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Abstract
Searches for the lepton flavour violating decay τ− → µ−µ+µ− and the lepton
flavour and baryon number violating decays τ− → p̄µ+µ− and τ− → pµ−µ− have
been carried out using proton-proton collision data, corresponding to an integrated
luminosity of 1.0 fb−1, taken by the LHCb experiment at

√
s = 7 TeV. No evidence

has been found for any signal, and limits have been set at 90% confidence level
on the branching fractions: B(τ− → µ−µ+µ−) < 8.0 × 10−8, B(τ− → p̄µ+µ−) <
3.3× 10−7 and B(τ− → pµ−µ−) < 4.4× 10−7. The results for the τ− → p̄µ+µ− and
τ− → pµ−µ− decay modes represent the first direct experimental limits on these
channels.
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kUniversità di Roma Tor Vergata, Roma, Italy
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1 Introduction1

The observation of neutrino oscillations was the first evidence for lepton flavour violation2

(LFV). As a consequence, the introduction of mass terms for neutrinos in the Standard3

Model (SM) implies that LFV exists also in the charged sector, but with branching fractions4

smaller than ∼ 10−40 [1,2]. Physics beyond the Standard Model (BSM) could significantly5

enhance these branching fractions. Many BSM theories predict enhanced LFV in τ−6

decays with respect to µ− decays1, with branching fractions within experimental reach [3].7

To date, no charged LFV decays such as µ− → e−γ, µ− → e−e+e−, τ− → `−γ and8

τ− → `−`+`− (with `− = e−, µ−) have been observed [4]. Baryon number violation (BNV)9

is believed to have occurred in the early universe, although the mechanism is unknown.10

BNV in charged lepton decays automatically implies lepton number and lepton flavour11

violation, with angular momentum conservation requiring the change |∆(B − L)| = 012

or 2, where B and L are the net baryon and lepton numbers. The SM and most of its13

extensions [1] require |∆(B − L)| = 0. Any observation of BNV or charged LFV would14

be a clear sign for BSM physics, while a lowering of the experimental upper limits on15

branching fractions would further constrain the parameter spaces of BSM models.16

In this Letter we report on searches for the LFV decay τ− → µ−µ+µ− and the LFV17

and BNV decay modes τ− → p̄µ+µ− and τ− → pµ−µ− at LHCb [5]. The inclusive τ−18

production cross-section at the LHC is relatively large, at about 80µb (approximately19

80% of which comes from D−s → τ−ν̄τ ), estimated using the bb̄ and cc̄ cross-sections20

measured by LHCb [6,7] and the inclusive b→ τ and c→ τ branching fractions [8]. The21

τ− → µ−µ+µ− and τ → pµµ decay modes2 are of particular interest at LHCb, since muons22

provide clean signatures in the detector and the ring-imaging Cherenkov (RICH) detectors23

give excellent identification of protons.24

This Letter presents the first results on the τ− → µ−µ+µ− decay mode from a hadron25

collider and demonstrates an experimental sensitivity at LHCb, with data corresponding to26

an integrated luminosity of 1.0 fb−1, that approaches the current best experimental upper27

limit, from Belle, B(τ− → µ−µ+µ−) < 2.1× 10−8 at 90% confidence level (CL) [9]. BaBar28

and Belle have searched for BNV τ decays with |∆(B−L)| = 0 and |∆(B−L)| = 2 using the29

modes τ− → Λh− and Λ̄h− (with h− = π−, K−), and upper limits on branching fractions of30

order 10−7 were obtained [4]. BaBar has also searched for the B meson decays B0 → Λ+
c l
−,31

B− → Λl− (both having |∆(B − L)| = 0) and B− → Λ̄l− (|∆(B − L)| = 2), obtaining32

upper limits at 90% CL on branching fractions in the range (3.2− 520)× 10−8 [10]. The33

two BNV τ decays presented here, τ− → p̄µ+µ− and τ− → pµ−µ−, have |∆(B − L)| = 034

but they could have rather different BSM interpretations; they have not been studied by35

any previous experiment.36

In this analysis the LHCb data sample from 2011, corresponding to an integrated37

luminosity of 1.0 fb−1 collected at
√
s = 7 TeV, is used. Selection criteria are implemented38

for the three signal modes, τ− → µ−µ+µ−, τ− → p̄µ+µ− and τ− → pµ−µ−, and for the39

calibration and normalisation channel, which is D−s → φπ− followed by φ→ µ+µ−, referred40

1The inclusion of charge conjugate processes is implied throughout this Letter.
2In the following τ → pµµ refers to both the τ− → p̄µ+µ− and τ− → pµ−µ− channels.

