

4Gn+2
, (29)

where r+ is the outer horizon. Expanding (29) around extremality we find

SRN =
ν(n)rn

0

4Gn+2
+ 2π

√

2r2
0M0

(n − 1)2
∆M . (30)

Comparing (28) and (30) using the relations (21)-(23) and (27) we find agree-
ment only in the extremal configurations ∆M = 0 and MBTZ l = |J |. We
then obtain a result similar to that found in [12]. In this reference it was
shown that a R-N black hole can be regarded as a dimensional reduction of a

6



boosted black string and the near-horizon of the latter contains a BTZ black
hole. The entropies of the R-N black hole and the associated BTZ black hole
agree at extremality. We have carried out a similar argument by replacing
the black string construction by the KK decomposition. However the above
mechanisms fail when one compares the entropy deviations from extremal-
ity. To properly account for it we shall follow a different route based on the
symmetry properties of the near-horizon geometries. This is the main aim of
this paper and it will be considered in the next sections.

3 Asymptotic symmetries and boundary CFT

The Bekenstein-Hawking area law of BTZ black holes can be understood in
terms of the asymptotic symmetries of (20) [3]. The infinitesimal diffeomor-
phisms ζa preserving the asymptotic r → ∞ form of (20) are

ζ± = ε±(x±) +
l2

2r2
∂2
∓ε∓(x∓) + . . . (31)

ζ r̄ = − r̄

2
(∂+ε+ + ∂−ε−) + . . . (32)

where ε±(x±) are arbitrary chiral functions. Therefore it seems natural to
investigate whether these sort of symmetries can also explain the black hole
entropy of the near-extremal R-N black holes. The above transformations are
asymptotic symmetries of the higher-dimensional near-horizon theory. How-
ever only the transformations generated by ε−(x−) preserve the KK decom-
position and can be pushed down. We must note that, in the R-N space-time,
the coordinate x− is just a time-like coordinate (see (18)), and therefore the
transformations generated by ε−(x−) can be rewritten as

ζ t = ε(t) + . . . (33)

ζx = −x∂tε(t) + . . . (34)

ζ+ =
l2Q2r0

2(n − 1)αx

1

2|Q|∆1/2
(n)

∂2
t ε(t) + . . . . (35)

The infinitesimal transformations (33), (34) are diffeomorphisms in the R-N
spacetime whereas (35) can be interpreted, as usual, as a gauge transforma-
tion. However these transformations do not preserve the asymptotic form of
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the two-dimensional anti-de Sitter metric, although they preserve the asymp-
totic form of the gauge field. To maintain simultaneously the asymptotic be-
haviour of the two-dimensional metric and gauge field one can alternatively
introduce the following transformations:

ζ t = ε(t) +
l4

32x2α2
ε′′(t) + . . . (36)

ζx = −xε′(t) + . . . (37)

ζ+ = 0 . (38)

In contrast with (33)-(35), they are pure diffeomorphisms in the R-N space-
time and the gauge transformation is trivial. We have to remark that these
transformations do not preserve the asymptotic form of the three-dimensional
anti-De Sitter metric (20). However, both sets of transformations can be used
to provide realizations of the AdS/CFT correspondence in a consistent way.
In the first case it will be a chiral sector of the AdS3/CFT2 correspondence,
whereas in the second case we shall deal with a sort of AdS2/CFT1 corre-
spondence. Our task now is to analyze these two sets of symmetries on the
spacetime parametrized by {t, x} and determine the relevant quantities of
the boundary theory required to compute the entropy via Cardy’s formula.
To this end we shall use the technique introduced in [13], and assume the
following asymptotic behaviour of the two-dimensional metric and gauge field

gtt = − 4

l2
α2x2 + γtt + . . . (39)

gtx =
γtx

x3
+ . . . (40)

gxx =
l2

4x2
+

γxx

x4
+ . . . (41)

At =
Q

|Q|∆
1/2
(n)

[

1 − (n − 1)

(

αx

r0

− r0

2αx
γAt

+ . . .

