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Abstract

The inclusiveJ/ψ production cross-section and fraction ofJ/ψ mesons produced inB-hadron
decays are measured in proton-proton collisions at

√
s = 7 TeV with the ATLAS detector at the

LHC, as a function of the transverse momentum and rapidity ofthe J/ψ, using 2.3 pb−1 of inte-
grated luminosity. The cross-section is measured from a minimum pT of 1 GeV to a maximum
of 70 GeV and for rapidities within|y| < 2.4 giving the widest reach of any measurement ofJ/ψ
production to date. The differential production cross-sections of prompt and non-prompt J/ψ are
separately determined and are compared to Colour Singlet NNLO⋆, Colour Evaporation Model,
and FONLL predictions.

1. Introduction

The production of heavy quarkonium at hadron colliders provides particular challenges and
opportunity for insight into the theory of Quantum Chromodynamics (QCD) as its mechanisms
of production operate at the boundary of the perturbative and non-perturbative regimes. Despite
being among the most studied of the bound-quark systems, there is still no clear understanding
of the mechanisms in the production of quarkonium states like the J/ψ that can consistently
explain both the production cross-section and spin-alignment measurements ine+e−, heavy-ion
and hadron-hadron collisions (see review articles [1] and references therein).

Data obtained by the Large Hadron Collider (LHC) collaborations can help to test existing
theoretical models of both quarkonium production andb-production in a new energy regime,
at higher transverse momenta and in wider rapidity ranges than have previously been studied.
Furthermore, quarkonium production in proton-proton collisions plays a key role as a reference
point to understand heavy ion collisions and to understand the interplay between production and
suppression mechanisms in such collisions [2].

This paper presents a measurement of the inclusiveJ/ψ production cross-section and the
production fractionfB of non-promptJ/ψ (produced via the decay of aB-hadron) to inclusively-
producedJ/ψ (hereafter referred to as thenon-prompt fraction):

fB ≡
σ(pp→ B+ X→ J/ψX′)

σ(pp
Inclusive−−−−−−→ J/ψX′′)

(1)
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in the decay channelJ/ψ→ µ+µ− as a function of bothJ/ψ transverse momentum and rapidity in
pp collisions at the LHC at a centre-of-mass energy of 7 TeV and with an integrated luminosity
of up to 2.3 pb−1. The fraction has the advantage that acceptances and many efficiencies are
the same for the numerator and denominator, and so systematic effects are reduced. The results
of these analyses are compared to those made by the CMS Collaboration [3] with 314 nb−1 of
integrated luminosity and those from the CDF Collaboration[4] where appropriate.

From these measurements, the promptJ/ψ production cross-section (σ(pp→ J/ψX′), pro-
duced directly from the proton-proton collisions or from decays of heavier charmonium states
like theχc or ψ(2S)), and the non-prompt (σ(pp → B + X → J/ψX′)) J/ψ production cross-
section, are extracted. These results are compared to corresponding predictions made by the
Colour Evaporation Model [5], Fixed-Order Next-to-Leading Log (FONLL) [6] and Colour Sin-
glet NNLO⋆ calculations [7, 8]. Further details of the results of measurements presented here
may be found in reference [9].

2. The ATLAS Detector and Data Processing

In this section, the collection and processing of the data used in the paper are outlined. This
involves a description of the most relevant subsystems of the ATLAS detector [10]: the trigger
system, the muon system and the inner tracking detector. Also specified are the triggers used and
the offline data processing, in particular the selection of candidate muons.

2.1. The ATLAS detector

The ATLAS detector covers almost the full solid angle aroundthe collision point with layers
of tracking detectors, calorimeters and muon chambers. Forthe measurements presented in this
paper, the trigger system, the inner detector tracking devices (ID) and the muon spectrometer
(MS) are of particular importance.

The ID covers the pseudorapidity range|η| < 2.5. It consists of a silicon pixel detector, a
silicon strip detector (SCT) and a transition radiation tracker (TRT). These detectors are located
at a radial distance from the beam axis between 50.5 mm and 1066 mm and are immersed in a
2 T solenoidal magnetic field. The ID barrel consists of 3 pixel layers, 4 layers of double-sided
silicon strip modules and 73 layers of TRT straws. The ID end-cap has 2× 3 pixel layers, 2× 9
layers of silicon strips and 2× 160 layers of TRT straws.

The MS is located inside a toroidal magnetic field which provides 2.5 Tm of bending power in
the barrel and 5 Tm in the end-caps. It consists of four detectors using different technologies and
is divided into a barrel region (|η| < 1.05) and two end-cap regions (1.05 < |η| < 2.7). Precise
muon measurements are made using monitored drift tube chambers (MDT) in both the barrel
and end-cap sections and using Cathode Strip Chambers (CSC)in the end-caps; fast triggers are
obtained from resistive plate chambers (RPC) in the barrel and thin gap chambers (TGC) in the
end-caps. The chambers are arranged in three layers, so high-pT particles leave at least three
measurement points with a lever arm of several metres.

2.2. Trigger

The ATLAS detector has a three-level trigger system: level 1(L1), level 2 (L2) and the event
filter (EF). For the measurements presented here, the trigger relies on the Minimum Bias Trigger
Scintillators (MBTS) and the muon trigger chambers.
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The MBTS are mounted in front of each liquid argon endcap calorimeter cryostat atz= ±3.56
m and are segmented into eight sectors in azimuth and two rings in pseudorapidity (2.09< |η| <
2.82 and 2.82< |η| < 3.84). The MBTS trigger is configured to require two hits above threshold
from either side of the detector. A dedicated muon trigger atthe EF level is required to confirm
the candidate events chosen for these measurements. This isinitiated by the MBTS L1 trigger
and searches for the presence of at least one track in the entire MS. This trigger is referred to as
the EF minimum bias trigger; it has an adjustable threshold on the reconstructed muonpT above
which events are accepted and can be prescaled to accept a pre-determined fraction of events
meeting the trigger condition.

The L1 muon trigger is based on RPCs for the barrel and TGCs forthe end-caps [10]. It seeks
hit coincidences within different RPC or TGC detector layers inside programmed geometrical
windows which define the muon candidatepT , then selects candidates above six programmable
thresholds and provides a rough estimate of their positions[11]. For the earlier data used in this
analysis, the muon trigger corresponds to the lowestpT threshold trigger which requires a simple
two-layer time coincidence within a region of 0.1×0.1 inη-φ. No further geometrical constraint
is applied.

As the instantaneous luminosity of the collider increases,the trigger requirement switches
from the EF minimum bias trigger to the L1 muon trigger. Laterdata periods make use of
triggers seeded by this L1 trigger but with additionalpT cuts applied at the EF stage (these are
referred to henceforth as the EF muon triggers).

2.3. Muon identification and reconstruction

Muon identification and reconstruction extends to|η| < 2.7, covering apT range from 1 GeV
up to more than 1 TeV. “Standalone MS tracks” are constructedentirely based on the signal hits
collected in the MS. The track parameters are obtained from the MS track and are extrapolated
to the interaction point, taking into account multiple scattering and energy loss in the traversed
material. In this analysis, two categories of reconstructed muons are then defined:

• Muons from combined reconstruction: the combinedmuon reconstruction relies on a
statistical combination of both a standalone MS track and anID track. Due to ID coverage,
the combined reconstruction covers|η| < 2.5.

• Muons from ID track tagging: a taggedmuon is formed by MS track segments which
are not formed into a complete MS track, but which are matchedto ID tracks extrapolated
to the MS. Such a reconstructed muon adopts the measured parameters of the associated
ID track. In this paper, the muon tagging is limited to|η| < 2, in order to ensure high
quality tracking and a reduction of fake muon candidates.

The muon track helix parameters are taken from the ID measurement alone, since the MS does
not add much to the precision in the lower momentum range relevant for theJ/ψ measurements
presented here.

3. Data and Monte Carlo Samples

Proton-proton collision data, at a centre-of-mass energy of 7 TeV, are included in this analysis
if taken during stable beam periods and when the MS, ID and magnet systems were collecting
data of a sufficiently high quality to be suitable for physics analysis.
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Monte Carlo samples are used for determining acceptance corrections, as part of the trigger
efficiency studies and in systematic cross-checks. They are generated using Pythia 6 [12] and
tuned using the ATLAS MC09 tune [13] which uses the MRST LO⋆ parton distribution functions
[14]. The passage of the generated particles through the detector is simulated with Geant4
[15] and the data are fully reconstructed with the same software that is used to process the data
from the detector. For the signalJ/ψ Monte Carlo (used to derive the kinematic acceptance
corrections), the Pythia implementation of promptJ/ψ production sub-processes in the NRQCD
Colour Octet Mechanism framework [16] is used.

PromptJ/ψ production includesdirect production from the hard interaction, as well as char-
monium feed-down from excited states. Thesepromptproduction modes are distinct fromnon-
promptproduction that is characterised by the production ofJ/ψ via the decay of aB-hadron.

All samples are generated with polar and azimuthal isotropyin the decay of theJ/ψ (the de-
fault in Pythia) and are reweighted at the particle level according to theirrespective angular de-
pendencies in order to describe a number of different spin-alignment scenarios (see Section 4.1).
TheJ/ψ spin-alignment is not measured in this analysis, so the reweighted MC samples are used
to provide an uncertainty band on the measurement of the production cross-section, determined
by the maximum variation in acceptance across the full allowed range ofJ/ψ spin alignment.

3.1. Event and candidate selection

The analyses presented in this paper make use of the triggersdescribed in Section 2.2. For
the inclusive cross-section, in a given data taking period an event is retained or discarded based
on the decision of a single specific trigger, without reference to any other triggers. For data from
the initial running with lower instantaneous luminosity, the L1 muon trigger is used. During later
periods, with higher instantaneous luminosity, a more selective EF muon trigger with a 4 GeV
pT threshold is required, and eventually, this is increased toa 6 GeVpT threshold. The sample
collected by these triggers and passing the data quality selections corresponds to an integrated
luminosity of 2.2 pb−1.

For the measurement of theB→ J/ψ non-prompt fraction (see Equation 1), two additional
triggers are employed, and rather than using a single trigger to veto or accept events, several
triggers are used simultaneously such that any one of them having fired results in the event
being included. From the initial period, events triggeringeither the L1 muon trigger or the
EF minimum bias trigger are used (whereas only the L1 muon trigger is used for the cross
section). For intermediate instantaneous luminosities the L1 muon trigger is used alone since
the EF minimum bias trigger is highly prescaled at this stage. For the highest instantaneous
luminosities, events are accepted which pass any of the EF muon triggers withpT thresholds of
4, 6 or 10 GeV. During the runs with the highest instantaneousluminosities, the triggers with 4
and 6 GeV are prescaled; however, the 10 GeV threshold trigger is not. The inclusion of this
unprescaled trigger along with the addition of the EF minimum bias trigger for theB → J/ψ
non-prompt fraction measurement results in a slightly higher integrated luminosity of 2.3 pb−1.

To veto cosmic rays, events passing the trigger selection are required to have at least three
tracks associated with the same reconstructed primary vertex. The three tracks must each have
at least one hit in the pixel system and at least six hits in theSCT.