1



to in the following as D−s → φ(µ+µ−)π−. These initial, cut-based selections are designed41

to keep good efficiency for signal whilst reducing the dataset to a manageable level. To42

avoid potential bias, µ−µ+µ− and pµµ candidates with mass within ±30 MeV/c2 (≈ 3σm)43

of the τ mass are initially blinded from the analysis, where σm denotes the expected mass44

resolution. For the 3µ channel, discrimination between potential signal and background is45

performed using a three-dimensional binned distribution in two likelihood variables and the46

mass of the τ candidate. One likelihood variable is based on the three-body decay topology47

and the other on muon identification. For the τ → pµµ channels, the use of the second48

likelihood function is replaced by cuts on the proton and muon particle identification (PID)49

variables. The analysis strategy and limit-setting procedure are similar to those used for50

the LHCb analyses of the B0
s → µ+µ− and B0 → µ+µ− channels [11,12].51

2 Detector and triggers52

The LHCb detector [5] is a single-arm forward spectrometer covering the pseudorapidity53

range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector54

includes a high precision tracking system consisting of a silicon-strip vertex detector55

surrounding the pp interaction region, a large-area silicon-strip detector located upstream56

of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-57

strip detectors and straw drift tubes placed downstream. The combined tracking system58

has momentum resolution ∆p/p that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c,59

and impact parameter resolution of 20µm for tracks with high transverse momentum60

(pT). Charged hadrons are identified using two RICH detectors. Photon, electron and61

hadron candidates are identified by a calorimeter system consisting of scintillating-pad and62

preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons63

are identified by a system composed of alternating layers of iron and multiwire proportional64

chambers.65

The trigger [13] consists of a hardware stage, based on information from the calorimeter66

and muon systems, followed by a software stage that applies a full event reconstruction.67

The hardware trigger selects muons with pT > 1.48 GeV/c. The software trigger requires a68

two-, three- or four-track secondary vertex with a high sum of the pT of the tracks and a69

significant displacement from the primary pp interaction vertices (PVs). At least one track70

should have pT > 1.7 GeV/c and impact parameter chi-squared (IP χ2), with respect to the71

pp collision vertex, greater than 16. The IP χ2 is defined as the difference between the χ2
72

of the PV reconstructed with and without the track under consideration. A multivariate73

algorithm is used for the identification of secondary vertices.74

For the simulation, pp collisions are generated using Pythia 6.4 [14] with a specific75

LHCb configuration [15]. Particle decays are described by EvtGen [16] in which final-76

state radiation is generated using Photos [17]. For the three signal τ decay channels, the77

final-state particles are distributed according to three-body phase space. The interaction78

of the generated particles with the detector, and its response, are implemented using the79

Geant4 toolkit [18] as described in Ref. [19].80
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3 Signal candidate selection81

The signal and normalisation channels have the same topology, the signature of which is a82

vertex displaced from the PV, having three tracks that are reconstructed to give a mass83

close to that of the τ lepton (or Ds meson for the normalisation channel). In order to84

discriminate against background, well-reconstructed and well-identified muon, pion and85

proton tracks are required, with selections on track quality criteria and a requirement86

of pT > 300 MeV/c. Furthermore, for the τ → pµµ signal and normalisation channels87

the muon and proton candidates must pass loose PID requirements and the combined pT88

of the three-track system is required to be greater than 4 GeV/c. All selected tracks are89

required to have IP χ2 > 9. The fitted three-track vertex has to be of good quality, with a90

fit χ2 < 15, and the measured decay time, t, of the candidate forming the vertex has to be91

compatible with that of a heavy meson or tau lepton (ct > 100µm). Since the Q-values92

in decays of charm mesons to τ are relatively small, poorly reconstructed candidates are93

removed by a cut on the pointing angle between the momentum vector of the three-track94

system and the line joining the primary and secondary vertices. In the τ− → µ−µ+µ−95

channel, signal candidates with a µ+µ− mass within ±20 MeV/c2 of the φ meson mass are96

removed, and to eliminate irreducible background near the signal region arising from the97

decay D−s → η(µ+µ−γ)µ−ν̄µ, candidates with a µ+µ− mass combination below 450 MeV/c298

are also rejected (see Section 6). Finally, to remove potential contamination from pairs of99

reconstructed tracks that arise from the same particle, same-sign muon pairs with mass100

lower than 250 MeV/c2 are removed in both the τ− → µ−µ+µ− and τ− → pµ−µ− channels.101

