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Abstract

We derive the anomalous transformation law of the quantum stress tensor for a 2D mass-

less scalar field coupled to an external dilaton. This provides a generalization of the Virasoro

anomaly which turns out to be consistent with the trace anomaly. We apply it together

with the equivalence principle to compute the expectation values of the covariant quantum

stress tensor on a curved background. Finally we briefly illustrate how to evaluate vacuum

polarization and Hawking radiation effects from these results.
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Two-dimensional conformal invariance is a key ingredient to understand

critical behaviour of certain planar statistical mechanical systems [1]. It also

plays a pivotal role in the formulation of superstring theory [2] and in the quan-

tum mechanics of black holes. The Bekenstein-Hawking area law is derived in

many different ways by applying Cardy’s formula for conformal field theories

living in the black hole horizon (see for instance [3] and references therein). The

universal thermal character of black hole radiation is also related to the fact

that matter fields exhibit two-dimensional conformal invariance in the vicinity

of the horizon.

Many of the basic properties of 2d conformal field theories can be obtained

by studying a simple model, namely a massless scalar field

S = −1

2

∫

d2x (∇f)2 . (1)

Standard canonical quantization and Wick theorem lead to the well-known

operator product expansion of the quantum (normal ordered) stress tensor

T±±(x±)T±±(x′±) =
1

8π2(x± − x′±)4
− 1

π(x± − x′±)2
T±±(x′±)

− 1

2π(x± − x′±)
∂±T±±(x′±) + ... , (2)

where x± = x0 ± x1 are null Minkowskian coordinates. The above expansion

leads to the Lie algebra

[

T±±(x±), T±±(x′±)
]

=
1

2π
∂x±δ(x± − x′±)T±±(x′±) − 1

96π2
∂3

x±δ(x± − x′±)

−
(

x± ↔ x′±
)

. (3)

Since T±±(x±), up to normalization, are the generators of infinitesimal confor-

mal transformations x± → x± + ǫ±(x±), this implies the following infinitesimal

transformation law for the stress tensor

δǫ±T±± = ǫ±∂±T±± + 2∂±ǫ±T±± − 1

24π
∂3
±ǫ± . (4)

Exponentiating the action (4) one gets, under the conformal transformation

x± → y±(x±), the following anomalous transformation law

T±±(y±) =

(

dx±

dy±

)2

T±±(x±) − 1

24π
{x±, y±} , (5)

1



where {x±, y±} = ∂3x±

∂y±3 /∂x±

∂y± − 3
2

(

∂2x±

∂y±2 /∂x±

∂y±

)2
is the Schwarzian derivative. All

these expressions can be regarded as different realizations of the so-called Vira-

soro anomaly. For a generic conformal field theory the above results are valid

provided we multiply the c-number terms of the above equations by the central

charge c characterizing the particular theory [1].

The first aim of this work is to study the modification of the transformation

law (5), when a dilaton field φ is present and (1) is replaced by

S = −1

2

∫

d2xe−2φ (∇f)2 . (6)

A nice justification of the form of the dilaton coupling comes from General

Relativity. If a scalar field f is minimally coupled to a 4D spherically symmetric

metric

ds2
(4) = ds2

(2) + e−2φdΩ2 , (7)

and we perform dimensional reduction from − 1
8π

∫

d4x
√−g(∇f)2, we obtain

the above action (6) in case of flat 2d space. We shall also study the quantum

stress tensor of the theory (6) in a generic two-dimensional curved background.

