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Abstract

Two new methods are proposed to extract the avour contents of the events pro-

duced at LEP/SLC, together with the classi�cation matrix of a tagging by hemi-

spheres. By utilising the tagging obtained in both hemispheres, the e�ciencies,

backgrounds and avour compositions are directly obtained by �tting the data. A

minimal dependence on modelling and a consistent treatment of systematic errors

are achieved by applying these methods. The choice of the tagging algorithm is

irrelevant in the methods, provided that similar e�ciencies are reached. As an ex-

ample, a Multivariate Analysis technique combining the tracking information given

by microvertex detector has been applied to extract the Z ! b�b branching ratio

using a standard simulation of a LEP/SLC experiment.
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1 Introduction

Flavour taggings have become increasingly important in the analysis of hadronic �nal

states produced in e+e� colliders at the Z0 pole and below. In this context, hemisphere

tagging appears particularly interesting. The production of the quark-antiquark pair leads

to a back to back topology. The tagging algorithm applied to one hemisphere is used to

enhance a particular quark avour, and then the opposite hemisphere is available for

studying the properties of that avour in an essentially unbiassed manner.

The performance of a tagging algorithm is characterized by a set of classi�cation

probabilities for each avour to be classi�ed into several categories. Generally this matrix

is taken from Monte Carlo, with the requirement that the simulation should reproduce

the physics and the detectors as closely as possible.

This article proposes an alternative. In the case of a tagging applied identically to

both hemispheres of the events it is possible to measure from data itself, without ex-

plicit reference to simulation, both the avour composition of the original sample and the

classi�cation probabilities. The conditions to be met are:

� Each hemisphere contains the products of one quark or antiquark with the same
avour 2.

� For a given avour the tagging variables of one hemisphere are not correlated with
those in the other.

When these assumptions are almost ful�lled, the previous feature remains true to
�rst order, but simulation is required to evaluate the corrections, coming mainly from
residual hemisphere correlations. However, in this case the level of accuracy required for
the simulation is not as important as for the usual approach.

Two methods are described in this article and they have been already applied to
the measurement of the Z0 ! b�b branching ratio in a LEP experiment [1, 2, 3]. In
those analyses priority has been put on the measurement of Rb = �b�b=�had, but in this
description of the methods themselves importance will be also given to the extraction of
the classi�cation matrix. The methods will be discussed for an example of classi�cation

into three tags. Despite the fact that hadronic events at the Z0 pole are produced in �ve
avours, the u�u, d �d and s�s avours have been merged into a single uds family, since the
tagging variables used have the same distributions for these avours. Thus three families

of hemispheres will be considered: uds, c and b. Among these families the last one will be
privileged because the tagging has been optimized for this sector. The b hemispheres will
be mainly distinguished from the others by taking advantage of the long lifetime signature

of b hadrons, which require the precise tracking information given by a silicon microvertex

detector [4].
The �rst method is oriented exclusively towards the b sector and it measures the b

avour rate and the classi�cation probabilities of b hemispheres. The second method is
more general and extracts also classi�cation probabilities for the other avours and all

tags. The advantage of the knowledge of a complete classi�cation matrix, measured di-

rectly from data, is to provide calibrated samples of avour-enriched or avour-depleted

2This condition is not crucial for light quarks (u,d,s). Heavy quarks are almost always produced in
opposite directions with respect to the sphericity or thrust axis.
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hemispheres without having to rely on simulation to understand the purity and contami-

nations by other avours.

In order to test the methods, they have been applied to simulated events of a LEP/SLC

experiment. The goal is to measure the avour composition and the performance of a

multivariate tagging algorithm, then to control the quality of this measurement by a

comparison with the generated values. The choice of the tagging algorithm is arbitrary,

provided the conditions previously mentioned are met. Details about the discriminant

variables on which the algorithm is based would be found in appendix A. In section 2

we describe the mathematical formalism of the methods (a glossary of the most relevant

mathematical symbols used throughout the text is given in appendix B). The following

sections are devoted to the application mentioned above. Section 3 describes the hemi-

sphere de�nition, the tagging algorithm, its main features and the classi�cation criteria.

The results are discussed in section 4. In section 5 we review the main sources of system-

atic uncertainties. Our conclusions appear in section 6.

2 Mathematical Formalism

Both methods are based on the assumption that the tagging is able to reach high purity

for the privileged avour, i.e. in the b sector. Normally a tagging algorithm is associated
with a classi�cation criterion, called � hereafter and which will be explained in the next
section. By imposing a condition on this criterion it is possible to vary the composition
and in particular the purity of the tags. We assume that the domain of high purity
corresponds to large values of �. Such a domain in � can be speci�ed by

� > � (1)

where � is the value of a puri�cation cut. If Puds(�), Pc(�) and Pb(�) are the probabilities
for the accepted events that a uds, c or b hemisphere is tagged as b for the domain de�ned
by �, the assumption of 100% purity reached for large values of � is equivalent to the
following limit conditions:

lim
�!1

Puds(�)

Pb(�)
= 0 ; lim

�!1

Pc(�)

Pb(�)
= 0 (2)

2.1 The Asymptote Method

This method intends to measure the fraction Rb as well as the Pb(�) tag probability by

determining the position of asymptotes in the distributions of several ratios with respect

to �. One critical factor for an accurate evaluation of the asymptotes is to get a su�cient
size of the high purity domain.

Let us introduce the fractions of single and double b tagged hemispheres passing the

condition (1). An example of these single and double tag fractions is shown in �gure 1.a.

The fraction of single tags Sb(�) may be expressed

Sb(�) = Puds(�)Ruds + Pc(�)Rc + Pb(�)Rb (3)

and the fraction Dbb(�) of double b tagged hemispheres, provided that hemispheres are
independent, will be
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Figure 1: a) Fractions of single and double b tags Sb(�) and Dbb(�) as a function of the

puri�cation � cut; b) double tag hemisphere correlation factor �bbb(�). The value 0.018 �
0.010 for � = 6:0 corresponds to the most sensitive correlation coe�cient in the matrix

method. Note that the distributions are bin to bin correlated.