Each remaining event is required to contain at least one pairof reconstructed muons. Only
muons associated with ID tracks that have at least one hit in the pixels and six in the SCT
are accepted. Di-muon pairs with opposite charges are considered to beJ/ψ candidates if at
least one combined muon is present in the pair. At least one reconstructed muon candidate is
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required to match a muon trigger (that is, at least one muon from the J/ψ candidate should
have fired the trigger). For the early data, when the trigger is essentially based on the L1 muon
trigger, at least one of the offline muons is required to match the trigger muon candidate to within
∆R=

√

∆η2 + ∆φ2 < 0.4 at the MS plane; for the later data taking, where the EF muon trigger is
used, the offline and trigger muons are required to match within∆R< 0.005.

The two ID tracks from each pair of muons passing these selections are fitted to a common
vertex [17]. No constraints are applied in the fit and a very loose vertex quality requirement,
which retains over 99% of the candidates, is used.

For theB → J/ψ non-prompt fraction analysis, where lifetime informationis an important
element of the fit, additional requirements are made on theJ/ψ → µ+µ− candidates. The proba-
bility of the fit to theJ/ψ vertex is required to be greater than 0.005. For this measurementJ/ψ
candidates are rejected if the two muon candidate tracks were used to build different primary ver-
tices in the offline reconstruction (so that there is an ambiguity as to whichprimary vertex to use
in the lifetime calculation). This rejects fewer than 0.2% of theJ/ψ candidates. This selection is
not applied for the cross-section analysis.

4. Inclusive J/ψ → µ+µ− Differential Production Cross-Section

The measurement of the inclusive differential cross-section is determined as

d2σ(J/ψ)
dpTdy

Br(J/ψ→ µ+µ−) =
NJ/ψ

corr

L · ∆pT∆y
(2)

whereNJ/ψ
corr is theJ/ψ yield in a givenpT − y bin after continuum background subtraction and

correction for detector efficiency, bin migration and acceptance effects,L is the integrated lumi-
nosity of the data sample and∆pT and∆y are thepT and rapidity bin widths. The probabilityP
that aJ/ψ → µµ decay is reconstructed depends on the kinematics of the decay, as well as the
muon reconstruction and trigger efficiencies. In order to recover the true numberNJ/ψ

corr of such
decays produced in the collisions, a weightw is applied to each observedJ/ψ candidate, defined
as the inverse of that probability and calculated as follows:

P = w−1 = A ·M · E2
trk · E+µ(p+T , η+) · E−µ(p−T , η−) · Etrig (3)

whereA is the kinematic acceptance,M is a correction factor for bin migrations due to finite
detector resolution,Etrk is the ID tracking efficiency andEµ is the single-muon offline reconstruc-
tion efficiency. Herep±T andη± are the transverse momenta and pseudorapidities of the positive
and negative muons from theJ/ψ decay. The trigger efficiencyEtrig for a givenJ/ψ candidate is
calculated from single-muon trigger efficienciesE±trig(p±T , η

±) as follows:

Etrig = 1−
(

1− E+trig(p+T , η
+)

)

·
(

1− E−trig(p−T , η
−)

)

. (4)

The resultant weighted invariant mass peak is then fitted (see Section 4.4) to extractNJ/ψ
corr.

4.1. Acceptance

The kinematic acceptanceA(pT , y) is the probability that the muons from aJ/ψ with trans-
verse momentumpT and rapidityy fall into the fiducial volume of the detector. This is calculated
using generator-level Monte Carlo, applying cuts on the momenta and pseudorapidities of the
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muons to emulate the detector geometry. Global cuts of|~p+|, |~p−| > 3 GeV for |η+|, |η−| < 2.5 are
supplemented by finerpT thresholds in slices ofη to ensure that regions of the detector where
the values of offline and trigger efficiencies are so low as to be compatible with zero within the
uncertainties (approximately 10%) are excluded from the analysis.

The acceptance also depends on the spin-alignment of theJ/ψ, which is not known for LHC
conditions. The general angular distribution for the decayJ/ψ → µµ in the J/ψ decay frame is
given by:

d2N
d cosθ⋆dφ⋆

∝ 1+ λθ cos2 θ⋆ + λφ sin2 θ⋆ cos 2φ⋆ + λθφ sin 2θ⋆ cosφ⋆ (5)

whereθ⋆ is the angle between the direction of the positive muon momentum in theJ/ψ decay
frame and theJ/ψ line of flight, whileφ⋆ is defined as the angle between theJ/ψ production and
decay planes in the lab frame (see Figure 1, reference [18] and references therein).

quarkonium 
rest frame

production 
plane

yx

z

Ç

3

� +

Figure 1: Definitions of theJ/ψ spin-alignment angles, in theJ/ψ decay frame.θ⋆ is the angle between the direction of
the positive muon in that frame and the direction ofJ/ψ in the laboratory frame, which is directed along thez⋆-axis.φ⋆

is the angle between theJ/ψ production (x⋆ − z⋆) plane and its decay plane formed by the direction of theJ/ψ and the
leptonℓ+ (from [18]).

A large number of possible combinations of the coefficientsλθ, λφ, λθφ have been studied,
including some withλθφ , 0. Five extreme cases have been identified that lead to the biggest
variation of acceptance within the kinematics of the ATLAS detector and define an envelope in
which the results may vary under all possible polarisation assumptions:

1. Isotropic distribution, independent ofθ⋆ andφ⋆, with λθ = λφ = λθφ = 0, labelled as
“FLAT”. This is used as the main (central) hypothesis.

2. Full longitudinal alignment withλθ = −1, λφ = λθφ = 0, labelled as “LONG”.
3. Transverse alignment withλθ = +1, λφ = λθφ = 0, labelled as T+0.
4. Transverse alignment withλθ = +1, λφ = +1, λθφ = 0, labelled as T++.
5. Transverse alignment withλθ = +1, λφ = −1, λθφ = 0, labelled as T+−.

Two-dimensional acceptance maps are produced in bins ofpT and y of the J/ψ, for each of
these five scenarios, and are illustrated in Figure 2. The maps are obtained by reweighting the
flat distribution at the generator level using Equation 5. The central value for the cross-section
measurement is obtained using the flat distribution, and themeasurement is repeated using the
other scenarios to provide an envelope of maximum variation, which is stated as a separate
uncertainty.
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(b) λθ = +1, λφ = λθφ = 0
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(d) λθ = +1, λφ = +1, λθφ = 0
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Figure 2: Kinematic acceptance maps as a function ofJ/ψ transverse momentum and rapidity for specific spin-alignment
scenarios considered, which are representative of the extrema of the variation of the measured cross-section due to spin-
alignment configurations. Differences in acceptance behaviour, particularly at lowpT , occur between scenarios and can
significantly influence the cross-section measurement in a given bin.
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4.2. Bin migration corrections

The measured efficiency and acceptance correctedJ/ψ pT distribution is parameterised in each
rapidity slice by a smooth analytic function smeared with a Gaussian distribution, with resolution
derived from the data. This function is integrated numerically over each analysis bin, both with
and without smearing applied, and the ratio of the two integrals is assigned as the correction
factor. The effects of this correction are minimal at lowpT and at low rapidities (around 0.1%)
but increase at higherpT and at higher rapidities (reflecting the decreasing momentum resolution)
to a maximum of approximately 3%.

4.3. Muon trigger and reconstruction efficiency

The offline single muon reconstruction efficiencies are obtained from data using a tag and probe
method [19], where muons are paired with ID tracks (“probes”) of opposite charge. The pairs
are divided into two categories: those in which the probe is reconstructed as a muon (“matched”)
and those in which it is not (“unmatched”). Both sets of pairsare binned according to thepT

andη of the probe. In each of these bins, the muon reconstruction efficiency is obtained as
the ratio of the number ofJ/ψ candidates in the peak of the matched distribution to the total
number of candidates in the two mass distributions. The efficiency is extracted as a parameter of
a simultaneous fit to both distributions. The dependence of the offline reconstruction efficiency
on the muon charge is well described by MC within the acceptance. This procedure is repeated
separately for combined and tagged muons. At higherpT (for muons withpT above 6 GeV),
the efficiency determination is supported by additional tag and probe Z → µ+µ− data [20] for
improved precision in the efficiency plateau region.

A hybrid Monte Carlo and data-derived (tag and probe) schemeis used to provide trigger ef-
ficiencies for the analysis with finer binning than would be possible with the available data statis-
tics. This is necessary to avoid significant biases that would otherwise appear in the analysis with
coarsely binned efficiencies across rapidly-changing efficiency regions. Due to significant charge
dependence at lowpT and high pseudorapidity, separate trigger efficiency maps are produced for
positive and negative muons. Fully simulated samples of prompt pp→ J/ψ (µ+µ−) X decays are
used to populate theJ/ψ pT − y plane, using a fine binning. For each bin, the probability of a
muon activating the trigger is determined. The derived efficiencies are then reweighted to match
the data efficiencies in the reconstructed bins in cases where discrepancies exist between the data
and Monte Carlo, and uncertainties from data are assigned.

Muon reconstruction efficiencies have been determined relative to reconstructed IDtracks.
Inner Detector tracks associated to muons and having the selection cuts used in this analysis have
a reconstruction efficiencyEtrk of 99.5%± 0.5% per track (with no significant pseudorapidity or
pT dependence observed within the phase space probed with thisanalysis), which is applied as
an additional correction to theJ/ψ candidate yields.

4.4. Fit of J/ψ candidate mass distributions

The distribution of reconstructedJ/ψ candidates over the candidatepT − y plane is shown in
Figure 3. The majority ofJ/ψ candidates are reconstructed in intermediate-pT, high-y areas, as
at lowerpT values the acceptance of the detector is limited.

The inclusiveJ/ψ production cross-section is determined in four slices ofJ/ψ rapidity:
|y| < 0.75, 0.75 < |y| < 1.5, 1.5 < |y| < 2.0 and 2.0 < |y| < 2.4. In Figure 4, the invariant
mass distributions for all oppositely charged muon pairs passing the selection for the differential
cross-section measurement are shown, before acceptance and efficiency corrections, for the four
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Figure 3: Distribution of reconstructedJ/ψ candidates (in the invariant mass interval 2.7 < mJ/ψ < 3.5 GeV) as a
function ofJ/ψ pT and rapidity.

rapidity slices. Table 1 presents the results of the combined signal and background fits. In these
fits theJ/ψ andψ(2S) peaks are represented by Gaussians, while the background is described by
a quadratic polynomial.

Table 1: Fitted mass, resolution and yields ofJ/ψ candidates reconstructed in fourJ/ψ rapidity bins. All uncertainties
quoted are statistical only. The shift in mass away from the world average in the highest rapidity bin reflects the few-per-
mille uncertainty in the trackingpT scale at the extreme ends of the detector.

J/ψ rapidity range
|y| < 0.75 0.75< |y| < 1.5 1.5 < |y| < 2.0 2.0 < |y| < 2.4

Signal yield 6710± 90 10710± 120 9630± 130 4130± 90
Fitted mass (GeV) 3.096± 0.001 3.097± 0.001 3.097± 0.001 3.109± 0.002

Fitted resolution (MeV) 46± 1 64± 1 84± 1 111± 2
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Figure 4: Invariant mass distributions of reconstructedJ/ψ → µ+µ− candidates used in the cross-section analysis,
corresponding to an integrated luminosity of 2.2 pb−1. The points are data, and the uncertainties indicated are statistical
only. The solid lines are the result of the fit described in thetext.

The invariant mass distribution ofJ/ψ → µ+µ− candidates in eachpT − y bin is fitted using
a binned minimum-χ2 method. TheJ/ψ andψ(2S) signals are described by single Gaussians,
while the background is treated as a straight line.

