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Als meus pares ...



Acknowledgements

Mi eclecticismo no es producto del temor para comprometerme con una filosofia, es mi filosofia de creer en todo y no

creer en nada...es mi compromiso de creer solo en lo que la experiencia me permita llegar a saber

Yuliana Maria Lopez Vasquez

More than the 50% of this thesis is merit of who supported my crazy

adventure to meet and live a different experience out of my country,

what converged in a life surrounded by a phd thesis...difficult to pre-

dict it!

Primero que todo gracias a mis padres Rodrigo Yepes y Maria Doriam
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un ejemplo de profesional y persona que ha marcado esta etapa de

mi vida, gracias por ser un excelente jefe, por dirigirme con paciencia,



pero sobretodo por ser también un amigo en los momentos dif́ıciles

y por motivarme a seguir adelante. A mis compañeros de grupo por
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Chapter 1

The birth of a new age in

astronomy

If you’re not failing every now and again, it’s a sign you’re not doing anything

very innovative

Woody Allen

The advancement of astronomical sciences has followed an interesting and revolu-

tionary path as long as the sky has been observed. The scientific merits of Galileo

could establish the basis of a well defined orderliness in the astronomy research

by using amazing engineering tools for that epoch. In the case of the telescope,

his optical engineering skills played an important role in its development into a

successful instrument, what was even recognized by the Senate of Venice in May-

June 1609. In particular, due to the discovery of four of the 67 moons of Jupiter,

he became increasingly convinced that the Copernican, heliocentric system of the

world was correct.

Most of the knowledge about the universe comes from the information carried

by photons. Lots of valuable information is extracted thanks to their particular

features as stability and electric neutrality which allow to detect them in a wide

range of energy and find out the physical and chemical properties of the source.

However, astronomy by using photons has some constraints when dense and dis-

tant regions of the stars, Active Galactic Nuclei (AGNs) or other astrophysical

energy sources are studied.

In order to explore the most dense and distant Galactic and Extra-galactic sys-

tems, a stable and electrically neutral cosmic messenger is required so that its
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trajectory will not be deflected by magnetic fields, and its small interaction cross

section favours to get information from distant regions opaque to photons. The

particle that overcome these constraints and fulfils the mentioned requirements is

the neutrino, which can come from the core of astrophysical objects.

1.1 Cosmic rays astronomy

The discovery of extra-terrestrial particles goes back to the beginning of the last

century when Victor Francis Hess set that “the results of my observations are

best explained by the assumption that a radiation of very great penetrating power

enters our atmosphere from above”. Hess, by using a dedicated electroscope

systematically measured the radiation rates at altitudes up to 5.3 km during 1911-

1912 using an aloft balloon. The results of Hess were published by the Viennese

Academy of Sciences where it was explained in detail that the level of radiation

decreased up to an altitude of about 1 km, but above it, the level of radiation

increased hugely, being the radiation detected at 5 km about twice that of the sea

level (1). The Sun was discarded as the sole cause since the effect was produced

both by day and night.

The work performed by Hess about this high-energy penetrating radiation particles

was confirmed some years after by Robert Andrews Millikan who called them

“Cosmic Rays (CRs)”. Hess and Millikan researches opened the gates to many

discoveries in the Nuclear Physics field. These CRs are technically “primary”

particles such as electrons, protons and helium, as well as carbon, oxygen, iron

and other nuclei synthesized in celestial bodies. The “secondary” particles are

those produced in the interaction of primary particles with stellar gas including

the Earth’s atmosphere.

In 1938 Pierre Auger discovered particle “showers” which come from the striking

of primary high-energy particles with the Earth’s atmosphere as shown in Figure

1.1. Muons and neutrinos produced in the interaction of secondary CRs at the

top of the atmosphere are result of the decay of charged mesons, while electrons

and photons come from decays of neutral mesons.

The origin of CRs in still unclear. Several efforts on space-based or ground-based

techniques have been developed in order to study the Galactic or Extra-Galactic

origin of such particles.
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Figure 1.1: Development of CR air showers - Several interactions due to a primary

particle are indicated. Its development along the atmosphere is represented taking

place the emission of several kind of particles.

Most CRs are the nuclei of atoms ranging from the lightest to the heaviest elements

in the periodic table. It goes from high-energy protons (89%), Helium (10%) and

heavier nuclei (1%). The observed energy spectrum from non-thermal origin goes

from 109 eV up to 1020 eV. Figure 1.2 shows the energy measurements by several

experiments (2) (3) (4). The CR energy spectrum (dN/dE) follows a broken

power law as K · E−α where α represents the differential spectral index (power

index). The CR spectral index α changes from 2.7 up to 3.0 (transition in the

slope in Figure 1.2) at energy close to 3 × 1015 eV, effect known as the “knee”

of the spectrum. A second “knee” is seen close to 4× 1017 eV. In addition, close

to the energy region at 3× 1018 the value of γ is again 2.7. This region is known

as the “ankle” of the CR spectrum. The Very-high-energy (VHE) CRs are usually

defined for kinetic energies below 1018 eV. Up this energy and below 1019 eV there

are of Ultra-high-energy (UHE), and larger than 1019, the ankle energy, there are

of Extreme-energy (EE).

The origin of CRs include three questions: the origin of particles, the origin of

energy and the site of acceleration. By assuming the Galactic origin of CRs below

1018 eV, the knee can be related to the maximum energy that cosmic accelerator in

the Galaxy can achieve. It is the case for expanding Super Nova Remnants (SNRs)

for which proton acceleration is not predicted above energies ∼ 1015 eV, where
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Figure 1.2: Energy and rates of the CR particles - Measurements performed at

ground and atmospheric level are shown for several experiments.

propagation and confinement effects in the Galaxy are considered (5). Actually the

Fermi Large Area Telescope suggest the direct evidence of SNRs as acceleration

site for CRs protons (6), results supported by the characteristic pion-decay feature

in the γ-ray spectra of the IC443 and W44 SNRs. The origin of CRs with energies

between the knee and the ankle is more unclear. The determination of the chemical

composition equivalent to the energy spectra estimation of the CRs for both

regions is crucial to fit the theoretical models with the results of the experiments.

Most authors agree that, up to the knee, protons and He primaries follow the

standard composition, between the first and second knee the composition is mainly

iron-based, finally above the ankle the composition should to be made of extra-

galactic protons without a clear site of acceleration.

There are several guesses about the Galactic origin (E≤ 1015 eV) of high-energy

protons and other nuclei, but it is not possible to correlate its direction on Earth

to astrophysical sources since CRs experience deflections in their trajectories due

to the Galactic magnetic fields. At Very-high energy, a cut-off is expected due

to the interaction of high-energy CRs with the Cosmic MicroWave Background

(CMB), effect known as the “Greisen-Zatsepin-Kuzmin (GZK) effect” (7). The

propagation of the highest CRs rays is then limited by the GZK effect which

produces a cut-off in the spectrum of primary cosmic rays and above 6× 1019 eV.
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It suggests that no source of high-energy protons can be detected farther than 50

Mpc (7). A pion production by delta resonance takes place due to the GZK effect

as

p+ γCMB → ∆+ → π+ + n . (1.1)

The goal of this section on CRs is to briefly present the proposed mechanism to

explain the origin of such cosmic particles as sites of acceleration, followed by a

review on the main detection techniques and sources detected.

1.1.1 Shock acceleration mechanisms

High-energy cosmic particles are produced by astrophysical acceleration mecha-

nisms that are supposed to take place in SNRs in the Galaxy, and AGNs and

Gamma-Ray Bursts (GRBs) outside our Galaxy.

The stochastic acceleration process of CRs was first explained by Enrico Fermi

in 1949 (8) as consequence of iterative scattering processes of charged particles

in a shock-wave along their trajectories into cosmic magnetic fields. The Fermi

mechanism assumes the origin of shock-waves in environments of huge gravita-

tional forces such as regions close to black holes in stellar gravitational collapses.

If a particle is accelerated into the inhomogeneity of a magnetic field, its en-

ergy increase should be proportional to its energy as a function of the gain due

to the movement into the magnetic field. Two approaches are used to describe

the stochastic acceleration process, the so-called “second” (original theory) and

“first” order Fermi acceleration mechanisms.

The second order Fermi acceleration mechanism depicted in Figure 1.3-left uses

a moving gas magnetic cloud model where the particles are scattered elastically

in non-homogeneous locations in the magnetic field, their trajectories being ran-

domized into the cloud. The particles can go out from the cloud to whichever

direction carrying an average gain in energy 〈∆E〉/E ≃ (4/3)β2 proportional to

the squared cloud velocity (β=v/c) (9).

The first order acceleration mechanism considers a plane infinite shock front where

the particles do not come into a moving gas magnetic cloud model but go back

and forth across the shock-wave front. The particles crossing the cloud are then

accelerated with an average gain of 〈∆E〉/E ≃ (4/3)β (9). The first order Fermi

acceleration mechanism is depicted in Figure 1.3-right.
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Figure 1.3: Second and first order Fermi acceleration mechanisms - Left:

second order Fermi acceleration where a cosmic particle with energy E1 crosses a

cloud with velocity V1. Right: first order Fermi acceleration. The plane shock velocity

is labelled as Vs.

In 1984 Michael Hillas proposed a schematic description of the main acceleration

sites as a function of their size and magnetic field. The energy losses are not

included in this approach, but the sizes of the bodies are included allowing to be

confined in the magnetic field. In this framework, the maximum energy can be

defined as

Emax

1EeV
= Z × L

1kpc
× B

1µG
, (1.2)

where L is the estimated size of the cosmic region. Figure 1.4 shows the Hillas

clasification for some celestial bodies in particular AGNs and GRBs.

Figure 1.4: Hillas diagram for celestial bodies - The figure shows the classification

of Galactic systems based on the sizes and the magnetic field strength in a Fermi

acceleration scenario.
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1.1.2 Detection and sources of Cosmic Rays

Two principles are used to determine the direction of UHE CRs: Surface Detection

(SD) and Fluorescence Detection (FD). The SD consist of wide horizontal plane

surface arrangement which detects the secondary particles. The direction of the

primary can be inferred from the reconstruction of the measured arrival time of the

secondaries. The FD technique takes advantage of the fluorescence light released

by excited atmospheric nitrogen molecules (10) (11) and the Cherenkov photons

induced by secondary particles. The aim of the FD technique is to estimate the

longitudinal profile of showers collected by the SD. The integral of this longitudinal

profile allows to compute quantities such as the shower energy and the speed of

the shower development (related to the primary particle mass). The combination

of the FD and SD techniques is the so-called “hybrid” detection scheme (2).

The most relevant discoveries on UHE CR energy spectrum and CR chemical

composition come from experiments as the Pierre Auger Observatory (PAO) (2)

and the Telecope Array (TA) experiment (3). The PAO is a surface array of

almost 1600 water Cherenkov detectors spread over along 3000 km2 on the vast

plain known as “Pampa Amarilla” in the west of Argentina. It consists also of

4 FD stations equipped with six fixed telescopes each for air-fluorescence light

detection. The TA experiment, located in the central western desert of USA is

composed by a triplet of FD stations located in the surroundings of a ground grid

of 507 SD stations, with 38 fluorescence telescopes in total for the triplet.

The inference about CR composition by indirect detection of primaries comes from

observables of the Extensive Air Showers (EAS). In the FD technique the relevant

observable is the atmospheric depth at which the maximum number of secondary

particles is reached. It is proportional to the amount of energy deposited in the

atmosphere and to the UV light collected in the telescope. The average depth of

the shower maximum 〈Xmax〉 is related to the energy E and the mass A of the

primary particle as

〈Xmax〉 ∝ D10 · log(
E

A
) , (1.3)

where D10 is known as the elongation rate which in physics terms represents

the change of 〈Xmax〉 per decade of energy and it is sensitive to changes in

composition with energy. This longitudinal development of the CR air showers
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represents the distance between the point of impact of the primary particle at

the higher level of the atmosphere and the point of the primary track where the

shower reaches its maximum number of secondary particles. Figure 1.5 shows the

latest PAO results for 〈Xmax〉 (12) and Figure 1.6 the updated results for TA

(13). The solid lines in Figure 1.5 correspond to the Monte Carlo simulations for

protons (top line) and Fe nuclei (bottom line).

Figure 1.5: Average depth of shower maximum (left) and its fluctuations

RMS (right) reported by the PAO as a function of the energy - Simulations

with a set of hadronic interaction models are indicated in the plot for proton (top)

and iron showers (bottom).

For the TA experimental results, one single line can explain the D10 contribution

which is in contradiction with the PAO results, however, consistent to the predic-

tion for proton primaries at all energies as Figure 1.6 shows. The data matches

with the predictions for the pure proton model, as a very light dominated process.

Figure 1.6: Comparison of the average reconstructed Xmax for each energy

between data (black points) and Monte Carlo for the TA experiment - The

red and blue lines are the predictions of the pure proton and pure iron compositions

respectively with the interaction models of QGSJET-II, QGSJET-01 and SIBYLL

(13).
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The PAO results by using FD technique in coincidence with at least one SD device

have allowed to correlate almost 69 observed events with a list of AGNs candidate

sources (14). The skymap in Figure 1.7 represents the location of the 69 events

observed by PAO.

Figure 1.7: Skymap of the PAO and TA events in Galactic coordinates - Left:

PAO events, the black dots correspond to the arrival directions of CRs with E > 55

EeV, the blue circles (3.1◦ radius) represent the AGNs candidates from the Veron-

Cetty catalogue (14). Right: TA events, red circles (3.1◦ radius) at E > 57 EeV.

The blue color intensity is related to the visibility of the source.

The experimental procedure for understanding where the UHECR come from is

based on the idea of searching for small and large-scale anisotropies in their direc-

tion. The solid line drawn in Figure 1.7-left traces the visible region for PAO for

zenith angles less than 60◦ (15). The correlation studies between the anisotropy

in the arrival directions of UHE CRs and the AGNs gave the most significance for

27 CR with E > 55 EeV and AGNs located at a distance L< 75 Mpc (15), with

a total fraction of correlating events of 33%. Likewise, the TA experiment has

tested this correlation with their own data for the SD stations and has found a

fraction of 40% of correlated events. The skymap of the events above E > 57

EeV and AGNs on both hemispheres is depicted on Figure 1.7-right.

1.2 Cosmic photons and gamma astronomy

The gamma astronomy uses photons at energies larger than the X-ray radiation.