The signal regions are defined by ±20 MeV/c2 (≈ 2σm) windows around the nominal τ102

mass, but candidates within wide mass windows, of ±400 MeV/c2 for τ− → µ−µ+µ− decays103

and ±250 MeV/c2 for τ → pµµ decays, are kept to allow evaluation of the background104

contributions in the signal regions. A mass window of ±20 MeV/c2 is also used to define105

the signal region for the D−s → φ(µ+µ−)π− channel, with the µ+µ− mass required to be106

within ±20 MeV/c2 of the φ meson mass.107

4 Signal and background discrimination108

After the selection each τ candidate is given a probability to be signal or background109

according to the values of several likelihoods. For τ− → µ−µ+µ− three likelihoods are used:110

a three-body likelihood,M3body, a PID likelihood,MPID, and an invariant mass likelihood.111

The likelihood M3body uses the properties of the reconstructed τ decay to distinguish112

displaced three-body decays from N -body decays (with N > 3) and combinations of tracks113

from different vertices. Variables used include the vertex quality and its displacement from114

the PV, and the IP and fit χ2 values of the tracks. The likelihood MPID quantifies the115

compatibility of each of the three particles with the muon hypothesis using information116

from the RICH detectors, the calorimeters and the muon stations; the value of MPID is117

taken as the smallest one of the three muon candidates. For τ → pµµ, the use of MPID is118

replaced by cuts on PID quantities. The invariant mass likelihood uses the reconstructed119

mass of the τ candidate to help discriminate between signal and background.120
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Figure 1: Distribution of (a) M3body and (b) MPID for τ− → µ−µ+µ− where the binning
corresponds to that used in the limit calculation. The short dashed (red) lines show the response
of the data sidebands, whilst the long dashed (blue) and solid (black) lines show the response of
simulated signal events before and after calibration. Note that in both cases the lowest likelihood
bin is later excluded from the analysis.

For the M3body likelihood a boosted decision tree [20] is used, with the AdaBoost121

algorithm [21], and is implemented via the TMVA [22] toolkit. It is trained using signal and122

background samples, both from simulation, where the composition of the background is a123

mixture of bb̄→ µµX and cc̄→ µµX according to their relative abundance as measured124

in data. The MPID likelihood uses a neural network, which is also trained on simulated125

events. The probability density function shapes are calibrated using the D−s → φ(µ+µ−)π−126

control channel and J/ψ → µ+µ− data for theM3body andMPID likelihoods, respectively.127

The shape of the signal mass spectrum is modelled using D−s → φ(µ+µ−)π− data. The128

M3body response as determined using the training from the τ− → µ−µ+µ− samples is used129

also for the τ → pµµ analyses.130

For the M3body and MPID likelihoods the binning is chosen such that the separation131

power between the background-only and signal-plus-background hypotheses is maximised,132

whilst minimising the number of bins. For the M3body likelihood the optimum number133

of bins is found to be six for the τ− → µ−µ+µ− analysis and five for τ → pµµ, while for134

the MPID likelihood the optimum number of bins is found to be five. The lowest bins in135

M3body and MPID do not contribute to the sensitivity and are later excluded from the136

analyses. The distributions of the two likelihoods, along with their binning schemes, are137

shown in Fig. 1 for the τ− → µ−µ+µ− analysis.138

For the τ → pµµ analysis, further cuts on the muon and proton PID hypotheses are139

used instead of MPID and are optimised, for a 2σ significance, on simulated signal events140

and data sidebands using the figure of merit from Ref. [23], with the distributions of the141

