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Search for a Low-Mass Scalar Higgs Boson Decaying to a Tau Pair in Single-Photon
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We search for a low-mass scalar CP-odd Higgs boson, A°, produced in the radiative decay of
the Upsilon resonance and decaying into a 777~ pair: T(1S) — yA°. The production of T(15)
mesons is tagged by 7(2S) — 777~ T (1S) transitions, using a sample of (98.3 4 0.9) x 10° 7'(2S)
mesons collected by the BABAR detector. We find no evidence for a Higgs boson in the mass range
3.5 GeV <m0 <9.2 GeV, and combine these results with our previous search for the tau decays
of the light Higgs in radiative 1'(3S) decays, setting limits on the coupling of A° to the bb quarks
in the range 0.09 — 1.9. Our measurements improve the constraints on the parameters of the Next-
to-Minimal-Supersymmetric Standard Model and similar theories with low-mass scalar degrees of

freedom.

PACS numbers:

The Higgs boson is a scalar elementary particle pre-
dicted by the Higgs mechanism [I] which attempts to
explain the origin of mass of the elementary particles
within the Standard Model (SM) [2]. Present experimen-
tal evidence suggests a Higgs-like state with the mass of
~ 126 GeV [3]. However, low-mass Higgs states with
masses of O(10 GeV) appear in several extensions to
the SM [4], such as the Next-to-Minimal Supersymmet-
ric Standard Model (NMSSM) [5]. The NMSSM adds a
singlet superfield to the Minimal Supersymmetric Stan-
dard Model, solving the so-called naturalness problem.
The NMSSM contains two charged Higgs bosons, three
neutral CP-even bosons, and two CP-odd bosons. The
lightest CP-odd state, A%, could have a mass below the
bb production threshold, avoiding detection at LEP [4].
Such a particle could be produced in radiative T — yA°
decays [6] with a branching fraction as large as 10~ for

14.80.Da, 13.20.Gd, 14.40.Be, 12.60.Fr, 12.15.Ji, 12.60.Jv

the narrow states 7’ (nS) (where n < 3), depending on
the A° mass and couplings [5], making it accessible at
B-Factories. Thus, constraining the low-mass NMSSM
Higgs sector is important for understanding the recent
LHC discovery [7].

Searches for A° decays into putu~ [8], 777~ [9], invis-
ible [I0], and hadronic [I1] final states have been per-
formed by BABAR, so far with null results. In particular,
limits on the product of branching fractions B(Y'(3S) —
vA®) x B(A® — 7777) have been set at (1.5—16) x 1075
in the mass range 4.03 < mqo < 10.10 GeV [9]. The
CLEO Collaboration has set limits on the branching ra-
tio product B(Y(1S) — vA°%) x B(A® — 7777) in the
range 1075 — 10~ for masses m 40 < 9.2 GeV [12].

This paper describes a search for decays of the T°(15)
resonance into a photon and a light scalar CP-odd Higgs
boson A%, which then decays into a pair of tau leptons.



The 7'(1S) resonance is produced from the 7°(2S) reso-
nance with the emission of two charged pions. The re-
action chain is ete™ — 7(25) — 7t~ T(15), T(15) —
yA% A® — 7t7=. We identify the 7°(1S) by the dipion
transition; the production and decay of the Higgs candi-
dates are identified by the photon and the two charged
tracks from one-prong decays of the two tau leptons.

This analysis is based on a sample of (98.3 £0.9) x 10°
7' (2S5) decays collected at the 7°(2S) resonance with the
BABAR detector [13] at the PEP-II asymmetric-energy
ete™ collider at the SLAC National Accelerator Labo-
ratory. This sample corresponds to an integrated lumi-
nosity of 14 fb~!'. We also use a sample of 28 fb~! taken
at the 7°(35) resonance for studies of the QED (contin-
uum) backgrounds and the optimization of the selection
of the 7(25) dipion transition candidates. 1°(3S5) de-
cays are rejected by the analysis selection criteria due
to their different kinematics distributions compared with
the 7°(2S) decays, and therefore the 7°(35) events form
a pure high-statistics continuum QED sample. An ad-
ditional dataset of 1.4 fb~! taken at a center-of-mass
(CM) energy 30 MeV below the 1°(2S5) mass is used
for studies of systematic effects. We use Monte Carlo
(MC) simulated samples of signal and 7°(1.5) background
events [I4) [I5] to tune the selection of the Higgs events.
The tau-lepton branching fractions are fixed to the val-
ues of Ref. [16]. The BABAR detector, including the In-
strumented Flux Return, the electromagnetic calorime-
ter, and the tracking and particle identification (PID)
systems, is described in detail elsewhere [I3] [I7].