Dbb(�) = P 2
uds(�)Ruds + P 2

c (�)Rc + P 2
b (�)Rb (4)

where Ruds, Rc and Rb are the avour fractions in the sample. In order to express these

quantities in a more convenient way, we introduce the c and uds probability ratios with
respect to b as

Qc(�) =
Pc(�)

Pb(�)
; Quds(�) =

Puds(�)

Pb(�)
(5)

and the avour fraction ratios �c =
Rc

Rb
and Ruds

Rb
. Then we can write

Sb(�) = Pb(�)Rb f1 + �cQc(�) + �udsQuds(�)g (6)

Dbb(�) = P 2
b (�)Rb

n
1 + �cQ

2
c(�) + �udsQ

2
uds(�)

o
(7)

From equations (6) and (7), the ratio

rb(�) = S2
b (�)=Dbb(�) = Rb

f1 + �cQc(�) + �udsQuds(�)g2

1 + �cQ2
c(�) + �udsQ

2
uds(�)

(8)

tends asymptotically to Rb if the probability ratios Qc(�) and Quds(�) tend towards 0 in

the limit of high �.

The assumption of the independence of hemispheres is measured by the correlation
factor �bbb(�) de�ned as
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�bbb(�) =
Db

bb(�)n
Sb
b(�)

o2 � 1 (9)

where Sb
b(�) and Db

bb(�) are the single and double fractions computed only for b events.

Figure 1.b shows the �bbb(�) factor corresponding to the application described in section 3.

2.1.1 Estimation of the Pb(�) Probability

If the tag is e�cient enough in the b sector, an estimate of the Pb(�) probability can be

extracted from the data themselves. Let us introduce, instead of Dbb(�), a more general

joint probability to observe � > �0 in hemisphere 1 and � > �00 in hemisphere 2,

D
joint
bb (�0; �00) = Puds(�

0)Puds(�
00)Ruds + Pc(�

0)Pc(�
00)Rc + Pb(�

0)Pb(�
00)Rb (10)

Dividing by equation (6) applied to hemisphere 1, one gets

D
joint
bb (�0; �00)=Sb(�

0) =
Pb(�

00) f1 + �cQc(�
0)Qc(�

00) + �udsQuds(�
0)Quds(�

00)g
1 + �cQc(�0) + �udsQuds(�0)Ruds

(11)

Let us assume that side 1 is used for tagging, side 2 for counting and �0 is chosen large
enough to insure the condition of b purity, i.e. Quds(�

0) � Qc(�
0) � 0, then

lim
�0!1

Djoint
bb (�0; �00)

Sb(�0)
= Pb(�

00) (12)

Once Pb(�) is known two new quantities can be constructed

sb(�) =
Sb(�)

Pb(�)
= Rb f1 + �cQc(�) + �udsRuds(�)g (13)

dbb(�) =
Dbb(�)

P 2
b (�)

= Rb

n
1 + �cQ

2
c(�) + �udsR

2
uds(�)

o
(14)

As can be seen their asymptotic limits are also Rb. In particular this limit is rapidly
reached in the case of dbb(�).

2.1.2 Di�erential Ratios

Let us consider now a set of values �i of the � cut. The measured observables are Nb(�i)

and Nbb(�i), which represent the number of single and double tagged hemispheres with

� > �i. Therefore

Sb(�i) =
Nb(�i)

2Ntot

; Dbb(�i) =
Nbb(�i)

Ntot

(15)

whereNtot is the total number of events in the sample. However, adjacent bins are strongly
correlated and therefore the ratios rb(�), sb(�) and dbb(�) are not bin to bin independent.

To avoid this problem uncorrelated ratios tending towards Rb, like the ratios rb(�), sb(�)
and dbb(�), can be constructed

r̂b(�i) =
S2
b (�i)� S2

b (�i+1)

Dbb(�i)�Dbb(�i+1)
(16)
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ŝb(�i) =
Sb(�i)� Sb(�i+1)

Pb(�i)� Pb(�i+1)
(17)

d̂bb(�i) =
Dbb(�i)�Dbb(�i+1)

P 2
b (�i)� P 2

b (�i+1)
(18)

with �i de�ned by �i < �i < �i+1. The measurement of Rb is then reduced to the

extraction of the asymptotes in the distributions of these ratios. The accuracy on the

asymptotic value extraction is determined by statistics but it is also inuenced by how

rapidly the asymptotic regime is reached, which mainly depends on the tagging e�ciency.

2.2 The Matrix Method

This method involves the �t of a matrix of observables. More complex but more general

than the asympote method, it is based on the same principles. It measures also the

avour fractions and the hemisphere classi�cation probabilities outside the b sector. The

tag probabilities are grouped into a classi�cation matrix C. The objective is to determine
the vector R and the matrix C.

The tagging algorithm has the e�ect to classify the hadronic events into NT categories.

As we shall see below, three avours require the introduction of at least six categories. Let
C l
I be the classi�cation matrix element, i.e. the probability to tag a hemisphere of avour

l in the category I (l = 1; :::; NF , where NF is the number of avours). The bidimensional
array C l

I is the same for both hemispheres. The same avour index should be associated
to both hemispheres 3.

Applying the tag to both sides and all events, we get a matrix NIJ , number of events

classi�ed I and J for hemispheres 1 and 2, shown in �gure 2. Dividing by the total number
of events one obtains the symmetric matrix of observables DIJ which is the input of the
�t discussed in section 4.

If the hemispheres are independent, the expected fraction of events TIJ is written as

TIJ =
X
l

C l
IC

l
JRl (I; J = 1; :::; NT) (19)

where Rl is the avour fraction for a given sample. The aim is to minimize the objective

function G(C;R), de�ned as

G(C;R) =
X
IJ

(DIJ � TIJ)
2

�2IJ
(20)

which allow to determine simultaneously the classi�cation matrix C and the R com-

positions. The �t solution has to be compatible with the constraints:
P

lRl = 1,P
I C

l
I = 1, for all l. The matrix of observables itself has to obey the normalization

condition
P

IJ DIJ = 1. The �IJ are the statistical errors on DIJ [5].

No solution exists if the number of observables (No) is less than the number of un-
knowns (Nu). For a given NF and NT , No = NT (NT + 1)=2 � 1 and Nu = NTNF � 1. If
NF = 3, NT must be at least 6 (in this case No = 20, Nu = 17).

3The quark and the antiquark might appear in the same hemisphere when a very hard gluon is
radiated. In this case, a tagging based on lifetime does not a�ect the classi�cation of light avours.
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Figure 2: Population of the double-tag matrix NIJ with their uds, c and b contributions.