PID variables corrected according to those observed in data. The expected shapes of the142

invariant mass spectra for the τ− → µ−µ+µ− and τ → pµµ signals, with the appropriate143

selections applied, are taken from fits to the D−s → φ(µ+µ−)π− control channel in data144

as shown in Fig. 2. The signal distributions are modelled with the sum of two Gaussian145

functions with a common mean, where the narrower Gaussian contributes 70% of the total146
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Figure 2: Invariant mass distribution of φ(µ+µ−)π− after (a) the τ− → µ−µ+µ− selection and
(b) the τ → pµµ selection and PID cuts. The solid (blue) lines show the overall fits, the long
dashed (green) and short dashed (red) lines show the two Gaussian components of the signal
and the dot dashed (black) lines show the backgrounds.

signal yield, while the combinatorial backgrounds are modelled with linear functions. The147

expected widths of the τ signals in data are taken from simulation, scaled by the ratio148

of the widths of the D−s peaks in data and simulation. The data are divided into eight149

equally spaced bins in the ±20 MeV/c2 mass window around the nominal τ mass.150

5 Normalisation151

To measure the signal branching fraction for the decay τ− → µ−µ+µ− (and similarly for152

τ → pµµ) we normalise to the D−s → φ(µ+µ−)π− calibration channel using153

B(τ− → µ−µ+µ−)

= B(D−s → φ(µ+µ−)π−)× fDs
τ

B(D−s → τ−ν̄τ )
× εREC&SEL

cal

εREC&SEL
sig

× εTRIG
cal

εTRIG
sig

× Nsig

Ncal

= α×Nsig , (1)

where α is the overall normalisation factor and Nsig is the number of observed signal154

events. The branching fraction B(D−s → τ−ν̄τ ) is taken from Ref. [24]. The quantity fDs
τ155

is the fraction of τ leptons that originate from D−s decays, calculated using the bb̄ and cc̄156

cross-sections as measured by LHCb [6, 7] and the inclusive b → τ , c → τ , b → Ds and157

c→ Ds branching fractions [8]. The corresponding expression for the τ → pµµ decay is158

identical except for the inclusion of a further term, εPIDcal /ε
PID
sig , to account for the effect of159

the PID cuts.160

The reconstruction and selection efficiencies, εREC&SEL, are products of the detector161

acceptances for the particular decays, the muon identification efficiencies and the selection162

efficiencies. The combined muon identification and selection efficiency is determined from163

the yield of simulated events after the full selections have been applied. In the sample of164
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simulated events, the track IPs are smeared to describe the secondary-vertex resolution of165

the data. Furthermore, the events are given weights to adjust the prompt and non-prompt166

b and c particle production fractions to the latest measurements [8]. The difference in167

the result if the weights are varied within their uncertainties is assigned as a systematic168

uncertainty. The ratio of efficiencies is corrected to account for the differences between data169

and simulation in efficiencies of track reconstruction, muon identification, the φ(1020) mass170

window cut in the normalisation channel and the τ mass window cut, with all associated171

systematic uncertainties included. The removal of candidates in the least sensitive bins in172

the M3body and MPID classifiers is also taken into account.173

The trigger efficiency for selected candidates, εTRIG, is evaluated from simulation while174

its systematic uncertainty is determined from the difference between trigger efficiencies of175

B− → J/ψK− decays measured in data and in simulation.176

For the τ → pµµ channels the PID efficiency for selected and triggered candidates,177

εPID, is calculated using data calibration samples of J/ψ → µ+µ− and Λ→ pπ− decays,178

with the tracks weighted to match the kinematics of the signal and calibration channels.179

A systematic uncertainty of 1% per corrected final-state track is assigned [7], as well180

as a further 1% uncertainty to account for differences in the kinematic binning of the181

calibration samples between the analyses.182

The branching fraction of the calibration channel is determined from a combination of183

known branching fractions using184

B(D−s → φ(µ+µ−)π−) =
B(D−s → φ(K+K−)π−)

B(φ→ K+K−)
B(φ→ µ+µ−) = (1.33± 0.12)× 10−5 ,

(2)
where B(φ→ K+K−) and B(φ→ µ+µ−) are taken from [8] and B(D−s → φ(K+K−)π−)185

is taken from the BaBar amplitude analysis [25], which considers only the φ → K+K−186

resonant part of the D−s decay. This is motivated by the negligible contribution of187

non-resonant D−s → µ+µ−π− events seen in our data. The yields of D−s → φ(µ+µ−)π−188

candidates in data, Ncal, are determined from the fits to reconstructed φ(µ+µ−)π− mass189

distributions, shown in Fig. 2. The variations in the yields if the relative contributions of the190

two Gaussian components are varied in the fits are considered as systematic uncertainties.191

Table 1 gives a summary of all contributions to α; the uncertainties are taken to be192

uncorrelated.193
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Table 1: Terms entering in the normalisation factor α for τ− → µ−µ+µ−, τ− → p̄µ+µ− and
τ− → pµ−µ−, and their combined statistical and systematic uncertainties.