By using this kind of particles, several extreme and violent cosmic bodies can be

studied. It is mostly supported by space-based experiments since γ-ray radiation

is absorbed by the atmosphere, however, several kind of techniques have been

developed in order to measure high-energy γ-ray at ground. This section presents

some basic insights about the mechanism of production of high-energy γ-rays,

their detection techniques and an updated skymap with some cosmic sources.
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1.2.1 Production mechanisms

Two mechanisms are considered for the γ-ray production: the leptonic (16) and

the hadronic (17) mechanisms which refer respectively to the acceleration of elec-

trons or protons and other nuclei. The relevant processes in leptonic acceleration

models are the Inverse Comptom (IC) scattering, bremsstrahlung and the syn-

chrotron radiation. The interaction of ultra-relativistic electrons with the celestial

photon fields produces IC γ-rays. The energy spectra shows a double bump shape

with one peak on the IR/X-ray band due to the synchroton radiation, and another

peak on the γ-rays energy due to IC (16). In hadronic processes, photons are

generated by the decay of neutral pions produced by the interaction of extremely

energetic protons with the matter or radiation at the source. This also implies

the production of charged pions and therefore high-energy neutrinos. The link be-

tween VHE γ-ray sources and neutrinos is the meson-decay channel. The energy

spectra of γ-rays sources follows a similar behaviour than that of the CR sources,

i.e. a power law energy spectrum, E−αγ , where αγ ∼ 2.0 − 2.5.

1.2.2 Detection techniques and sources of γ-rays

Most of the detection techniques of primary photons in the MeV to GeV energy

range are space-based experiments. At higher energies, the detection of Cherenkov

light induced by charged particles produced in the interaction photons-atmosphere

is the most efficient technique for γ-rays studies. The technique is known as Imag-

ing Atmospheric Cherenkov Telescopes (IACTs) used in experiments as HESS,

MAGIC and VERITAS. The IACTs allow to detect γ-rays between 50 GeV and

50 TeV. Other ground based experiments detect the light using Water Cherenkov

EAS as CANGAROO and HAWC.

The High Energy Stereoscopic System (HESS) (18) (Namibia) is one of the latest

generation instruments for VHE γ-ray astronomy and comprises several telescopes

installed in several stages. The first phase consisted of four large Cherenkov tele-

scopes with about 100 m2 mirror area able to cover an energy range up to 100 GeV

providing large event statistics for high-energy phenomena. The IACT stereoscopy

requires at least two telescopes to improve the angular reconstruction, energy re-

construction and background suppression. Figure 1.8 shows the last results of the

minimal detectable flux for HESS as a function of the energy threshold.
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Figure 1.8: Minimal detectable flux as a function of the energy threshold for

different γ-ray experiments for 50 hours of exposure time - A comparison for

Crab Nebula flux levels is also shown.

The Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) project (19)

consists of a set of two telescopes 85 metres away designed for γ-ray astronomy

able to be configured for lower energy studies with high sensitivity. MAGIC-I,

operative since 2004, and MAGIC-II, operative since 2009, are a system of two 17

metres Cherenkov telescopes sensitive to VHE radiation above a energy threshold

of 50 GeV. The stereoscopic mode (MAGIC-I + MAGIC-II) improves the sensitiv-

ity and its energy range (20% at 100 GeV, 15% at 1 TeV) and angular resolution

(∼ 0.1◦ at 100 GeV, ∼ 0.05◦ at 1 TeV).

The MAGIC physics goals span several high-energy astrophysics topics from Galac-

tic and Extra-galactic objects, fundamental physics studies on the origin of CR,

Dark Matter searches and tests of Lorentz invariance violation. Using the IACTs

technique, MAGIC may distinguish showers from electrons or positrons coming

from the background of hadronic CR showers through the image shape. For a 14

hours of Extra-galactic observations, the e−/e+ spectrum was measured in the

energy range 100 GeV - 3 TeV. An extension of this and other interesting studies

in MAGIC can be found in (20).

The Very Energetic Radiation Imaging Telescope Array System (VERITAS) (21) is

a ground-based γ-ray instrument operating at the Fred Lawrence Whipple Obser-

vatory (FLWO) in southern Arizona, USA. It consists of an array of four 12 metres

(aperture) atmospheric Cherenkov optical reflectors with 350 individual mirrors in
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each telescope reflector and 499-pixel Photo Multiplier Tube (PMT) camera in

each covering a field of view of 3.5◦. The telescopes were arranged in a such a

way that they can obtain the best sensitivity in the VHE energy band, 50 GeV -

50 TeV with maximum sensitivity from 100 GeV to 10 TeV, reaching an angular

and energy resolution of about 0.1◦ and 15% respectively.

One of the main scientific results of VERITAS was the detection of 21 blazars

(a kind of AGN), one radio Galaxy (M87) and one starbust Galaxy (M82) (22).

The current VERITAS program is directed to the objects detected by FERMI-LAT

multi-wavelength observations. The combined results of HESS, MAGIC and VER-

ITAS provided a more complete catalogue of TeV blazars represented in Figure

1.9.

Figure 1.9: VERITAS skymap in Galactic coordinates, July 2011 - The TeV

mixed blazar catalogue has been completed by several observations of experiments as

HESS and MAGIC with addition of new classes of objects concerning last catalogues

before 2011.

The results achieved by the experiments described before, are expected to be over-

come by the next Cherenkov Telescope Array project (CTA). It foresees a factor

of 5-10 improvement in sensitivity in the current energy domain of about 100 GeV

to 10 TeV and an extension of the accessible energy range below 100 GeV and

above 100 TeV (23).

Contrary to the ground-based experiments, satellite-based detectors can not be

designed for large effective areas (< 1 m2). The most relevant experiment which

used this kind of technique was the Compton Gamma Ray Observatory (CGRO).

The most energetic part of the electromagnetic spectrum (up to 30 GeV) was stud-

ied with the Energetic Gamma-Ray Experiment Telescope (EGRET) that detected
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271 γ-ray sources with high significance, with almost 170 unidentified sources (the

third EGRET catalogue). Figure 1.10 shows the final EGRET skymap catalog.

Figure 1.10: Third EGRET catalog for E>100MeV - The figure shows different

sources with energies higher than 100 MeV in Galactic coordinates.

Being launched in June 2008, Fermi Gamma-ray Space Telescope, reached the

same EGRET sensitivity after one week of observation as the EGRET operation

along 9 years. The Fermi range of operation exceeds considerably the EGRET

energy threshold, typically from 30 MeV to more than 300 GeV including the gap

between previous satellites and ground-based experiments with a resolution better

than one arc-minute.

Based on FERMI Large Area Telescope (LAT) results, Table 1.1 (24) shows the

high-energy γ-ray sources detected for a period of almost two years from the

beginning of the scientific mission.

The Fermi-LAT 2FGL catalogue includes 1873 sources, from which 127 are cer-

tainly identified and 1171 of the remaining ones are associated with complements

of known sources of γ-rays. The 2FGL label corresponds to the 2nd catalogue and

FGL represents Fermi Gamma-ray LAT. The range of energy where the sources

where detected and characterized goes from 100 MeV to 100 GeV covering the

whole sky with reduced bias effect in observations.
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Description Identified Associated

Label Number Label Number

Pulsar, identified by pulsations PSR 83 ... ...

Pulsar, no pulsations seen in LAT yet ... ... psr 25

Pulsar wind nebula PWN 3 pwn 0

Supernova remnant SNR 6 snr 4

Supernova remnant / Pulsar wind nebula ... ... † 58

Global cluster GLC 0 glc 11

High-mass binary HMB 4 hmb 0

Nova NOV 1 nov 0

BL Lac type of blazar BZB 7 bzb 423

FSNRQ type of blazar BZQ 17 bzq 353

Non-blazar active Galaxy AGN 1 agn 8

Radio Galaxy RDG 2 rdg 10

Seyfert Galaxy SEY 1 sey 5

Active Galaxy of uncertain type AGU 0 agu 268

Normal Galaxy (or part) GAL 2 gal 4

Starburst Galaxy SBG 0 sbg 4

Class uncertain ... ... 1

Unassociated ... ... ... 572

TOTAL 127 1746

Table 1.1: The LAT 2FGL source classes. The † symbol means potential associ-

ation with SNR and Pulsar Wind Nebulae (PWN), capital letters for solved sources

and lower case letters for associations.

1.3 Neutrino astronomy

The only sources of extra-terrestrial neutrinos confirmed up to now are the Sun and

the SN1987A, detected by the KAMIOKA Nucleon Decay Experiment (KAMIOKANDE)

(25), the Irvine-Michigan-Brookhaven (IMB) detector (26) and the Baksan Neu-

trino Observatory (27). Nonetheless, less than one year ago, at mid of 2013,

the IceCube collaboration (28) announced the observation of 28 very-high energy

particle events with a clear fingerprint differing of the atmospheric muon and neu-

trino backgrounds features, representing the first solid evidence of high-energy

neutrinos coming from outside the solar system (29). The energy of such neutrino

events are above several tens of TeV, and one million times those observed in

the SN1987A in the large Magellanic Cloud. A slightly broad information about

this result is given in the next section (neutrino telescopes), where the IceCube

neutrino telescope is explained.

In addition, neutrinos are produced in accelerators and nuclear reactors and on

the atmosphere as secondaries of CR interactions. The Figure 1.11 shows the

estimation of fluxes for natural and artificial neutrino sources.

Neutrino telescopes behave as a “telescope” when the neutrino direction can
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Figure 1.11: Measured and expected fluxes of artificial and natural neutrino

fluxes - The figure shows the estimated flux as a function of neutrino energy from

non-cosmic, cosmic and other neutrino fluxes.

be reconstructed with an angular resolution tenths of a degree. Nowadays the

efforts have been directed to the high-energy cosmic neutrino detection from

extra-terrestrial sources as GRBs, AGNs and the ones from the interaction of

ultra-energetic protons with the CMB.

Neutrinos are electrically neutral and can only interact weakly with the surrounding

matter. Therefore, they can travel along the cosmos without undergoing absorp-

tion or reflection, pointing back to the origin of the source. Unfortunately, this

low interaction cross-section requires massive detection systems of the order of

km3 volumes.

The neutrino astronomy is the backbone framework about this thesis was devel-

oped. This section will review the particle physics phenomenology associated to

neutrinos and several innovative techniques ongoing and operative looking for the

cosmic neutrino hunting will be commented. Some hypothetical sources of cosmic

neutrinos will be commented also.

1.3.1 Neutrino phenomenology

In 1930, Wolfgang Pauli postulated the existence of a neutral particle in order to

explain the conservation of energy, momentum and angular momentum in the beta

decay of a nucleus. In 1932 James Chadwick discovered a massive neutral particle

that he called neutron. Three years later Enrico Fermi developed a theory of beta
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decay that contained the lightest of the “neutrons”, that he called “neutrino”.

Twenty years later Clide L. Cowan Jr and Frederick Reines detected the neutrino

in a nuclear reactor experiment (discovery awarded with the Physics Nobel prize

in 1995).

Some time later it became clear that more than one type of neutrino existed asso-

ciated with each type of charged lepton. This was experimentally proven in 1962,

by Leon M. Lederman, Melvin Schwartz and Jack Steinberger showing that the

lepton produced in muon neutrino interactions was always a muon. When the

third type of lepton, the tau, was discovered in 1975 at the Stanford Linear Accel-

erator Center, it was expected to have an associated neutrino (the tau neutrino).

The first detection of tau neutrino interactions was done by the DONUT collab-

oration (30) at Fermilab in 2000; its existence had already been inferred by both

theoretical consistency and experimental data from the Large Electron–Positron

collider (LEP).

Neutrinos can also change flavour or “oscillate”, what explains the reduction on

solar electron neutrino and the missing atmospheric muon neutrino flux. The ori-

gin of this oscillation among neutrino eigenstates comes from the fact that the

flavour states produced by the weak interaction (να) are not eigenstates of the

mass matrix (νi), instead they are a linear combination of them:

|να〉 =
3

∑

i=1

Uαi|νi〉 , (1.4)

where α = e, µ, τ are the neutrino flavours and i = 1, 2, 3 correspond to the mass

eigen-states. If the time evolution is added, the Equation 1.4 can be written as

|να(t)〉 =
3

∑

i=1

Uαi|νi(t)〉 =
3

∑

i=1

Uαie
−iEit|νi〉 . (1.5)

In the approximation that oscillations between only two states dominate, the os-

cillation probability can be deduced as (31)

Pαβ = sin2(2θ) sin2(1.27
L

E
△m2) , (1.6)

where △m2 = (m2
α −m2

β) in eV2, L is the distance between the neutrino source

and the detector in metres and E is the neutrino energy in MeV. The Equation 1.6

suggests that at least two of the neutrino states should have mass since△m2 could
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not be zero. The oscillation probability depends on two fundamental unknowns

θ and ∆m2. In the three-flavour treatment of neutrino oscillations, there are

three mixing angles θ12, θ13 and θ23, a CP-violating phase δ, and two independent

squared mass differences, ∆m2
12 and ∆m2

23. In this case the Pontecorvo-Maki-

Nakagawa-Sakata (PMNS) mixing matrix can be expressed as (31)

U =





1 0 0
0 c23 s23
0 −s23 c23









c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13









c12 s12 0
−s12 c12 0
0 0 1



 , (1.7)

where cij ≡ cos θij and sij ≡ sin θij. The first matrix can be studied with

atmospheric neutrinos and LBL (Long-Base-Line) accelerators, the second one

with SBL (Short-Base-Line) reactors and the third one with solar neutrinos and

LBL reactors. The quantity δ is expected to be small and the results from the

Daya Bay experiment (32) demonstrate that sin2(2θ13) = 0.092 ± 0.017 with

statistical inference of 5.2σ. In the limit where θ13 and δ are zero, the central

matrix in Equation 1.7 reduces to the identity matrix, and the experimental case

can be explained by means of two decoupled oscillations. The first one, νe → νµ,

is responsible of the solar neutrino oscillations (31), whereas the second decoupled

oscillation, νµ → ντ , is responsible for atmospheric neutrino oscillations (31).

The experimental signature for neutrino oscillations consists on the disappearance

of one neutrino flavour, the corresponding appearance of neutrinos of a different

flavour and evidence for an oscillatory pattern.

1.3.2 Detection techniques of cosmic neutrinos

The main challenge of a neutrino detector is to achieve the required mass to be

sensitive enough to the expected low fluxes, since the more matter used the more

neutrinos will interact. Taking into account that the funding of neutrino facilities

is limited, natural environments are used as detection media for neutrino detectors.

