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Abstract

A search for the supersymmetric partner of the goldstino, the sgoldstino S, at
LEP2 is presented. The production Sγ followed by S decay into two gluons or
into two photons was studied at 189 - 202 GeV LEP centre-of-mass energies. No
evidence for the S production was found and limits on the S mass corresponding
to different theory parameters are given.
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A.Augustinus9, P.Baillon9, A.Ballestrero47, P.Bambade9,20, F.Barao22, G.Barbiellini48, R.Barbier26, D.Y.Bardin17,

G.Barker18, A.Baroncelli40, M.Battaglia16, M.Baubillier24, K-H.Becks54, M.Begalli6, A.Behrmann54, P.Beilliere8,

Yu.Belokopytov9 , N.C.Benekos33, A.C.Benvenuti5, C.Berat15, M.Berggren24, L.Berntzon46, D.Bertrand2, M.Besancon41,

M.S.Bilenky17, M-A.Bizouard20, D.Bloch10, H.M.Blom32, M.Bonesini29, M.Boonekamp41, P.S.L.Booth23, G.Borisov20,

C.Bosio43, O.Botner50, E.Boudinov32, B.Bouquet20, C.Bourdarios20, T.J.V.Bowcock23, I.Boyko17, I.Bozovic12,

M.Bozzo14, M.Bracko45, P.Branchini40, R.A.Brenner50, P.Bruckman9, J-M.Brunet8, L.Bugge34, T.Buran34,

P.Buschmann54, S.Cabrera51, M.Caccia28, M.Calvi29, T.Camporesi9, V.Canale39, F.Carena9, L.Carroll23, C.Caso14,

M.V.Castillo Gimenez51, A.Cattai9, F.R.Cavallo5, Ph.Charpentier9, P.Checchia37, G.A.Chelkov17, R.Chierici47,

P.Chliapnikov9,44, P.Chochula7, V.Chorowicz26, J.Chudoba31, K.Cieslik19, P.Collins9, R.Contri14, E.Cortina51,

G.Cosme20, F.Cossutti9, M.Costa51, H.B.Crawley1, D.Crennell38, J.Croix10, G.Crosetti14, J.Cuevas Maestro35,

S.Czellar16, J.D’Hondt2, J.Dalmau46, M.Davenport9, W.Da Silva24, G.Della Ricca48, P.Delpierre27, N.Demaria47,

A.De Angelis48, W.De Boer18, C.De Clercq2, B.De Lotto48 , A.De Min9, L.De Paula49, H.Dijkstra9, L.Di Ciaccio39,

J.Dolbeau8, K.Doroba53, M.Dracos10, J.Drees54, M.Dris33, G.Eigen4, T.Ekelof50, M.Ellert50, M.Elsing9, J-P.Engel10,

M.Espirito Santo9, G.Fanourakis12, D.Fassouliotis12, M.Feindt18, J.Fernandez42 , A.Ferrer51, E.Ferrer-Ribas20, F.Ferro14,

A.Firestone1, U.Flagmeyer54, H.Foeth9, E.Fokitis33, F.Fontanelli14, B.Franek38, A.G.Frodesen4, R.Fruhwirth52,

F.Fulda-Quenzer20, J.Fuster51, A.Galloni23, D.Gamba47, S.Gamblin20, M.Gandelman49, C.Garcia51, C.Gaspar9,

M.Gaspar49, U.Gasparini37, Ph.Gavillet9, E.N.Gazis33, D.Gele10, T.Geralis12, N.Ghodbane26, I.Gil51, F.Glege54,

R.Gokieli9,53, B.Golob9,45, G.Gomez-Ceballos42, P.Goncalves22, I.Gonzalez Caballero42, G.Gopal38, L.Gorn1,

V.Gracco14, J.Grahl1, E.Graziani40, P.Gris41, G.Grosdidier20, K.Grzelak53, J.Guy38, C.Haag18, F.Hahn9, S.Hahn54,

S.Haider9, A.Hallgren50, K.Hamacher54, J.Hansen34, F.J.Harris36, F.Hauler18, V.Hedberg9,25, S.Heising18,