For the differential cross-section measurement, the correction weight w defined in Equation 3
is applied to each candidate, and a new binned minimum-χ2 fit is performed in each bin. The
yields ofJ/ψ determined from these fits, divided by the integrated luminosity, give the inclusive
production cross-section for a given bin. Representative invariant mass distributions are shown
in Figure 5. Theχ2 probability distribution of the weighted fits across all bins is found to be
consistent with the statistical expectation.

The cross-sections obtained for each bin are listed in Table2, the systematic uncertainties
considered are displayed in Figure 6 and the cross-section results are presented in Figure 7. The
measurement in eachpT − y analysis bin is positioned at the averagepT for J/ψ candidates in
that bin. Various tests of the method described above are performed using simulated samples of
known composition, and the number ofJ/ψ in each analysis bin is successfully recovered within
expectations in all cases.

4.5. Systematic uncertainties

Studies are performed to assess all relevant sources of systematic uncertainty on the mea-
surement of theJ/ψ inclusive production cross-section. Sources of uncertainty are listed below,
ordered according to the approximate size of their contribution (starting with the largest).
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Figure 5: Acceptance- and efficiency-corrected invariant di-muon mass distributions scaled by integrated luminosity for
selected bins inJ/ψ rapidity and transverse momentum. Low- and high-pT bins are shown here for the central and
forward rapidity ranges, to represent the complete sample.Statistical uncertainties and systematic uncertainties due to
efficiency and acceptance corrections are shown, combined in quadrature.

1. Spin-alignment: Kinematic acceptance depends on the spin-alignment state of the J/ψ
and hence affects the corrected yield. Five spin-alignment scenarios are considered, which
correspond to the extreme cases for the acceptance corrections within the kinematics ac-
cessible in ATLAS. In each bin, the maximal deviations in either direction are assigned as
the systematic uncertainty due to the unknown spin-alignment of theJ/ψ. These uncer-
tainties are regarded as theoretical rather than experimental, and are quoted independently
of the statistical and experimental systematic uncertainties.

2. Muon reconstruction: The single muon efficiency maps are obtained from the data us-
ing the tag and probe method, in bins of muon transverse momentum and pseudorapidity.
Each efficiency has an uncertainty (predominantly statistical in nature, but with a system-
atic component from the tag and probe method) associated with it. In order to obtain an
estimate on the effects of uncertainties within these bins, the relative uncertainties (due to
systematic and statistical components) on allJ/ψ candidates in a bin are averaged. Inner
Detector tracks originating from muons and having the selection cuts used in this analysis
have a reconstruction efficiency of 99.5%± 0.5% per track. The results are corrected for
this efficiency, and a systematic uncertainty on the efficiency is assigned for each track,
propagated linearly into the cross-section systematic.

3. Trigger: The uncertainty on the trigger efficiency has components from the data-derived
efficiency determination method (again largely statistical innature) and from the reweight-
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ing of MC maps to the data-driven (tag and probe) efficiency values. These errors are
treated similarly to the reconstruction efficiency uncertainties.

4. Luminosity: The uncertainty on the integrated luminosity used for this measurement is
determined to be 3.4% [21], fully correlated between bins.

5. Acceptance:
• Monte Carlo statistics: The acceptance maps are obtained from dedicated Monte

Carlo production, in bins ofJ/ψ transverse momentum and rapidity. The acceptance
in each bin has an uncertainty due to Monte Carlo statistics.The relative error on
the acceptance correction for eachJ/ψ candidate contributing to a particular analysis
bin is averaged in quadrature to evaluate the systematic effect of these errors on the
cross-section measurement in that bin.

• Kinematic dependence: The impact of any discrepancies in the underlying kinematic
distribution modelling in the Monte Carlo used to build the maps, or differences in
thepT dependence of the prompt and non-prompt components to the overall inclusive
cross-section are studied. A correction to the acceptance maps is made based on
the measured non-prompt to prompt fraction to ensure propercorrection of the two
populations, and an uncertainty is assigned based on the difference in yields from
using the corrected and uncorrected maps. This uncertaintyis significantly below 1%
in most analysis bins, reaching a maximum of 1.5% in some highpT , low rapidity
bins.

• Bin migration: The changes to the measured cross-section due to the migration of
entries between thepT bins is determined by analytically smearing the efficiency and
acceptance correctedpT spectrum with a Gaussian resolution function with width
based on muonpT resolutions, taken from data. The correction needed to the central
value due to bin migrations is as small as 0.1% at lowpT and low rapidity and rises
to ∼ 3% at highpT and high rapidity. The variation of the bin migration correction
within a given analysis bin (due to changing detector resolution and parameterisation
of the pT spectrum) is taken as a systematic.

• Final-State Radiation: The acceptance maps correct the measured cross-section back
to theJ/ψ kinematics, rather than the final-state muon kinematics, inorder to allow
proper comparison with theoretical predictions. Emissionof QED final-state radia-
tion is known to high accuracy, so the relative uncertainty on the modelling of this
correction is determined to be less than 0.1%.

6. Fit: Invariant mass distributions for a large number of pseudo-experiments are constructed
for eachpT − y bin of the analysis, with the bin contents for each pseudo-experiment be-
ing an independently Poisson-fluctuated value with mean equal to the measured data, and
uncertainty in the bin determining the variance of the fluctuations. Within these pseudo-
experiments, the candidate yields from the central fit procedure and yields from varied fit-
ting models are determined, and the shift per pseudo-experiment calculated. The variation
in fitting models include signal and background fitting functions and inclusion/exclusion of
theψ(2S) mass region. The means of the resultant shifts across all pseudo-experiments for
each fit model are used to evaluate the systematic uncertainty. The largest mean variation
in that bin is assigned as a systematic uncertainty due to thefit procedure.

7. J/ψ vertex-finding efficiency: The loose vertex quality requirement retains over 99.9%
of di-muon candidates used in the analysis, so any correction and systematics associated
to the vertexing are neglected.
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Figure 6: Summary of the contributions from various sourcesto the systematic uncertainty on the inclusive differential
cross-section, in theJ/ψ pT and rapidity bins of the analysis. The total systematic and statistical uncertainties are also
overlaid. The theoretical uncertainty due to the unknown spin alignment is not included on these plots.

A summary of the various contributions to the systematic uncertainties on the measurement in
each rapidity slice as a function ofJ/ψ pT is shown in Figure 6. The uncertainty due to the
luminosity (3.4%) is not shown, nor is the spin-alignment envelope which represents a full range
of variation due to the unknown spin-alignment state.

4.6. Inclusive J/ψ cross-section results

The results of the inclusive double-differentialJ/ψ production cross-section measurement are
given in Table 2. They are compared to CMS results [3] in Figure 7 for cases where the rapidity
ranges are close enough to permit comparison. The two sets ofresults show good agreement
within experimental uncertainties and provide complementary measurements at low (CMS) and
high (ATLAS) pT , together providing a measurement over a large kinematic range.

The systematics are dominated by the data-driven muon reconstruction efficiency uncertain-
ties, which are in turn dominated by their statistical uncertainties. There is an additional overall
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uncertainty of±3.4% (fully correlated between bins) due to the luminosity measurement uncer-
tainty. The measurement of the differential cross-section is limited by systematic uncertainties,
with statistical uncertainties only contributing significantly near the low-pT thresholds where
yields are limited by trigger efficiency, and in the highest transverse momentum bin.

The total cross-section for inclusiveJ/ψ → µ+µ− production, multiplied by the branching
fraction into muons and under the FLAT production scenario for the central value, has been
measured forJ/ψ produced within|y| < 2.4 andpT > 7 GeV to be:

Br(J/ψ→ µ+µ−)σ(pp→ J/ψX; |yJ/ψ| < 2.4, pJ/ψ
T > 7 GeV)

= 81± 1 (stat.)± 10(syst.)±25
20 (spin)± 3 (lumi.) nb

and forJ/ψ within 1.5 < |y| < 2 andpT > 1 GeV to be:

Br(J/ψ→ µ+µ−)σ(pp→ J/ψX; 1.5 < |yJ/ψ| < 2, pJ/ψ
T > 1 GeV)

= 510± 70 (stat.)±80
120 (syst.)±920

130 (spin)± 20 (lumi.) nb.

5. Measurement of the Non-PromptJ/ψ Fraction

Experimentally, it is possible to distinguishJ/ψ from prompt production and decays of heav-
ier charmonium states from theJ/ψ produced inB-hadron decays (non-prompt production). The
prompt decays occur very close to the primary vertex of the parent proton-proton collision, while
many of theJ/ψ mesons produced inB-hadron decays will have a measurably displaced decay
point due to the long lifetime of theirB-hadron parent.

From the measured distances between the primary vertices and correspondingJ/ψ decay
vertices the fractionfB of J/ψ that originate from non-prompt sources, as defined in Equation 1,
can be inferred. An unbinned maximum likelihood fit is used toextract this fraction from the
data.

5.1. Pseudo-proper time

The signed projection of theJ/ψ flight distance,~L, onto its transverse momentum,~pJ/ψ
T , is

constructed according to the following formula

Lxy ≡ ~L · ~pJ/ψ
T /pJ/ψ

T , (6)

where~L is the vector from the primary vertex to theJ/ψ decay vertex and~pJ/ψ
T is the transverse

momentum vector of theJ/ψ. HereLxy measures the displacement of theJ/ψ vertex in the
transverse plane.

The probability for the decay of aB-hadron as a function of proper decay timet follows an
exponential distribution

p(t) =
1
τB

exp(−t/τB), (7)

whereτB is the lifetime of theB-hadron. For each decay the proper decay time can be calculated
as

t =
L
βγ
, (8)
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whereL is the distance between theB-hadron production and decay point andβγ is the Lorentz
factor. Taking the projection of the decay length and momentum on the transverse plane for
B-hadrons, one obtains

t =
Lxy mB

pB
T

. (9)

In this case,Lxy is measured between the position of the reconstructed secondary vertex and the
primary vertex in the event. The primary vertex is refitted with the two muon tracks excluded,
to avoid a bias. The uncertainty onLxy is calculated from the covariance matrices of the primary
and the secondary vertices. The majority of the events contain only a single primary vertex. In
the few that contain multiple vertices, theJ/ψ is assigned to a primary vertex based on the use of
the tracks by the ATLAS reconstruction software; if bothJ/ψ tracks are included in the recon-
struction of the same primary vertex, this is the one which isassigned. In a small number of cases
(fewer than 0.2%) the two tracks making theJ/ψ candidate are included in the reconstruction of
different primary vertices. These candidates are discarded.

Since theB-hadron is not reconstructed completely, one does not know its transverse mo-
mentum. Instead theJ/ψ momentum is used to construct a variable called the “pseudo-proper
time”

τ =
Lxy mJ/ψ

PDG

pJ/ψ
T

. (10)

Here, the world average value ofmJ/ψ
PDG is used to reduce the correlation between the fits that will

be performed on the mass and the lifetime. Studies show that the results are insensitive to this
choice.

At large pJ/ψ
T , where most of theB-hadron transverse momentum is carried by theJ/ψ, the

distribution ofτ is approximately exponential, with theB-hadron lifetime as a parameter. At
small pJ/ψ

T , the range of opening angles between theJ/ψ and B-hadron momentum leads to a
smearing of the underlying exponential distribution.