Let us now consider a simple case, namely the one associated to the four-

dimensional Minkowski space. In this situation it is ds2
(2) = −dx+dx−, where

x± = t± r, and e−2φ = r2. The mode expansion of the field f living in the t− r

plane (with the condition f(r = 0) = 0) is

f =

∫ ∞

0

dw√
4πw

[

aw(e−iwx+ − e−iwx−

) + a†w(eiwx+ − eiwx−

)
]

eφ . (8)

The null components of the stress tensor are given by

T±±(x+, x−) = e−2φ(∂±f)2, (9)

and the corresponding normal ordered operators can be defined, as usual, by

point-splitting (from now on we shall use an explicit notation for the normal

ordered stress tensor)

: T±±(x+, x−) := lim
x±→x′±

e−(φ(x)+φ(x′)) ∂

∂x±

∂

∂x′±
(f(x)f(x′) −

〈

f(x)f(x′)
〉

),

(10)
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where the two-point function is

〈

f(x)f(x′)
〉

= − 1

4π
eφ(x)+φ(x′) ln

(x+ − x′+)(x− − x′−)

(x+ − x′−)(x− − x′+)
. (11)

Under a conformal transformation x± → y±(x±) normal ordering breaks co-

variance and the transformed stress tensor picks up the following anomalous

non-tensorial contributions

: T±±(y+, y−) : =

(

dx±

dy±

)2

: T±±(x+, x−) : − 1

24π
{x±, y±}

− 1

4π





d2x±

dy±2

(

dx±

dy±

)−1
∂φ

∂y±
+ ln

(

dx+

dy+

dx−

dy−

)

(

∂φ

∂y±

)2


 .(12)

This expression generalizes the Virasoro-type transformation law (5) by

adding terms depending on the derivatives of φ. At this point we would like to

remark that the above expression has been obtained for a particular form of φ

in terms of the null coordinates x±, namely

φ = − ln
x+ − x−

2
. (13)

However we want to stress that the result has general validity, irrespective of

the particular form of the external dilaton field. We shall prove this in two

different ways:

i) the short-distance behaviour for the Hadamard function does not depend on

the specific model;

ii) we shall show that eq. (12) is the only local expression which is consistent

with the trace anomaly derived in the context of gravitational physics [4].

We point out that the conformal symmetry can be recovered in regions

where ∂±φ → 0. This happens typically when r approaches infinity and also,

in the context of curved spacetime, at the black hole horizons.

The equation of motion for the field f , derived from the action (6), is

∂+(e−2φ∂−f) + ∂−(e−2φ∂+f) = 0. (14)
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In general this can be solved only for particular forms of φ, for instance in the

situation where it is given by (13) or

φ = −1

2
ln

(x+ − x−)

2
. (15)

In the latter case the equation of motion for f (14) coincides with the equation

of a minimal scalar field in a three-dimensional spacetime, described by the

action

S = − 1

4π

∫

d3x
√−g(∇f)2 , (16)

under the assumption of axi-symmetry for the field f and the metric ds2
(3) =

ds2
(2) + r2dϕ2, where the radial function is given by r = e−2φ. This equation

turns out to be equivalent to one equation of the Einstein-Rosen subsector of

pure General Relativity. The system is exactly solvable both classically and

quantum-mechanically (details can be found in [5], [6], [7], [8]) and, therefore,

it can provide a nontrivial test of the formula (12). The field f can be expanded

in modes as follows

f =

∫ ∞

0

dw√
2
J0(rw)

[

awe−iwt + a†weiwt
]

(17)

where J0 is the zero order Bessel function. At the quantum level the coefficients

aw and a†w are converted into annihilation and creation operators obeying the

commutation relation [aw, a†w′ ] = δ(w−w′). To work out the quantum behaviour

of the stress tensor we need to evaluate the Hadamard function G(1)(x, x′) ≡
1
2 〈0|{f(x), f(x′)}|0〉. This turns out to be equal to [9], [7]

i) for 0 < |t′ − t| < |r′ − r|

G(1)(x, x′) =
1

π
√

[(r′+r)2 − (t′−t)2]
K

(
√

4rr′

(r′+r)2 − (t′−t)2

)

;

ii) for |r′ − r| < |t′ − t| < r′ + r

G(1)(x, x′) =
1

2π

1√
rr′

K





√

(r′+r)2 − (t′−t)2

4rr′



 .

iii) for r + r′ < |t′ − t| it is G(1)(x, x′) = 0,

where K(k) =
∫ π/2
0 dθ/

√

1 − k2 sin2(θ) is the complete elliptic integral. Using
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the expansion [10]

K(k′) = ln
4

k′
+ (

1

2
)2
(

ln
4

k′
− 1

)

k′2 + O(k′4 ln
4

k′
), (18)

where k′ =
√

1 − k2, we obtain

G(1)(x, x′) = −eφ(x)+φ(x′)

4π
[ln(x+ − x′+)(x− − x′−) + const.