)]

(42)

Ax =
γAx

x3
+ . . . . (43)

The action on the radial function, which sometimes is considered as a dilaton,
plays no role here. In fact, it could be considered constant. It is just the
gauge field which plays a fundamental role.
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3.1 AdS3-symmetries

We shall now consider the transformations (33)-(35), which preserve the
asymptotic form of the lifted three-dimensional metric. One can show that
the unique quantity invariant under the “pure gauge transformations”

ζ t =
αt(t)

x2
(44)

ζx = αx(t) (45)

ζ+ =
α+(t)

x2
(46)

is given by
Θtt = k1(γtt − (n − 1)2γAt

) (47)

where k1 is a constant coefficient. Moreover the transformation law of Θtt is

δε(t)Θtt = ε(t)Θ′
tt + 2Θttε

′(t) − k1l
2

2
ε′′′(t) , (48)

which coincides with that of a chiral component of the stress tensor of a two-
dimensional conformal field theory. The easiest way to determine k1, and
hence the central charge, is to realize that the value of Θtt, for a static R-N
black hole, should coincide with the mass. More properly, the deviation of
the mass from extremality

Θtt|RN = ∆M . (49)

In order to get (49), one finds that k1 = M0

2
, and therefore the transformation

law of Θtt is

δε(t)Θtt = ε(t)Θ′
tt + 2Θttε

′(t) − M0r
2
0

(n − 1)2
ε′′′(t) . (50)

3.2 AdS2-symmetries

Alternatively we can consider the symmetries (36-38), which preserve the
asymptotic form of the two-dimensional metric. In this case the invariant
quantity under the “pure gauge diffeomorphisms”

ζ t =
αt(t)

x4
+ . . . (51)

ζx =
αx(t)

x
+ . . . , (52)
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is

Θtt = k2

(

γtt −
8

l2
γxx

)

(53)

where k2 is again a constant coefficient. The transformation law of Θtt is

δε(t)Θtt = ε(t)Θ′
tt + 2Θttε

′(t) − k2l
2

4
ε
′′′

(t) . (54)

The value of k2 can be determined immediately by requiring

Θtt|RN = ∆M . (55)

We find that
k2 = M0 (56)

and this reproduces the same transformation law as that of (50).

4 The role of the extra dimension and black

hole entropy

One of the effects of introducing the extra Kaluza-Klein coordinate is that
it converts the near-horizon geometry AdS2×Sn (10) into the AdS3×Sn ge-
ometry. This has important consequencies for the causal structure of the
boundaries. For AdS2 the boundary consists of two disconnected time-like
real lines. It can be embedded (more precisely, the connected part corre-
sponding to x = +∞) into the cylindrical boundary of AdS3 through the
relations (17)-(18). The lifted time-like boundary of AdS2 becomes a null
slice of the AdS3 boundary and then one can perform the usual Fourier
mode decomposition of Θtt(t), which now bcomes Θ−−(x−), as follows

LR
n =

2Q∆
1/2
(n)

2π

∫ 2π

0

dx−Θ−−(x−)einx−

. (57)

Using either (50) or (54) (with 56) we get a Virasoro algebra (εm = eimx−

)

{LR
n , LR

m} = δεm
LR

n = (n − m)LR
n+m +

c

12
n3δn,−m (58)

with a central charge

c =
24M0r

2
0Q∆

1/2
(n)

(n − 1)2
. (59)
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Note that for the (n + 2)-dimensional theory (57) involves a time integra-
tion which is not permitted by the canonical formalism, only in the higher-
dimensional theory is that step allowed. Moreover the quantities (57) are
conserved charges (i.e., time independent). In contrast, in the (n + 2)-
dimensional space-time only the zero mode of Θtt is a well-defined conserved
charge. This reinforces the idea that a higher-dimensional perspective is
necessary to properly define a Virasoro algebra leading, via Cardy’s formula

log ρ ∼ 2π

√

cLR
0

6
(60)

to the adequate density of states. The LR
0 -Virasoro charge takes the value

(for static R-N black holes)

LR
0 =

∆M

2Q∆
1/2
(n)

(61)

and together with (59) we obtain

∆S = 2π

√

2r2
0M0

(n − 1)2
∆M (62)

in exact agreement with the entropy deviation from extremality of R-N black
holes.

5 Conclusions and final comments

The search for a universal mechanism responsible for black hole entropy
involves two basic ingredients: near-horizon symmetries and conformal field
theory. For R-N black holes the near-horizon geometry contains AdS2 and the
corresponding conformal generators live in the time-like boundary of AdS2

thus making problematic the role of the Virasoro modes (in a time direction)
in classifying states. In the analogous situation in AdS3, the space-like slice
of the boundary is a circle. The relevant diffeomorphisms are parametrized
by two functions which translate into two Virasoro algebras. The Virasoro
generators are the modes on the space-like circle. Moreover, the holomor-
phicity of the chiral components of the stress tensor implies that one can
convert the integral over a spatial coordinate into an integral over a null
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coordinate. Hence, it can be concluded that the Hilbert space on this cir-
cle has a growth of states given by Cardy’s formula. In this paper we have
shown that the extra Kaluza-Klein dimension allows to embed the time-like
boundary of AdS2 into a null slice of AdS3 providing consistency to the use
of Cardy’s formula to evaluate the entropy deviation from extremality in a
statistical way.
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