5.2. Fitting procedure

The sample is divided into bins ofpT and rapidityy of the J/ψ candidates. In each bin,
a maximum likelihood fit is performed in order to determine the fraction of the non-prompt to
inclusiveJ/ψ production cross-sections in that particular bin. The massand pseudo-proper time
are simultaneously fitted in the entire mass region from 2.5 to 3.5 GeV, using the likelihood
function:

L =
N

∏

i=1

[

fsigPsig(τ, δτ)Fsig(mµµ, δm) + (1− fsig)Pbkg(τ, δτ)Fbkg(mµµ)
]

(11)

whereN is the total number of events in the 2.5− 3.5 GeV mass region andfsig is the fraction
of signalJ/ψ candidates in this region determined from the fit.Psig andPbkg are pseudo-proper
time probability density distributions (PDFs) for theJ/ψ signal and background candidates re-
spectively, and are described fully below. TheFsig, Fbkg functions are the mass distribution
models for signal and background. In summary, the input variables to the maximum likelihood
fit to determine the production ratio are the pseudo-proper timeτ, its uncertaintyδτ, the di-muon
massmµµ and its uncertaintyδm.
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5.2.1. Invariant mass and pseudo-proper time probability density functions
For the signal, the mass is modelled with a Gaussian distribution:

Fsig(mµµ, δm) ≡ 1
√

2π Sδm

e
−(mµµ−mJ/ψ )2

2(Sδm)2 (12)

whose mean valuemJ/ψ is theJ/ψ mass, determined in the fit, and whose width is the product
Sδm, whereδm is the measured mass error calculated for each muon pair fromthe covariance
matrix of the vertex reconstruction andS is a global scale factor to account for a difference
betweenδm and the mass resolution from the fit. For the background, the mass distribution is
assumed to follow a second-order polynomial function.

The pseudo-proper time PDF forJ/ψ signal candidates,Psig, consists of two terms. One
term describes theJ/ψ from B-hadron decays (PB), and the other describes theJ/ψ from prompt
decays (PP):

Psig(τ, δτ) = fBPB(τ, δτ) + (1− fB)PP(τ, δτ), (13)

where fB is the fraction ofJ/ψ from B-hadron decays as defined in Equation 1.
The pseudo-proper time distribution of theJ/ψ particles fromB-hadron decaysPB(τ, δτ) is an

exponential functionE(τ) = exp(−τ/τeff) with a pseudo-proper time slopeτeff, convolved with
the pseudo-proper time resolution functionR(τ′ − τ, δτ):

PB(τ, δτ) = R(τ′ − τ, δτ) ⊗ E(τ′). (14)

Promptly producedJ/ψ particles decay at the primary vertex, and their pseudo-proper time dis-
tribution is thus given by the resolution function:

PP(τ, δτ) = R(τ′ − τ, δτ) ⊗ δ(τ′) = R(τ, δτ). (15)

The resolution functionR is a Gaussian distribution centred atτ = 0 with a widthStδτ, whereSt

is a scale factor (a parameter of the fit) andδτ is the per-candidate uncertainty onτ, the measured
pseudo-proper lifetime determined from the covariant error matrix of the tracks.

The pseudo-proper time PDF for background candidatesPbkg consists of the sum of a long
lived component modeled with an exponential function and a prompt component modeled by
a delta function and two symmetric exponential tails. Each component is convolved with the
Gaussian resolution function:

Pbkg(τ, δτ) =

(

(1− b1 − b2)δ(τ′) + b1 exp

(

−τ′
τeff1

)

+ b2 exp

(

−|τ′|
τeff2

))

⊗ Rbkg(τ′ − τ, δτ), (16)

whereRbkg(τ) is a Gaussian distribution centered atτ = 0 with a widthSbkgδτ, whereSbkg is a
scale factor (a parameter of the fit) andδτ is the per-candidate uncertainty on the measuredτ.
Parametersτeff1 andτeff2 are pseudo-proper time slopes of the two components of background,
andb1 andb2 are the corresponding fractions of the background. All fourparameters (τeff1, τeff2,
b1 andb2) are determined from the fit.

5.2.2. Summary of free parameters
The full list of the parameters of the fit are as follows:

• fsig the fraction of signalJ/ψ candidates in the 2.5− 3.5 GeV mass region of the fit;mJ/ψ

the mean value of theJ/ψ mass; the scale factorS to account for a difference betweenδm

and the mass resolution from the fit;
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• fB the fraction ofJ/ψ from B-hadron decays; a pseudo-proper time slopeτeff describing the
B-hadron decays;St a scale factor to account for a difference betweenδτ and theB-hadron
pseudo-proper time resolution from the fit;

• the slope parametersτeff1, τeff2 andSbkg describing the time evolution of theJ/ψ back-
ground, in analogy to the parameters ofB-hadron decays, defined above;b1 andb2, frac-
tions of the two background components.

5.3. Results of the likelihood fits

The results of the likelihood fit to the pseudo-proper time distributions in a representative
pJ/ψ

T bin are shown in Figure 8. The figure shows the result of the unbinned maximum likelihood
fits for the signal and background components projected ontothe lifetime and invariant mass
distributions. From the results of the fit, it is possible to derive the non-prompt to inclusive
production fraction as a function ofpJ/ψ

T . Theχ2 probabilities and Kolmogorov-Smirnov test
results for the fits across all analysis bins are found to be consistent with statistical expectations,
with the lowest fit probability out of over 70 fits being 1%.
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Figure 8: Pseudo-proper time distributions (left) ofJ/ψ → µ+µ− candidates in the signal region, for a selectedpT bin
9.5 < pT < 10.0 GeV in the most central and most forward rapidity regions. The points with error bars are data. The
solid line is the result of the maximum likelihood unbinned fit to all di-muon pairs in the 2.5 − 3.5 GeV mass region
projected on the narrow mass window 2.9 − 3.3 GeV. The invariant mass distributions which are simultaneously fitted
with the pseudo-proper time are shown on the right for the same bins.
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5.4. Systematic uncertainties

Several studies performed to assess all relevant sources ofsystematic uncertainties on the
measured fraction of non-prompt to inclusiveJ/ψ decays are outlined below, in order of impor-
tance.

1. Spin-alignment of prompt J/ψ: In general, spin-alignment may be different for prompt
and non-promptJ/ψ, which may result in different acceptances in the two cases. The
central value assumes they are the same (isotropic distribution in both angles, as for the
inclusive cross-section central result), but four additional scenarios for the prompt com-
ponent are also considered, as discussed in Section 4.1. Thelargest variations within the
four models from FLAT is calculated for each bin in turn and assigned as an uncertainty
envelope on prompt production.

2. Spin-alignment of non-prompt J/ψ: The possible variation of spin-alignment inB →
J/ψX decays is expected to be much smaller than for promptJ/ψ due to the averaging
effect caused by the admixture of various exclusiveB → J/ψX decays. We assign an
additional uncertainty on the non-prompt fraction (and non-prompt cross-section) for the
difference in final result when using either an isotropic spin-alignment assumption for non-
prompt decays or maps reweighted to the CDF result [22] forB → J/ψ spin-alignment.
This contributes up to an additional 0.4% uncertainty on theoverall (prompt and non-
prompt) systematic due to spin-alignment on the fraction.

3. Fit: A number of changes are applied to the fitting procedure, and the fit is repeated in
order to gauge the sensitivity of the fractionfB to the details of the fits:

• The central value for the fraction assumes a background model for the proper time
distribution of the background that includes one exponential function with a negative
slope and a symmetric double exponential term with the same absolute value,τeff2,
for the negative and positive slopes. To test the robustnessof the result, this model
is changed in two ways. First, the symmetric term is no longerrequired to be sym-
metric, so different values of the negative and positive slopes are allowed. Second,
the sum of two asymmetric double exponentials is used, having the same negative
decay constant but differing positive decay constants. The maximum deviation from
the central value is taken as a systematic uncertainty.

• The per-candidate Gaussian convolution function is changed to a per-candidate dou-
ble Gaussian convolution, allowing different scale factors (to account for differences
between the resolution returned by the tracking algorithm and measured resolution)
for each Gaussian to be determined from the fit. Differences from the main fit are
assigned as a systematic uncertainty.

• The main result uses a second-order polynomial in the mass fitto describe the back-
ground. To test the sensitivity to this choice, the fits are repeated using instead poly-
nomials of degree one and three. Differences from the main fit are assigned as a
systematic.

• The central result takesJ/ψ candidates in a mass range from 2.5 to 3.5 GeV, to avoid
the mass region of theψ(2S). In order to test the stability of the result and to increase
the statistics in the side bands, the analysis is repeated with a mass range from 2 to
4 GeV, but excluding the region from 3.5 to 3.8 GeV. The result is stable compared
to the statistical uncertainties, and so no systematic uncertainty is assigned for this
source.
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• The analysis relies on a simultaneous fit to the proper time and mass distributions.
The likelihood used assumes no correlation between the two quantities. To test the re-
liability of this assumption, the mean measured invariant mass is plotted as a function
of the proper time. The resulting distribution is flat, except in the negative lifetime
region and at very long proper lifetimes, where residual background dominates the
sample and invalidates the test. Accordingly, no explicit systematic for this correla-
tion is assigned.

4. Kinematic dependence:Differences in the acceptance of prompt and non-promptJ/ψ
due to their different momentum spectra, averaged across an analysis bin, can bias the
fraction measurement. A correction factor is calculated based on the acceptance maps
with and without momentum reweighting to account for the differences between prompt
and non-promptJ/ψ and this correction assigned as a systematic uncertainty.

5. Reconstruction efficiencies: The central result for the fraction assumes that the recon-
struction efficiencies are the same for non-prompt and promptJ/ψ mesons and hence can-
cel in extracting the fraction. This assumption is tested onMonte Carlo samples described
in Section 3, and no statistically significant shift is observed. Thus, no systematic uncer-
tainty is assigned.

6. Pile-up/multiple interactions: Some collisions result in the reconstruction of multiple
primary vertices. The primary vertex chosen determines thetransverse decay displacement
Lxy used in the proper time determination. The central value is obtained by taking the
primary vertex that is formed using both of theJ/ψ candidate muons and rejecting cases
where those candidates are associated with different primary vertices. To assess the effect
of this procedure, two alternate methods where used. The first chooses the primary vertex
with the highest summed squared transverse momenta of the tracks that form it. The
second takes the same vertex, but rejects cases where eitherof the muon candidates are not
used in determining that primary vertex. As no significant variation is seen in the results
from the two methods, no additional uncertainties are assigned due to this source.

The stability of the method used is checked using simplified Monte Carlo trial experiment
samples to perform various tests of the closure of the analysis. The simultaneous mass and
pseudo-proper time fit model is used to generate 100 simplified Monte Carlo experiments for
eachpT andy bin. The number of events generated is approximately the same as the number of
data events for the corresponding bin. For each event the invariant mass and pseudo-proper time
values are generated randomly from the total PDF, while the per-candidate error on invariant mass
and pseudo-proper time are sampled from the corresponding experimental data distributions.

For each experiment, a fit of the total PDF on the simple Monte Carlo sample is performed.
The pull,∆, defined as

∆ =
( fgenerated− fextracted)

σ( fextracted)
,

is computed for each Monte Carlo experiment. Herefgeneratedis the non-prompt fraction for the
signal component according to which the Monte Carlo samplesare generated (i.e. the result of
the fit of the global model to the experimental data), whilefextractedandσ( fextracted) are the value
and uncertainty obtained from the fit. The Gaussian mean and sigma are statistically compatible
with zero and unity, respectively, in all bins, indicating that no bias or improper uncertainty
estimate is introduced by the fit.
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5.5. Fraction of non-prompt J/ψ as a function of J/ψ transverse momentum and rapidity

Figure 9 and Tables 3 to 6 show the results of the differential non-prompt fraction measure-
ment as a function of averagepJ/ψ

T , in each of the four rapidity bins. The uncertainty envelopes
due to the unknown spin-alignment are overlaid as solid bands.