τ− → µ−µ+µ− τ− → p̄µ+µ− τ− → pµ−µ−

B(D−s → φ(µ+µ−)π−) (1.33 ± 0.12)× 10−5

fDs
τ 0.78 ± 0.05

B(D−s → τ−ν̄τ ) 0.0561 ± 0.0024

εcal
REC&SEL/εsig

REC&SEL 1.49 ± 0.12 1.35 ± 0.12 1.36 ± 0.12

εcal
TRIG/εsig

TRIG 0.753 ± 0.037 1.68 ± 0.10 2.03 ± 0.13

εcal
PID/εsig

PID n/a 1.43 ± 0.07 1.42 ± 0.08

Ncal 48 076 ± 840 8 145± 180

α (4.34 ± 0.65)× 10−9 (7.4 ± 1.2)× 10−8 (9.0 ± 1.5)× 10−8

6 Background studies194

The background processes for the decay τ− → µ−µ+µ− consist mainly of decay chains of195

heavy mesons with three real muons in the final state or with one or two real muons in196

combination with two or one misidentified particles. These backgrounds vary smoothly197

in the mass spectra in the region of the signal channel. The most important peaking198

background channel is found to be D−s → η(µ+µ−γ)µ−ν̄µ, about 80% of which is removed199

(see Section 3) by a cut on the dimuon mass. The small remaining background from200

this process is consistent with the smooth variation in the mass spectra of the other201

backgrounds in the mass range considered in the fit. Based on simulations, no peaking202

backgrounds are expected in the τ → pµµ analyses.203

The expected numbers of background events within the signal region, for each bin204

in M3body, MPID (for τ− → µ−µ+µ−) and mass, are evaluated by fitting the candidate205

mass spectra outside of the signal windows to an exponential function using an extended,206

unbinned maximum likelihood fit. The small differences obtained if the exponential curves207

are replaced by straight lines are included as systematic uncertainties. For τ− → µ−µ+µ−208

the data are fitted over the mass range 1600− 1950 MeV/c2, while for τ → pµµ the fitted209

mass range is 1650− 1900 MeV/c2, excluding windows around the expected signal mass of210

±30 MeV/c2 for µ−µ+µ− and ±20 MeV/c2 for pµµ. The resulting fits to the data sidebands211

for a selection of bins for the three channels are shown in Fig. 3.212
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Figure 3: Invariant mass distributions and fits to the mass sidebands in data for (a) µ+µ−µ−

candidates in the four merged bins that contain the highest signal probabilities, (b) p̄µ+µ−

candidates in the two merged bins with the highest signal probabilities, and (c) pµ−µ− candidates
in the two merged bins with the highest signal probabilities.

7 Results213

Tables 2 and 3 give the expected and observed numbers of candidates for all three214

channels investigated, in each bin of the likelihood variables, where the uncertainties215

on the background likelihoods are used to compute the uncertainties on the expected216

numbers of events. No significant evidence for an excess of events is observed. Using the217

CLs method as a statistical framework, the distributions of observed and expected CLs218

values are calculated as functions of the assumed branching fractions. The aforementioned219

uncertainties and the uncertainties on the signal likelihoods and normalisation factors are220

included using the techniques described in Ref. [12]. The resulting distributions of CLs221

values are shown in Fig. 4.222

The expected limits at 90% (95%) CL for the branching fractions are223

B(τ− → µ−µ+µ−) < 8.3 (10.2)× 10−8,

B(τ− → p̄µ+µ−) < 4.6 (5.9)× 10−7,

B(τ− → pµ−µ−) < 5.4 (6.9)× 10−7,
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while the observed limits at 90% (95%) CL are224

B(τ− → µ−µ+µ−) < 8.0 (9.8)× 10−8,

B(τ− → p̄µ+µ−) < 3.3 (4.3)× 10−7,

B(τ− → pµ−µ−) < 4.4 (5.7)× 10−7.