2.2.1 The Rotation Degeneracy

Unfortunately, the minimum of G(C;R) in equation (20) is not unique due to a rotation

degeneracy. In fact, if a vector ~VI = (Cuds
I

p
Ruds, C

c
I

p
Rc, C

b
I

p
Rb) is introduced for each

category, all matrix elements can be expressed as a scalar product TIJ = ~VI � ~VJ , which
is invariant under rotations in the vector space.

Let us de�ne a vector sum ~U =
P

I
~VI = (

p
Ruds;

p
Rc;

p
Rb) in a 3-D frame, where

the three axes correspond to pure uds, c and b states. The vector ~U , of unit length, and
the set of ~VI can be viewed as a rigid body. Once a particular solution has been found,

other solutions may be generated by moving this rigid body according to three degrees of
freedom; two degrees of freedom could be the position (�,	 dip and azimuth angles) of

the extremity of ~U on a sphere of unit radius, the remaining one is an internal rotation 

around the ~U axis. The avour fractions are then

Ruds = cos2�cos2	 ; Rc = cos2�sin2	 ; Rb = sin2� (21)

The allowed range of (�,	,) is limited by two factors. All the C l
I and Rl elements

should be non negative since they are probabilities. Thus, the set of ~VI vectors should

remain in the �rst octant. When an e�cient tagging is reached for a given avour, some of
the ~VI , corresponding to the enriched sample, become practically aligned with a avour
axis. In the limit of three vectors almost aligned with di�erent axes, the rigid body

becomes locked. It is observed that the domain of rotations is indeed strongly limited,

and the Rl range is actually bound to an interval of a few percent. However the degeneracy

does not allow to evaluate the errors.
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2.2.2 Resolution of the Degeneracy Problem

An obvious way to solve the degeneracy is to �x NF parameters which can be taken from

simulation, theory or external measurements. The requirement to remain independent

of external sources imposes to �nd other solutions. The most interesting strategy is the

following: the degeneracy is broken in the b sector, if some of the Cb
I parameters can

be estimated independently (at least 2 in the case of 3 avours). The third degree of

degeneracy can be removed by �xing Ruds, Rc or any of the Cuds�c
I matrix elements. If

Xb
I are estimates of the Cb

I parameters and �I their errors, a modi�ed objective function

G1(C;R), including a degeneracy breaking term, can be written as

G1(C;R) = G(C;R) +
X
I

(Cb
I �Xb

I )
2

�2I
(22)

where the I index only runs over the considered Xb
I .

Let us introduce the relation between the Cb
I and the degeneracy parameters � and

. The structure of the rigid body can be expressed from a particular solution of the �t

of equation (20), de�ned by a vector sum ~U0 and the associated set of vectors ~V0;I . In a

local frame where the vector ~U0 is chosen as the z axis each vector category ~V0;I is given

by three cylindrical coordinates: the projection along the local z axis g0;I = ~U0 � ~V0;I , the
radial coordinate h0;I =

q
~V 2
0;I � g20;I and a local azimuthal angle 0;I . For the general

solution ~U(�;	; ) the b elements of the classi�cation Cb
I take the simple form

Cb
I = g0;I + h0;I

sin( + 0;I)

tan�
(23)

The relation between the degrees of freedom � and  is illustrated in �gure 3.a, when
estimates of the Cb

I are introduced in the left-hand side of these equations. In this �gure,
where the avour fraction Rb(�) = sin2� is plotted with respect to , the exact solution
~U0 and the generation values Cb

I have been used in equations (23). All category curves
intersect at the same point; the third degree of freedom 	 does not appear in equations
(23) and it has no inuence on the b sector. As was previously said, it could be removed
either by �xing Ruds or Rc to their theoretical values or giving to one of the C

uds�c
I matrix

elements its expected value. In the example that will be described later on, the uds

rejection in category 6 is strong and Cuds
6 � 0.

The Xb
I estimates are obtained by the technique previously used to calculate the Pb(�)

probability. From the set of NI(�), which represent the number of hemispheres classi�ed
into category I provided that � > � on the opposite side, one calculates the fractions

fI(�) =
NI(�)P
J NJ (�)

(24)

Expressed in terms of classi�cation probabilities fI(�) can be written as

fI(�) =
Puds(�)C

uds
I Ruds + Pc(�)C

c
IRc + Pb(�)C

b
IRb

Puds(�)Ruds + Pc(�)Rc + Pb(�)Rb

(25)

whose asymptotic limit is

lim
�!1

fI(�) = Cb
I (26)
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The Xb
I are therefore the asymptote values of the fI(�) distributions. In order to avoid

the e�ect of bin to bin correlations, it is better to use the di�erential ratios

f̂I(�i) =
NI(�i)�NI(�i+1)P

J fNJ (�i)�NJ (�i+1)g
(27)

which have the same asymptotes as fI(�).
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Figure 3: The Rb fraction as a function of the rotation angle  of a degenerated solution

(�;	; ) for the G(C;R) �t. Each curve is obtained by �xing one of the Cb
I (as labelled on

the �gure): a) to its true value; b) to the estimated value from the global �t (see section

4.2). The fraction Rb is una�ected by the value of 	.

The �gure 3.b summarizes how the degeneracy is solved in the real case to be described
in section 4.2. ~U0 and ~V0;I correspond to one solution which minimizes the G(C;R)

objective function. Asymptotic Xb
I values of the f̂I(�) distributions have been given to

the left hand side of equation 23 as described.

3 A Tagging Algorithm by Hemispheres

We shall consider now an application to a sample of 540K simulated events after accep-
tance cuts of a LEP/SLC experiment, supposed to ful�ll the requirements mentioned in

the introduction [6, 4]. The aim of the acceptance cuts was to discard tracks far away from

the interaction region and events outside the microvertex acceptance. The full detector

simulated data was generated using [7] with a b lifetime of 1.6 ps. After passing this se-

lection, the composition of the sample was Ruds = 0:6089, Rc = 0:1725 and Rb = 0:2186.
The impact parameter resolution of the assumed detector is around 20 �m for �+�� pairs.
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3.1 Hemisphere De�nition

Each event was carefully subdivided into two hemispheres as independent as possible. The

particles were �rst distributed into jets using the JETSET standard algorithm (LUCLUS)

[8] and the jet direction was given by the jet thrust axis. All particles assigned to jets

making an angle of less than 900 with the event sphericity axis are attributed to hemisphere

one, the rest to hemisphere two. In order to maximize the independence between opposite

hemispheres, a primary vertex is computed on each side with an iterative procedure which

starts with all the charged particles in the hemisphere. If the �t probability of the global

�2 is less than 0.05, the particle which contributes with the largest value to the �2 is

removed, and a new vertex �t is attempted. The process continues until a probability

greater than 0.05 is obtained or only two particles remain.