The measurements are compared with those of CMS [3] and CDF [4] and build upon those
results with finer rapidity binning, a much extended rapidity coverage relative to CDF and sig-
nificantly increasedpT reach relative to both experiments. StrongpT dependence of the fraction
is observed:∼ 90% ofJ/ψ are produced promptly at lowpT , but the fraction of non-promptJ/ψ
rapidly increases at mid-pT from∼ 15% at 7 GeV to∼ 70% at the highest accessiblepT values.
No significant rapidity dependence is seen. The ATLAS results exhibit good agreement with
CMS results where they overlap, and also with the CDF measurements, indicating that there is
no strong dependence of the fraction on collision energies.

6. The Prompt and Non-Prompt Differential Production Cross-Sections

The prompt and non-promptJ/ψ production cross-sections can be derived from the inclusive
production cross-section and the non-prompt fraction. Where necessary,pT bins in the inclusive
cross-section are merged to align bins in the prompt/non-prompt cross-section result with those
in the non-prompt fraction measurement. The relative systematic uncertainties in each of the
fraction and inclusive cross-section measurement bins (merged where appropriate) are taken to
be uncorrelated, while the statistical uncertainties are combined taking correlations into account.
The spin alignment uncertainties are quoted independentlyof the experimental uncertainties.

6.1. Non-prompt differential production cross-sections

We assume the spin-alignment of aJ/ψ meson from aB→ J/ψX decay has no net polar or
azimuthal anisotropy for the central result, as the possible variation of spin-alignment inB →
J/ψX decays is expected to be much smaller than for promptJ/ψ due to the averaging effect
caused by the admixture of various exclusiveB → J/ψX decays. We assign a spin-alignment
uncertainty on the non-prompt cross-section for the difference in the final result when using either
an isotropic spin-alignment assumption for non-prompt decays or maps reweighted to the CDF
result [22] forB→ J/ψ spin-alignment.

The total integrated cross-section for non-promptJ/ψ, multiplied by the branching fraction
into muons and under the “FLAT” production scenario, has been measured forJ/ψ mesons pro-
duced within|y| < 2.4 andpT > 7 GeV to be:

Br(J/ψ→ µ+µ−)σ(pp→ B+ X→ J/ψX; |yJ/ψ| < 2.4, pJ/ψ
T > 7 GeV)

= 23.0± 0.6 (stat.)± 2.8(syst.)± 0.2 (spin)± 0.8 (lumi.) nb

and forJ/ψ mesons produced with 1.5 < |y| < 2 andpT > 1 GeV to be:

Br(J/ψ→ µ+µ−)σ(pp→ B+ X→ J/ψX; 1.5 < |yJ/ψ| < 2, pJ/ψ
T > 1 GeV)

= 61± 24 (stat.)± 19 (syst.)± 1 (spin)± 2 (lumi.) nb.
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6.1.1. Comparisons with theoretical predictions
ATLAS non-promptJ/ψ production cross-section measurements are compared to Fixed Or-

der Next-to-Leading Logarithm (FONLL) calculations [6] inTables 7 and 10 and in Figure 10.
FONLL v1.3.2 is used for these predictions, using the CTEQ6.6 [23] parton density function
set. FONLL predictions use aB → J/ψX branching fraction ofBr(B → J/ψ) = 0.0116. Un-
certainty bands associated with the predictions come from the input b-quark mass, varied within
4.75±0.25 GeV, renormalisation (µR) and factorisation (µF ) scales (independently) varied within
0.5 < µR,F/m< 2 (with the additional constraint that 0.5 < µR/µF < 2) and parton density func-
tion uncertainties. Good agreement is seen between the experimental data and the theoretical
prediction across the full range of rapidity and transversemomentum considered.

6.2. Prompt differential production cross-sections
The prompt production cross-section is of direct interest for the study of quarkonium pro-

duction in QCD. The spin-alignment state andpT dependence of the spin-alignment of promptly
producedJ/ψ particles are thought to be non-trivial, so the spin-alignment uncertainty envelope
on the inclusive cross-section measurement is propagated into the prompt cross-section measure-
ment. The prompt production cross-sections are presented in Tables 11 to 14.

The total cross-section for promptJ/ψ (times branching fraction into muons) under the flat
production scenario has been measured forJ/ψ produced within|y| < 2.4 andpT > 7 GeV to be:

Br(J/ψ→ µ+µ−)σ(pp→ promptJ/ψX; |y| < 2.4, pT > 7 GeV)

= 59± 1 (stat.)± 8(syst.)± 9
6 (spin)± 2 (lumi.) nb

and forJ/ψ within 1.5 < |y| < 2 andpT > 1 GeV to be:

Br(J/ψ→ µ+µ−)σ(pp→ promptJ/ψX; 1.5 < |y| < 2, pT > 1 GeV)

= 450± 70 (stat.)±90
110 (syst.)± 740

110 (spin)± 20 (lumi.) nb.

6.2.1. Comparisons with theoretical predictions
In Figure 11 the prompt production data are compared to the predictions of the Colour Evap-

oration Model (CEM) [5, 24] for promptJ/ψ production (with no uncertainties defined) and a
calculation of the directJ/ψ production cross-section in the Colour Singlet Model (CSM)[25, 26]
at next-to-leading order (NLO) and a partial next-to-next-leading order calculation (NNLO⋆).

The Colour Evaporation Model predictions are produced using the CTEQ6M parton density
functions, a charm quark mass of 1.2 GeV and the renormalisation and factorisation scales set to

µ0 = 2
√

p2
T +m2

Q + k2
T (wherepT is the transverse momentum of theJ/ψ andmQ is the quark

mass andkT is a phenomenological fit parameter set to 1.5 GeV2). The CEM predictions include
contributions fromχc andψ(2S) feed-down and can be directly compared with the promptJ/ψ
data. The normalisation of the CEM prediction is generally lower than in data and strongly
diverges in shape from measured data, showing significant disagreement in the extendedpT

range probed by the measurement described in this paper.
The Colour Singlet NLO and NNLO⋆ predictions1 for direct J/ψ production use a charm

quark mass of 1.5 GeV, the CTEQ6M parton density function set, and factorisation and renor-

1The NNLO⋆ calculation is not afull next-to-next-to-leading order prediction, as it does not include all loop correc-
tions topp→ Q+ j j j (where j is a light parton) up to orderα5

s. This limits the applicability of the calculation to values
above a particularJ/ψ pT threshold (due to soft and collinear divergences).
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malisation scales set toµ0 =

√

p2
T +m2

Q (varied up and down by a factor of two to determine

scale uncertainties). As the calculation is for direct production, corrections must be applied for
χc andψ(2S) feed-down to bring the calculations in direct comparison with data. To correct for
feed-down, a flat 10% correction is applied to account for thecontribution ofψ(2S)→ J/ψππ
and a 40% correction is added to account for radiativeχc decays. This yields a total correction
of 50%. The correction factor is not well-determined from theory or experiment so is assigned a
100% uncertainty. This uncertainty is not included in the CSM theoretical uncertainty.

The NLO and NNLO⋆ predictions are overlaid with the ATLAS measurements in Figure 11
for each rapidity region. The dashed lines represent the central NLO and NNLO⋆ predictions
while the shaded areas show the range of the prediction due tofactorisation and renormalisation
scale variation (although the upper band of this uncertainty may not encapsulate the full range of
infrared uncertainties [7]).

The Colour Singlet Model predictions at NNLO⋆ show significant improvement in describing
the pT dependence and normalisation of promptJ/ψ production over NLO, and vast improve-
ment over earlier LO predictions that are compared to Tevatron data, although it is clear that
these predictions still fall short of fully describing the production mechanisms of promptJ/ψ,
particularly at the highest transverse momenta explored inthis analysis. The overall scale of the
central prediction is somewhat low, but these discrepancies are similar in nature to those seen
between NNLO⋆ calculations andψ(2S) production as measured by CDF [26, 27] at lowerpT

and centre-of-mass energy and may be attributed to higher order corrections beyond NNLO⋆ that
are still expected to be relatively significant for hidden charm production.

7. Summary

Results are reported on the measurement of the inclusive cross-section ofJ/ψ → µ+µ− pro-
duction in proton-proton collisions at a collision energy of 7 TeV using the ATLAS detector with
up to 2.3 pb−1 of integrated luminosity. The inclusive cross-section is measured in bins of rapid-
ity y and transverse momentumpT of J/ψ, covering the range|y| < 2.4 and 1< pT < 70 GeV.
The fraction of non-promptJ/ψ mesons is also measured as a function ofJ/ψ transverse mo-
mentum and rapidity and using the above two measurements, double-differential cross-sections
are extracted separately for promptly-producedJ/ψ mesons and those coming fromB-hadron
decays.

It is found that the measurements made by ATLAS and CMS are in good agreement with
each other in the overlapping range of moderatepT values and complement each other at high
(ATLAS) and low (CMS) values of transverse momenta. The non-prompt production fraction
results are also compared to those from CDF at lower energy and reasonable agreement is found,
suggesting there is no strong dependence of the fraction on the collision energy.

The results are also compared to various theoretical calculations of prompt as well as non-
prompt J/ψ production. In general, the theoretical curves describe the non-prompt data well,
but significant deviations are observed in the prompt production spectra both in shape and nor-
malisation, particularly at high transverse momenta. These measurements can thus provide input
towards an improved understanding and theoretical description of J/ψ hadronic production.
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D. Costanzo139, T. Costin30, D. Côté29, L. Courneyea169, G. Cowan76, C. Cowden27,
B.E. Cox82, K. Cranmer108, F. Crescioli122a,122b, M. Cristinziani20, G. Crosetti36a,36b,
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Table 2: InclusiveJ/ψ production cross-sections as a function ofJ/ψ pT in four rapidity (|y|) bins. The first uncertainty
is statistical, the second is systematic and the third encapsulates any possible variation due to spin-alignment from the
unpolarised (λθ = λφ = λθφ = 0) central value.

d2σ
dpT dy·Br(J/ψ → µ+µ−) [pb/GeV]

pT 〈pT 〉 2 < |y| < 2.4 〈pT 〉 1.5 < |y| < 2
(GeV) (GeV) Value ± (stat.) ± (syst.) ± (spin) (GeV) Value ± (stat.) ± (syst.) ± (spin)
1.0-4.0 2.8 143000 ±23000 ±25000