A signal candidate consists of a photon plus four
charged tracks: 7w~ from the 7'(25) — 7t7n~1(15)
transition, and the one-prong decays of the two tau lep-
tons. The event may contain as many as 19 additional
photons with laboratory energy greater than 30 MeV,
mostly from beam-induced backgrounds, but no addi-
tional charged tracks. Additional signal candidates may
be formed using these extra photons, but a single final
candidate per event is selected, as described below.

We select events where at least one tau lepton decays
leptonically, resulting in five different combinations of
tau lepton daughters: ee, eu, em, pup, prw. Events in which
both tau leptons decay hadronically suffer from signifi-
cantly larger and poorly modeled backgrounds than the
leptonic channels, and are therefore excluded. The tau
lepton daughters are identified using multivariate dis-
criminants based on the information from all subdetec-
tors. Typical PID efficiencies are 98% (e), 90% (i), and
97% (), while the typical pion misidentification rates are
less than 0.5% (e) and 5% (u). Requirements on the elec-
tromagnetic shower shapes of the primary photon candi-
dates are also imposed to improve the signal purity, and
events with 70 candidates, formed from pairs of photons
with invariant mass satisfying 100 < m,, < 160 MeV
and laboratory energy above 200 MeV, are discarded.

In order to achieve a balanced selection efficiency that

does not depend strongly on the reconstructed Higgs
mass m 40 (or photon energy), we optimize the selection
in two Higgs mass intervals: 3.6 < myo < 8.0 GeV (L
range) and 8.0 < m4o < 9.2 GeV (H range). The choice
of the mass ranges is motivated by the rapidly varying
signal-to-background ratio at low photon energies (which
correspond to higher m 4o for the signal), and differences
in kinematics for each photon energy range.

The masses of the 7(15) and A° candidates are calcu-
lated from two primary kinematic variables:

m; = M7 (55 +mi, —2Mres)ESHM (1)

recoil
5 P)?. (2)

mx = (Pe+e_ _P7r7r_
Here myecoi is the recoil mass of the dipion system (which
peaks at the value of the 7(15) mass for signal), m% is
the mass recoiling against the signal photon in the 7°(15)
frame (which peaks near the square of the expected Higgs
mass, mio, and is linear in the photon energy), and P
denotes the four-momentum.

In order to reject backgrounds, we train two multilayer
perceptron neural networks (NN) [I8]: a pion discrimi-
nant (N;), which describes the kinematics of the process
7(2S) = 7tx~7(15), and a tau discriminant (N) de-
scribing the transition 7°(15) — vAY, A — 7+7~. Each
NN uses kinematic variables only weakly correlated to
m§( O Mrecoil- LThe two discriminants are uncorrelated.
The pion discriminant N, combines nine kinematic vari-
ables specific to the dipion system [I0, [19]. The discrim-
inant A, is a combination of 14 variables: the missing
energy and the cosine of the polar angle of the missing
momentum in the event; the extra calorimeter energy in
the lab frame and the energy of the second most ener-
getic photon in the CM frame; the net transverse momen-
tum of the reconstructed signal candidate particles; the
acoplanarity of the photon relative to the plane formed
by the two tau decay prongs; the momentum and polar
angle in the CM frame of the most energetic tau decay
prong; the invariant mass, vertex probability, and the
distance between the vertex and the e*e™ interaction re-
gion of the two tau decay prongs; the angle between the
signal photon and the most energetic tau decay prong in
the event. The discriminants are trained using signal MC
events 1'(15) — vA° in the range 4.0 < m 40 < 9.2 GeV.
The background samples for training are taken from the
continuum sample for the pion discriminant and from the
simulated generic 1°(15) decays for the tau discriminant.