Reference experiments uses large array of sensors following geometrical patterns

looking for detection of the Cherenkov light. As the neutrinos are electrically

neutral they are not light emitters. Instead, charged particles produced in its

interaction with the environment do it. Other innovative detectors record radio

and acoustic waves emitted in the neutrino interaction. In this point the reason

about use radio, acoustic or Cherenkov light, relies on the attenuation length
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of the media and the neutrino energy threshold. The Table 1.2 compares some

methods for neutrino detection installed in several detection media as a function

of the neutrino energy threshold and the attenuation length (λatt) at the peak of

the spectra (33).

Detection technique Detection media Ethreshold
ν λatt

Cherenkov Pure water > GeV ≈70 m

Natural lake > GeV ≈20 m

Deep ocean > GeV ≈40 m

Polar ice > GeV ≈20 m

Radio Cherenkov Polar ice > 5 PeV ≈1 km

Moon > 100 EeV ≈10 m

Salt > PeV ≈1 km

Acoustic Water > PeV ≈5 km

Ice > GeV ≈1 km

EAS Air > 10 PeV ≈1 km

N2 fluorescence Air > EeV ≈10 km

EAS radar Air > EeV ≈100 km

Table 1.2: Relevant parameters of the detection for large neutrino detectors and

detectable neutrino energy.

As it can be seen, the radio and acoustic waves can travel much longer in matter

before to be absorbed allowing larger detector volumes, but energy threshold is

higher. The Cherenkov telescopes are the best option to study neutrino events

above GeV threshold. The ground-breaking techniques used presently in the cos-

mic neutrino search can be named as follows:

• Detection via Cherenkov light water-based environments.

The cosmic neutrino hunting in water-based detection media (artificial or

natural environment) is actually a feasible technique with large experience

from the commissioning of prototype detection systems and engineering.

The artificial environment is commonly a large and carefully chamber (or

vessel) filled with ultra-pure water as in the Super-Kamiokande (Super-K)

detector. In Super-K, the chamber where particles are detected is filled with

∼ 50k tons of water and buried at 1 km, where ∼ 12k PMTs surrounding

the 2 concentric walls of the chamber detect the Cherenkov light (as ring)

emission by particles crossing the detector. The array of PMTs sample the

projection of the distinctive ring pattern, used to determine the direction
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of the particle. Electrons create electromagnetic showers and leave a fuzzy

ring pattern, but muons which do not make showers give a clear ring. For

both kind of events the parameters of the Cherenkov cone as vertex position,

number of rings, direction, particle type and momentum are possible from

charge and hit timing information from the PMTs. A hit is defined as the

combined data of arrival time and charge information of the signals from the

PMT, recorded as single photo-electron or complete waveform. The Ring

Imaging water CHerenkov (RICH) technique used by Super-K offers a good

tracking specially at 1 GeV or less, with a particle identification close to

99%, a energy resolution for e and µ ∼ 3% and an energy threshold 14-16

MeV for solar and super-nova neutrinos (34).

On the other hand, natural environments are used by experiments as ANTARES

in the case of deep-sea water and IceCube in deep glacial ice, where a grid

of PMTs are uniformly throughout the detector collecting the Cherenkov

light induced by particles. In this kind of detectors the reconstruction of the

track of the particle is also carried out from the timing and positioning of

the hits in the PMTs of the detector. From optimization studies of the 3D-

grid of light sensors as well as from current physics studies in these neutrino

telescopes, it has been possible to show that above 1 TeV, the direction

of the incoming neutrino can be determined better than 0.5◦ for deep sea

neutrino detectors (35). In the case of deep glacial ice, the method allows

the detection of neutrinos above 100 TeV with an angular resolution better

than 0.6◦ (36).

• Detection via air showers.

Detection via air showers is the working mode for the PAO and TA experi-

ments. In this case, horizontal air showers induced by neutrino interactions

at energies above E> 1017eV can be studied. The optimum sensitivity for

this method is between 1 EeV to 100 EeV and the effective target mass

≃ 20 Gigatons. The sensitivity could be improved for ντ scratching the

Earth and interacting close to the array. The charged τ lepton produced

in the Charged Current (CC) interaction can escape from the deeper rocks

surrounding the array. Most of the time its decay is in hadrons (branching

ratio ∼ 65%) and the event can be recorded if it happens close to the field
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of view of the fluorescence telescopes. For a energy scale of 1 EeV, the

current ντ limit for a E−2 flux is E2φ < 10−7GeVcm−2s−1sr−1 (37).

• Radio detection.

This technique is used in the ANtarctic Impulsive Transient Antenna (ANITA)

experiment and it is carried out in Antarctic ice or atmosphere environments.

When the UHE neutrino strikes the ice it creates an electron-photon shower

featured by the excess of the number of electrons in the shower concerning

the number of positrons. By this fact, the shower develops a negative charge

imbalance and the emission of a coherent Cherenkov light takes place pro-

portional to the square of the electric net charge. In ice, attenuation lengths

greater than 1 km are observed for radio signals, depending on the frequency

band and the ice temperature, which suggests that for E>10 PeV this tech-

nique becomes competitive or even better than the optical detection (20 ≤
λatt[m] ≤ 70). The ZeV range is the aim of the Goldstone Lunar Ultra-high

energy neutrino Experiment (GLUE) (38). Other reference experiment is the

Extreme Universe Space Observatory on the Japanese Experiment Module

(JEM-EUSO) to be located in the International Space Station (ISS), ex-

pected to be installed in 2017. JEM-EUSO will use the Earth atmosphere

as detection media for UHE particles able to detect particles with E> 1019

eV. When these particles occasionally break through the atmosphere, they

collide with nucleus of air atom and produces a detectable EAS.

• Acoustic detection.

This technique takes advantages of the production of pressure waves by

charged particles depositing energy in liquid or solid media. For a particle

cascade, its full energy is attenuated into the media mostly through ionisa-

tion and transformed to heat in a very short time compared to the time scales

for the generation and propagation of acoustic pulses. As a consequence, a

bipolar acoustic pulse with a width of a few tens of microseconds in water or

ice is produced corresponding to a peak signal power of 20 kHz (37). The

acoustic pulse is propagated into the media transversely to the pencil-like

cascade within a disk-shaped volume with thickness corresponding to the

cascade length of about 10 m.
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1.3.3 Cosmic neutrino sources

Cosmic neutrinos can be produced through hadronic acceleration processes by π±

decay produced in the interaction of a proton with other proton or atomic nuclei,

or with a photon as

pp/pγ → π0 + π+ + π− + ...

↓ ↓ ↓

γ + γ µ+ + νµ µ− + ν̄µ

↓ ↓

e+ + νe + ν̄µ e− + ν̄e + νµ

(1.8)

These decay channels produce neutrinos in a flavour ratio νe : νµ : ντ = 1 : 2 : 0.

Neutrino oscillations turns this ratio to 1 : 1 : 1 for cosmic neutrinos which have

travelled long distances before arriving to Earth.

Accelerated protons in Galactic systems are mostly unable to reach the Earth

with a good pointing accuracy due to their interaction with the Inter-galactic

magnetic field. Nonetheless, some low detectable flux of protons with energies up

to 1020eV can be expected (4). In the case of CR accelerated in regions of high

magnetic fields near black holes, their interactions with the surrounding matter

and radiation produce neutral and charged pion secondaries via delta resonance

and as it is indicated in Equation 1.8. The π0 emission carries a secondary proton

which can be trapped in the high magnetic fields, whereas the emission of the

π+ is released together with a neutron which can escape as well as the decay

products of neutral and charged pions. Therefore, all the energy released by the

source is kept by the particles ejected out the magnetic region namely CRs, γ-

rays and neutrinos result of the decay of neutrons, neutral pions and charged pions

respectively. The neutrino sources can be classified as Extra-galactic and Galactic.

Some of the most studied are the following:

• Extra-Galactic sources

– AGNs

A typical Active Galactic Nuclei has a volume less than 1 pc3 located

at the center of young galaxies (active galaxies), a luminosity around

1048 erg/s, and the energy spectrum covering several tens orders of
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magnitude. They are classified as radio-quiet and radio-loud depend-

ing of their radio emission: thermal-like spectrum or radio and X-ray

range. The core of the AGN is a super-massive black hole with 106-109

solar masses. The accretion disk is made of several Galactic materials

such as gases, stellar dust and stars. The energy released by an AGN

is mainly due to accretion of the material into the black hole by grav-

itational interaction which give very efficient conversion of potential

and kinetic energy to radiation. The plasma created in the AGN keeps

an angular momentum which creates magnetic fields pushing out par-

ticles to the Galactic media by means of two jets perpendicular to the

Galactic plane. AGNs are classified according to the angle between the

axis of rotation and the direction of the observer as:

∗ Blazar: an AGN is a blazar when the rotational axis (direction of

the relativistic jets) is pointing in the direction of the observer.

∗ Seyfert Galaxy: the observation axis is between the rotational axis

of the AGN and the Galaxy plane.

∗ Radio Galaxy: the observer axis matches with the Galactic plane.

If the AGNs constitute a site of acceleration of particles above 1 TeV,

it can be argued that such particles can be primary protons which by

proton - proton or proton - photon interaction lead neutrino emission in

the same energy range and able to be detected by neutrino detectors.

– GRBs

Gamma Ray Bursts are the most violent and brightest sources of γ

radiation in the Universe, supposed to be produced by the collapse

of a massive star into a black hole or the collapse of two massive

stars. They can be classified depending on their emission time as long

GRBs (above 2 ns) and short GRBs (below 2 ns) duration, the latter

are the candidate source of cosmic neutrinos. The “Fireball model”

is the reference framework used to study the phenomenon which is

explained from considerations on the total energy released and the

variability time of the GRB during the collapse. Result of this is the

emission of blast waves propagated along the stars at velocities close

to the speed of light. These blast waves or fireballs are expanded
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at constant energy by conversion of entropy into kinetic energy. In

addition to the emission of the fireball, two jets are released in opposite

direction located in the hemispheres of the accretion disk and when the

matter is accelerated in the jets consecutively reaching larger velocities

forming shells with different speeds. The interaction between shells and

the external medium or shell-to-shell leads a kinetic energy re-convert

into internal energy which is translated into γ-ray radiation or energy

transference to baryons by a baryon-to-photon coupling.

The dissipation of the kinetic energy of the relativistic fireball described

before is expected to be converted to neutrino flux of energies close

to 1014 eV by photo-meson production, what could be detected by

km3 neutrino detectors in a quantity up to several tens of events per

year. Most optimistic models are being constrained by the most recent

results of the IceCube neutrino observatory (36).

– Starburst galaxies

The central regions of the Starburst galaxies have an emission of a

kind of Galactic-scale wind by means of the joint effect of supernova

(SN) explosions and winds from the massive stars. The γ-ray flux

detected is in the MeV energy range and suggests CR densities of 2-3

times above that in our own Galaxy. The cumulative neutrino flux of

all Starburst galaxies could be detected by km3 detectors (37).

• Galactic sources

– SNRs

A SN is the result of the explosion of a massive super-giant star. A

SNR is the structure that remains from the explosion of such star in a

supernova. The supernova remnants are postulated as accelerators of

CRs (39). This assumption is based on considerations of energy losses

of CRs from the Galaxy which can be compensated by assuming that

each new SNR transforms a small fraction of its kinetic energy into

CRs (40). In such processes, large amounts of protons are converted,

by the absorption of electrons, into neutrons, and then the subsequent

emission of neutrinos. During the core-collapse supernovae all the
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gravitational energy released in the process is ejected as intense neu-

trino fluxes coming from the newly-born neutron star. This neutrino

signal is emitted promptly, contrary to photons which take hours or

days for emerging from the stellar envelope.

– PWNe

A Pulsar Wind Nebula is an interstellar cloud made of dust, hydrogen,

helium and other ionized gases (all the aggregate known as nebula)

driven by a pulsar wind, which is a flow of energetic particles escaping

a pulsar (pulsating neutron star). Young pulsars of less than 106 yr are

able to accelerate protons at relativistic energies above the polar cap

region for cases when the spin axis is anti-parallel aligned (expected

in half of the total neutron stars) with the pulsar magnetic moment.

The high-energy neutrino emission (TeV range) in that process takes

place when the relativistic protons interact with the soft X-rays photons

released from the neutron star surface, what is carried out as photo-

meson production. Together with neutrino emission, the interaction

gives TeV γ-rays produced by IC scattering of high-energy electrons on

the synchrotron radiation. However, both γ-ray and neutrino fluxes can

be estimated by several hadronic models proposed by several authors

(41) coming from high-energy nuclei and via decay of pions (both

charged and neutral). The most studied PWN is the Crab nebula, for

which 1.9 to 5.8 neutrinos can be expected with energies from 1 TeV

to 5 TeV for km3 detectors (42). Other studies suggest a no detectable

neutrino event rate coming from PWNe (43), except that of the Crab

Nebulae.

– Micro-quasars

Micro-quasars are X-ray binary systems (XRBs) made of a compact

central object like a neutron star or a black hole, as accretion system

of matter from a close star as part of the scheme. The physics laws

that explain the mass accretion of matter into the black holes is as-

sumed to be the same as for other systems as AGNs and GRBs. They

are classified as “High-Mass X-ray binaries” (HMXBs) when the mass

of the companion star is larger than ten solar masses or “Low-Mass
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X-ray binaries” (LMXBs) when the companion star is less than the so-

lar mass. The mechanism of the mass transfer can be explained from

the “Roche lobe” overflow and stellar wind dynamics (44). Collimated

relativistic jets are obtained as result of the gravitational energy re-

leased by the dropped matter into the system. These jets are ejected

on perpendicular directions to both sides of the accretion disc in the

binary system. Up to now it is still unclear the hadronic component

of the jets (44). There are some models which predicts the neutrino

emission from micro-quasar jets (45) (46). Such studies assume the

dissipation of energy of the acceleration process due to internal shock

waves giving a non-thermal power law distributions for protons up to

large energies, thus, their interaction with X-rays from the accretion

disk or synchrotron photons produced into the jet by thermal electrons

release neutrino fluxes (prior pion production and decay). Neutrinos are

expected to carry ∼5% of the initial protons energy, i.e., neutrinos of

TeV energy range should be produced (44). When HMXBs are consid-

ered, neutrinos and γ-rays can be produced by means of the interaction

between the hadrons in the relativistic jet and the clumps of the stellar

wind of what the massive micro-quasars are made of. Some common

micro-quasars (HMXBs type) have been already detected by using high

and very-high γ-ray energies, as the LS5039 and LSI+61◦303, detected

by HESS and MAGIC respectively and confirmed by Fermi-LAT, or the

CyG X-1 detected by MAGIC and AGILE, CyG X-3 by AGILE and

Fermi-LAT (44).