39000 ±274000
39000

4.0-5.0 4.5 39400 ±5500 ±5700
5700 ±69300

9700
5.0-5.5 5.3 15900 ±4300 ±2800

2600 ±28800
4300 5.2 17600 ±3300 ±3000

2600 ±17300
4100

5.5-6.0 5.8 13500 ±3600 ±1900
2200 ±11400

2700 5.7 14300 ±1200 ±1700
1700 ±14000

3100
6.0-6.5 6.3 8800 ±1100 ±1300

1200 ±7900
2200 6.3 12760 ±920 ±1840

1690 ±9970
2620

6.5-7.0 6.8 6290 ±700 ±830
980 ±5140

1360 6.8 8910 ±610 ±1270
1270 ±5420

1990
7.0-7.5 7.3 3990 ±500 ±560

550 ±2630
690 7.2 6350 ±430 ±860

860 ±3130
1430

7.5-8.0 7.7 4070 ±450 ±570
580 ±2920

650 7.7 5040 ±350 ±590
520 ±2260

900
8.0-8.5 8.3 2650 ±290 ±460

390 ±910
570 8.3 3790 ±210 ±440

430 ±1490
450

8.5-9.0 8.7 1930 ±160 ±260
260 ±620

350 8.7 3110 ±160 ±420
360 ±980

450
9.0-9.5 9.2 1450 ±130 ±210

180 ±480
210 9.2 2260 ±110 ±260

250 ±640
370

9.5-10.0 9.7 1208 ±94 ±155
138 ±440

166 9.7 1674 ±85 ±198
183 ±450

296
10.0-11.0 10.5 829 ±51 ±96

92 ±286
87 10.5 1297 ±46 ±146

139 ±316
241

11.0-12.0 11.5 598 ±43 ±69
73 ±174

71 11.5 754 ±31 ±90
83 ±168

147
12.0-14.0 12.9 320 ±19 ±38

36 ±79
40 12.9 404 ±15 ±45

43 ±74
75

14.0-16.0 14.9 164 ±12 ±26
16 ±33

21 14.9 193 ±10 ±21
19 ±28

32
16.0-18.0 16.9 77.8 ±8.2 ±9.4

8.0 ±14.1
9.9 16.9 103.0 ±6.9 ±13.0

9.4 ±12.0
15.5

18.0-22.0 19.7 29.9 ±3.3 ±3.1
3.4 ±3.7

3.8 19.6 48.9 ±3.2 ±4.1
4.2 ±4.9

6.5
22.0-30.0 24.9 6.2 ±1.1 ±0.6

0.6 ±0.6
0.7 25.0 10.6 ±1.1 ±1.0

0.9 ±0.8
1.2

30.0-40.0 33.6 1.12 ±0.43 ±0.10
0.28 ±0.06

0.10 34.1 2.22 ±0.40 ±0.19
0.21 ±0.13

0.22
d2σ

dpT dy·Br(J/ψ → µ+µ−) [pb/GeV]
pT 〈pT 〉 0.75< |y| < 1.5 〈pT 〉 |y| < 0.75

(GeV) (GeV) Value ± (stat.) ± (syst.) ± (spin) (GeV) Value ± (stat.) ± (syst.) ± (spin)
5.0-5.5 5.3 26800 ±5600 ±4100

3800 ±10600
7900

5.5-6.0 5.8 19200 ±2800 ±2700
2500 ±8600

5700
6.0-6.5 6.2 13500 ±1100 ±1700

1700 ±7100
4000

6.5-7.0 6.7 12400 ±1100 ±1700
1700 ±3900

3600
7.0-7.5 7.2 8190 ±610 ±1090

1040 ±2220
2300 7.3 9220 ±980 ±1140

1150 ±5770
2960

7.5-8.0 7.7 6500 ±400 ±860
810 ±1620

1770 7.8 7780 ±720 ±1000
990 ±3540

2470
8.0-8.5 8.2 4080 ±280 ±420

440 ±1870
900 8.3 4500 ±320 ±510

530 ±1730
1410

8.5-9.0 8.7 3600 ±200 ±390
390 ±1040

800 8.8 3720 ±270 ±450
440 ±1310

1150
9.0-9.5 9.3 2880 ±140 ±330

320 ±610
640 9.2 3040 ±280 ±360

360 ±1240
840

9.5-10.0 9.7 2210 ±100 ±250
240 ±420

490 9.8 2170 ±140 ±230
230 ±740

600
10.0-11.0 10.5 1542 ±51 ±176

174 ±283
348 10.5 1528 ±59 ±160

160 ±471
430

11.0-12.0 11.5 1022 ±35 ±121
120 ±187

234 11.5 1051 ±39 ±116
116 ±288

293
12.0-14.0 12.9 531 ±16 ±60

58 ±94
118 12.9 528 ±17 ±56

56 ±127
141

14.0-16.0 14.9 249 ±10 ±26
26 ±40

52 14.9 274 ±12 ±27
27 ±60

70
16.0-18.0 16.9 119.2 ±6.7 ±11.9

11.7 ±17.0
23.1 16.9 136.2 ±7.5 ±13.1

13.1 ±26.5
32.1

18.0-22.0 19.7 53.3 ±3.0 ±5.2
5.0 ±6.7

9.6 19.7 67.7 ±3.6 ±6.4
6.3 ±10.9

14.5
22.0-30.0 25.2 15.9 ±1.1 ±1.8

1.6 ±1.7
2.4 25.0 16.9 ±1.4 ±1.7

1.7 ±2.2
3.0

30.0-40.0 33.9 3.16 ±0.43 ±0.34
0.34 ±0.27

0.39 33.6 3.60 ±0.48 ±0.38
0.39 ±0.43

0.52
40.0-70.0 48.8 0.407 ±0.084 ±0.041

0.043 ±0.022
0.017 46.6 0.462 ±0.093 ±0.055

0.055 ±0.046
0.049
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Table 3: Non-prompt to inclusive production cross-sectionfraction fB as a function ofJ/ψ pT for |y|J/ψ < 0.75 under
the assumption that prompt and non-promptJ/ψ production is unpolarised (λθ = 0). The spin-alignment envelope spans
the range of possible prompt cross-sections under various polarisation hypotheses, plus the range of non-prompt cross-
sections withinλθ = ±0.1. The first uncertainty is statistical, the second uncertainty is systematic, the third number is
the uncertainty due to spin-alignment.

Non-prompt to inclusive production fraction
pT 〈pT〉 |y| < 0.75

(GeV) (GeV) fB ± (stat.) ± (syst.) ± (spin)
6.0-7.0 6.6 0.175 ±0.057 ±0.032 ±0.064

0.062
7.0-7.5 7.3 0.259 ±0.038 ±0.002 ±0.066

0.080
7.5-8.0 7.8 0.236 ±0.030 ±0.007 ±0.061

0.076
8.0-8.5 8.3 0.258 ±0.032 ±0.017 ±0.054

0.074
8.5-9.0 8.8 0.291 ±0.030 ±0.005 ±0.058

0.079
9.0-9.5 9.2 0.268 ±0.025 ±0.008 ±0.054

0.076
9.5-10.0 9.8 0.320 ±0.026 ±0.006 ±0.062

0.083
10.0-11.0 10.5 0.321 ±0.018 ±0.007 ±0.050

0.077
11.0-12.0 11.5 0.327 ±0.019 ±0.003 ±0.051

0.078
12.0-14.0 12.9 0.359 ±0.017 ±0.003 ±0.044

0.069
14.0-16.0 14.9 0.405 ±0.024 ±0.008 ±0.046

0.072
16.0-18.0 16.9 0.443 ±0.030 ±0.005 ±0.048

0.073
18.0-22.0 19.7 0.479 ±0.030 ±0.004 ±0.040

0.063
22.0-30.0 25.0 0.536 ±0.039 ±0.008 ±0.032

0.050
30.0-70.0 37.7 0.656 ±0.059 ±0.008 ±0.030

0.045

Table 4: Non-prompt to inclusive production cross-sectionfraction fB as a function ofJ/ψ pT for 0.75 < |y|J/ψ < 1.5
under the assumption that prompt and non-promptJ/ψ production is unpolarised (λθ = 0). The spin-alignment envelope
spans the range of possible prompt cross-sections under various polarisation hypotheses, plus the range of non-prompt
cross-sections withinλθ = ±0.1. The first uncertainty is statistical, the second uncertainty is systematic, the third number
is the uncertainty due to spin-alignment.

Non-prompt to inclusive production fraction
pT 〈pT〉 0.75< |y| < 1.5

(GeV) (GeV) fB ± (stat.) ± (syst.) ± (spin)
4.0-5.0 4.7 0.142 ±0.094 ±0.018 ±0.039

0.049
5.0-5.5 5.3 0.183 ±0.049 ±0.036 ±0.039

0.058
5.5-6.0 5.8 0.127 ±0.038 ±0.024 ±0.030

0.043
6.0-6.5 6.3 0.188 ±0.033 ±0.019 ±0.042

0.057
6.5-7.0 6.8 0.261 ±0.029 ±0.007 ±0.051

0.069
7.0-7.5 7.2 0.230 ±0.025 ±0.017 ±0.041

0.061
7.5-8.0 7.8 0.238 ±0.023 ±0.015 ±0.043

0.062
8.0-8.5 8.2 0.226 ±0.022 ±0.032 ±0.036

0.055
8.5-9.0 8.8 0.226 ±0.021 ±0.013 ±0.036

0.055
9.0-9.5 9.2 0.261 ±0.021 ±0.009 ±0.040

0.060
9.5-10.0 9.8 0.292 ±0.023 ±0.008 ±0.043

0.064
10.0-11.0 10.5 0.315 ±0.016 ±0.004 ±0.040

0.061
11.0-12.0 11.5 0.343 ±0.018 ±0.007 ±0.041

0.064
12.0-14.0 12.9 0.352 ±0.016 ±0.005 ±0.033

0.054
14.0-16.0 14.9 0.401 ±0.022 ±0.003 ±0.035

0.058
16.0-18.0 16.9 0.450 ±0.031 ±0.006 ±0.036

0.058
18.0-22.0 19.7 0.476 ±0.031 ±0.006 ±0.033

0.052
22.0-30.0 25.1 0.542 ±0.042 ±0.015 ±0.029

0.042
30.0-70.0 37.8 0.594 ±0.060 ±0.016 ±0.029

0.040
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Table 5: Non-prompt to inclusive production cross-sectionfraction fB as a function ofJ/ψ pT for 1.5 < |y|J/ψ < 2
under the assumption that prompt and non-promptJ/ψ production is unpolarised (λθ = 0). The spin-alignment envelope
spans the range of possible prompt cross-sections under various polarisation hypotheses, plus the range of non-prompt
cross-sections withinλθ = ±0.1. The first uncertainty is statistical, the second uncertainty is systematic, the third number
is the uncertainty due to spin-alignment.

Non-prompt to inclusive production fraction
pT 〈pT〉 1.5 < |y| < 2

(GeV) (GeV) fB ± (stat.) ± (syst.) ± (spin)
1.0-4.0 2.8 0.100 ±0.053 ±0.039 ±0.061

0.031
4.0-5.0 4.6 0.210 ±0.042 ±0.051 ±0.115

0.051
5.0-5.5 5.3 0.218 ±0.043 ±0.006 ±0.097

0.050
5.5-6.0 5.8 0.170 ±0.034 ±0.019 ±0.068

0.041
6.0-6.5 6.3 0.180 ±0.034 ±0.048 ±0.057

0.042
6.5-7.0 6.8 0.222 ±0.028 ±0.013 ±0.069

0.048
7.0-7.5 7.3 0.195 ±0.025 ±0.017 ±0.049

0.044
7.5-8.0 7.8 0.210 ±0.024 ±0.014 ±0.052

0.047
8.0-8.5 8.2 0.216 ±0.022 ±0.022 ±0.042

0.044
8.5-9.0 8.8 0.264 ±0.023 ±0.018 ±0.049

0.050
9.0-9.5 9.2 0.287 ±0.026 ±0.015 ±0.051

0.052
9.5-10.0 9.7 0.297 ±0.028 ±0.015 ±0.053

0.053
10.0-11.0 10.5 0.335 ±0.019 ±0.004 ±0.043

0.055
11.0-12.0 11.5 0.326 ±0.026 ±0.017 ±0.042

0.054
12.0-14.0 12.9 0.357 ±0.022 ±0.015 ±0.034

0.045
14.0-16.0 14.9 0.420 ±0.029 ±0.011 ±0.035

0.047
16.0-18.0 16.9 0.517 ±0.038 ±0.007 ±0.039

0.048
18.0-22.0 19.7 0.468 ±0.038 ±0.012 ±0.029

0.041
22.0-30.0 24.9 0.605 ±0.058 ±0.005 ±0.021

0.032

Table 6: Non-prompt to inclusive production cross-sectionfraction fB as a function ofJ/ψ pT for 2 < |y|J/ψ < 2.4
under the assumption that prompt and non-promptJ/ψ production is unpolarised (λθ = 0). The spin-alignment envelope
spans the range of possible prompt cross-sections under various polarisation hypotheses, plus the range of non-prompt
cross-sections withinλθ = ±0.1. The first uncertainty is statistical, the second uncertainty is systematic, the third number
is the uncertainty due to spin-alignment.