J.J.Hernandez51, P.Herquet2, H.Herr9, E.Higon51, S-O.Holmgren46, P.J.Holt36, S.Hoorelbeke2, M.Houlden23,

J.Hrubec52, M.Huber18, G.J.Hughes23, K.Hultqvist9,46, J.N.Jackson23, R.Jacobsson9, P.Jalocha19, R.Janik7,

Ch.Jarlskog25, G.Jarlskog25, P.Jarry41, B.Jean-Marie20, D.Jeans36, E.K.Johansson46, P.Jonsson26, C.Joram9,

P.Juillot10, L.Jungermann18, F.Kapusta24, K.Karafasoulis12, S.Katsanevas26 , E.C.Katsoufis33, R.Keranen18, G.Kernel45,

B.P.Kersevan45, B.A.Khomenko17, N.N.Khovanski17, A.Kiiskinen16, B.King23, A.Kinvig23, N.J.Kjaer9, O.Klapp54,

P.Kluit32, P.Kokkinias12, C.Kourkoumelis3, O.Kouznetsov17, M.Krammer52, E.Kriznic45, Z.Krumstein17, P.Kubinec7,

J.Kurowska53, K.Kurvinen16, J.W.Lamsa1, D.W.Lane1, J-P.Laugier41, R.Lauhakangas16 , G.Leder52, F.Ledroit15,

L.Leinonen46, A.Leisos12, R.Leitner31, J.Lemonne2, G.Lenzen54 , V.Lepeltier20, T.Lesiak19, M.Lethuillier26, J.Libby36,

W.Liebig54, D.Liko9, A.Lipniacka46, I.Lippi37, B.Loerstad25, J.G.Loken36, J.H.Lopes49, J.M.Lopez42,

R.Lopez-Fernandez15 , D.Loukas12, P.Lutz41, L.Lyons36, J.MacNaughton52 , J.R.Mahon6, A.Maio22, A.Malek54,

S.Maltezos33, V.Malychev17, F.Mandl52, J.Marco42, R.Marco42, B.Marechal49, M.Margoni37, J-C.Marin9, C.Mariotti9,

A.Markou12, C.Martinez-Rivero9, S.Marti i Garcia9, J.Masik13, N.Mastroyiannopoulos12, F.Matorras42, C.Matteuzzi29,

G.Matthiae39, F.Mazzucato37 , M.Mazzucato37, M.Mc Cubbin23, R.Mc Kay1, R.Mc Nulty23, G.Mc Pherson23,

E.Merle15, C.Meroni28, W.T.Meyer1, E.Migliore9, L.Mirabito26, W.A.Mitaroff52, U.Mjoernmark25, T.Moa46, M.Moch18,

R.Moeller30, K.Moenig9,11, M.R.Monge14, J.Montenegro32, D.Moraes49, G.Morton36, U.Mueller54, K.Muenich54,

M.Mulders32, C.Mulet-Marquis15, L.M.Mundim6, R.Muresan25, W.J.Murray38, B.Muryn19, G.Myatt36, T.Myklebust34,

F.Naraghi15, M.Nassiakou12, F.L.Navarria5, K.Nawrocki53, P.Negri29, N.Neufeld52, R.Nicolaidou41, B.S.Nielsen30,

P.Niezurawski53, M.Nikolenko10,17, V.Nomokonov16, A.Nygren25, A.G.Olshevski17, A.Onofre22, R.Orava16,

K.Osterberg9, A.Ouraou41, A.Oyanguren51, M.Paganoni29, S.Paiano5, R.Pain24, R.Paiva22, J.Palacios36, H.Palka19,

Th.D.Papadopoulou33, L.Pape9, C.Parkes9, F.Parodi14, U.Parzefall23, A.Passeri40, O.Passon54, T.Pavel25,

M.Pegoraro37, L.Peralta22, M.Pernicka52, A.Perrotta5, C.Petridou48, A.Petrolini14, H.T.Phillips38, F.Pierre41,