Each NN outputs a value A close to +1 for signal and
to —1 for background. Based on the NN outputs, the
selection criteria for N and N, are chosen to optimize
£/(1.5++/B) [20], where ¢ is the signal efficiency, and B is
the expected background yield. We accept signal candi-
dates if NV, is above a threshold value chosen individually
for each final state and mass range. The thresholds for
N, are the same for all final states, but different for the
two mass ranges. The typical signal efficiency and back-



ground rejection estimated from the corresponding MC
samples are listed in Table [l

TABLE I: Typical selection efficiencies (SE) and background
rejection factors (BR) for the two neural network discrimi-
nants N; and N; in the L (3.6 < my0 < 8.0 GeV) and H
(8.0 < myo < 9.2 GeV) ranges. The SE and BR factors are
relative to the preselection that requires 4 tracks and a real
photon in the final state, and are averaged over each mass
range.

Mass Range[Discriminant[SE (%) [BR (%)

L Nz 76 99
H Nx 72 99
L N 80 97
H N: 30 99

Due to reconstruction ambiguities, in particular ex-
tra photon candidates in the event and a large p-as-
7 misidentification rate, a fraction of signal and back-
ground events have more than a single reconstructed can-
didate. The multiplicity of candidates per event is on
average 1.8 for the simulated signal samples, 1.6 for the
generic 1°(25) decays, 1.3 for the continuum sample, and
1.5 for the data. We select a single candidate based on (1)
the highest value of N, then, if multiple candidates still
remain, (2) the highest value of A, and finally, (3) the
tau decay final state with the highest signal/background
ratio.

We further suppress the continuum background by ap-
plying a cut on the mass recoiling against the dipion sys-
tem Myecoil:

|mrecoil - <mrecoil>| < 10 MeV ) (3)

where (Mmyecoil) 18 the expected location of the 7°(15)
peak, determined by the mass difference between the
7(2S) and T(1S) mesons [2I]. The final signal selec-
tion efficiency varies between 1% and 4.5% (Fig. [I]), and
is lowest at the highest masses (lowest photon energy).

We extract the yield of signal events as a function of
m 4o in the interval 3.6 < m 40 < 9.2 GeV by performing
a series of maximum likelihood fits in steps of m 0. We
perform one-dimensional unbinned extended maximum
likelihood (ML) fits to the distribution of m% in the in-
tervals 12 < m?x < 72 GeV? (L range) and 49 < m?x < 89
GeV? (H range).The fit intervals overlap to provide suf-
ficient sidebands for all values of m 40. The likelihood
contains contributions from signal, which is expected to
peak near the Higgs mass squared, and from the smooth
background function, arising from continuum and radia-
tive leptonic 7°(1S5) backgrounds. We search for the AY in
varying mass steps that correspond to approximately half
of the expected resolution on m 4o, as described below.
A total of 201 mass points are sampled.

We use signal MC samples 1(295) —
ata=T(15), T(1S) — ~AY generated at nine (seven)
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FIG. 1: Signal efficiency as a function of m 4o in the L and H
mass ranges (separated by the vertical blue line).

different values of m4o in the L (H) mass range to de-
termine the signal probability density functions (PDFs)
in m% and selection efficiencies. We interpolate these
distributions and efficiencies between fixed m 40 points,
correcting for known small differences between data and
MC simulations. The signal PDFs only include events
in which the simulated signal photon, w77~ tracks,
and the tracks from the decay of the tau leptons are
correctly reconstructed. The signal efficiency, however,
includes contributions from events in which one of the
final-state particles may be misreconstructed. The signal
PDF is modeled as a Crystal Ball function [22]. We
parameterize the background PDFs as

f(z) = (Erf[a(z — zmin)] + 1) C5(2) (L range) ;

o = (1- )Bexp[@(z)] (8 range) |

Zmax

where z = m%, C,(z) is an nth-order Chebyshev poly-
nomial (with different parameters for each mass range),
a and 3 are threshold parameters, and zmi, = 12.5 GeV?
and zZmax = 88.9 GeV? are determined by the kine-
matic end points of the photon energy spectrum in the
luminosity-weighted mixture of simulated generic 7°(15)
decays and continuum sample. A common background
PDF describes all five decay channels adequately well.
Parameters of the Chebyshev polynomials C),(z) and the
threshold parameters « and § are determined from a fit
to the data distribution of m% with the signal yield fixed
to zero. This accounts for uncertainties in the modeling
of the radiative 7°(15) decays and additional backgrounds
that may not be well described by the continuum sample,
such as two-photon events with low photon energy (high
m3).