The beam spot position and dimensions have been used as constraints in the vertex

�t on both sides, increasing the discriminating power of the tagging but representing a

common feature on both hemispheres. As it will be seen in section 5, the inclusion of a

beam spot constraint does not seriously correlate the hemispheres.

3.2 The Tagging Algorithm

3.2.1 Description of Variables

We have chosen a multivariate tagging algorithm which has the property of maximizing
the available information through a great number of variables. Di�erent processes are
expected to lie in di�erent regions of their hyperspace. A set of twelve variables has been

de�ned and evaluated for each hemisphere: one variable (boosted sphericity) is computed
only with quadrimomenta. Nine variables are based on precise impact parameter infor-
mation given by a microvertex detector. Two variables mix the two types of information.
The de�nition of the variables and the model distributions are given in appendix A.

3.2.2 Class Likelihoods and De�nition of Tags

At the level of a single variable Z, the probability pl(zm) to observe a value z in the interval

zm for a hemisphere of avour l is given by the content yl(zm) of the corresponding bin
m in a model distribution of this variable and avour

pl(zm) =
yl(zm)

N l
tot

(28)

where N l
tot is the total number of events in the l avour distribution. In order to model

the shape of these twelve variables we have used a training sample of 50K simulated events

[9] that was di�erent from the simulated data set used to test the method 4. Neglecting
correlations 5 between individual probabilities, an estimate of the probability to observe
the set

n
z1m1

; z2m2
; :::; z12m12

o
, where the superscript corresponds to each variable and the

subscript to particular bins, is given for the l avour by

4The two samples were produced with slightly di�erent versions and parameter values of the simulation
chain.

5Correlations reduce the e�ciency but not invalidate the classi�cation method.

9



pl(z1m1
; z2m2

; :::; z12m12
) =

12Y
�=1

pl(z�m�
) (29)

The logarithm of these overall probabilities, called hereafter class likelihoods (Luds =

ln puds, Lc = ln pc and Lb = ln pb) are the basis of the classi�cation [10]. The class likeli-

hoods, sorted in decreasing order as Lfirst, Lsecond, Lthird, are used to tag the hemisphere

as uds, c or b according to the highest probability Lfirst.

3.2.3 Classi�cation Criterion and De�nition of Categories

In order to de�ne the six categories mentioned in section 2.2 we introduce the classi�cation

criterion �, de�ned by

� = ln(pfirst=psecond) = Lfirst � Lsecond (30)

� being a sensitive indicator of the tag clarity. From the distributions of � in the

three tags (�gure 4), the uds and b tags are subdivided into categories according to the
following criteria, while the c has not been subdivided because it is less populated and
poorly enriched:

� uds� tight: Tag uds and � > �uds (category 1)

� uds� loose : Tag uds and � < �uds (category 2)

� charm : Tag c (category 3)

� b� loose : Tag b and � < �lowb (category 4)

� b�medium : Tag b and �lowb < � < �upb (category 5)

� b� tight : Tag b and � > �
up
b (category 6)

In order to have similar population in the categories, the chosen values of the cuts are
�uds = 2:0, �lowb = 3:0 and �upb = 6:0.

3.2.4 Main Features

The true values of the Rl avour compositions and the C matrix elements are shown on

the histograms of �gure 5. Figure 6 shows the e�ciency and contamination of the single
and double hemisphere b tags as a function of the puri�cation � cut. Without any � cut,
the purity for the double hemisphere b tag is already 84% and rapidly approaches 100%.

In practice, the D66 component of the matrix corresponds to almost pure b events. The

following features can be observed:

� uds is the predominant avour (61% in the analyzed sample). Its purity is over
80% in category 1, but never reaches 100% because the tagging, based essentially

on lifetime, is not e�cient to discriminate between uds and c avours at its present

level. Therefore, the uds and c columns of the C matrix are similar.
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Figure 4: Distributions of the classi�cation criterion � for each tag. Each �lled area

style shows the di�erent avour contributions in a given tag. The cut values de�ning the

categories are indicated.

� The charm avour su�ers from being minority (17%) and from overlapping between
uds and b in the hyperspace of the twelve tagging variables. A charm hadron
travelling enough to be distinguished from uds often appears as a poor b tag. The
charm purity reaches 30% at most.

� The beauty avour is also minority (22%), but owing to the decay in cascade b !
c ! s, the impact parameters and the number of secondary particles are larger.
The lifetime tag produces a domain where high purity is achieved.

4 Results of the Methods

4.1 Results of the Asymptote Method

The direct ratio r̂b(�) is based on the distributions of the single and double b tag fractions

shown on �gure 1.a. The ratios ŝb(�) and d̂bb(�) require the estimation of the Pb(�) and
P̂b(�) probabilities. In the measurement of Rb, only di�erential ratios are considered.

4.1.1 Estimates of the probabilities Pb(�) and P̂b(�)

The �gures 7.a and b show the asymptotic estimation of Pb(�) and P̂b(�). The estimation

is based on 22697 hemispheres passing the cut � > 12:0. The residual contaminations are

1:8% in the c sector and 0.4% in the uds sector for this cut. The quality of the Pb(�)

11



0

0.1

0.2

0.3

0.4

0.5

0.6

uds c b
Flavour

Co
mp

osi
tion

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6
Category I

Cla
ssi

fica
tion

 Pr
oba

bili
ties

Category I Category I

Figure 5: a) Sample avour composition; b) elements of the classi�cation matrix. Com-

parison between generated values (histogram) and �t result (points). A good agreement is

observed for the b avour.

10
-3

10
-2

10
-1

1

0 5 10 15

Purification δ cut

Ef
fic

ie
nc

y Single b-tag
Double b-tag

10
-3

10
-2

10
-1

1

0 5 10 15

Purification δ cut

1 
- p

ur
ity Single b-tag

Double b-tag

Figure 6: E�ciency (within the vertex detector acceptance) and contamination of the

single and double hemisphere b tags versus the value of the � cut.