M.Pimenta22, E.Piotto28, T.Podobnik45, V.Poireau41, M.E.Pol6, G.Polok19, P.Poropat48, V.Pozdniakov17 , P.Privitera39,

N.Pukhaeva17, A.Pullia29, D.Radojicic36, S.Ragazzi29, H.Rahmani33, J.Rames13, P.N.Ratoff21, A.L.Read34,

P.Rebecchi9, N.G.Redaelli29, M.Regler52, J.Rehn18, D.Reid32, P.Reinertsen4, R.Reinhardt54, P.B.Renton36,

L.K.Resvanis3, F.Richard20, J.Ridky13, G.Rinaudo47, I.Ripp-Baudot10, A.Romero47, P.Ronchese37 , E.I.Rosenberg1,

P.Rosinsky7, P.Roudeau20, T.Rovelli5, V.Ruhlmann-Kleider41, A.Ruiz42, H.Saarikko16, Y.Sacquin41, A.Sadovsky17,

G.Sajot15, J.Salt51, D.Sampsonidis12, M.Sannino14, A.Savoy-Navarro24, C.Schwanda52 , Ph.Schwemling24,

B.Schwering54, U.Schwickerath18, F.Scuri48, P.Seager21, Y.Sedykh17, A.M.Segar36, N.Seibert18, R.Sekulin38, G.Sette14 ,

R.C.Shellard6, M.Siebel54, L.Simard41, F.Simonetto37, A.N.Sisakian17, G.Smadja26, O.Smirnova25, G.R.Smith38,

A.Sopczak18, R.Sosnowski53, T.Spassov9, E.Spiriti40, S.Squarcia14, C.Stanescu40, M.Stanitzki18, K.Stevenson36 ,

A.Stocchi20, J.Strauss52, R.Strub10, B.Stugu4, M.Szczekowski53 , M.Szeptycka53 , T.Tabarelli29, A.Taffard23,

F.Tegenfeldt50, F.Terranova29, J.Timmermans32, N.Tinti5, L.G.Tkatchev17 , M.Tobin23, S.Todorova9, B.Tome22,

A.Tonazzo9, L.Tortora40, P.Tortosa51, G.Transtromer25, D.Treille9, G.Tristram8, M.Trochimczuk53, C.Troncon28,

M-L.Turluer41, I.A.Tyapkin17, P.Tyapkin25, S.Tzamarias12, O.Ullaland9, G.Valenti9,5, E.Vallazza48, C.Vander Velde2,

P.Van Dam32, W.Van den Boeck2, W.K.Van Doninck2, J.Van Eldik9,32, A.Van Lysebetten2 , N.van Remortel2,



iii

I.Van Vulpen32, G.Vegni28, L.Ventura37, W.Venus38,9, F.Verbeure2, P.Verdier26, M.Verlato37, L.S.Vertogradov17,

V.Verzi28, D.Vilanova41, L.Vitale48, A.S.Vodopyanov17 , G.Voulgaris3, V.Vrba13, H.Wahlen54, A.J.Washbrook23,

C.Weiser9, D.Wicke9, J.H.Wickens2, G.R.Wilkinson36, M.Winter10, M.Witek19, G.Wolf9, J.Yi1, A.Zalewska19,

P.Zalewski53, D.Zavrtanik45, E.Zevgolatakos12 , N.I.Zimin17,25, A.Zintchenko17 , Ph.Zoller10, G.Zumerle37, M.Zupan12

1Department of Physics and Astronomy, Iowa State University, Ames IA 50011-3160, USA
2Physics Department, Univ. Instelling Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
and IIHE, ULB-VUB, Pleinlaan 2, B-1050 Brussels, Belgium
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1 Introduction

In the Supersymmetric extension of the Standard Model, once Supersymmetry is spon-
taneously broken the gravitino G̃ can acquire a mass by absorbing the degrees of free-
dom of the goldstino. This mechanism is analogous to the spontaneous breaking of the
electro-weak symmetry in the Standard Model, where the Z and W bosons acquire mass
by absorbing the goldstone bosons.