Non-prompt to inclusive production fraction
pT 〈pT〉 2 < |y| < 2.4

(GeV) (GeV) fB ± (stat.) ± (syst.) ± (spin)
1.0-5.0 3.6 0.098 ±0.065 ±0.036 ±0.053

0.027
5.0-6.0 5.5 0.217 ±0.077 ±0.065 ±0.096

0.044
6.0-7.0 6.6 0.289 ±0.047 ±0.052 ±0.096

0.041
7.0-7.5 7.2 0.125 ±0.035 ±0.016 ±0.037

0.019
7.5-8.0 7.8 0.231 ±0.037 ±0.020 ±0.063

0.031
8.0-8.5 8.2 0.209 ±0.042 ±0.042 ±0.046

0.028
8.5-9.0 8.7 0.183 ±0.041 ±0.032 ±0.042

0.024
9.0-9.5 9.2 0.268 ±0.037 ±0.027 ±0.057

0.033
9.5-10.0 9.7 0.249 ±0.045 ±0.008 ±0.055

0.032
10.0-11.0 10.5 0.269 ±0.037 ±0.014 ±0.040

0.033
11.0-12.0 11.5 0.297 ±0.034 ±0.010 ±0.045

0.034
12.0-14.0 12.9 0.352 ±0.034 ±0.018 ±0.037

0.033
14.0-18.0 15.6 0.348 ±0.044 ±0.049 ±0.038

0.032
18.0-30.0 21.7 0.419 ±0.058 ±0.058 ±0.032

0.031
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Table 7: Non-promptJ/ψ production cross-sections as a function ofJ/ψ pT for |y|J/ψ < 0.75 under the assumption that
prompt and non-promptJ/ψ production is unpolarised (λθ = 0), and the spin-alignment envelope spans the range of
non-prompt cross-sections withinλθ = ±0.1. The first uncertainty is statistical, the second uncertainty is systematic.
Comparison is made to FONLL predictions.

d2σnon−prompt

dpT dy ·Br(J/ψ→ µ+µ−) [nb/GeV]
pT 〈pT〉 |y| < 0.75

(GeV) (GeV) Value ± (stat.) ± (syst.) ± (spin) FONLL prediction
7.0-7.5 7.3 2.4 ±0.4 ±0.4 ±0.08 1.7± 0.7

0.4
7.5-8.0 7.8 1.8 ±0.3 ±0.3 ±0.06 1.4± 0.5

0.3
8.0-8.5 8.3 1.2 ±0.2 ±0.1 ±0.03 1.1± 0.4

0.3
8.5-9.0 8.8 1.1 ±0.1 ±0.1 ±0.03 0.9± 0.3

0.2
9.0-9.5 9.3 0.8 ±0.1 ±0.1 ±0.02 0.7± 0.3

0.2
9.5-10.0 9.8 0.69 ±0.07 ±0.08 ±0.02 0.62± 0.22

0.15
10.0-11.0 10.5 0.49 ±0.03 ±0.05 ±0.01 0.47± 0.16

0.11
11.0-12.0 11.5 0.34 ±0.02 ±0.04 ±0.01 0.34± 0.11

0.08
12.0-14.0 12.9 0.19 ±0.01 ±0.02 ±0.004 0.21± 0.06

0.05
14.0-16.0 14.9 0.111 ±0.008 ±0.011 ±0.003 0.117± 0.033

0.024
16.0-18.0 16.9 0.060 ±0.005 ±0.006 ±0.002 0.069± 0.018

0.013
18.0-22.0 19.7 0.032 ±0.003 ±0.003 ±0.001 0.035± 0.008

0.006
22.0-30.0 25.0 0.0091 ±0.0010 ±0.0011 ±0.0002 0.0109± 0.0022

0.0018
30.0-70.0 37.2 0.0008 ±0.0001 ±0.0001 ±0.0000 0.0009± 0.0001

0.0001

Table 8: Non-promptJ/ψ production cross-sections as a function ofJ/ψ pT for 0.75< |y|J/ψ < 1.5 under the assumption
that prompt and non-promptJ/ψ production is unpolarised (λθ = 0), and the spin-alignment envelope spans the range
of non-prompt cross-sections withinλθ = ±0.1. The first uncertainty is statistical, the second uncertainty is systematic.
Comparison is made to FONLL predictions.

d2σnon−prompt

dpT dy ·Br(J/ψ→ µ+µ−) [nb/GeV]
pT 〈pT〉 0.75< |y| < 1.5

(GeV) (GeV) Value ± (stat.) ± (syst.) ± (spin) FONLL prediction
5.0-5.5 5.3 4.9 ±1.7 ±1.2 ±0.15 3.8± 1.6

1.1
5.5-6.0 5.8 2.4 ±0.8 ±0.5 ±0.07 3.0± 1.3

0.8
6.0-6.5 6.3 2.5 ±0.5 ±0.4 ±0.07 2.4± 1.0

0.7
6.5-7.0 6.8 3.3 ±0.5 ±0.5 ±0.09 1.9± 0.6

0.5
7.0-7.5 7.2 1.9 ±0.3 ±0.3 ±0.05 1.5± 0.6

0.4
7.5-8.0 7.8 1.6 ±0.2 ±0.2 ±0.04 1.2± 0.5

0.3
8.0-8.5 8.3 0.9 ±0.1 ±0.1 ±0.02 1.0± 0.4

0.3
8.5-9.0 8.8 0.81 ±0.09 ±0.09 ±0.02 0.83± 0.30

0.20
9.0-9.5 9.3 0.75 ±0.07 ±0.08 ±0.02 0.68± 0.24

0.17
9.5-10.0 9.8 0.65 ±0.06 ±0.07 ±0.02 0.56± 0.20

0.13
10.0-11.0 10.5 0.49 ±0.03 ±0.05 ±0.01 0.43± 0.15

0.10
11.0-12.0 11.5 0.35 ±0.02 ±0.04 ±0.01 0.30± 0.10

0.07
12.0-14.0 12.9 0.19 ±0.01 ±0.02 ±0.00 0.19± 0.06

0.04
14.0-16.0 14.9 0.100 ±0.007 ±0.011 ±0.002 0.104± 0.029

0.021
16.0-18.0 16.9 0.054 ±0.005 ±0.006 ±0.001 0.061± 0.016

0.012
18.0-22.0 19.7 0.025 ±0.002 ±0.003 ±0.001 0.030± 0.007

0.006
22.0-30.0 25.2 0.0086 ±0.0009 ±0.0010 ±0.0001 0.0093± 0.0019

0.0015
30.0-70.0 38.0 0.0007 ±0.0001 ±0.0001 ±0.0000 0.0007± 0.0001

0.0001
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Table 9: Non-promptJ/ψ production cross-sections as a function ofJ/ψ pT for 1.5 < |y|J/ψ < 2 under the assumption
that prompt and non-promptJ/ψ production is unpolarised (λθ = 0), and the spin-alignment envelope spans the range
of non-prompt cross-sections withinλθ = ±0.1. The first uncertainty is statistical, the second uncertainty is systematic.
Comparison is made to FONLL predictions.

d2σnon−prompt

dpT dy ·Br(J/ψ→ µ+µ−) [nb/GeV]
pT 〈pT〉 1.5 < |y| < 2

(GeV) (GeV) Value ± (stat.) ± (syst.) ± (spin) FONLL prediction
1.0-4.0 2.8 14.3 ±7.9 ±5.5 ±0.37 9.4± 4.5

3.9
4.0-5.0 4.5 8.3 ±2.0 ±1.9 ±0.21 4.9± 2.2

1.6
5.0-5.5 5.2 3.8 ±1.0 ±0.9 ±0.09 3.4± 1.5

1.0
5.5-6.0 5.7 2.4 ±0.5 ±0.4 ±0.06 2.7± 1.1

0.7
6.0-6.5 6.3 2.3 ±0.5 ±0.6 ±0.05 2.1± 0.9

0.6
6.5-7.0 6.8 2.0 ±0.3 ±0.3 ±0.05 1.7± 0.7

0.4
7.0-7.5 7.3 1.2 ±0.2 ±0.2 ±0.03 1.3± 0.5

0.4
7.5-8.0 7.8 1.1 ±0.1 ±0.1 ±0.02 1.1± 0.4

0.3
8.0-8.5 8.3 0.82 ±0.10 ±0.10 ±0.02 0.87± 0.33

0.22
8.5-9.0 8.8 0.82 ±0.08 ±0.10 ±0.02 0.71± 0.26

0.18
9.0-9.5 9.3 0.65 ±0.07 ±0.07 ±0.01 0.58± 0.21

0.14
9.5-10.0 9.8 0.50 ±0.05 ±0.05 ±0.01 0.48± 0.17

0.11
10.0-11.0 10.5 0.43 ±0.03 ±0.05 ±0.01 0.36± 0.12

0.08
11.0-12.0 11.5 0.25 ±0.02 ±0.03 ±0.01 0.25± 0.08

0.06
12.0-14.0 12.9 0.14 ±0.01 ±0.01 ±0.002 0.16± 0.05

0.03
14.0-16.0 14.9 0.081 ±0.007 ±0.009 ±0.001 0.085± 0.024

0.017
16.0-18.0 16.9 0.053 ±0.005 ±0.007 ±0.001 0.049± 0.013

0.009
18.0-22.0 19.6 0.023 ±0.002 ±0.002 ±0.0000 0.024± 0.006

0.004
22.0-30.0 25.0 0.0064 ±0.0009 ±0.00081 ±0.0001 0.0071± 0.0014

0.0012

Table 10: Non-promptJ/ψ production cross-sections as a function ofJ/ψ pT for 2 < |y|J/ψ < 2.4 under the assumption
that prompt and non-promptJ/ψ production is unpolarised (λθ = 0), and the spin-alignment envelope spans the range
of non-prompt cross-sections withinλθ = ±0.1. The first uncertainty is statistical, the second uncertainty is systematic.
Comparison is made to FONLL predictions.

d2σnon−prompt

dpT dy ·Br(J/ψ→ µ+µ−) [nb/GeV]
pT 〈pT〉 2 < |y| < 2.4

(GeV) (GeV) Value ± (stat.) ± (syst.) ± (spin) FONLL prediction
5.0-6.0 5.5 3.2 ±1.3 ±1.0 ±0.04 2.7± 1.1