12



estimation has been checked by comparing it to its true value, which is the b tag e�ciency

for b events. Up to a value of � = 14:0 the measured and true e�ciencies agree within

1:5% in relative value (�gures 7.c). Similar agreement is observed ( �gure 7.d) for the

di�erential probability P̂b(�).
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but for di�erential probabilities.

4.1.2 Direct Ratio

In �gure 8.a, the di�erential ratio r̂b(�) de�ned in equation (16) is plotted versus the

classi�cation criterion �. The asymptotic behaviour of the curve is visible. An adequate

empirical parametrization of r̂b(�), to extract the asymptote, has been found to be

r̂b(�) = p0 + p1e
�p2��p3�2

(31)

where p0 is the asymptotic estimate of Rb and p1, p2, p3 other �t parameters.
The result of such a �t is shown in �gure 8.a. The stability of the asymptote has been

tested either by varying the � range used for the �t or by trying di�erent parametrizations.
The estimation of Rb from this ratio is

Rb = 0:2185 � 0:0052 � 0:0023

where the �rst error is purely statistical and the second error is due to the choice of the

binning and parametrization. The measurement of Rb can be a�ected by a correlation

13



�bbb(�) between double and single b tags. This factor, shown in �gure 1.b, has been

found small in this application and exhibits good stability even at large values of �. The

correction due to the e�ect of hemisphere correlations is of the order of 1% in relative

value and has not been applied here. If more accuracy is required it is possible to rely on

Monte-Carlo to correct for this e�ect. By repeating the procedure for generated b events

a speci�c b ratio can be plotted which should be independent of �, and the correction to

be applied can be evaluated.
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Figure 8: a) Fit of the di�erential direct ratio r̂b(�); b) di�erential indirect ratios ŝb(�)
and d̂bb(�), de�ned in equations (17) and (18). The horizontal lines correspond to the

expected b fraction.

4.1.3 Indirect Ratios

The indirect ratios use the estimations of the Pb(�) and P̂b(�) distributions.They exhibit

more clearly the asymptotic behaviour. Figure 8.b shows the distributions of the single and

double ratios ŝb(�) and d̂bb(�). The convergence is faster for d̂bb(�) and the asymptote is
quite obvious. Both curves appear to be compatible with the same asymptotic value and
their dependence with � has been parametrized again by a constant plus second order

exponential.

The result based on ŝb(�) is

Rb = 0:2162 � 0:0060 � 0:0030

and the evaluation with d̂bb(�) gives

Rb = 0:2236 � 0:0046 � 0:0030
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Both results are consistent with the 0.2186 expected value. Good stability of the

asymptote with respect to the �tting range is again observed. The ŝb(�) and d̂bb(�)

happen to be well represented by a constant plus a simple exponential. Taking the average

of the two measurements, which are practically independent, one �nally quotes

Rb = 0:2209 � 0:0036 � 0:0030

4.2 Results of the Matrix Method

The population of the double tagged categories, shown in �gure 2.a, is one input of the

�t. As can be seen uds and b events populate opposite corners, while the c events overlap

largely with uds and b. The set of the f̂I(�) fractions, plotted on �gure 9, is the other

input. Good agreement can be seen between the asymptotic limits and the expected Cb
I

elements which are also plotted. No other information taken from external sources is

introduced in the �t. The assumption that there is no irreducible background from light

and c quarks appears veri�ed in the �gure 9 (see also �gure 4).

4.2.1 Global Fit Procedure

The approach of the f̂I(�) fractions to their asymptotes can be expressed by the equation

f̂I(�) = Cb
I + (Cuds

I � Cb
I)�̂

uds(�) + (Cc
I � Cb

I )�̂
c(�) (32)

derived from equation (27), where �̂uds(�) and �̂c(�) are the uds and charm contamina-
tions in the hemisphere used for tagging. In this application, �̂uds and �̂c appear to be well
described by second order exponentials of di�erent magnitude but with similar slopes.
For that reason the best parametrization of the f̂I(�) is the exponential like function

f̂I(�) = Xb
I +

aIp
2�cI

e�bI�e��
2=2c2

I (33)

where the free parameters bI and cI give the shape of the distribution function and aI is
a scale factor. Equation (33) can be used to �t separately each of the f̂I(�) fractions to

extract the Xb
I estimates. Then these estimates are introduced in the function G1(C;R)

given by equation (22), which has to be minimized to solve the degeneracy. Figure 3.b
suggests how the degeneracy is broken and how category curves intersect when the left

hand sides of equation (23) are set to the Xb
I estimates.

The problem with this technique is to evaluate properly the contribution of the sys-

tematic errors in the �I of the X
b
I which are injected. This di�culty can be avoided if the

�ts of f̂I(�) and G1(C;R) are merged into a single one by minimizing the global objective

G2(C;R) function de�ned as

G2(C;R) =
X
IJ

fDIJ � TIJg2

�2IJ
+
X
I;�

n
f̂I(�)� Cb

I � aIp
2�cI

e�bI���
2=2c2

I

o2
�2
f̂I(�)

(34)

The classi�cation matrix and the Rl compositions are simultaneously obtained by this

way. The �f̂I(�) is the statistical error on f̂I(�) for each bin of �.

The main advantage of this global �t is to provide the unique solution reproducing

simultaneously the tensor population, given by the G function, and the f̂I(�) fractions
appearing in the second term of G2. Moreover, as it is explained in section 5.1, correlation
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e�ects can be simultaneously studied for both terms of equation (34). The disadvantage

is the introduction of a relatively large number of auxiliary shape parameters which o�er

too much exibility to the �t and increases the statistical errors on the most important

unknowns, the R and C elements.

Another point to be commented is the double counting of events in the de�nition of

G2(C;R). Some events, mainly of the b avour, enter in both terms of equation (34). In

order to estimate correctly the statistical error, we have generated data sets by uctuating

randomly the number of events on the cells of the DIJ matrix and on the bins of the f̂I(�)

distributions. The dispersion of the Rb �tted values was taken as the statistical error of

the �t. This error agrees within 5% with the estimation given by the �2+ 1 method and

therefore we conclude that the net e�ect of this double counting is small.