A light gravitino as predicted by some supersymmetric models [1] has been searched
for at LEP and Tevatron experiments [2,3]. Limits on the G̃ mass allow lower limits on

the supersymmetry-breaking scale
√

F to be inferred.
Recently it has been pointed out [4] that an appropriate theory must contain also

the supersymmetric partner of the goldstino, called the sgoldstino, which could be mas-
sive. The production of this particle may be relevant at present LEP energies if the
supersymmetry-breaking scale and the sgoldstino mass are not too large. In the minimal
R-parity-conserving model, as considered in [4], the effective theory at the weak scale
contains two neutral scalar states: the S which is CP-even, and the P which is CP-odd.
As sgoldstinos have even R parity, they are not necessarily produced in pairs and their
decay chains do not necessarily contain an LSP (Lightest Supersymmetric Particle). The
phenomenology of these two particles is similar. The following formulae and results will
be expressed for the S state but are valid also for the P particle.

At LEP 2, one of the most interesting production channels is the process e+e− → Sγ,
which depends on the S mass mS and on

√
F :

dσ

dcosθ
(e+e− → Sγ) =

|Σ|2 s

64πF 2

(

1 − m2
S

s

)3

(1 + cos2θ), (1)

where θ is the scattering angle in the centre-of-mass and

|Σ|2 =
e2M2

γγ

2s
+

g2
Z(v2

e + a2
e)M

2
γZs

2(s − m2
Z)2

+
egZveMγγMγZ

s − m2
Z

(2)

with ve = sin2θW − 1/4, ae = 1/4 and gZ = e/(sinθW cosθW ) . Mγγ and MγZ are related
to the diagonal mass terms for the U(1)Y and SU(2)L gauginos M1 and M2:

Mγγ = M1cos
2θW + M2sin

2θW , MγZ = (M2 − M1)sinθW cosθW . (3)

The most relevant S decay modes are S → γγ and S → gg with

Γ(S → γγ) =
m3

SM2
γγ

32πF 2
(4)

and

Γ(S → gg) =
m3

SM2
3

4πF 2
, (5)

where M3 is the gluino mass. The corresponding branching ratios depend on M1, M2

and M3, and the total width is Γ ∼ Γ(S → γγ) + Γ(S → gg). In this letter two sets for
these parameters as suggested in [4] are considered and listed in Table 1.

For a large interval of the parameter space the total width is small (below a few

GeV/c2), except for the region with small
√

F where the production cross section is also
expected to be very large.

The two decay channels considered produce events with very different topologies:
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M1 M2 M3 B.R. S → γγ B.R. S → gg
1) 200 300 400 4% 96%
2) 350 350 350 11% 89%

Table 1: Two choices for the gaugino mass parameters (in GeV/c2) relevant for the
sgoldstino production and decay and the corresponding Branching Ratios of the two
considered channels.

1. S → γγ gives rise to events with three high energy photons, one of which is expected

to be monochromatic with energy Eγ =
s−m2

S

2
√

s
for the large fraction of the parameter

space where S has a negligible width. Despite its lower branching ratio (4 and
11% for the two sets of Table 1, respectively), this final state is worth investigating
because the main background source is the QED process e+e− → γγ(γ), which is
expected to be small if photons in the forward region are discarded.

2. S → gg gives rise to events with one monochromatic photon (except for the region

with small
√

F ) and two jets. An irreducible background from e+e− → qq̄γ events
is associated to this topology. Therefore the signal must be searched for as an excess
of events over the background expectation for every mass hypothesis.

This letter describes the results obtained with the DELPHI detector at LEP centre-
of-mass energies of 189, 192, 196, 200 and 202 GeV, corresponding to a total integrated
luminosity of about 380 pb−1.

2 Apparatus

A detailed description of the DELPHI detector can be found in [5]. The present
analysis was mainly based on the measurement of the electromagnetic energy clusters [6]
in the barrel electromagnetic calorimeter, the High density Projection Chamber (HPC),
and in the Forward ElectroMagnetic Calorimeter (FEMC), as well as on the capability
of reconstructing charged particle tracks using the tracking devices: the Vertex Detector
(VD), the Inner Detector (ID), the Time Projection Chamber (TPC), the Outer Detector
(OD) and the forward chambers (FCA and FCB). The Vertex Detector [7] extends its
coverage down to 10.5◦ in polar angle θ. An electromagnetic calorimeter (STIC) was used
to measure the luminosity.