For each m 4o hypothesis, we determine two param-
eters: the background yield Nypis and the signal yield



Nsig. In the H range, we also allow the two coefficients
of C3(z) and the parameter 8 to vary in the fit. The
fit is performed simultaneously over the distributions in
each 777~ decay channel, taking advantage of the dif-
ference in the signal-to-background ratios over the decay
channels. The fraction of events in each channel is fixed
from MC samples for signal, and from the luminosity-
weighted mixture of simulated generic 7(15) decays and
continuum sample for the background.

Each fixed nuisance parameter in the fit is varied ac-
cording to its uncertainty; correlations between parame-
ters are taken into account. The systematic uncertainties
for this measurement can be divided into two categories:

e Additive errors: uncertainties on the event yield,
which do not scale with the number of recon-
structed signal events. These include uncertainties
of the parameters fixed in the fit (PDF shape pa-
rameters for signal and backgrounds) and a small
bias in the ML fit. These uncertainties reduce the
significance of any observed signal [23].

o Multiplicative errors: uncertainties that scale with
the number of reconstructed signal events. These
include uncertainties on the reconstruction effi-
ciency, the ML fit bias which scales with the true
number of signal events, the uncertainty in the
number of produced 7°(2S) mesons, and the un-
certainty in the branching fraction of 7°(2S) —
7tr=T(19).

We compute the average bias of the ML fit for a set
of generated Ny, values using a large ensemble of sim-
ulated pseudo-experiments. In each pseudo-experiment,
the signal events are fully simulated, and the background
events are sampled from their PDFs. We determine the
fit bias that is independent of Ny, and is part of the
additive uncertainties, as well as the bias which scales
linearly with Ngg, and can be thought of as a “fit in-
efficiency”, i.e. a relative correction to the signal recon-
struction efficiency. The bias arises from imperfections in
modeling of the signal PDFs, from events in which signal
candidates are misreconstructed, and from low-statistics
properties of the ML estimators. We see that a correction
of 3.1 £ 1.1% (L range) and 7.6 = 1.4% (H range) has to
be applied. The additive parts of the fit bias are small.

The signal efficiencies determined in MC simulations
are corrected by several multiplicative effects:

e Tracking and dipion selection efficiency. These
corrections and their uncertainties have been
determined [I0] using a clean sample of of
four-track final states from decays 7°(25) —
7tr=T(15), T (1S) — ptpu~. The data/MC ratio
of 0.97 £ 0.02 includes the uncertainties due to the
number of produced 1°(2S5) events, dipion branch-
ing ratio 7°(2S) — 7t7~7(1S), dipion reconstruc-
tion efficiency, the efficiency of reconstructing two

additional (energetic) charged tracks, trigger un-
certainties, and the selection efficiency for the pion
discriminant AV. The uncertainty is dominated by
the error on 7°(1S8) — ptp~ branching ratio [16].

e Photon selection efficiency. A correction of 0.967 +
0.017 is determined from a high-statistics ete™ —
~v sample in which one of the photons converts in
the inner detector material to produce a detectable
eTe™ pair [10].

e Neural Network selection efficiency. We evalu-
ate the systematic uncertainty due to possible
data/MC differences in the distributions of the
NN discriminant N, using an inclusive background
sample. We select signal-like events that pass the
requirement N, > 0 and compute the ratio of par-
tial selection efficiencies for the actual A thresh-
olds for the data and the background. These ratios
are 1.038 + 0.013 (L range) and 0.991 + 0.014 (H
range).

The total correction to the efficiency is a product of all
corrections discussed above:

€data/EMc = 0.943 +0.031 (L range) ;
€data/EMc = 0.859 £ 0.033 (H range) .