– Galactic Centre (GC)

Galactic sources in the centre of the Milky Way Galaxy are also con-

sidered as candidates for high-energy neutrino detection. The emis-

sion of CRs arriving from the GC direction enlarges the assumptions

of neutrino fluxes in the TeV to PeV energy range from the decay

of pions or neutrons due to proton-proton collisions from the same

shock-accelerated, GC population with ambient photons (47). The

most studied sources of TeV γ-rays in the direction of the GC are

HESS J1745-290, the Galactic super-massive black hole and the SNR

SgrA East reported by HESS. The expected number of neutrino events
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coming from the GC for a five years of observation are between 2 to

3 for energies above 1 TeV and 5 TeV respectively for a km3 detector

(42). The expected neutrino flux can be normalized to the γ-ray and

neutron fluxes due to the common origin of such particles.

– Fermi bubbles

This is a particular source discovered by the FERMI-LAT detector with

a hard and almost uniform energy spectrum. They are visible in the

Galaxy as two bubble-shaped region centred just in the core of the

Milky Way, perpendicular to the Galactic plane and extending up to 10

kpc from the center of the Galaxy. Fermi bubbles have being postulated

as a promising source of HE neutrinos with fluxes (∼ 0.4 times γ-flux)

reaching dφν/dE ∼ 1.2·10−7E−2GeVcm−2s−1sr−1 (48).

Other possible signals in neutrino telescopes are the neutrinos produced in dark

matter particle annihilations and relic particles such as magnetic monopoles and

nuclearites:

• Dark matter particles

Weakly Interactive Massive Particles (WIMPs) are considered as the most

feasible candidates for Dark Matter. These particles are trapped in the

most inner regions of large mass celestial bodies like the Sun, the GC or

the Earth itself. In agreement to the Minimal Super-Symmetric Standard

Model (MSSM) (49) the favorite candidate as Dark matter particle is the

neutralino, whose annihilation products could produce detectable rates of

flux of high-energy neutrinos (model-dependent). Other proposed particles

as the Lightest Kaluza-Klein (LKK) particle is also widely studied (49).

• Magnetic monopoles

Magnetic monopoles are hypothetical particles predicted from the Grand

Unified Theories (GUT) (50) which have only one pole of magnetic charge

instead of the known two magnetic poles. The detection of magnetic

monopoles in neutrino detectors is based on the same principle as the detec-

tion of high-energy muons. The Cherenkov light emission by using z = ng/e

as charge of the particle can describe the phenomena. In this sense, a fast

monopole with g = gD = (~c)/2e is expected to emit about 8550 times
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more Cherenkov light than muons of the same velocity. Below the Cherenkov

threshold βth = 0.74, a magnetic monopole of velocity β ≥ 0.51 ionizes sea

water releasing indirect Cherenkov emission from δ-rays electrons produced

along its trajectory.

• Nuclearites

The nuclearites also known as “strangelets”, result of aggregates of u, d, s-

quarks and electrons produced in the early universe or in strange star col-

lisions. Nuclearites are also referred to as nuclear SQM (Strange Quark

Matter) nuggets with masses similar to that of heavy nuclei. They have

typical Galactic velocities β ≈ 10−3 under a dominant interaction of elastic

collisions with atoms in the media. Nuclearite detection in neutrino detec-

tors is possible from the energy released through elastic collisions giving the

over-heating of the nuclearite track in matter. If the media is water, a frac-

tion of η ≃ 3 × 10−5 of the energy loss is dissipated as visible black body

radiation emitted by the expanding cylindrical shock wave (51).

1.4 Neutrino telescopes

The neutrino telescopes are the main facilities for detecting high-energy neutrinos

from extra-terrestrial origin. A 3D-array of PMTs allows the detection of the

Cherenkov light released by ultra-relativistic particles crossing the detector. The

beginning, present and future prototypes of neutrino telescopes will be presented

as well as their fundamentals, detection principle and performance.

1.4.1 Neutrino interactions and Cherenkov radiation

Neutrino telescopes consist of a three dimensional grid of PMTs arranged in sev-

eral detection lines anchored to the seabed or buried in deep ice. The PMTs

collect the Cherenkov light produced by relativistic charged muons produced by

the interaction of neutrinos with the detector surroundings. The reconstruction of

the neutrino-induced muon trajectory is carried out from the timing and location

of the PMT hits. The high-energy neutrino interaction with a nucleon N by means

of CC or via Neutral Current (NC) weak interactions yields respectively

νl +N → l +X νl +N → νl +X . (1.9)
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For the range of energies considered in neutrino astronomy, the differential cross

section for CC interactions can be expressed as (52)

d2σνN

dxdy
=

2G2
FmNEν

π

M4
W

(Q2 +M2
W )2

× [xq(x,Q2)+x(1−y)2q̄(x,Q2)] , (1.10)

where x = Q2/2mN (Eν−El) and y = (Eν−El)/Eν corresponds to the Feynman-

Bjorken variables, Q2 refers to the square of the momentum transferred between

neutrino and lepton, mN is the nucleon mass, MW is the mass of the W boson

and GF is the Fermi coupling constant. The represented functions by q(x,Q2)

and q̄(x,Q2) correspond to the parton distributions for quarks and antiquarks.

Interaction cross sections for νµ and ν̄µ are depicted in Figure 1.12 as a function

of the neutrino energy.

Figure 1.12: νµ and ν̄µ cross sections - The cross section measurements use

models based on parton distributions referred in (52)

As it can be deduced from the Figure 1.12, at lower energies the neutrino cross

section behaves linearly with Eν up to∼ 104 GeV. For higher energies the invariant

mass Q2 = 2mNEνxy could get values larger than the W-boson rest mass being

reduced the total cross section.

The Cherenkov radiation is the response of the polarization and relaxation of

atoms along the path of a charged particle whose speed exceeds the speed of light

propagation in the media (53). The Cherenkov angle (θc) is given by

θc = cos−1(
1

nβ
) , (1.11)
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where n is the refractive index of light in the media and β = v/c is the velocity

of the particle divided by the speed of light, β = 1/n represents the Cherenkov

threshold. Fast charged particles will emit Cherenkov radiation such as β > v/c,

leaving a light wake of constant angle. The radiation per unit length x and

wavelength λ can be estimated from the Frank-Tamm equation (54)

d2N

dxdλ
=

2παz2

λ2
(1− 1

β2n2
) , (1.12)

where z is the charge of the particle and α is the electromagnetic coupling con-

stant. The effective wavelength interval for water and detectors is typically be-

tween 310 and 500 nm and the effective number of radiated quanta per unit

distance is around 200 Cherenkov photons every centimetre. If an energy loss

rate in pure water of 1.99 MeV/cm is assumed for a minimum ionizing particle,

Cherenkov radiation contributes for only 5.9 × 10−5 of the ionization energy loss

(33).

1.4.2 The muon neutrino νµ and other neutrino flavours

For neutrino energies typically larger than 1 TeV, the great penetrating power of

the νµ crossing the Earth can generate an interaction outside the detection array.

There is no other particle than neutrinos that can penetrate through the Earth

and enter the detector from below. The muon coming from the νµ CC interaction

enters the detector from this direction. The average angle θν−µ between the

incident neutrino and the out-going muon can be estimated as

θν−µ ∼ 0.6◦
√

Eν(TeV )
. (1.13)

High-energy muons lose energy due to several processes namely ionization, pair

production, bremsstrahlung and photo-nuclear interactions. A parametrization of

that energy loss per unit length can be expressed as

dEµ

dx
= α(Eµ) + β(Eµ)Eµ , (1.14)

where α(Eµ) includes the ionization energy loss and β(Eµ) represents the sum of

pair production, bremstrahlung and photonuclear reactions (55) which contributes

to the detectable signal. For water the ionization loss is roughly given by α(Eµ) =

2 MeV/cm and β(Eµ)tot = β(Eµ)pair+β(Eµ)brems+β(Eµ)phonuc = (1.7+1.2+
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0.6)×10−6 g·cm−2 = (3.5)×10−6 g·cm−2 (56). The range after which a muon of

initial energy Eµ has still a residual energy Ethr
µ at the detector can be quantified

by the “effective muon range” represented in Figure 1.13-left as a function of the

initial muon energy.

The multiple scattering experienced by the muon is an important issue to take

into account. The deviation for muons can be quantified for a distance x as (57)

θms =
13.6(MeV )

Eµ

√

x

X0
[1 + 0.0038 log(

x

X0
)] , (1.15)

where X0 is the radiation length of the media. For the typical energies considered

in neutrino telescopes, θms < θν−µ and the influence is minimal. There are other

channels or signatures than can be detected in neutrino telescopes as

• Electron-neutrinos νe: high-energy νe leave almost the 0.8% of its energy

into an electromagnetic shower which has been started by the leading fi-

nal state electron. The remaining energy is released as fragments of the

target giving a secondary shower. The size of the shower is of the order

of metres in water or ice and it is not large enough compared to the dis-

tance between PMTs, therefore, to a good approximation it can be seen as

a point-like source of Cherenkov photons radiated by the shower particles.

These photons trigger the PMT at the single photo-electron (p.e.) level over

a spherical volume whose radius scales linearly with the shower energy. The

measurement of the radius of the sphere in the PMTs array let to compute

its energy and makes possible to consider neutrino telescopes as total energy

calorimeters. The direction can be reconstructed with an angular resolution

of less than 10◦ only (58).

• Tau-neutrinos ντ : one of the interests of ντ detection is the fact that half

of the νµ convert to ντ over cosmic distances. For ντ CC interactions the

produced τ -lepton travels some distance before it decays and releases a

second shower. The τ -lepton in fact has a short lifetime and for energy

ranges of interest in neutrino astronomy, it only can travels some metres

before the decay.

In this way, if the track of the τ -lepton is long enough to distinguish between

the primary interaction of the ντ and the decay of the τ , the expected
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signature will be for: shower + track + shower, which is known as “double-

bang event” (58). If the τ -decay starts or ends out of the detection array,

the event will have one shower less than the double-bang event and it is

known as “lollipop event” (58).

The processes described above are seen in Figure 1.13-right where the path length

for other neutrino flavours for a water media is shown.

Figure 1.13: Energy loss and range of muons in water - Left: average energy

loss per metre water equivalent for muons in water and rock. Right: range of muons

or path length of particles by neutrino interactions in water.

Back to the NC interactions, is important to remark that this channel gives the

same signature for all neutrino flavours. For the NC channel a fraction of the

interaction energy is carried away unseen by the outgoing neutrino, what gives an

increasing error on the reconstructed energy of the primary neutrino.

1.4.3 First generation neutrino telescopes

The exciting road of neutrino astronomy can be divided in two periods, the one

when the viability of the technology was tested and the first hints of the physics

arose, and that of the consolidation of km3 infrastructures with the capability to

cover several physics programs in particle, astroparticle and even Earth science

studies. The first generation neutrino telescopes includes the pioneer DUMAND

experiment, the precursor Baikal observatory, the large volume AMANDA and

Mediterranean infrastructures. Such projects will be briefly described in this sec-

tion, except the Mediterranean ANTARES telescope which will be broadly de-

scribed in Chapter 2 as main subject of this thesis.
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• The DUMAND project

The Deep Underwater Muon And Neutrino Detector (DUMAND), which

was located closed to Hawaii, USA, can be considered the origin of the

neutrino telescopes concept. Around 1975 the consortium was created, the

decision to begin deployment activities was taken and the commissioning of

the project started. Several drawbacks due to financial policies and technical

matters limited the original scheme of at least a 20k PMTs grid to a final

configuration of 216 PMTs array. This was the concept of DUMAND-II

(37) with eight strings at the corners of an octagon and one in the center,

100 metres of diameter and 230 metres of height. The pressure housing of

the first string broke during its deployment in 1993 and the communication

to shore was cut. The most relevant advance was to obtain with a 7-PMT

test string, the muon intensity as a function of the depth for only a few

hours from a ship. The project was cancelled in 1995 due to the lack of

funding.

• The Baikal telescope

The Lake Baikal in Siberia, Russia, houses the first operative neutrino tele-

scope, “the Baikal telescope”, located at 3.6 km from the shore at a depth

of around 1.1 km (37). Baikal reported the first atmospheric neutrino flux

detected underwater.

The core of the detection scheme called NT200, was a grid of 192 opti-

cal modules (OMs) arranged in eight vertical strings anchored to the lake

floor with height around 72 m. The OMs consisted in glass spheres housing

QUASAR-370 PMTs grouped in pair-wise along the strings. The basic de-

tection unit comprises the pair of OMs plus an electronics module for time

and amplitude conversion and slow control.

The deployment campaign was carried out in six weeks between February

and April 1998 when the lake is often covered by a thick ice layer used as

an stability scaffolding. The connection to shore was done by means of

long copper cables. The data stream from all channels was handled at the

bottom of the NT200 array by a special electronics module less than 100 m

away from the optical modules allowing the synchronization at nanosecond

level over transmission copper cable. The distance between OMs (∼ 6.5
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m) in Baikal leads to a comparable low energy threshold of around 15 GeV

for muon detection, the distance between lines was around 100 m. Up to

400 up-going muon events were collected for a period of 5 years of data

taking. An angular resolution between 3◦-4◦ for Baikal neutrino telescope

was estimated (37).

• The AMANDA telescope

The Antarctic Muon And Neutrino Detection Array (AMANDA), was the

first neutrino telescope deployed totally under ice, few hundred metres away

from the Amundsen-Scott station in the South Pole. The strings deploy-

ment was performed by introducing several detection lines equipped with

OMs into holes of 60 cm diameter drilled with pressurized hot water, with a

careful strategy for cooling the melted water inside the holes. The deploy-

ment campaign was mostly during November to February in the early 90’s

and later on maintenance activities.

The shallow grid AMANDA-A was installed in the early phase of the ex-

periment between 800 and 1000 m as a prototype. The AMANDA-B10

(10-strings) array was deployed deeper between 1500 and 2000 m (37).