All limits are given for the phase-space model of τ decays. For τ− → µ−µ+µ−, the225

efficiency is found to vary by no more than 20% over the µ−µ− mass range and by 10%226

over the µ+µ− mass range. For τ → pµµ, the efficiency varies by less than 20% over the227

dimuon mass range and less than 10% with pµ mass.228

In summary, a first limit on the lepton flavour violating decay mode τ− → µ−µ+µ−229

has been obtained at a hadron collider. The result is compatible with previous limits and230

indicates that with the additional luminosity expected from the LHC over the coming231

years, the sensitivity of LHCb will become comparable with, or exceed, those of BaBar232

and Belle. First direct upper limits have been placed on the branching fractions for two233

τ decay modes that violate both baryon number and lepton flavour, τ− → p̄µ+µ− and234

τ− → pµ−µ−.235
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Table 2: Expected background candidate yields, with their systematic uncertainties, and observed
candidate yields within the τ signal window in the different likelihood bins for the τ− → µ−µ+µ−

analysis. The likelihood values forMPID range from 0 (most background-like) to +1 (most signal-
like), while those for M3body range from −1 (most background-like) to +1 (most signal-like).
The lowest likelihood bins have been excluded from the analysis.

MPID M3body Expected Observed

−0.48 – 0.05 345.0 ± 6.7 409
0.05 – 0.35 83.8 ± 3.3 68

0.43 – 0.6 0.35 – 0.65 30.2 ± 2.0 35
0.65 – 0.74 4.3 ± 0.8 2
0.74 – 1.0 1.4 ± 0.4 1

−0.48 – 0.05 73.1 ± 3.1 64
0.05 – 0.35 18.3 ± 1.5 15

0.6 – 0.65 0.35 – 0.65 8.6 ± 1.1 7
0.65 – 0.74 0.4 ± 0.1 0
0.74 – 1.0 0.6 ± 0.2 2

−0.48 – 0.05 45.4 ± 2.4 51
0.05 – 0.35 11.7 ± 1.2 6

0.65 – 0.725 0.35 – 0.65 5.3 ± 0.8 3
0.65 – 0.74 0.8 ± 0.2 1
0.74 – 1.0 0.4 ± 0.1 0

−0.48 – 0.05 44.5 ± 2.4 62
0.05 – 0.35 10.6 ± 1.2 13

0.725 – 0.86 0.35 – 0.65 7.3 ± 1.0 7
0.65 – 0.74 1.0 ± 0.2 2
0.74 – 1.0 0.4 ± 0.1 0

−0.48 – 0.05 5.9 ± 0.9 7
0.05 – 0.35 0.7 ± 0.2 1

0.86 – 1.0 0.35 – 0.65 1.0 ± 0.2 1
0.65 – 0.74 0.5 ± 0.0 0
0.74 – 1.0 0.4 ± 0.1 0
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Table 3: Expected background candidate yields, with their systematic uncertainties, and observed
candidate yields within the τ mass window in the different likelihood bins for the τ → pµµ
analysis. The likelihood values for M3body range from −1 (most background-like) to +1 (most
signal-like). The lowest likelihood bin has been excluded from the analysis.

τ− → p̄µ+µ− τ− → pµ−µ−

M3body Expected Observed Expected Observed

−0.05 – 0.20 37.9 ± 0.8 43 41.0 ± 0.9 41

0.20 – 0.40 12.6 ± 0.5 8 11.0 ± 0.5 13

0.40 – 0.70 6.76 ± 0.37 6 7.64 ± 0.39 10

0.70 – 1.00 0.96 ± 0.14 0 0.49 ± 0.12 0
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Figure 4: Distribution of CLs values as functions of the assumed branching fractions, under the
hypothesis to observe background events only, for (a) τ− → µ−µ+µ−, (b) τ− → p̄µ+µ− and (c)
τ− → pµ−µ−. The dashed lines indicate the expected curves and the solid lines the observed
ones. The light (yellow) and dark (green) bands cover the regions of 68% and 95% confidence for
the expected limits.
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