The barrel and the forward electromagnetic energy triggers were based on data from
the HPC and the FEMC respectively. The calorimetric trigger efficiency for e+e− →
γγ(γ) was estimated with samples of Bhabha e+e− → e+e−(γ) events. This was done by
counting how often the electromagnetic trigger was fired by an electron which had been
triggered by an independent track trigger. In events with more than two photons, as well
as in events with photons and charged particle tracks, the trigger efficiency was better
than 99%.

3 Event selection and analysis

The 1998 data were taken at
√

s = 188.6 GeV, and the 1999 data at 191.6, 195.5,
199.5 and 201.6 GeV. The integrated luminosities obtained requiring the HPC, FEMC,
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TPC and VD to be operational were 155.1 pb−1, 25.1 pb−1, 76.2 pb−1, 83.1 pb−1 and
40.1 pb−1 respectively for the five centre-of-mass energies.

Monte-Carlo generated events for the same centre-of-mass energies were processed
through the full DELPHI simulation [5] and the same reconstruction chain as real data.

3.1 S → γγ channel

Events were selected as γγγ candidates if they had:

• at least two electromagnetic energy clusters with 0.219 < E/
√

s < 0.713;
• at least one additional cluster with E > 5 GeV and no more than two additional

clusters, of which the second one (if present) had E < 5 GeV;
• the two most energetic electromagnetic clusters in the HPC region 42◦ < θ < 89◦ or

in the FEMC region 25◦ < θ < 32.4◦;
• the third cluster in the region 42◦ < θ or 20◦ < θ < 35◦;
• no hits in two of the three Vertex Detector layers within ±2◦ in azimuthal angle φ

of the line from the mean beam crossing point to any electromagnetic cluster.

Further, two hemispheres were defined by a plane orthogonal to the direction of the
most energetic cluster. One hemisphere was required to have no charged particle detected
in the barrel region of the detector with momentum above 1 GeV/c extrapolating to
within 5 cm of the mean beam crossing point. The requirement was strengthened, to
suppress the large e+e− background further, by demanding that both hemispheres have
no such particle detected by the TPC with θ < 35◦.

The events selected have a three-body final state kinematics if no significant additional
radiation is lost in the detector (mainly initial state radiation lost along the beam pipe).
A simple way to check if an event is, within a reasonable approximation, a three-body
final state, is to look at the distribution of the quantity ∆ = |δ12| + |δ13| + |δ23| where
δij is the angle between the particle i and j (Fig. 1). In a three-body final state, the
particles lie in a plane and therefore ∆ should be 360◦. If only the events with ∆ > 358◦

are accepted, the energies of the particles can be determined with very good precision
from their measured directions:

E1 =
√

s
sinδ23

δ
; E2 =

√
s
sinδ13

δ
; E3 =

√
s
sinδ12

δ
(6)

with δ = sinδ12+sinδ13+sinδ23. The error on the energy evaluation was further minimised
by requiring min(δ12, δ13, δ23) > 2◦.

In Sγ events, the S decay products are isotropically distributed in the S centre-of-
mass system. The distribution of cosα, where α is the angle between the S direction
(opposite to the prompt photon) and the direction of one of the two S decay products,
in the S centre-of-mass system, should therefore be flat. On the other hand, in the QED
background |cosα| peaks at 1. Therefore, out of the three combinations present in each
event, only those giving |cosα| < 0.9 were accepted.

The numbers of selected events, each giving up to three combinations, are listed with
the expected background in Table 2. No significant background was found except for the
QED process e+e− → γγ(γ).