The detector was finally commissioned in February 1997 and extended to

9 detection strings more in January 2000, for a total 19 strings of OMs

in the final array AMANDA-II. The total diameters for the detection array

from AMANDA-A, AMANDA-B10 to AMANDA-II were 60, 120 and 200 m

respectively of instrumented volume. The digitization of the signals were

not performed in-situ, since the reduced distance (∼ 2 km) between the

electronics top array and the OMs allowed the subsequent data processing

and digitization. Nonetheless, it required a large output signal of the PMT

as the Hamamatsu R5912-2 8-inches (14 dynodes, 109 of gain) used by

AMANDA.

Concerning physics performance, AMANDA achieved an angular resolution

for muon tracks of 2◦-2.5◦ with a lower energy threshold of 50 GeV. For

cascades a value close to 25◦ (37) was obtained.

• The Mediterranean neutrino telescopes

– NEMO:

The NEutrino Mediterranean Observatory (NEMO) located at 3.5 km
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of depth and 100 km off the Capo Passero at the southern-eastern

coast of Sicily (Italy), has made significant advances on alternative

technology for deep-sea neutrino astronomy. The innovative concept

in NEMO concerning other experiments is the detection strings based

on “flexible towers” with horizontal bars of ∼ 15 m long linked by ropes

in a tetrahedral structure in such a way that the consecutive bars are

placed orthogonal to each other. An electro-optical cable connects the

shore station with the detector site. Several advantages can justify this

detection scheme. First at all, detection towers can be folded together

and deployed to the seabed as a dead weight being later on unfurled.

Secondly, mechanical tension is carried out by the ropes and not by

the electro-optical backbone cable. Third, the 3D array of PMTs per

detection tower favours the local reconstruction of muon directions.

One of the main NEMO results is the estimation of the atmospheric

muon flux in agreement with the expected results from the simulation

(37).

The construction of NEMO was split in two stages. The NEMO phase-

1 allowed to install the electro-optical cable for connection to the shore

station and it operated for several years. Some time after, a mini-

tower with four bars was deployed, connected and it was operative

only few weeks due to technical problems, but showing reliability of

their components for deep-sea neutrino technology. For the NEMO

phase-2 a mechanical test tower (600 m of height) of reduced size was

successfully deployed and unfurled (late March 2013), and it is taking

data since April 2013 (59). The main design includes 8 floors (8 m

in length, 40 m vertical distance) equipped with 32 OMs (4 per floor)

and 16 hydrophones (2 per storey) plus LED and laser as calibration

sensors and the full communication protocol

– NESTOR:

The Neutrino Extended Submarine Telescope with Oceanographic Re-

search (NESTOR) is located on the sea floor off the Pylos Coast in

Greece. Around March 2003 a test floor of a detection tower scheme

(12 m diameter) was deployed at the site equipped with twelve OMs,

electronics and environmental sensors. The basic detection unit in
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NESTOR is an hexagonal floor or star of six arms made of titanium

tubes to form lightweight array with two OMs (15” diameter PMT)

attached to the ends of the arms looking upwards and downwards (60).

The electronics of the floor (control and trigger) is contained into a

titanium sphere (1 m diameter) within a central wrapper. The atmo-

spheric muon flux estimations were in agreement to the Monte Carlo

predictions (60). The NESTOR project has been focused to the site

characteristics as optical properties studies (60).

1.4.4 Second generation of neutrino telescopes

The ongoing neutrino telescope projects aim for an extension of the physics poten-

tial of the precursors described in the last section. In addition, they are strategically

placed along the Earth hemispheres in order to form a global neutrino observatory

covering the whole sky. The ongoing observatories in the Mediterranean Sea, the

Lake Baikal and the South Pole are briefly described.

• The KM3NeT project

The KM3 Neutrino Telescope (KM3NeT) collaboration formed by the Mediter-

ranean telescopes ANTARES, NEMO and NESTOR have joint efforts (hard-

ware, software, simulations, etc.) and operative experience to set the deep-

sea technology and physics potential to observe large fluxes of astrophysical

high-energy neutrino sources. In addition, it will be also a deep-sea research

infrastructure for Earth sciences.

The Detection Units (DU) in KM3NeT will be strings mainly composed by

18 storeys with one OM each spaced 30-36 m and 100 m of distance be-

tween the anchor and the first storey (61).

The Digital Optical Module (DOM) will be a 17-inch high pressure resistant

sphere equipped with 31 3-inch PMTs, high-voltage bases and the digitiza-

tion electronics. The PMTs inside the DOM will be looking from vertically

downwards to about 45◦ upwards and supported by a foam structure fixed

to the glass sphere by a special optical gel. The most relevant improvements

comparing with ANTARES, NEMO and NESTOR technologies include:
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– the overall photocathode area of the 31 PMTs is three times higher

than the one for a 10-inch PMT. An additional increase is possible by

using reflective rings being possible to extend the light collection (37),

– the number of container electronics, penetrators and other equipment

is hugely reduced,

– the PMTs readout is performed individually, then, an improved p.e.

resolution is achieved,

– Some directional sensitivity is provided.

KM3NeT will have around 600 DUs and its geometrical layout is still under

optimization studies. Two electro-optical cables to shore are expected to

be installed with their corresponding junction boxes (one primary and a set

of secondary ones). Other option to take into account is the possibility to

have a cable ring surrounding the detector with several primary junction

boxes connected directly to the DUs. The installation of the first DU is

expected in 2014 and the data taking will start since the installation of the

first line will be operational. Recent progress was the installation of a fully

equipped DOM with 31 PMTs, acoustic positioning sensors and a LED. It

was mounted in the ANTARES instrumentation line, re-connected around

April 2013 (61).

• The IceCube telescope

The IceCube neutrino telescope was conceived under the operative and

physics experience of AMANDA. It consists of 5160 DOMs deployed at the

South Pole with 86 strings at depths between 1450 and 2450 m. AMANDA

itself is embedded into the IceCube detection array. IceCube also uses a

top array called IceTop where there are 320 additional DOMs, ordered in an

array of detection stations above the deeper strings array.

At the beginnings, AMANDA was running as a sub-array of IceCube as a

low-threshold array but it was replaced by a high-density sub-array of six

strings called “DeepCore”. By using this particular configuration, a low

threshold of 10 GeV can be achieved, important for neutrino oscillation and

indirect Dark Matter studies.

Each IceCube string has 60 DOMs with 30 copper pair of cables for power
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and communication duties, and the neighbour DOMs shared the same pair

which allows a fast local coincidence triggering on ice.

The DOM is a 13-inch spherical glass frame housing a 10-inch Hamamatsu

R7081-02 PMT (107 of gain) equipped with a µ-metal cage as shield from

Earth’s magnetic field. A system of LEDs is used for calibration using pulses

at 405 nm with a variable intensity up to 1011 photons. All the DOMs are

equipped with quartz oscillators for local clock signals stamps, synchronized

every few seconds to a central GPS clock, reaching a resolution close to 2

ns (37).

Concerning to detector performance, the angular resolution reached by the

IceCube reconstruction software is about 1◦ for E > 1 TeV muons. If the

full waveform is used, the angular resolution could be improved up to 0.5◦ for

E > 10 TeV. For cascades at large ice depths, an angular resolution between

10◦-30◦ is only reached being worst that the one reached for water-based

neutrino detection techniques mainly due to the short scattering length in

ice.

Around April 2012 the IceCube collaboration reported the discovery of two

> 1 PeV (ever seen in man-made accelerators) neutrino cascades in two

years of data of the IC79+IC86 configuration. An extended search to lower

energies for the same data set gave evidence of 26 additional events (data

collected until May 2013) with energies above 30 TeV (62). The total data

collected to study the 28 events spans about two years, from May 2010 -

May 2012. The results of this analysis about the evidence of high-energy

astrophysical neutrinos from cosmic accelerators, constitutes the first high-

energy neutrino flux ever observed, with a high statistically significant signal

(>4σ) (29). These 28 events have flavours, directions, and energies clearly

inconsistent with what is expected for atmospheric muon and neutrino back-

grounds. Nowadays, the improve of the significance is an ongoing work, as

well, as the understanding what this signal means and where it comes from.

• The GVD telescope

The Gigaton Volume Detector (GVD) pretends to be the abidance of the

Baikal telescope neutrino physics program. The detection units will be 27

clusters of 8-strings detection modules. The GVD clusters have a flexible

structure and makes easy the deployment and recovery activities. Each
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string consists of 4 sections with 48 OMs uniformly spaced at a depth

between 600 to 1300 m. The modules will house a 10-inch Hamamatsu

R7081-HQE PMTs with a peak quantum efficiency ∼35%. A time accuracy

of 2 ns has been reached by activities carried out by prototype strings in

previous campaigns between 2009-2010 (37).

By means of a dedicated Monte Carlo simulation for a specific GVD design

(96 strings, 12 clusters and 2304 OMs) a compromise between large volumes

for cascade detection and reasonable efficiency for muons was found for

a instrumented height of 345 m, cluster diameter of 120 m and vertical

distance between optical modules of 15 m. The effective area for muons

was also estimated at trigger level for E > 1 TeV as 0.3-1.8 km2, and for

cascades above 10 TeV as 0.4-2.4 km2 (63). The angular resolution for

muons and cascades has been recently estimated as 0.25◦ for muons and

3.5 to 5.5◦ for cascades (63). Ongoing activities on GVD includes a 3 full-

scale strings of 72 OMs with its corresponding electronics, taking data since

April 2013, what comprises ∼ 106 m3 of instrumented volume.

1.4.5 Detector performance: angular resolution and effective area

The capability to resolve neutrino point-sources depends on the effective area and

on the angular resolution of the detector. These main concepts are studied in

this thesis as a function of the detection media description, and described in this

section focused to the current knowledge on the ANTARES neutrino telescope

(fully described in Chapter 2) performance.

For a neutrino flux dNν/dEν the number of neutrino events that can be seen by

the detector is just computed from its integral as (64)

Nν = V

∫

∆T
dt

∫ +∞

E′

dEνA
ν
eff

dNν

dEν
, (1.16)

where V,∆T,Aν
eff represents the visibility (fraction of one sideral day when a

source is in the field of view of the telescope), the data taking period (or lifetime)

and the detection effective area respectively.

The angular resolution is defined as the median value of the distribution of the
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difference in absolute value between the reconstructed direction (θrec) and the

true MC direction (θtrue) of the track:

α = |θrec − θtrue| . (1.17)

This magnitude can only be estimated by Monte Carlo simulation. The angular

resolution for data collected during 2007-2010 period can be seen in Figure 1.14-

left. From its cumulative distribution is it possible to conclude that more than

the 80% of the signal events can be reconstructed with an angular error better

than 1◦ (35). The median value of the distribution is 0.46±0.10◦ by considering

a E−2 neutrino flux. The associated systematic uncertainty on angular resolution

has been estimated varying the hit time resolution which is a function of the PMT

transit time spread, mis-calibrations of the timing system and possible spatial

misalignments of the detector (35).
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Figure 1.14: Angular resolution and effective area estimated for ANTARES

for 2007-2010 data - Left: median angle of the angular resolution as a function of

the neutrino energy Eν . Right: neutrino effective area as a function of the neutrino

energy Eν . Some cuts on the quality parameter of the track and the associated

angular error have been applied.

On the other hand, the effective area is defined as the equivalent surface perpen-

dicular to the incident particle beam which is 100% efficient and detects the same

number of particles (neutrinos or muons) than the detector. It depends on the

energy and the direction of the incident neutrino. It can also be defined as the

ratio of the rate of selected events to the total incident neutrino flux detected at

the Earth (Aν
eff (E, ν) = Rν

det(Eν)/Jν(Eν)). The cosmic neutrino flux is assumed
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to be equal both for neutrinos and anti-neutrinos. The effective area is calculated

as (64)

Aν,∆E
eff =

n∆E
∑

i=1

w2i

N · Iθ · IE · EΓ
i · t ·

1

F∆E
, (1.18)

where

IE =

∫ Emax

Emin

E−ΓdE =
E1−Γ

max − E1−Γ
min

1− Γ
, (1.19)

represents the energy phase space factor and

F∆E =
1

IE

∫

∆E
E−ΓdE , (1.20)

the fraction of simulated events in a energy interval ∆E. The remaining factors

represent

• w2i ⇒ w3i/(dΦ/dE)[GeV ·m2 ·sr ·s·yr−1]. Where w3i[yr
−1] is the weight

of the event i per one year and dΦ/dE is the signal neutrino differential

flux in [GeV −1 ·m−2 · sr−1 · s−1 · yr−1] (65),

• N is the total number of simulated events,

• Γ is the generated energy spectrum index,

• t corresponds to the time window of the simulation,

• Iθ relates to the angular phase space factor,

• n∆E gives the number of reconstructed events in ∆E (the true neutrino

energy bin) which pass the quality cuts.

The Figure 1.14-right shows the neutrino effective area for three different declina-

tion angles (35). The impact of the water optical properties in these main detector

performance parameters as well as the main reconstruction track parameters will

be part of the work of this thesis and it will be treated in detail in Chapter 5

(complementary studies on optical properties with reconstructed track).



Chapter 2

The ANTARES neutrino

telescope

Tell me and I forget. Teach me and I remember. Involve me and I learn

Benjamin Franklin

ANTARES (Astronomy with a Neutrino Telescope and Abyss environmental RE-

Search) is a large-area water-Cherenkov neutrino detector and actually the largest

neutrino telescope in the Northern Hemisphere. Located at 2.5 km of depth into

the Mediterranean Sea at 40 km off the Toulon coast in France (42◦ 48’N 6◦

10’E) it consists of a 3D array of 885 PMTs arranged in 12 detection lines, able

to detect the Cherenkov light induced by up-going relativistic leptons produced in

the interaction of high-energy cosmic neutrinos with the detector surroundings.

The 40-km ANTARES Main Electro Optical Cable (MEOC) connecting the shore

station and the detector was succesfully deployed in October 2001 off “Les Sablettes”

beach in La Seyne-Sur-Mer near Toulon, France and the data transmission started

in December 2002. The official inauguration of the ANTARES shore station took

place in November 2003. A special Mini Instrumentation Line equipped with

Optical Modules (MILOM) was installed in March 2005 at the ANTARES site,

with the aim of testing the set of OMs, front-end electronics and read-out and

calibration systems to be definitively used in the final ANTARES detection lines.