+ O
(

(x+ − x′+)(x− − x′−) ln(x+ − x′+)(x− − x′−)
)

] . (19)

In the computation of the transformation law of the stress tensor, via point-

splitting, only the leading term in (19) produces a nontrivial contribution.

Therefore it is easy to see that the final result is (12). Moreover, the above ex-

pression agrees with the De Witt-Schwinger expansion of G(1)(x, x′), restricted

to flat space-time, given in [11], [12]

G(1)(x, x′) =
eφ(x)+φ(x′)

2π

[

−(γ +
1

2
ln

m2σ

2
) + O(σ ln σ)

]

, (20)

where γ is the Euler constant, m2 is an infrared cutoff and σ is one half the

square of the distance between the points x and x′.

Due to presence of φ the classical conservation laws ∂∓T±± = 0 get modified

to (see [13], [14] for a higher-dimensional interpretation)

∂∓T±± + ∂±φ
δS

δφ
= 0, (21)

where
δS

δφ
= −2e−2φ∂+f∂−f . (22)

Let us analyze the quantum analogous of these equations. The transformation

law for 〈: T±± :〉 is given by eq. (12) and the corresponding one for
〈

δS
δφ

〉

should

be, on general grounds, of the form

〈

δS

δφ
(y±)

〉

=
dx+

dy+

dx−

dy−

〈

δS

δφ
(x±)

〉

+ ∆(φ;x±, y±). (23)

Let us suppose that

∂∓ 〈: T±± :〉 + ∂±φ

〈

δS

δφ

〉

= 0. (24)
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If we transform this relation according to (12) and (23) we get, by consistency,

− 1

4π

∂2x±

∂y±2

∂x±

∂y±

∂

∂y+

∂

∂y−
φ − 1

2π
ln

(

∂x+

∂y+

∂x−

∂y−

)

(
∂φ

∂y±
)

∂

∂y+

∂

∂y−
φ

− 1

4π

(

∂φ

∂y±

)2 ∂2x∓

∂y∓2

∂x∓

∂y∓

+
∂φ

∂y±
∆(φ;x±, y±) = 0. (25)

These two equations are compatible with the uniqueness of ∆(φ;x±, y±) only

if

2φ = (∇φ)2. (26)

If φ does not obey (26) the quantum conservation law (24) must be modified. We

find that the only possibility to maintain consistency with the transformation

law (12) is by adding a nontrivial trace 〈T+−〉 just of the form

〈T+−〉 = − 1

4π
(∂+φ∂−φ − ∂+∂−φ) . (27)

Then for ∆(φ;x±, y±) we obtain

∆ =
1

2π
ln

(

dx+

dy+

dx−

dy−

)

d2φ

dy+dy−

+
1

4π





d2x−

dy−2

(

dx−

dy−

)−1
dφ

dy+
+

d2x+

dy+2

(

dx+

dy+

)−1
dφ

dy−



 . (28)

Finally, the quantum conservation law, invariant under conformal transforma-

tions, reads

∂∓ 〈: T±± :〉 + ∂± 〈T+−〉 + ∂±φ

〈

δS

δφ

〉

= 0. (29)

We have to point out that the anomalous trace derived in this approach agrees

with the one derived in curved space-time (first derived in [4]) . For the dilaton-

coupled theory the trace anomaly, obtained in a covariant quantization scheme,

is

〈T 〉 =
1

24π

(

R − 6(∇φ)2 + 62φ
)

. (30)

If we restrict to flat space-time we obtain (27). We mention that in [15] the

above trace anomaly was derived with a different numerical coefficient for the

2φ term. This coefficient was then corrected, according to (30) , in [16] (the

same result was obtained in [17]) . So our derivation can be seen, as a by-

product, as an alternative and simple way to get the dilaton contribution to the
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trace anomaly. Moreover, the argument can be applied the other way around:

assuming (27), (29) and locality one gets the φ dependent terms of (12).