The acceptance for an Sγ signal produced according to (1) after the described polar
angle cuts was (51± 2)%. The dependence on mS from 10 to 190 GeV/c2 was contained
within the error quoted. The selection efficiency inside the acceptance region was evalu-
ated by means of the QED background events generated according to [8], The efficiency
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Figure 1: ∆−1800 for the γγγ candidates (points) and the QED e+e− → γγ(γ) simulated
sample (histogram). The cuts on min(δ12, δ13, δ23) > 2◦ and on cosα are not applied in
this figure.

was independent, within the errors, of the photon polar angle. Its average value was
(76.6 ± 2.5)%.

The energy resolution obtained from (6) was also evaluated using simulated QED
events as shown in Fig.2. It was better than 0.5 % in the whole photon energy range: a
fit with two Gaussians gave two resolution components with σ1 = 0.12 GeV and σ2 = 0.35
GeV with about equal frequencies.

The second component was introduced to describe the tails originating from photons
detected near the calorimeter dead regions.

3.2 S → gg channel

This channel is expected to give rise to a final state with one photon and two jets. An
event was selected as a γgg candidate if it had:

• an electromagnetic energy cluster identified as a photon with E > 5 GeV and θ >
20◦;

• no electromagnetic cluster with θ < 5◦;
• total multiplicity greater than 10;
• charged particle multiplicity greater than 5;

•
√

∑n
i=1(p

2
x + p2

y)i > 0.12 ×√
s, where n is the total multiplicity;

• the sum of the absolute values of all particle momenta along the thrust axis greater
than 0.20 ×√

s;
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Figure 2: The energy resolution ∆E for the photons of the γγγ candidates in the QED
e+e− → γγ(γ) simulated sample. The photon energy was obtained using (6). A fit with
two Gaussians gave two resolution components σ1 = 0.12 GeV and σ2 = 0.35 GeV with
approximately equal frequencies.

• either an electromagnetic cluster with E < 0.45×√
s, or a total multiplicity greater

than 16 if the cluster energy is greater than 0.45 ×√
s ;

• |cos(θp)| < 0.995, where θp is the polar angle of the missing momentum;
• visible energy greater than 0.60 ×√

s;
• | cosα| < 0.9;
• ∆ greater than 350◦.

The events were reconstructed forcing all particles but the photon into a 2-jet topology
using the DURHAM [10] algorithm. Events were removed if ycut > 0.02 and if the angle
between the photon and the nearest jet was less than 10◦. If the event contained more
than one photon candidate, the most energetic one was considered as the one produced in
e+e− → Sγ. In addition, the jets were required to be incompatible with the bb̄ hypothesis
by requiring the combined btag of the events to be less than zero [9].

As in the γγγ selection, the events obtained after this selection are three-body final
state events in the absence of additional lost radiation. Therefore all the kinematic
constraints described in the previous subsection were also applied here. In this case,
however, as jet directions are less precisely determined than photons directions, the cut
in ∆ was less stringent and the resolution for the reconstructed photon energy was poorer:
a two-Gaussian fit gave σ1 = 1.2 GeV (55% of the area) and σ2 = 4.1 GeV.

The polar angle acceptance for an Sγ signal produced according to (1) was (76± 2%)
and almost independent of mS. The selection efficiency inside the acceptance region
was evaluated using the qq̄γ background events generated with PYTHIA [11], processed
through the full DELPHI analysis chain and re-weighted according to the background
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and signal photon polar angle distributions. It ranged from 20 to 55 % depending on the
photon energy.

In addition to the main background from qq̄γ events, a small (less than 5%) fraction
was due to four-fermion processes which were generated according to EXCALIBUR [12].
The numbers of selected events and the expected background are listed in Table 2.

channel
√

s (GeV) events background
S → γγ 189 11 19 ± 2
S → γγ 192 to 202 19 24−2

+3

S → g g 189 771 782 ± 24
S → g g 192 113 113 ± 3
S → g g 196 339 316 ± 5
S → g g 200 342 330 ± 6
S → g g 202 169 158 ± 3

Table 2: Number of selected events for the two decay channels and expected number of
background events. The background for the S → γγ channel is dominated by the QED
process e+e− → γγ(γ), for the S → g g channel by the process e+e− → qq̄γ. The errors
include systematic effects (see text).