The installation of the first detection line equipped with the corresponding instru-

mentation for positioning, monitoring and calibration took place in February 2006

(66). The measurements carried out with the first line included the measurement

of the atmospheric muon flux (66), the muon angular distributions and the depth
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profile of the muon intensity. The installation of the rest of the lines was carried

out from March 2006 until May 2008, and the first neutrinos were detected in

2007. In June 2008 a power distribution failure of the detector took place due to

a problem in the MEOC, 25 km away from the shore. The damaged part of the

cable was replaced successfully and ANTARES restarted data taking in September

2008. Nowadays, the final octagonal sketch of the position of the detection lines

in the seabed is depicted in Figure 2.1.

Figure 2.1: Detector layout at the seabed - The colour lines indicate the position

of the interlink cables between the bottom of the lines and where they converge.

Acoustic pyramids (Pyr) are located surrounding the lines and used for positioning.

Currently, more than 7000 up-going tracks have been well reconstructed and se-

lected for dedicated physics analysis. This chapter will cover several aspects related

to the design of the OMs and the detection lines as well as the architecture of the

data acquisition, readout systems and its performance. Forthcoming the impact

on the ANTARES calibration systems it will be showed and how these results allow

ANTARES an angular resolution of a few tenths of degree.

2.1 Detector architecture. Main elements

The ANTARES detection lines comprise 25 storeys per line where OMs are coupled

in triplets (looking downwards at 45◦), the lines are anchored to the seabed by the



43 2.1 Detector architecture. Main elements

Bottom String Socket (BSS). The OM is a high-pressure resistant glass sphere

housing a 10” Hamamatsu PMT (14 dynodes). Consecutive storeys are separated

by 14.5 m and the average distance between adjacent lines is 60 m. Every storey

is equipped with a triplet of PMTs for light collection, the electronics container

called the Local Control Module (LCM) and in some of them, a set of light/sound

devices for calibration. A typical ANTARES storey is represented in Figure 2.2.

Figure 2.2: An ANTARES storey - Left: a schematic view with its main compo-

nents. Right: a picture of one storey. Optical beacons (4 per line) are installed along

the lines for time calibration and measurements of water optical properties.

At the bottom of each line is installed the String Control Module (SCM), which

collects the data stream from the line and send them to shore by means of the

MEOC connected to the Junction Box (JB) where the detector lines converge.

Every five storeys, a Master Local Control Module (MLCM) with some special

and extra devices is installed instead of the conventional LCM. A basic scheme of

the ANTARES neutrino telescope is depicted in Figure 2.3.

The detector is supplied with 4400 V of AC at 10 A through the MEOC from

the power hut on-shore. This current reaches a transformer in the JB where it is

distributed to the lines. The String Power Module (SPM) at the bottom of each

line provides every five storeys with up to 400 V of DC (67). The MLCM and the

LCMs of the sector are fed in parallel, the Local Power Box (LPB) in the LCM

distributes low power voltages to the electronics boards.

The ANTARES components undergo challenging environmental conditions: a
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Figure 2.3: ANTARES detector at the Mediterranean Sea - Scheme of the

detector and data transport between off-shore and on-shore.

pressure between 200 and 260 bars and high corrosion due to sea water (a con-

ductivity of 46 mS cm−1). To endure these severe conditions and ensure a lifetime

of at least 10 years, materials with known resistance to corrosion were selected:

glass, titanium alloys, anode protected carbon steel, polyethylene, polyurethane,

aramid and glass-epoxy (67).

A detailed description of the OMs and the particular devices forming the detection

lines is presented below.

2.1.1 The Optical Module

The ANTARES OM contains a large area hemispherical PMT glued to a high

pressure-resistant glass sphere with optical gel, a µ-metal cage used as Earth’s

magnetic field shield, the OM electronics, the PMT high-voltage power supply

and the LED system for internal monitoring. A schematic view of the ANTARES

OM and its main components are depicted in Figure 2.4.

The final choice for the ANTARES PMTs was a large photo-cathode area (∼ 500

cm2) PMT (Hamamatsu R7081-20), with quantum efficiency > 20%, collection

efficiency > 80% and Transit Time Spread (TTS) (fluctuation in the p.e. pulse

Transit Time (TT)) < 3 ns. The dark count rate should be < 10 kHz for a

threshold of 0.3 p.e. (68). Figure 2.5 shows the main parameters for the optical

design of the OM.
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Figure 2.4: The ANTARES OM - Left: schematic view and main components of

the OM. Right: the large photo-catode PMT in the complete OM mounting.

Figure 2.5: Optical properties of the OM - a) Combined quantum and collection

efficiency of the PMT, b) Absorption length of the glass sphere and c) Absorption

length of the coupling gel.
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A good peak-to-valley ratio of the PMT is necessary to isolate the single p.e peak

from the pedestal. A value P/V ≈ 2 was required and achieved in the ANTARES

PMTs.

The glass sphere (69) is the PMT envelope which ensures a good light transmission

between 400 and 500 nm. The glass sphere features are shown in Table 2.1.

Paramater Equivalence

Material Vitrobex 8330 (low-activity borosilicate glass)

Outer diameter 432 mm

Thickness 15 mm (minimum)

Refractive index 1.47 (300 < λ [nm] < 600)

Transmission > 95% above 350 nm

Depth rating 6.7 km

Table 2.1: Main design features of the optical module glass sphere.

Earth’s magnetic field can deviate the electron trajectory in the PMT and degrade

the TTS and the peak-to-valley ratio (68). A shield against Earth’s magnetic field

effects consisting on a semi-spherical grid layout made of wires of high magnetic

permeability µ-metal was installed in the OM surrounding the bulb of the PMT.

The optical silicon gel is an optical coupling between the glass sphere and the

PMT. It is used for two purposes: as optical link between the glass-sphere and

the PMT, and as a mechanical position fixer of the different elements inside the

OM (67).

The task of the internal LED system inside the OM is the monitoring of the TT

of the PMT. It is a fast blue LED (470 nm at peak) located in the rear part of

the bulb which flashes the pole of the photo-cathode along an aluminium coating

used as a filter of large optical density (≈ 5). The system is completed with an

external driven pulser circuit (68). The communication between the OM and the

LCM is performed by a “penetrator”, which is a Ti socket with polyurethane over

moulding (67).

2.1.2 Detector lines

The LCM is a titanium container which houses all the readout electronics of the

storey and consisting in a hollow cylinder (179 mm outer diameter, 600 mm long

and 22 mm of wall-thickness) and two end-caps (30 mm of thickness) (67). The

top end-cap houses the two penetrators in the storey connected in turn to the
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upper and lower adjacent storeys. The bottom end cap allows the link between

the LCM itself and the three OMs of the storey by means of three connectors.

There is another additional connector used for additional equipment in the storey.

The LCM crate houses circular-shaped electronics boards plugged into a backplane

which distributes the signals and the DC power. If the storey is equipped with

acoustic instrumentation, there are three additional electronics boards installed for

signal pre-amplification, CPU duties, and for independent signal processing. The

common devices installed in the LCMs are:

• The Local Power Box (LPB). The LPB distributes the power voltages to

the electronic boards of the storeys, as commented before.

• The clock board (CLOCK). A clock reference signal is sent from the shore

to each LCM. In this process the CLOCK card receives the clock signal from

the lower LCM and send it to the upper LCM of the sector.

• The compass motherboard (COMPASS). The heading, pitch and roll of

each LCM is governed by means of a TCM2 electronic compass sensor

installed on a COMPASS motherboard. The TCM2 combines a three-axis

magnetometer and a high-performance two-axis tilt sensor.

• The DAQ/Slow-Control board. The DAQ/SC card hosts the local processor

and memory. Its duties are related to the data handling of the main front-

end electronics motherboard in ANTARES (ARS chip) and those concerning

the slow-control respectively.

The MLCM is equipped with extra devices for signal multiplexing, communica-

tion and electrical-optical conversion by means of a Dense Wavelength Division

Multiplexing (DWDM) and a BIDICON (BI-DIrectional CONversion) motherboard

respectively (67). An Ethernet SWITCH connects the processor of the MLCM-

BIDICON card via the backplane. These devices play an importat role in the data

stream handling coming from each independent LCM which form the sector.

The BSS acts as an anchor at the seabed for the line structure and is strategically

designed to make possible its recovery.

The SCM is installed at the bottom of each line. The SCM collects the data

stream from the line and sends it to shore by means of the MEOC connected to

the JB (67). The SCM/SPM electronics container is embedded into the BSS in
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two independent cylindrical-shaped crates vertically fixed. The SCM container is

also equipped with devices common to the LCM, such as COMPASS, CLOCK and

DAQ cards.

The JB is a high-pressure resistant container (1 m diameter) whose main function

is the interlink (16 sockets) between the detection lines through the SCM and

the MEOC for communications to the shore. It also acts as a power transforming

housing, as a line over-current protection and as a remote diagnostic system. The

JB internal pressure is around 1 bar, and the external water pressure close to 250

bar. The lower hemisphere contains a transformer immersed in oil and the upper

hemisphere the power system slow control electronics (67).

The MEOC provides the optical data and electrical power link between the shore

station and the JB (67). The special structure of the MEOC is based on 48

monomode optical fibres in a stainless steel tube covered by a “pressure vault”

of two windings of steel armour wires. The overall weight of the whole cable has

been estimated ∼ 88 tons with a total length of 41.3 km. The total electrical

power transmitted by the MEOC goes from 400 AC V at 50 Hz in the detector

shore power supply to the 3700-4100 V converted in the local power hut where

the MEOC-detector link starts.

2.2 The background at the detector site

Two kinds of background are present in an underwater neutrino telescope as

ANTARES: one comes from the optical activity from the detector environment

and the other is the result of physical processes at the atmosphere releasing muons

and neutrinos. These two kinds of sources are described in this section.

2.2.1 Optical background

The optical background light at the ANTARES site comes mainly from two differ-

ent sources: the bioluminescence emission by some micro and macro-organisms

and the two modes of radioactive decay of 40K. The bioluminescence emission

has two components, one is a continuous baseline and the other one is a random

component of spontaneous emission. The random component is responsible for

the sudden increase of background counting rates registered in ANTARES up to

1 MHz, non-constant in time. This light is produced by a chemical reaction into
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the organisms (70), mainly in the blue region but also emission shifted towards

the green in some sea creatures and into red in some fishes.

On the other hand, the sea water contains about 4.5 × 10−5 g/L of potassium

in 40K radioactive isotopes with activity above 14 kBq/m3, which emits β and γ

particles when it decays through β-decay and e-capture respectively

40K →40 Ca+e−+ν−e (89.3%) 40K →40 Ar∗+νe →40 Ar+γ (10.7%) .

(2.1)

The β-decay releases a free electron with energy ∼ 1.3 MeV, enough to produce

Cherenkov light (above 100 photons), the Cherenkov threshold at the ANTARES

site is about 0.25 MeV (71). By e-capture it is possible to produce photons with

an energy of about 1.46 MeV. Compton electrons produced by γ-ray scattering can

release Cherenkov light. The 40K contributes to the continuous optical background

component on the ANTARES PMTs as part of the baseline commented for the

biological activity. The continuous baseline is typically estimated close to 60 kHz

for the ANTARES photo-cathode diameter. The Figure 2.6 shows all the optical

background activity for above 3 years of constant monitoring in the ANTARES

site.

Figure 2.6: Optical background registered as a function of time - Median PMT

counting rate. Green indicates measurements by the earlier MILOM and IL07 (Since

December 2007, currently inactive) lines, red for L1F1, blue for L1F25.

As seen in Figure 2.6, several periods of high and low optical background can be

observed. There is not a clear season when the mean rates in the detector trend

to be constant. Nonetheless, as operative experience, the data taking is favoured

for seasons different to spring and beginning of summer when apparently such

rates increases. The number of triggers and type in ANTARES are switched on
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depending of the level of optical background reported in averaged measurements

at top, middle and bottom sections of the detector.

2.2.2 Physical background

There are two kinds of physical background reaching the detector: a “reducible

background” coming from atmospheric muons and the “irreducible background” of

atmospheric neutrinos. Atmospheric muons are produced by the high-energy CRs

striking the nucleons at Earth’s atmosphere. Figure 2.7 shows such contribution

as a function of their zenith arrival direction.

Figure 2.7: Zenith angle distribution for atmospheric muons - Muons at two

different depths and atmospheric neutrino-induced muons at two different energy

thresholds are compared.

High-energy muons can cross the whole atmosphere, going through the detection

media of the detector and produce a track throughout the detector. A muon cre-

ated by an atmospheric neutrino can not be distinguished from a muon created by

a cosmic neutrino. The flux of down-going atmospheric muons is several orders of

magnitude higher than the atmospheric neutrino signal (see Figure 2.7). The at-

mospheric muon background is highly reduced in two ways: first by the deployment

of the detector at large depths and second locating the PMTs looking downwards

45◦ favouring the efficiency for up-going tracks collected in the detector. In ad-

dition, this background can be rejected by means of a proper reconstruction of

the track direction and quality cuts when physics analysis are done. It consists

in restricting the search for signal solely for up-going events, taking into account
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that up-going muons are only possible be produced by interaction of up-going

neutrinos. Sometimes, mis-reconstructed down-going muons (in particular muons

bundles, parallel muons produced in the same cascade) can lead to an up-going

track reconstruction, therefore a cut based on the quality of the reconstruction is

used to purify the data sample. On the other hand, at large energies, the cosmic

neutrino diffuse flux may dominates over the atmospheric neutrino background

and they can be identified by their harder and softer energy spectrum respectively.

For cosmic neutrino point-like sources the background can only be discriminated

by looking for clustering of events at a given direction in the sky. The peak at

the horizon in Figure 2.7 for neutrinos is the result of the “secant theta effect”,

what is an excess of neutrinos due to that pions and kaons generated skimming

the Earth have more flight time in low dense atmospheres, in such a way that the

probability to decay and produce neutrinos increases.

2.3 Data acquisition and readout

The Analogue Ring Samplers (ARSs) motherboards (housed into the LCM) are

the heart of the signal digitization process of the analogue PMTs signals from

the OMs. The performance of this device, its acquisition protocol, as well as the

time-stamp, charge measurement and triggering of the signal are commented in

this section.

2.3.1 Front-end electronics

The signals of each PMT (time and charge) are digitized in-situ by two ARSs

working in a token ring configuration in order to decrease the electronics dead-

time. If the storey contains an optical beacon for timing calibration, an additional

ARS is installed to digitize the signals sent by the internal PMT inside the device.

The ARS has two modes of operation: single photo-electron (SPE) signals and

multi-form waveform (WF) signals. An analogue Pulse Shape Discriminator (PSD)

performs the selection (72). The SPE signals are compatible signals in time width

and amplitude with the single p.e. profile. Figure 2.8 shows the working principle

of the PSD.