Now we shall apply the above results to gravitational physics. We shall work

out an expression for the expectation values of the covariant stress tensor using

the anomalous transformation law (12) and the help of the equivalence principle

to deal with curved space. In a generic point X of the space-time one can always

introduce locally inertial coordinates ξα
X . Restricting our attention to the (t−r)-

sector we can then construct the corresponding null coordinates ξ±X . Since

normal ordering breaks general covariance we need a different prescription to

construct a quantum stress tensor compatible with diffeomorphism invariance.

One can do it starting from the expectation value of the normal ordered stress

tensor 〈Ψ|T±±(ξ±(X))|Ψ〉 in the locally inertial frame {ξ±X} with respect to

some generic state |Ψ〉. The corresponding expectation values in the curved

background, at the generic point X in the coordinates {x±}, can be naturally

defined as

〈Ψ|T±±(x+(X), x−(X))|Ψ〉 ≡
(

dξ±X
dx±

(X)

)2

〈Ψ| : T±±(ξ+
X(X), ξ−X (X) : |Ψ〉 ,

(31)

this way we get the desired covariant property

〈Ψ|T±±(y+(X), y−(X))|Ψ〉 =

(

dx±

dy±
(X)

)2

〈Ψ|T±±(x+(X), x−(X))|Ψ〉 (32)

where {y±} and {x±} are arbitrary coordinate systems around the generic point

X.

Now the relation between : T±±(x+(X), x−(X)) : and : T±±(ξ+
X(X), ξ−X (X)) :

is given by (using (12)):

: T±±(x+(X), x−(X)) :=

(

dξ±X
dx±

(X)

)2

: T±±(ξ+
X(X), ξ−X (X)) :

− 1

24π
{ξ±X , x±}|X − 1

4π
[
d2ξ±X
dx±2

(X)

(

dξ±X
dx±

(X)

)−1
dφ

dx±
(X)

+ ln
dξ+

X

dx+
(X)

dξ−X
dx−

(X)

(

dφ

dx±
(X)

)2

] . (33)
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Inserting (33) into (31) we finally obtain

〈Ψ|T±±(x+(X), x−(X))|Ψ〉 = 〈Ψ| : T±±(x+(X), x−(X)) : |Ψ〉

+
1

24π
{ξ±X , x±}|X +

1

4π
[
d2ξ±X
dx±2

(X)

(

dξ±X
dx±

(X)

)−1
dφ

dx±
(X)

+ ln
dξ+

X

dx+
(X)

dξ−X
dx−

(X)

(

dφ

dx±
(X)

)2

] . (34)

To go further we need the relations between {ξ±X} and {x±}. Up to second

order and Poincaré transformations they are unambiguous and can be chosen

to be conformal [18]

ξ±X = b±±

[

(x± − x±(X)) +
Γ±
±±

2
(x± − x±(X))2 + F±(x± − x±(X))3 + ...

]

.