The functionG2(C;R) has been minimized by �xing the Rc parameter to the generated

value of 0:1725. As has already been remarked in section 2.2.2, this constraint has no

e�ect on any parameter of the b sector. The �tted b fraction is found to be

Rb = 0:2197 � 0:0040

in agreement with the generated value and giving G2;min=d:o:f: = 258:7=225. The error

is only statistical.
Table 1 and �gure 5.b compare the �tted values of the classi�cation matrix elements

with the expected ones. The �rst error is statistical and the second one is the systematic
due to the Rc uncertainty (calculated with a 8% variation). For the b column of the
classi�cation matrix the agreement between the measured and expected values is excellent

and of the the same quality than the one observed in the asymptote method for the Pb(�)
estimation. The agreement is still satisfactory for the uds column. The behaviour of the
charm column is reproduced, but the agreement is only at the 10% level. This lack of
accuracy reects the important overlapping between c and uds, the fact that charm is
minority, and a possible e�ect of hemisphere correlations.

5 Sources of Systematic Errors

Systematic errors are speci�c to a given analysis. For this reason this discussion will
be limited to an overview of the sources of systematics, in particular the ones relevant
for the method. For the same reason, we shall not discuss errors on the classi�cation
matrix elements, because these elements are speci�c to a particular tagging algorithm.

The discussion will be limited to the errors made on the Rb fraction and consider only the

matrix method since it provides its most precise value. The main sources of systematic

errors are the hemisphere correlations.

5.1 E�ect of Hemisphere Correlations

In order to take into account the hemisphere correlations, the expression of the TIJ frac-

tions in the G2(C;R) function can be reformulated as

TIJ =
X
l

C l
IC

l
J(1 + �lJI)Rl (35)

where

�lJI =
Dl

IJ

C l
IC

l
J

� 1 (36)
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Figure 9: f̂I(�) distributions with their asymptotic �ts (see text). No irreducible uds and

c background is observed in the asymptotic region, specially in f̂4, f̂5 and f̂6 distributions

which are the most signi�cant for the Rb extraction. The dashed horizontal line shows the

expected value for Cb
I .
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Table 1: Classi�cation matrix elements obtained in the �t and their expected values. The

�rst error is statistical and the second one systematic from an 8% uncertainty in the Rc

parameter.

expected values

Category uds charm beauty

1 = uds� tight 0:2594 0:1293 0:0304
2 = uds� loose 0:3478 0:2409 0:0837

3 = charm 0:2928 0:3472 0:1801
4 = b� loose 0:0754 0:1622 0:1830

5 = b�medium 0:0197 0:0788 0:1755

6 = b� tight 0:0049 0:0416 0:3474

�tted values

Category uds charm beauty

1 = uds� tight 0:2699 � 0:0013 � 0:0020 0:0948 � 0:0053 � 0:0072 0:0283 � 0:0012

2 = uds� loose 0:3441 � 0:0015 � 0:0010 0:2610 � 0:0082 � 0:0036 0:0792 � 0:0017

3 = charm 0:2856 � 0:0016 � 0:0010 0:3742 � 0:0059 � 0:0036 0:1799 � 0:0024
4 = b� loose 0:0737 � 0:0009 � 0:0011 0:1673 � 0:0046 � 0:0039 0:1838 � 0:0016
5 = b�medium 0:0207 � 0:0007 � 0:0006 0:0692 � 0:0046 � 0:0021 0:1794 � 0:0015
6 = b� tight 0:0060 � 0:0010 � 0:0004 0:0336 � 0:0071 � 0:0013 0:3494 � 0:0028

Dl
IJ being the double tag e�ciency for the avour l. These correlation �lJI factors are

shown in �gure 10 with their statistical errors for the six categories. Most of these factors
are small or not signi�cant 6. The most critical correlation factor for the Rb measurement
is �b66. Figure 1.b, introduced for the asymptote method, shows the variation of this
coe�cient with �. It has a good behaviour even at large values of � and for the standard

cut its value is �b66 = 0:018 � 0:010.
Correlations appear also at the level of the asymptotic estimates Xb

I and can be for-
mulated as

Xb
I = lim

�!1
fI(�) =

�
1 + lim

�!1
�bI(�)

�
Cb
I (37)

The lim�!1 �bI(�) has been found to be well approximated by �bI6.
We have studied how much Rb changes if one switches on 7 or o� the correlation

pattern. In the �rst case one uses the true hemisphere correlation coe�cients shown
in �gure 10 through equations (35) and (37); in the second case these coe�cients are

neglected in the minimization of the G2(C;R) objective function. In this application this
variation was found to be about (�0:32�1:00)% relative to the Rb value. The error is due

to the limited Monte Carlo statistics in the determination of the correlation coe�cients.

This is an indication that the method is almost insensitive to the pattern of correlations.

Moreover, asymptotic correlation factors can be changed taking into account the small

variations of �bI(�) at large �. A negligible change, at the level of 5 per mil, was found on

the �nal �tted Rb value.

6For example, the largest factor is �b
11

= 0:68� 0:16, but it a�ects only 1=1000 of b�b events.
7The additional constraints

P
IJ

Cl

I
Cl

J
(1 + �l

IJ
) = 1, for each l and

P
I
Cb

I

�
1 + lim�!1 �b

I
(�)
	
= 1

have to be included.
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In the absence of hemisphere correlations, the Rb measurement is mathematically

independent of uncertainties on other obervables in and outside the b sector. However,

in the presence of small correlations, we have investigated the e�ect of uncertainties on

physical quantities or detector response which may change the correlation pattern and

then a�ect the Rb measurement.

The correlation between hemispheres occurs mainly due to polar angle acceptance,

to the fact that the beam spot constraint is common for both hemispheres, and to hard

gluon emission that may boost b hadrons into the same hemisphere. Also the correlation

pattern may depend on the average b lifetime because it a�ects the tagging e�ciencies.

Hard gluon emission producing a b�b pair in the same hemisphere is about 2 % of the b�b

events according to the simulation and might be the source of an excess of b events in the

(small I,large J) and (large I,small J) cells. In order to evaluate systematic errors one can

perform a �t on simulation, removing the events with two b jets in the same hemisphere

and recomputing the b fraction in the reduced sample. The correction to be applied has

been found to be around 1% relative.