We compute the statistical significance of a particular
fit centered at m g0 as S = 1/210g(Lmax/Lo), where Lax
is the maximum likelihood value for a fit with a free signal
yield, and Ly is the value of the likelihood for Ny, =
0. Including additive systematic uncertainties, the most
significant upward fluctuations occur at m 40 = 6.36 GeV
with § = 2.7¢ (Fig. [2h) and m 40 = 8.93 GeV with S =
3.00 (Fig. ) Fluctuations of +3¢ or higher occur in
7.5% of pseudo-experiments that simulate a scan of 201
mass points with an average correlation of 94.5% between
adjacent points, as observed in our dataset. Therefore,
we conclude that no significant A° signal is found.

Since we do not observe a significant excess of events
above the background, we set 90% confidence level (C.L.)
Bayesian upper limits on the product B(Y(15) — vA°) x
B(A° — 7t77), computed with a uniform prior for
Niig > 0. The limits are shown in Fig. [3] Systematic
uncertainties on Ngjz and £q4ata are included assuming
their likelihood profiles are Gaussian [23].

We combine our results with the previous limits on the
branching ratios B(Y(39) — vA%) x B(AY — 7+r7) [9]
to set a limit on the Yukawa coupling gg of the b-quark
to the A°. The branching fractions B(Y(nS) — yA®) are
related to g, through [0 24 25]:

B(Y(nS) —~A%) g%GFmﬁ]__ 1
B(Y(nS) = 1+tl-)  \2ra Qep
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FIG. 2: Fits to the m% distributions in (a) L and (b) H
ranges for the two particular m 40 points that return the
largest upward fluctuations: (a) myo = 6.36 GeV and (b)
m 0 = 8.93 GeV. The red solid line shows the signal PDF,
the green dot-dashed line is the background contribution, and
the blue solid line shows the total PDF. The top plots show
the fit residuals normalized by the error (pulls). The signal
peaks corresponds to a statistical significance of (a) 2.70 and
(b) 3.00.

where | = e or pu, « is the fine structure constant com-
puted at the scale my(,s), G is the Fermi constant, and
Focp includes the m 40-dependent QCD and relativistic
corrections to B(Y(nS) — vAY) [25] and the leptonic
width of ' (nS) [26]. To first order in g, the corrections
range from 0 to 30% [25] and may have large uncertain-
ties [27].

We combine our data on 1°(15) — yA°? with the BABAR
results of Ref. [9] using the full likelihood functions for g7
at each m 40 point from this analysis, and a Gaussian ap-
proximation for the g7 likelihood from Ref. [9]. The com-
bined upper limits on the product g2 x B(A° — 7777)

BFUL @90% C.L.
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|
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My (GeV)

FIG. 3: 90% C.L. upper limits for B(Y'(15) — yA%) x B(A° —
7).

as a function of mao are shown in Fig. @] They rule
out much of the parameter space preferred by NMSSM
gr = tanfcosfy > 1, where tan 3 is the ratio of the
Higgs vacuum expectation values and cosf4 is the frac-
tion of the non-singlet component in the CP-odd A° [5].

; AR
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FIG. 4: 90% C.L. upper limits for Yukawa coupling g7 x
B(A° — 7F77). Shown are combined BABAR results (red
solid line), results from this analysis only (dashed green line),
the previous BABAR measurement [9] (dotted blue line), and
results from the CLEO experiment [12] (dot-dashed black
line). The shaded vertical bar shows the region around x,(2P)
mass excluded from Ref. [9].

In summary, we find no evidence for the radiative de-
cays 1(15) — vA° in which A° decays into a pair of tau
leptons, and we set 90% C.L. upper limits on the prod-
uct of branching fractions B(Y(15) — vyA°) x B(A° —



7777) in the range (0.9 — 13) x 1075 for 3.6 < m 0 <
9.2 GeV. We also set 90% C.L. upper limits on the prod-
uct g2 x B(AY — 7777) in the range 0.09 — 1.9 for
myo < 9.2 GeV. Our limits place significant constraints
on NMSSM parameter space.
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