(35)

In a conformal frame ds2 = −e2ρdx+dx− the constants b±± satisfy the constraint

b+
+b−− = e2ρ(X) and Γ±

±± = 2∂±ρ. Note that the Schwarzian derivative requires

the third order as well, which is not determined by the requirement that ξ±X are

locally inertial. We naturally fix it by imposing that, for a flat metric, ξ±(X)

are the global null minkowskian coordinates. This leads to

F± =
1

3
∂2
±ρ(X) +

2

3
(∂±ρ(X))2 . (36)

Using now the above expressions a straightforward computation leads to the

following form for the stress tensor, for an arbitrary point X,

〈Ψ|T±±(x+, x−)|Ψ〉 = 〈Ψ| : T±±(x+, x−) : |Ψ〉 − 1

12π
(∂±ρ∂±ρ − ∂2

±ρ)

+
1

2π

[

∂±ρ∂±φ + ρ(∂±φ)2
]

. (37)

We remark that neglecting the terms containing the dilaton these are the null

components of the stress tensor derived from the Polyakov effective action [19].

We want to compute now a covariant expression for 〈 δS
δφ 〉. To this end we

shall impose the quantum covariant conservation laws

∇µ〈Tµν〉 = ∇νφ
1√−g

〈δS
δφ

〉 , (38)

which in the conformal frame are translated into

∂∓ 〈T±±〉 + ∂± 〈T+−〉 − 2∂±ρ〈T+−〉 + ∂±φ

〈

δS

δφ

〉

= 0. (39)

8



The 〈T+−〉 component is, as usual, fixed by the trace anomaly:

〈T+−〉 = − 1

12π
(∂+∂−ρ + 3∂+φ∂−φ − 3∂+∂−φ) . (40)

Combining (40), (37) and (39) the final result is

〈Ψ|δS
δφ

|Ψ〉 = 〈Ψ|δS
δφ

|Ψ〉ρ=0−
1

2π
(∂+∂−ρ+∂+ρ∂−φ+∂−ρ∂+φ+2ρ∂+∂−φ) . (41)

The last three terms can be obtained from the anomalous transformation law

for 〈 δS
δφ 〉ρ=0 (eqs.(23) and (28)), while the term ∂+∂−ρ comes directly from the

imposition of the conservation equations (39). The state dependent quantities

in (37) and (41) are conserved, namely they satisfy

∂∓〈Ψ| : T±±(x+, x−) : |Ψ〉 + ∂±〈T+−〉|ρ=0 + ∂±φ〈Ψ|δS
δφ

|Ψ〉ρ=0 = 0 . (42)

This is a crucial ingredient in order to fulfill equations (39). To match with the

standard notation of 2D dilaton gravity [20] we define the following functions

t±(x+, x−) and t(x+, x−):

− 1

12π
t±(x+, x−) ≡ 〈Ψ| : T±±(x+, x−) : |Ψ〉 ,

− 1

2π
t(x+, x−) ≡ 〈Ψ|δS

δφ
|Ψ〉ρ=0 (43)

characterizing the quantum state |Ψ〉. Notice that now, in contrast with the

minimally coupled case, the functions t± are no more chiral (the same is true

for the new function t) and satisfy a more involved set of equations reflecting

the nontriviality of the theory even in flat 2d space.

As an application of these equations we shall perform a brief analysis of

the different choices of quantum states. To this end let us consider the eternal

Schwarzschild spacetime, described by the 2d metric:

ds2
(2) = −(1 − 2M/r)dudv , (44)

where v = t + r∗ and u = t − r∗, r∗ = r + 2M ln( r
2M − 1), and the dilaton field

given by

e−2φ = r(u, v)2 . (45)

We can naturally choose the state such that ({x+ = v, x− = u})

t± = 0 (46)
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and consequently, because of (42),

− 1

2π
t ≡ 〈Ψ|δS

δφ
|Ψ〉ρ=0 = − 3

8π

M

r3
+

1

π

M2

r4
. (47)

This corresponds to (or at least is a good approximation of) the Boulware

vacuum state |B〉 [21], describing the vacuum polarization outside a static (not

collapsed) star. Applying expressions (37) we get

〈B|T±±|B〉 =
1

24π

(

−4M

r3
+

15

2

M2

r4

)

+
1

16πr2
(1 − 2M

r
)2 ln(1 − 2M

r
) . (48)

The +− component is state independent and fixed by the trace anomaly (30)

〈T+−〉 =
1

12π
(1 − 2M

r
)
M

r3
. (49)

Finally, we also have, from equations (41) and (47),

〈B|δS
δφ

|B〉 = − 7

8π

M

r3
+

2

π

M2

R4
+

1

8πr2
(1 − 4M

r
)(1 − 2M

r
) ln(1 − 2M

r
) . (50)

Similar results, based on exact properties of the effective action under Weyl

transformations, were derived in [22]. It is worthwhile to remark that in the

horizon limit and at infinity they are in agreement with the results derived from

canonical quantization [12].