Generally, methods measuring Rb by hemisphere double tagging require the tag e�-

ciencies for the uds and c avours and take these e�ciencies from simulation. They are
therefore sensitive to uncertainties outside the b sector. In this method, these e�ciencies
are measured simultaneously with Rb. In the absence of hemisphere correlations, they

should not contribute to systematic errors on Rb. It was veri�ed that these errors due to
uncertainties in the uds and c sector were of second order. Di�erent lifetimes and rela-
tive production rates of D mesons, charm decay multiplicity and fragmentation functions,
production rates of long lived particles and secondary interactions were considered.

The sum of all these model uncertainties is at the level of 0.7 % of Rb in this application

[2, 3]. This shows that the method is almost insensitive to the uncertainties on the physical
parameters.

5.2 Other Systematic Uncertainties

A possible dependence of the value of Rb on the tagging algorithm was investigated. No
systematic e�ects were observed. In fact, when one �ts the double tag matrix together
with the asymptotic estimation Xb

I , the method calibrates itself since all dependence on
the modelling is included in the classi�cation matrix and the Rl parameters are free of
this dependence. This behaviour was easily checked by changing directly the b tagging

e�ciency: when the quality of the tagging improves, the measurement of Rb remains

stable while the statistical error decreases because the size of the asymptotical domain is
increased. In parallel the method was able to follow accurately the modi�cation of the
classi�cation matrix.

We have also investigated the e�ect of changing: a) the model used to compute the

class likelihoods, comparing two training samples simulated with di�erent b lifetimes (1.2

and 1.6 ps) and di�erent versions of the simulation program; b) the boundaries �lowb and

�
up
b which de�ne the b categories. A relative error of a 0.30% on the Rb value is found for
these e�ects.
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6 Conclusions

Two closely related methods have been proposed to directly extract the avour contents

and the performances of a hemisphere tagging algorithm for samples of events collected in

e+e� annihilation experiments at LEP/SLC energies. These quantities can be obtained

without any explicit reference to information taken from simulation, except eventually

residual hemisphere correlations. The methods have been tested on a sample of 540K MC

events with a full simulation of the detector, using a sophisticated multivariate analysis

technique, optimized for b tagging.

The choice of tagging algorithm is irrelevant, provided that similar performances are

reached for the b avour. Much attention should be paid to reduce as much as possible

the correlation between the tags in the two hemispheres. The present work takes bene�t

of the high precision given by microvertex detectors. It was applied to measure accurately

the Z0 ! b�b branching ratio.

The results of the two methods show excellent agreement with the expected values

together with a good precision in the b sector. A minimal dependence on modelling

has been achieved. Systematic errors due to uncertainties on lifetimes, fragmentation

functions, branching ratios, or detector resolution e�ects have been found small.
The main source of systematics comes from residual hemisphere correlations. Simu-

lation could be used to evaluate these corrections. The Monte Carlo study shows that
a global systematic uncertainty at the level of 1.3 % can be achieved on the �b�b=�had
branching ratio, where the main contribution (� 1%) is due to the limited simulation

statistics [2, 3]. Also an accurate determination of the tagging performances provides
precise calibrated samples of b-enriched or b-depleted hemispheres.

From the detector point of view, a set of requirements is needed [6]. For instance, good
quality of the tracking devices, in particular for the vertex region, is essential. Accuracy
of the measurement is directly related to the size of the asymptotical domain. In this

respect, the new generation of 3-D vertex detectors, which should improve considerably
the quality and the solid angle of the b-tag, o�ers promising perspectives. Finally, progress
needs to be made in a better separation of the c and uds avour. For further developments
it should be interesting to have particle identi�cation fully available, which would allow
the introduction of independent discriminating variables.
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APPENDIX

A � Tagging variables

Once the hemisphere vertex has been obtained as explained in section 3.1, a set of twelve

variables is computed independently in each hemisphere. Assuming that the vertex de-

tector provides accuracy only in the plane perpendicular to the beam axis, we neglect the

z track coordinates. Essential ingredients in these variables are the impact parameter of

charged trajectories in the xy plane and related magnitudes. Some nomenclature is �rst

briey reviewed:

� hi is the impact parameter of the i-th particle trajectory projected in the xy plane

with respect to the hemisphere vertex Ah. The sign of hi is positive if the vertex

Ah is seen on the left when moving along the particle trajectory.

� �h;i is the error on hi, which adds in quadrature the contribution of the perigee
parameter and the error from the vertex position.

� In the xy plane the projection of the impact parameter on the jet axis is qi = hi sin �i
and normalized to its error

q̂i = hi sin �i=�q;i

where �i is the angle of the trajectory at perigee with the jet direction. The main
error in �i is due to the estimate of the jet direction. Note that q̂i is positive for

decay products of c and b hadrons travelling in the downstream direction of the jet.

The variables are de�ned for the Ng good tracks which mean charged particles attached
to the main interaction or to secondary vertices very close to it. These tracks have to
satisfy the following additional conditions:

� The impact parameter should be less than 0.25 cm in the xy plane and less than

1.0 cm in z.

� The impact parameter error must be less than 0.5 cm.

� Tracks within the microvertex acceptance should have at least two associated hits.

In �gures 11 and 12 we display the distribution of each variable for uds, c and b

avours, obtained from a simulated sample called the training sample. These distributions

are used to compute the class likelihoods in equation (29). The �gures are plotted with

a logarithmic scale, and the contributions of the 3 avours are on top of each other for

readability.

A.1 Boosted sphericity (Sh)

This variable is the only one exclusively computed with quadrimomenta. The jet spheric-
ity of the particles is evaluated with respect to the rest frame of a B hadron candidate

moving along the jet direction given by the total momentum of the particles in the jet.
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Figure 11: Distributions for tagging variables (see text). The contribution of each avour

is shown.
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Figure 12: Distributions for tagging variables (continuation).
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A boost, along the jet direction, with a Lorentz  parameter is needed to perform the

transformation from the laboratory frame to the B rest frame. Monte Carlo studies show

that at LEP/SLC energies the optimum value is  ' 4. The sphericity in this frame is

expected to be larger for b�b events than for the other avours.