0.7
6.0-7.0 6.5 2.2 ±0.4 ±0.4 ±0.02 1.7± 0.7

0.4
7.0-7.5 7.3 0.5 ±0.2 ±0.1 ±0.01 1.2± 0.5

0.3
7.5-8.0 7.8 0.9 ±0.2 ±0.2 ±0.01 0.9± 0.4

0.2
8.0-8.5 8.3 0.6 ±0.1 ±0.1 ±0.01 0.7± 0.3

0.2
8.5-9.0 8.8 0.35 ±0.09 ±0.06 ±0.01 0.60± 0.22

0.15
9.0-9.5 9.2 0.39 ±0.06 ±0.06 ±0.01 0.49± 0.18

0.12
9.5-10.0 9.7 0.30 ±0.06 ±0.04 ±0.005 0.40± 0.14

0.10
10.0-11.0 10.5 0.22 ±0.03 ±0.03 ±0.003 0.30± 0.10

0.07
11.0-12.0 11.5 0.18 ±0.02 ±0.02 ±0.003 0.21± 0.07

0.05
12.0-14.0 12.9 0.11 ±0.01 ±0.01 ±0.002 0.13± 0.04

0.03
14.0-18.0 15.6 0.042 ±0.006 ±0.005 ±0.0004 0.053± 0.015

0.011
18.0-30.0 21.3 0.0059 ±0.0010 ±0.0007 ±0.0001 0.0097± 0.0022

0.0017
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Table 11: PromptJ/ψ production cross-sections as a function ofJ/ψ pT for |y|J/ψ < 0.75. The central value assumes
unpolarised (λθ = 0) prompt and non-prompt production, and the spin-alignment envelope spans the range of possi-
ble prompt cross-sections under various polarisation hypotheses. The first quoted uncertainty is statistical, the second
uncertainty is systematic. Comparison is made to the ColourEvaporation Model prediction.

d2σprompt

dpT dy ·Br(J/ψ→ µ+µ−) [nb/GeV]
pT 〈pT〉 |y| < 0.75

(GeV) (GeV) Value ± (stat.) ± (syst.) ± (spin) CEM prediction
7.0-7.5 7.3 6.8 ±0.8 ±1.1

1.1 ±4.3
2.2 2.8

7.5-8.0 7.8 5.9 ±0.6 ±0.9
0.9 ±2.7

1.9 2.2
8.0-8.5 8.3 3.3 ±0.3 ±0.4

0.4 ±1.3
1.0 1.7

8.5-9.0 8.8 2.6 ±0.2 ±0.4
0.4 ±0.9

0.8 1.3
9.0-9.5 9.2 2.2 ±0.2 ±0.3

0.3 ±0.9
0.6 1.0

9.5-10.0 9.8 1.5 ±0.1 ±0.2
0.2 ±0.5

0.4 0.8
10.0-11.0 10.5 1.04 ±0.05 ±0.11

0.11 ±0.32
0.29 0.60

11.0-12.0 11.5 0.71 ±0.03 ±0.08
0.08 ±0.19

0.20 0.41
12.0-14.0 12.9 0.34 ±0.01 ±0.04

0.04 ±0.08
0.09 0.24

14.0-16.0 14.9 0.163 ±0.010 ±0.016
0.016 ±0.036

0.042 0.128
16.0-18.0 16.9 0.076 ±0.006 ±0.008

0.008 ±0.015
0.018 0.071

18.0-22.0 19.7 0.035 ±0.003 ±0.004
0.004 ±0.006

0.008 0.035
22.0-30.0 25.0 0.0078 ±0.0009 ±0.0009

0.0009 ±0.0010
0.0014 0.0109

30.0-70.0 37.2 0.0004 ±0.0001 ±0.0001
0.0001 ±0.0000

0.0000 0.0008

Table 12: PromptJ/ψ production cross-sections as a function ofJ/ψ pT for 0.75 < |y|J/ψ < 1.5. The central value
assumes unpolarised (λθ = 0) prompt and non-prompt production, and the spin-alignment envelope spans the range
of possible prompt cross-sections under various polarisation hypotheses. The first quoted uncertainty is statistical, the
second uncertainty is systematic. Comparison is made to theColour Evaporation Model prediction.

d2σprompt

dpT dy ·Br(J/ψ→ µ+µ−) [nb/GeV]
pT 〈pT〉 0.75< |y| < 1.5

(GeV) (GeV) Value ± (stat.) ± (syst.) ± (spin) CEM prediction
5.0-5.5 5.3 21.9 ±4.7 ±4.8

4.6 ±8.7
6.5 10.4

5.5-6.0 5.8 16.8 ±2.6 ±3.0
2.9 ±7.5

5.0 7.2
6.0-6.5 6.2 11.0 ±1.0 ±1.4

1.4 ±5.8
3.2 5.2

6.5-7.0 6.7 9.2 ±0.9 ±1.4
1.4 ±2.9

2.6 3.7
7.0-7.5 7.2 6.3 ±0.5 ±0.8

0.8 ±1.7
1.8 2.8

7.5-8.0 7.7 5.0 ±0.3 ±0.6
0.6 ±1.2

1.4 2.1
8.0-8.5 8.2 3.2 ±0.2 ±0.3

0.3 ±1.4
0.7 1.6

8.5-9.0 8.7 2.8 ±0.2 ±0.3
0.3 ±0.8

0.6 1.3
9.0-9.5 9.3 2.1 ±0.1 ±0.2

0.2 ±0.5
0.5 1.0

9.5-10.0 9.7 1.57 ±0.09 ±0.17
0.17 ±0.30

0.35 0.79
10.0-11.0 10.5 1.06 ±0.04 ±0.12

0.12 ±0.19
0.24 0.59

11.0-12.0 11.5 0.67 ±0.03 ±0.08
0.08 ±0.12

0.15 0.39
12.0-14.0 12.9 0.34 ±0.01 ±0.04

0.04 ±0.06
0.08 0.23

14.0-16.0 14.9 0.149 ±0.008 ±0.016
0.016 ±0.024

0.031 0.120
16.0-18.0 16.9 0.066 ±0.005 ±0.007

0.007 ±0.009
0.013 0.067

18.0-22.0 19.7 0.028 ±0.002 ±0.003
0.003 ±0.004

0.005 0.032
22.0-30.0 25.2 0.0073 ±0.0008 ±0.0008

0.0008 ±0.0008
0.0011 0.0100

30.0-70.0 38.0 0.0004 ±0.0001 ±0.0001
0.0001 ±0.0000

0.0000 0.0007
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Table 13: PromptJ/ψ production cross-sections as a function ofJ/ψ pT for 1.5 < |y|J/ψ < 2. The central value
assumes unpolarised (λθ = 0) prompt and non-prompt production, and the spin-alignment envelope spans the range
of possible prompt cross-sections under various polarisation hypotheses. The first quoted uncertainty is statistical, the
second uncertainty is systematic. Comparison is made to theColour Evaporation Model prediction.

d2σprompt

dpT dy ·Br(J/ψ→ µ+µ−) [nb/GeV]
pT 〈pT〉 1.5 < |y| < 2

(GeV) (GeV) Value ± (stat.) ± (syst.) ± (spin) CEM prediction
1.0-4.0 2.8 129 ±22 ±25

35 ±246
35 43

4.0-5.0 4.5 31.1 ±4.6 ±4.5
4.5 ±54.7

7.7 17.7
5.0-5.5 5.2 13.8 ±2.7 ±3.4

3.2 ±13.5
3.2 10.0

5.5-6.0 5.7 11.8 ±1.1 ±1.5
1.5 ±11.6

2.6 6.7
6.0-6.5 6.3 10.5 ±0.9 ±1.2

1.1 ±8.2
2.2 4.8

6.5-7.0 6.8 6.9 ±0.5 ±1.0
1.0 ±4.2

1.6 3.4
7.0-7.5 7.2 5.1 ±0.4 ±0.7

0.7 ±2.5
1.2 2.6

7.5-8.0 7.7 4.0 ±0.3 ±0.5
0.4 ±1.8

0.7 1.9
8.0-8.5 8.3 3.0 ±0.2 ±0.3

0.3 ±1.2
0.4 1.5

8.5-9.0 8.7 2.3 ±0.1 ±0.3
0.2 ±0.7

0.3 1.2
9.0-9.5 9.2 1.61 ±0.09 ±0.17

0.17 ±0.46
0.26 0.89

9.5-10.0 9.7 1.18 ±0.08 ±0.13
0.12 ±0.32

0.21 0.72
10.0-11.0 10.5 0.86 ±0.04 ±0.10

0.09 ±0.21
0.16 0.53

11.0-12.0 11.5 0.51 ±0.03 ±0.05
0.05 ±0.11

0.10 0.35
12.0-14.0 12.9 0.26 ±0.01 ±0.03

0.02 ±0.05
0.04 0.21

14.0-16.0 14.9 0.112 ±0.008 ±0.012
0.011 ±0.016

0.019 0.106
16.0-18.0 16.9 0.050 ±0.005 ±0.007

0.005 ±0.006
0.008 0.057

18.0-22.0 19.6 0.026 ±0.003 ±0.002
0.002 ±0.003

0.004 0.028
22.0-30.0 25.0 0.0042 ±0.0007 ±0.0005

0.0005 ±0.0003
0.0005 0.0084

Table 14: PromptJ/ψ production cross-sections as a function ofJ/ψ pT for 2 < |y|J/ψ < 2.4. The central value
assumes unpolarised (λθ = 0) prompt and non-prompt production, and the spin-alignment envelope spans the range
of possible prompt cross-sections under various polarisation hypotheses. The first quoted uncertainty is statistical, the
second uncertainty is systematic. Comparison is made to theColour Evaporation Model prediction.

d2σprompt

dpT dy ·Br(J/ψ→ µ+µ−) [nb/GeV]
pT 〈pT〉 2 < |y| < 2.4

(GeV) (GeV) Value ± (stat.) ± (syst.) ± (spin) CEM prediction
5.0-6.0 5.5 11.5 ±2.5 ±2.5

2.6 ±12.1
2.0 7.8

6.0-7.0 6.5 5.6 ±0.6 ±0.6
0.6 ±3.3

0.9 3.9
7.0-7.5 7.3 3.5 ±0.5 ±0.6

0.5 ±2.3
0.6 2.3

7.5-8.0 7.7 3.1 ±0.4 ±0.5
0.4 ±2.2

0.5 1.8
8.0-8.5 8.3 2.1 ±0.3 ±0.3

0.3 ±0.7
0.5 1.4

8.5-9.0 8.7 1.6 ±0.2 ±0.2
0.2 ±0.5

0.3 1.1
9.0-9.5 9.2 1.1 ±0.1 ±0.1

0.1 ±0.3
0.2 0.9

9.5-10.0 9.7 0.91 ±0.09 ±0.13
0.12 ±0.33

0.12 0.68
10.0-11.0 10.5 0.61 ±0.05 ±0.07

0.07 ±0.21
0.06 0.47

11.0-12.0 11.5 0.42 ±0.04 ±0.05
0.06 ±0.12

0.05 0.32
12.0-14.0 12.9 0.21 ±0.02 ±0.02

0.02 ±0.05
0.03 0.18

14.0-18.0 15.6 0.079 ±0.007 ±0.007
0.005 ±0.012

0.007 0.071
18.0-30.0 21.2 0.008 ±0.001 ±0.001

0.001 ±0.001
0.001 0.012
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