In the SPE mode the digitization of the signal is carried out when the electrical

signal exceeds a low threshold of 1/3 of the SPE average amplitude (L0 level ∼ 0.3
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Figure 2.8: PSD principle - Three different criteria are represented: time width,

pulse height and multiple hit during integration. Signals fulfilling the SPE pattern

are selected.

p.e.). If the SPE profile matches, the signal is time-stamped (TS) with a master

clock signal and the TVC and integrated by the AVC in a 35 ns time window (72).

In the WF mode the PMT signal is sampled by means of a set of 128 switched

capacitors running between 0.15 and 1 GHz, 128 times every 1.6 ns. This mode is

mainly used for calibration and detector tuning purposes. Its good resolution lets

to distinguish between two consecutive pulses (72), however, due to the amount

of data collected in WF mode, only SPE signals are currently recorded for physics

analysis in ANTARES.

The time information is recorded by the TVC (an 8-bits Time-to-Voltage Con-

verter) where a ramp generator furnishes a voltage proportional to the time within

two subsequent clock pulses (∼ 50 ns). When the signal reaches the L0 level,

the ramp voltage is frozen and recorded with its TVC value. Since the fallback to

the base voltage is not immediate, a flip-flop scheme based on two TVC ramps is

used (72).

To minimize charge losses, the charge measurement by the AVC (an 8-bits Amplitude-

to-Voltage Converter) is done in several steps by means of three switched capac-

itors: integration (signal from the anode is integrated), memorization (integrated

charge is recorded in the pipeline memory) and charge erasing (pipeline memory

is reset) (72). Such phases are carried out in a cycle of period between 8–30 ns.

Once the L0 level is reached, the time integration is increased in order to cover all

the signal pulse shape (between 17–50 ns). The integrated charge is the result of

the addition of the collected charge in the two capacitors of the integration and
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memorization phases. After integration, the charge is digitized by the AVC and

the PSD returns a binary result if the pulse is SPE or WF type, afterwards, the

data is stored with their corresponding AVC-TVC, TS-PSD respectively.

2.3.2 Data handling and triggering

The data is digitized in-situ and its transmission to shore is based on the “all-data-

to-shore” concept. The all-data-to-shore scheme implies that all signals exceeding

the L0 level are digitized, sent to shore (700 Mb/s per line) and processed in

real time by a farm of PCs. Due to the large amount of data, several levels of

multiplexing are required. The first level is carried out in the LCM of each storey,

where the FPGA (Field Programmable Gate Array) and the microprocessor in the

DAQ card outputs the digitized data of the three OMs. In the second level, the

MLCM of a sector gathers the data from the local OMs and from the other four

connected storeys by means of the Ethernet SWITCH and sends the data stream

to the third multiplexing level through the DWDM, which is performed at the

bottom of the line at the SCM. Here, multiplexers and de-multiplexers pack the

data of the line and send it to shore via the MEOC connected to the JB. The

last level is the de-multiplexing in the shore station where the data are processed

and filtered by a PC farm and sent by optical fibre to the computer centre to

be stored and made available for analysis (72). An on-line trigger selects events

according to the physics under study (muon events, OB events, etc.) The different

multiplexing/de-multiplexing stages are depicted in Figure 2.9.

The digitized data processed by the OMs are packed as arrays of hits of predefined

time frame duration, typically of 100 ms and a size between 60 to 200 kB, being

recorded in a 64 MB SDRAM. Aftwerwards, the total data collected in the detector

are sent in packages to a single data filter process in the on-shore data processing

system. This collection of time frames in the same time window are called “time

slices”. The maximum manageable photon detection hit rate by the DAQ is 300

kHz per PMT.

The standard data trigger aims for a hit selection due to Cherenkov photons by

rejecting the optical background or Cherenkov scattered hits. It is based on the

arrival time of the hits, the distance between PMTs and the speed of light. Two
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Figure 2.9: DAQ system - Multiplexing levels in each detector element in the OM

to the shore station path. Three levels are performed at LCM (first), MLCM (second)

and the shore station (third).

hits in any location in the detector are causally related if their time and position

follows the causality relation

| ∆t |≤ ng
c
d , (2.2)

where ∆t is the time difference between hits, ng/c the group velocity of light in

sea water, and d the distance between the two hit storeys. An additional 20 ns

for the trigger selection are added for compensating the uncertainty of the storey

position, as well as the time calibration and light scattering.

In order to avoid constraints due to accidental correlations, an increase of purity of

event samples is mandatory and the pre-selection of the sample requires additional

trigger levels after L0 level: L1 trigger level and T3 trigger level. As commented,

the L0 level is reached when the electrical signal exceeds a threshold of 0.3 p.e. and

it is digitized by the ARS. The L1 trigger level is achieved when a high threshold

(usually 3 p.e.) is exceeded or a coincidence of at least two L0 levels from different

OMs is found inside a 20 ns time window on the same storey (67). The T3 trigger

is a cluster of L1 of two types: the coincidence of 2 L1 in 80 ns and other of 2 L1

in 160 ns time window. There are several refined trigger algorithms in ANTARES

set for different physics analysis. Some of the used triggers are:

• 3N: which requires at least 5L1 in time windows corresponding to a muon

track.
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• GC: is a directional trigger looking for maximizing neutrinos coming from

the Galactic Center direction. This trigger requires 1L1 and 4L0 levels.

• K40: which is used for in-situ calibration, it requires 2L0 on two OMs of

the same storey within a time window of 50 ns.

There are other triggers which operate jointly with networks of experiments for

multi-messenger approach in ANTARES. Example of this is the TST trigger that

is switched on when an alert is sent by γ-ray satellites as SWIFT of Fermi via the

GCN network of NASA. In this particular trigger, 2 minutes of data around the

trigger are recorded without any filter (64).

2.4 The Optical Beacon system

The Optical Beacon system (OBs) consists of a set of pulsed light sources strate-

gically located throughout the detector. There are two kinds: the LED OB and

the laser OB. The system is mainly used for time calibration (73) but can also

be used as a tool to study the water optical properties and their stability (74)

as it will be shown in Chapter 4 (Estimation of the optical properties with the

OB technique). The standard OBs will be described in the following subsections,

as well as some modified devices specially designed and installed during recovery

campaigns or maintenance operations.

2.4.1 The LED Optical Beacon

The LED OB is a cylindrical high-pressure borosilicate container (210 mm diame-

ter, 443 mm length) inside which an hexagonal frame houses six electronic cards

(one per face) with several LEDs able to flash with a well known emission time

(see Figure 2.10). Each card is equipped with six LEDs, one pointing upwards in

the top and five pointing radially outwards.

Each LED (RMS rise-time ∼0.15 ns) flashes at an energy per pulse ∼150 pJ

(∼ 4 × 108 photons for a 24 V of applied voltage), being the emission time

recorded by means of an internal PMT (RMS rise-time ∼ 0.8 ns, TT ∼ 5.4 ns).

The emission time of the 36 LEDs is synchronized using a variable capacitor (∼200

ps) in each pulser circuit.

As previously said, if the storey contains an OB, an additional ARS card is installed
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Figure 2.10: ANTARES LOB - The borosilicate container protects the internal

LOB structure which holds the electronics boards and internal devices. The distri-

bution of the LEDs in the LOB faces is seen in the top and middle of the electronic

cards.

in the LCM to readout the signals sent by the internal PMT. By means of its

internal clock it is possible to multiply its nominal flashing rate from 30 Hz up to

a factor ten. Figure 2.11 shows the rise-time distribution of the electronic signal

of an LOB flash in the ARS of the internal PMT.

Figure 2.11: Rise-time distribution of a LOB - The rising edges measurements

show a resolution ∼0.15 ns. Inset the waveform of the readout of the internal PMT

in the ARS.

There are four LOB strategically placed per line (storeys 2, 9, 15 and 21) in

such a way that almost all the line can be illuminated. The faces of the LOB

are mechanically fixed to a hollow nylon frame which houses the internal 8-mm

photo-cathode diameter Hamamatsu H6780-03 PMT. A flat acrylic disc is used as

light-guide at the top of the nylon frame structure with the purpose of increasing

the light collection. Its edges are bevelled at 45◦ to improve collection of the light

from the horizontal LEDs. The electronic boards required to release the operating
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voltages and enable the LEDs flashing by external slow control commands are

found at the bottom of the OB structure (75). Their faces can be flashed/triggered

independently.

Based on his amplitude and rise-time properties, the LED model Agilent HLMP-

CB15-RSC00, was selected. The wavelength peak is around 472 nm with a spectral

half-width of 35 nm. A rise-time between 1.9 and 2.2 ns was measured (75). The

fastest ones were placed in the top where the uncertainty in the calibration is

mainly due to the rise-time, not by the light propagation effects. In addition, all

the caps of the LEDs were machined-off in order to extend the angular occupancy

of the emitted light, initially fixed at 15◦. Several depths of cuts were tested

to find an optimum flat angular distribution of the light output. A cut of 3 mm

provided an emission distribution flat within ±10% for angles up to 35◦ and within

a factor two up to 55◦ (Figure 2.12).

Figure 2.12: Emission profile and time distribution for LEDs in the OB - Left:

light amplitude as a function of the azimuth angle for different cut depths of the cap.

Right: time distribution of a single LED pulse.

2.4.2 The multi-wavelength LED Optical Beacons

Two modified OBs with multi-wavelength LEDs (MW-LOBs) were specially de-

signed to study the light propagation as a function of the wavelength. They were

installed during the line recovery and redeployment campaigns in 2008 for the

MW-LOB in Line 12 Storey 2 (L12F2), and in 2010 for the MW-LOB in Line 6

Storey 2 (L6F2).

• The MW-LOB in L12F2:

The layout of the L12F2 LOB is identical to that of the “standard LOB”,
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Figure 2.13: The modified OBs in ANTARES - Left: MW-LOB installed in

L12F2 storey. Two different wavelengths were used: Ultra Violet for faces 1-2, blue

for faces 3-6. Right: MultiWavelength LOB in L6F2. Triplets of LEDs pointing

up-wards with different wavelengths are installed in the top cap.

the main differences rely on the LEDs models mounted in the LOB: different

models at two different wavelengths (400 and 470 nm). Unique standalone

LEDs are mounted in the top of the electronic cards forming the faces as

Figure 2.13-left shows.

The aim of the L12F2 OB was to test different LED models to study their

viability as a time calibration and water optical properties monitoring tool

for KM3NeT. They were selected based on the amplitude and rise-time of

the emitted pulses and the angular distribution of light. Such LEDs features

are described in Table 2.2.

Model HUVL400-5x0B HLMP-CB26 HLMP-CB30-K000 HLMP-AB87 NSPB500S

Face in the OB 1,2 3 4 5 6

Wavelength [nm] 400 470 472 470 470

Angular occupancy (FWHM) 20 23 28 51 20

Rise-time [ns] 1.9-2.2 2.4 2.0 2.4 3.2

Intensity [pJ] - 150 90 130 170

Distance range at 0.1 PE 130 230 195 235 250

Table 2.2: Main design parameters for blue LEDs selection installed in MW-LOB

L12F2.

The wavelength peak for the two UV LEDs is around 400 nm with a spectral

half-width of 20 nm and a rise time of the LEDs pulses between 1.9 and 2.2

ns (76) and they were also machined-off (76). The same kind of LEDs with
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the same features were installed in L11F2 but they have not been operative

due communication failures from the shore station.

The blue LEDs in L12F2 have a wavelength peak between 470-472 nm and

spectral half-width around 20-51 nm (76). The light emitted by the new

LEDs covers a more longer range along the line than the standard ANTARES

LED, but a lower opening angle since blue LEDs were not machined-off (77).

Figure 2.14 shows the average number of hits per flash as a function of the

distance for the different prototype LEDs for the different LED models.

Figure 2.14: Relative light intensity for the prototype LEDs for KM3NeT

installed in ANTARES - The comparison with the standard ANTARES LED is

shown. Larger distances can be reached with the new LEDs.

The maximum distance reached by the light pulse both at 1 p.e. (1 hit per

flash) and 0.1 p.e. (0.1 hit per flash) level is also shown. The LEDs were

successfully tested in-situ at the ANTARES site and some of them installed

in other detection line as OM-embedded LEDs (Nano-Beacon) for specific

studies such as the influence of biofouling on the detection units and for

water optical properties studies.

• The MW-LOB in L6F2:

Concerning the MW-LOB in L6F2, the integration tests were performed in

November 2009 on-shore in the main ANTARES headquarters at CPPM

(Centre de Physique des Particules de Marseille). Its integration was carried

out in March 2010. It was sucessfully deployed in April 2010 and the data

taking period began in November 2010. As in the L12F2 LOB, the MW-
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LOB in L6F2 has different LED models and different wavelengths at the top

of the device, which can be flashed independently. The MW-LOB in L6F2

was strictly designed for water optical properties studies (78). A total of 6

different wavelengths for 6 different LED models were installed in triplets

(to check LED systematics) in the upper part of the OB as shown in Figure

2.13-right. Neither the central radial LED nor the group of four were present

in any of the faces and their labels were used in the DAQ to reference the

new left and right LEDs at the top. The main features for the LEDs of L6F2

MW-LOB are shown in Table 2.3.

LOB face LED MODEL λ [nm]† FWHM [nm]† λ [nm]‡ FWHM [nm]‡
1 VAOL-5GUV8T4 385 5 384 9

2 HUVL400-5x0B 400 20 400 10

3 ETG-5AX440-15 440 - 447 13

4 HLMP-CB15-RSC00 472 35 469 13

4 HLMP-CB30-K000 460 35 458 19

5 HLMP-CE36-WZ000 505 30 494 18

6 SLA580ECT3F 518 35 518 25

Table 2.3: Main MW-LOB L6F2 features. Measurements provided by the man-

ufacturer (†) and laboratory (‡) (IFIC, Valencia) are indicated. A high-resolution

HR4000CG-UV-NIR calibrated spectrometer from Ocean Optics (79) was used.

2.4.3 The laser Optical Beacon

The laser OB is a cylindrical titanium container 705 mm of length and 170 mm in

diameter housing a diode pumped Q-switched Nd-YAG laser which produces very

short light pulses (∼1 ns). An inner structure made of aluminium is used to hold

the laser and its electronics. After extensive studies of different kind of lasers, the

selected model was Nanolase NG-10120-120 (80). Figure 2.15 shows the typical

laser OB.