A.2 Normalized decay path (�h)

In addition to the main hemisphere vertex, a secondary vertex �t is attempted for each

hemisphere. The most energetic jet of the hemisphere is associated to the primary quark

jet. Only particles making an angle of less than 14o with the jet axis, with more than

1 GeV/c and with an impact parameter respect to Ah of less than 2 mm in xy and 10

mm in z are considered in the secondary vertex �t. The �t provides the position of the

secondary vertex Vh and its covariance matrix. If there is only one track remaining in the

�t, the secondary vertex is taken as the intersection in the xy projection of this track and

the jet axis passing through the main hemisphere vertex Ah. If no track is left to compute

the �t, the same procedure is applied to the most energetic remaining jet.

An algebraic distance Lh along the jet direction ~jh is de�ned for each hemisphere

Lh =
��!
AhVh �~jh

and dividing by its error �Lh the normalized decay path variable �h is

�h = Lh=�Lh

A.3 Sum of impact parameters squared (�xy
h )

By considering the sum of the squared normalized impact parameters with respect to the
hemisphere vertex in the xy plane

Y 2
xy =

NgX
i=1

 
hi

�h;i

!2

a pseudo-�2 variable can be introduced for each hemisphere. Taking a logarithm scale

�
xy
h = ln

 
1 +

Y 2
xy

d:o:f:

!

A.4 Total weight variable (
h)

Among the good tracks it is interesting to count the secondary tracks coming from c and

b decays. Instead of selecting the candidates by a set of cuts, a weight is assigned to each
particle giving its probability to be secondary. A weight !i is assigned to each track

!i = f1� exp (�Pi)g
n
1� exp

�
�h2i=�2h;i

�o
tanh (q̂i)

The weight !i is designed to be � 0 for primary tracks (low momentumPi or hi=�h;i; q̂i
small). The sign introduced by the tanh(q̂i) factor allows a cancellation in the summation.

On the contrary for secondary tracks (hi=�h;i large, q̂i large and positive) !i reaches the
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value 1. The sum 
h of the weights de�ned above is then equivalent to the number of

secondary particles in the hemisphere and can be expressed as


h =

NgX
i=1

!i

A.5 Sum of weighted PT (�PT

h )

This is another weighted variable equivalent to the sum of the P 2
T of secondary particles

�PT
h =

NgX
i=1

!iP
2
T;i

A.6 Sum of weighted P (�P
h )

This variable is de�ned as the sum of the momenta weighted by the signed factor tanh(q̂i)

�P
h =

NgX
i=1

tanh(q̂i)Pi

It intends to represent the sum of the secondary particle momenta. The contribution of
primary particles cancel on average.

A.7 Sum of projected impact parameter (�h)

The sum of the projected impact parameters in the xy plane of all good tracks is de�ned
as

�h =
NgX
i=1

q̂i

The �h distribution is expected to be centered at 0 for the uds avours while for c and

b an asymmetry in the positive direction is expected, due to the fact that in general the
decay products have positive projected impact parameter.

A.8 Excluded particles (N ex
h )

N ex
h is the number of excluded particles during the main hemisphere vertex �t as described

in section 3.1.

A.9 Hemisphere vertex �2 (�V
h )

The quantity

�V
h = ln

�2h
d:o:f:

takes into account the �2h of the xy plane vertex �t for each hemisphere, once the badly

measured tracks have been removed by applying a �2 cut on the trajectory �t.
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A.10 Best Partition �2 (�BP
h )

This is the minimum value of the quantity

�BP
h = ln

�2h;1

d:o:f1
+ ln

�2h;2

d:o:f2

which is evaluated by comparing all possible partitions of the tracks in one hemisphere

into two subsets. The �2h;1 and �2h;2 are the �2 values from the vertex �ts of the two

subsets of tracks. In subset 2, we put up to 6 tracks lying on a cone of 25o around the axis

of the most energetic jet in the hemisphere. This selection is sensitive to secondary tracks

from b decays. In subset 1, which intends to represent the primary interaction, we put the

remaining tracks. The aim of this procedure is to provide a test of the hypothesis that

there are two vertices in the hemisphere and also an estimation of the secondary vertex

(neglecting the cascade b! c! s).

A.11 Best partition tracks (NBP
h )

This is the number of tracks in the subset 2 for the best partition.

A.12 Best partition distance (DBP
h )

This is the distance (projected onto the thrust axis) between the �tted vertices from the
two subsets in the best partition.
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B � Glossary of the main mathematical symbols

GENERAL SYMBOLS

NF Number of avour families considered, here 3: uds, c and b.

l Flavor index (vary from 1 to NF ).

Rl Flavour fraction in the sample after acceptance cuts.

� Classi�cation criteria: de�ned in section 3 as the winning margin.

� Value of puri�cation cut applied on the classi�cation criteria: � > �.

CURVE METHOD SYMBOLS

Sb(�) Probability that an hemisphere has a b tag and ful�lls the � > � cut.

Pl(�) Same as Sb(�) but for avour l. Pb(�) can be evaluated assymptotically.

Dbb(�) Probability that an event has a b tag with � > � in the two hemispheres.

Ŝb(�),D̂bb(�) Same as Sb(�),Dbb(�), but di�erential probabilities.

P̂b(�) Di�erential probability in the b tag for the b avour.

r̂b(�) Di�erential ratio of single and double b tags tending towards Rb for large �.

ŝb(�) Single b tag ratio requiring an estimate of P̂b(�),

tending also asymptotically towards Rb.

d̂bb(�) Same as previously but with double tags.

MATRIX METHOD SYMBOLS

NT Number of categories, here 6.

I; J Category index ordered by increasing b purity. Categories 1; 2 and 4; 5; 6 are

subdivisions of the uds and b tags. Category 3 corresponds to the charm tag.

Cl

I
Classi�cation probability for avour l in category I .

DIJ Fraction of events observed in category I and J for hemispheres 1 and 2,

input to the �t of G( ~C;R).

Dl

IJ
Same as DIJ but for avour l only.

TIJ Prediction for DIJ , function of the C and R matrices.

�;	;  Angles de�ning the rotation degeneracy.

f̂I(�) Fraction of hemispheres tagged in category I when the opposite

hemisphere is classi�ed b with the winning margin �.

Xb

I
Asymptotical estimates of tagging probabilities Cb

I
deduced

from the f̂I(�) distributions.

G Function to minimize in order to extract C and R (degenerated solutions).

G1 Extension of G with the Xb

I
estimates in a degeneracy-breaking term.

G2 Extension of G with f̂I(�) distributions in the degeneracy-breaking term.

�l
JI

Double tag hemisphere correlation matrix for a given avor l.
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