4 Results

The photon recoil mass spectra obtained for the two decay channels are shown in Fig. 3
and Fig. 4. The data are superimposed on the expected background distributions. In the
case of the S → γγ channel, the QED background generator included corrections only to
order α3 and therefore no additional radiation was simulated. Additional radiation tends
to give rise to a tail of events having low values of ∆ (Fig. 1). These events were removed
only from the selected sample of real data, and therefore a corresponding normalisation
correction of (−13+4

−7)% was applied to the simulated sample. This correction was the
dominant contribution to the systematic uncertainty for the S → γγ channel.

In the case of the S → gg channel, the systematic error was due to the Monte-Carlo
statistics and to the uncertainty on the luminosity determination, which was 0.56% for
the 1998 data and 1.0% for the 1999 data. The e+e− → qq̄γ background for the 189 GeV
data was generated with PYTHIA version 5.722, which did not accurately reproduce the
angular distribution of the radiative photon. Therefore the Monte-Carlo events at that
energy were corrected on the basis of the ratio between events generated at higher energies
according to PYTHIA version 5.722 and PYTHIA version 6.125. The systematic error
on the number of expected events at 189 GeV includes the uncertainty in this correction.

No excess of events and no clear evidence of anomalous production of events with
monochromatic photons is observed in either channel. Therefore a limit on the cross
section of the new physics reaction contributing to the two topologies was set.

The number of detected events, the background rate and the detection efficiency de-
pend on the S mass hypothesis considered. In addition, when the expected total width
for a given mS value is comparable with the experimental resolution or larger, the data
were compared with the background events in a region corresponding to 80% of the signal
area. As a consequence, the limit on the signal cross section depends on both mS and√

F . To take into account the different sensitivities of the two analysed channels, the



7

Figure 3: Photon recoil mass spectrum for the γγγ candidates (points) and the expected
background (histogram). The average number of entries per event in the data is 2.3. The
bin size takes into account the experimental mass resolution and the expected signal
width.

likelihood ratio method was used [13]. Since the expected S branching ratio and total
width depend on the mass parameters, as explained above, the 95% Confidence Level
cross section limit was computed as a function of mS and

√
F for the two sets of param-

eters listed in Table 1. The result is shown in Fig. 5. By comparing the experimental
limits with the production cross section computed from (1), it is possible to determine a
95% Confidence Level excluded region of the parameter space. This is shown in Fig. 6.
As explained in [4], to keep the particle interpretation the total width Γ must be much
smaller than mS and therefore the region with Γ > 0.5 × mS was not considered. The
95% Confidence Level limits on the cross section times branching ratio for the two decay
channels are given in Fig. 7. They are obtained for

√
F ≥ 500 GeV, corresponding to

the region where the expected signal width is independent of
√

F as it is dominated by
the experimental resolution.

5 Conclusions

The first search for the production of Sγ (Pγ) where S (P ) is a CP-even (CP-odd)
state of the sgoldstino, the goldstino supersymmetric partner, was made using the data
collected by DELPHI at LEP in 1998 and 1999 at centre-of-mass energies from 189 to
202 GeV for a total integrated luminosity of about 380 pb−1. The γγγ and γgg final
states expected from S(P ) → γγ and S(P ) → gg production and decay respectively,
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Figure 4: Photon recoil mass spectrum for the γgg candidates (points) and the expected
background (histogram).

were studied. No evidence of a signal was found in either channel. Upper limits on Sγ
(Pγ) production in the (mS(mP ),

√
F ) plane were derived.
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Figure 5: Cross section (pb) upper limit at the 95% Confidence Level as a function of

mS and
√

F for the two sets of parameters of Tab. 1.
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Figure 6: Exclusion region at the 95% Confidence Level in the mS,
√

F plane for the
two sets of parameters of Tab. 1.
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Figure 7: Cross section times branching ratio limits at the 95% Confidence Level for the
two decay channels investigated. They are obtained for

√
F ≥ 500 GeV, corresponding to

the region where the expected signal width is dominated by the experimental resolution.
The bin size was chosen to match the experimental mass resolution.