A physically more interesting case is the one leading to black hole evapora-

tion. For it a natural choice is

− 1

12π
t−(x+, x−)v→−∞ ∼ 1

768πM2
(51)

at the past horizon and

− 1

12π
t+(x+, x−)u→−∞ ∼ 0 (52)

at past null infinity. These conditions define the Unruh vacuum state [23]. In

the absence of dilaton (minimally coupled theory), the t± functions are chiral

and then t− = − 1
64M2 and t+ = 0 everywhere. In terms of the Fock space these

conditions are related to the following density matrix

ρU =
∏

w

(

1 − e−2πwκ−1
)

∑

→
n

e−2π
→
nwκ−1|→nw ><

→
nw| , (53)

10



where |→nw > is the state in the Fock space with
→
nw outgoing particles of

frequency w. Without dilaton the corresponding modes are plane waves and

one can see immediately that this state reproduces the above value for the

function t− and, at future null infinity, leads to the Hawking flux

〈U |Tuu|U〉r→+∞ ∼ 1

2π

∫ ∞

0

wdw

e8πMw − 1
=

π

6
T 2

H , (54)

where TH = 1
8πM is the Hawking temperature. In the presence of the dilaton

the modes are no longer planewaves because they are affected by the potential

barrier [12], [24]. In this case the result is

〈U |Tuu|U〉r→+∞ ∼ 1

2π

∫ ∞

0

wdw

e8πMw − 1
|B(w)|2 = ξ

π

6
T 2

H , (55)

where B(w) is the transmission coefficient [24] and ξ the greybody factor. The

greybody factor ξ, related to |B(w)|2 from the above equation, produces a

damping of the Hawking flux with respect to that obtained without the dilaton

coupling (for the present theory it is ξ ≃ 1.62/10, see [12]). For the massless

minimally coupled 2d scalar field there is no potential barrier, hence ξ = 1 and

the Hawking flux is therefore given by (54). The evaluation of the expectation

value of the stress tensor at the future horizon also provides the expected result.

For the normal ordered operator we have

〈U | : Tvv : |U〉r→2M ∼ 1

2π

∫ ∞

0

wdw

e8πMw − 1
|A(w)|2 , (56)

where A(w) is the reflection coefficient. Now taking into account that |A(w)|2 +

|B(w)|2 = 1 and (37) we get

〈U |Tvv |U〉r→2M ∼ − 1

2π

∫ ∞

0

wdw

e8πMw − 1
|B(w)|2 . (57)

We see that this is the negative flux entering the black hole horizon which

compensates the Hawking radiation at infinity. A similar study can also be

performed for the Hartle-Hawking thermal state.

With the above analysis concerning the choice of states we have checked

again the physical consistency of the proposed expression for the covariant

quantum stress tensor for dilaton coupled theories. However we have to point
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out that the advantage of having the entire expression for the quantum stress

tensor is that it allows to properly consider the one-loop semiclassical equations

and to attack the interesting and difficult problem of backreaction.

To end the paper, we would like to remark that the fact that (12) is the

exact transformation law of the quantum stress tensor for a generic dilaton field

φ should not be a surprise at all. One of the main features of 2d conformal field

theories is the existence of universal behaviours, irrespective of the particular

model considered. Therefore one could be tempted to conjecture that (12) is

also valid for an arbitrary conformal field theory coupled to a dilaton, up to

numerical coefficients in the c-numer terms.
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