There are two laser OBs at the BSS of L8 and L7. The laser OB in L7 was only

operative few days since its deployment. Then, communication with the on-shore

station was lost (due to a power failure supply). As L7 laser OB has not been

recovered, a dedicated diagnosis has not been possible. The wavelength peak of

the light pulse is 532 nm after frequency doubling of the original wavelength of

1064 nm. It has a very narrow emission, 1 nm of FWHM, and an energy per pulse

around 1µJ (75).

The laser beam is emitted upwards and leaves the titanium container through an
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Figure 2.15: The Laser OB - Internal and external frames of the mounting. The

device is mainly used for inter-line time calibration, but it is also a cross-check tool

for positioning and for optical properties studies (78).

opening in the top end-cap. The laser OB can operate at variable light intensity

by means of a crystal liquid attenuator system, working jointly with a crystal

quartz rod and a diffuser (optical flat disk) of 2.2 mm of thickness and 255 mm

of diameter (75). The function of the latter element is to spread out the light

beam according to a cosine distribution such that it is possible to flash up the

neighbouring lines.

The crystal quartz rod (40 mm diameter, 47 mm in length) was bonded to the

upper surface of the diffuser, the rod was coated with a black water resistant epoxy

layer. This layout is used to minimize light transmission losses due to underwater

sedimentation and biofouling, since the light comes out from the cylinder along the

vertical walls where biofouling is negligible (75). Due to Snell’s law, the cosine

distribution is conserved when the light leaves the cylinder through its vertical

walls. The minimum and maximum angle of the light output depends on the

refractive index of the crystal quartz rod (n = 1.54) and the refractive index of

water (n = 1.34) and on the dimensions of the rod.

The laser OB is able to operate in triggered (variable frequency) or non-triggered

mode (fixed frequency at around 15 kHz). In the triggered mode, which is the

one used for the standard calibration in ANTARES, the laser OB is triggered

when a TTL (Transistor-Transistor Logic) signal arrives to the emission unit along

a connection in the rear panel of the power supply. As the laser is Q-switched,

the time delay between the trigger signal and the light pulse emission is at the µs

level and the pulse-to-pulse jitter is of the order of a few hundred nanoseconds.

The emission time of the light pulse is recorded by an internal fast photodiode
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integrated in the laser head (75). When the laser pulse is emitted, the photodiode

sends back a signal which is received by an ARS chip housed in the SCM of the

line. Then, the electrical current which feeds the photodiode is switched off and

the next trigger signal is ready to be readout.

2.5 Calibration systems

The amplitude, time and positioning calibration is crucial to carry out the physics

program in ANTARES. The accuracy on the charge calibration is relevant in order

to have a good estimation of the neutrino energy, this energy information helps

on the discrimination of the effective rejection of atmospheric neutrinos which

shown a soft energy spectra, different to the hard spectra of cosmic neutrinos.

Concering the time calibration of the OMs for the arrival of the Cherenkov light

we can distinguish between an absolute and a relative calibration. The absolute

time calibration is relevant since it is linked to the required time to correlate

detector events with astrophysical phenomena. The required accuracy is of the

order of ∼1 ms and the main uncertainty come from the electronic path common

to all the OMs. The relative time resolution is performed to measure the time

offsets between OMs. This is meant as the capability for measuring the same

time for an identical hit, not depending on which OM the hit is recorded. The

nanosecond level of uncertainty reached by the relative time calibration system

allows to estimate an unprecedented angular resolution in ANTARES. The exact

knowledge of positioning of each OM or pointing accuracy is in turn relevant

to reach the desirable detector performance. The main features of ANTARES

calibration systems and their performance are the main subject of this section.

2.5.1 Amplitude calibration

The amplitude calibration relies on the measurement of the corresponding p.e.

peak and the pedestal value of the AVC channel. The measurement of the charge

is performed in three stages (integration, memorization and erasing) for minimizing

charge losses as explained previously. Three main parameters are responsible of

a good charge calibration: the discriminator threshold (start the integration), the

pedestal plus the p.e. peak and the “cross-talk” information (72). Before lines

immersion the discriminator threshold is estimated by computing efficiency curves
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at different test voltages, what allows to obtain the response function of the AVC in

such a way that the suitable voltage can be chosen. Once in-situ, these thresholds

are measured again by using the signals recorded from the 40K decay in the sea

water as p.e. pulses. Concerning pedestal and p.e. peak, the PMTs current is

recorded at random times in special data taking runs and giving the estimation

of the pedestal. The p.e. peak is obtained during observations of minimum

bias events since, as commented, the optical activity due to 40K produces single

photons as well as the bioluminescent bacteria present in the ANTARES site.

The charge measurements in the ARS are affected by a “cross-talk” effect due to

the influence of the TVC ramp values on the analogue memory of the AVC during

the ARS signal digitization. However, TVC values are not affected by the AVC

digitization. A small slope close to the 10% for the AVC channel is arisen as result

of such effect (72). The deviation due to the cross-talk effect over TVC range is

calculated from a linear fit to the measurements in-situ of the AVC against TVC

values (72).

Non-uniform bin sizes or “Differential Non-Linearities (DNL)” are seen as empty

channels in TVC/AVC distributions (inhomogeneous ADC bin sizes). The DNLs

effect is due to an ARS comparator imperfection when the input signal is converted

into an output binary signal. It appears when a given reference voltage is growing

too slow and does not reach the final expected value, giving wrong ADC channels

(72). A way to reduce this effect is to treat the TVC and AVC distributions as

cumulative distributions, but actually is not included in the time calibration and

it is considered as a second order correction.

Once these effects have been corrected, all hits which exceed the L0 level are

parametrized in charge distribution according to the Equation 2.3 (72)

dN

dx
= A exp−α(x−xth)+B exp−

(x−xpe)
2

2σ2 , (2.3)

where x is the charge, xth the effective threshold and xpe the p.e. peak, all of them

in ADC units. The dark current of the PMT and the p.e. distribution are taking

into account in the first and second term respectively. The charge calibration is

applied to reconstruct the amplitude of the individual signals from the OMs. In

this sense, the distribution is peaked at 1 p.e. as it is expected for the optical

activity signals as can be seen in Figure 2.16-right.
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Figure 2.16: Charge parametrization - Left: measurement of the AVC linearity by

estimations of the input (expected) amplitude. Right: calibrated charge distribution

for all PMTs in the detector.

The linear response integrator-ADC as shown in Figure 2.16-left, provides the

equivalence of ADC counts into p.e. units (what is required for the physics anal-

ysis) computed as

Qpe =
AV C −AV C0

AV C1 −AV C0
, (2.4)

where AV C0 and AV C1 are the values that match the pedestal and the p.e.

peaks respectively.

2.5.2 Time calibration

The time calibration is carried out before and after lines immersion in order to

verify and tune time offsets of the OMs. The tools to make possible this, goes

from the echo-based clock system (enable measurement of the time delay of the

signal from the clock board in the LCM to the shore station), a set of devices

on-shore known as “dark-room” assembly (for relative time calibration), the OBs

which carry out the in-situ time calibration and the 40K calibration method (a

cross-check method for OBs time measurements).

2.5.2.1 Time calibration before lines immersion

Before immersion several tests are carried out with a dedicated calibration set up

in a dark-room in order to estimate the time offsets between detection units, by

means of a laser and a clock system. The on-shore calibration starts by flashing

simultaneously groups of OMs (a sector) by short laser pulses in the dark room.

The propagation times from the SCM to each LCM are known from the clock
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system calibration (73). With this experimental setup, the contribution of cable

linking the LCM to the OM, the TT of the PMT and the front-end electronics

time delay can be deduced. The dark-room setup is depicted in Figure 2.17.

Figure 2.17: On-shore calibration in the dark room - A common laser signal

is distributed to the whole sector where the time offsets for each detection unit is

computed.

The laser used is almost identical to that used in the laser OB which is externally

triggered at a frequency of 1 kHz. The light output is distributed to each OM

of the sector through optical fibres using a 1-to-16 optical splitter. Each optical

fibre contains a Lambertian diffuser which spreads the light over each PMT pho-

tocathode area. The length of the fibres has been determined in such a way that

the corresponding time differences are less than 0.3 ns. The time reference comes

from the laser internal photodiode, whose signal is digitized by the reference LCM

(73). From the difference between the time of the signal registered in the OM

and the emission time of the laser photodiode pulse, it is possible to extract a

time offset between each OM of the line and the first OM of the lowest storey

(chosen as reference) with a precision of 0.5 ns. An example of this measurement

is shown in Figure 2.18.

As seen in Figure 2.18, there is a small spread (less than 3 ns) in the offsets. This

spread comes from the difference in the internal cabling of the OMs to the storey

electronics and also from the difference in the TT of the PMTs. The measure-

ments of the time offsets are recorded in the ANTARES data base and used as

initial values in the analysis after the line deployment and connection.

Once at the site, the relevant constants measured on-shore are re-computed since

they could change due to temperature changes, stretching of cables due to trans-

port and deployment activities, and also when high voltages applied to the PMTs
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Figure 2.18: Time offsets measured for the 30 ARS of a given sector - The

measurements are relative to the first ARS of the first OM of the lowest storey.

are modified (73). This is carried out by the OB system and cross-checked by

alternative methods such as coincidence analysis of 40K decays and time residuals

computed from muon tracks.

2.5.2.2 Time calibration after lines immersion

The absolute time calibration aims at the assignment of a universal time to each

event. This is achieved by interfacing the shore station master clock to a card re-

ceiving the Global Positioning System (GPS) time, that has an accuracy of about

100 ms respect to the Universal Time Coordinated (UTC). The time measure-

ment of the PMT hits is made by a self-calibrated 20 MHz master clock system

generated on-shore. This is done from the shore station to the JB and then to the

SCM and LCM of each line, and from there to the ARS chips of each detection

unit. A schematic representation of the clock distribution network can be seen in

Figure 2.19.

The independent time offsets for each specific detection unit are calibrated in-

situ by the OBs. The difference between the signal time recorded in the OM

and the emission time of the corresponding LED flash is measured. Taking into

account the time offsets measured on-shore, and once the nominal travel of the

light from the LOB to the OM has been subtracted, the time distribution of these

“time residuals” should be center at zero. An example of the distribution for time

residuals OB-OM is depicted in Figure 2.20.
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Figure 2.19: Layout of the master clock system - The system is based on a

bi-directional optical communication system using infra-red signals for transmission

in the two opposite directions.

Figure 2.20: Time residuals distribution OB-OM - Signal time residuals are

measured in two OMs. Left: separated two storeys above (∼ 30 m) the OB. Right:

separated seven storeys above (∼ 105 m) the OB.
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The tail seen in Figure 2.20-right corresponds to the effect of light scattering in

water. The peak value of the distributions as that of Figure 2.20 is represented in

Figure 2.21-left for several distances.

The increase of the time residual with distance is a well-known effect in ANTARES

and referred to as “early-photon” effect. This effect appears due to the duration of

the light pulse and the fact that the first photons detected by the OMs determine

the recorded time of the pulse. In this way, the PMTs near to the LOB record the

time of the first arriving photons of the pulse, due to the inability to treat the big

amount of light released by the source of light.

Figure 2.21: Early-photon effect - Left: time residual peak position as a function

of the distance OB-OM for the ARSs of seven storeys. For each distance six values

are represented (2 ARS/OM, 3 OM/storey). Right: distribution of the slopes of the

fits to the time residuals peak position as a function of the OB-OM distance for all

the OBs.

The resulting deviations from the linear fit are used to obtain the time offsets cor-

rections, see Figure 2.21-right. These corrections for all the OMs can be calibrated

with the OBs.

Figure 2.22 compares the times measured by two OMs in the same storey when

it is illuminated at maximum light intensity. As it can be seen, by means of these

considerations a resolution above 0.5 ns is reached (σ(0.7)/
√
2), which is enough

to achieve an angular resolution (angle between real and reconstructed track) in

the detector less than 0.5◦ for neutrino energies above 10 TeV (35).

The laser OB is used to compute relative time offsets between lines since its light

can reach all the detector lines. In this case, the early-photon effect correction is

not needed since only distances where the OMs are illuminated below the 1 p.e.

level are considered. Therefore, the time residuals do not depend on the distance

to the source, and the relative time offsets between lines are estimated as the
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Figure 2.22: Intra-storey time difference - Hit time differences for a pair of OMs

in the same storey when are illuminated by the same OB.

average of the time residuals peak measured every month. The distribution of the

inter-line offsets measured by the laser OB of L8 are shown in Figure 2.23.

Figure 2.23: Inter-line time offsets - The distribution shows the measurements

made with the laser OB of L8. Each offset is calculated as the average of the time

residuals peak.

On the other hand, the 40K present in the sea water is used for time calibration

and PMT efficiency of the detector by using the Cherenkov light induced by the

electron released in the β-decay and e-capture (71). When the 40K decay takes

place some few meters from the storey it is possible to obtain coincidence signals

on the OMs which are completely independent of the bioluminescence in the sea

water and isotropic along the detector. The distribution of the measured time

differences between hits in two OMs of the same storey for one particular case can

be observed in Figure 2.24.

The peak seen in Figure 2.24-left is due to single 40K decays detected in coinci-
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Figure 2.24: Calibration with 40K - Intra-storey time difference for one pair of

OMs in the same storey.

dence by two OMs. The distribution is fitted to the convolution of a Gaussian

plus a flat background and the width of the distribution is due to the distance

from the point where the decay occurs to each of the OMs of the pair. In this

sense, the time offsets computed on-shore in the dark-room as well as the ones

obtained from the in-situ OB calibration can be cross-checked by means of the

identification of the position of the peak within each storey. An incorrect OM

time offset of the pair should be seen as a displacement from the zero position.

2.5.3 The positioning system

The movement of the lines due to the sea current is an important factor since

affects the positioning of the detector and thus the detector performance. The

ANTARES acoustic positioning system includes 1 transceiver/receiver (Tx/Rx) at

the bottom of the lines, 5 hydrophones (Rx) per line at specific heights for signal

receiving, plus a set of autonomous transponders anchored at known positions on

the seabed.

The measurements of the OM positions are performed every two minutes by means

of the measurement by triangulation of the travel time of the acoustic signals

exchanged between receivers hydrophones and transponders emitters.

On the other hand, each storey is equipped with a commercial compass-tiltmeter

sensor (the commented TCM2) (one per storey) which estimates the inclination of

the storey respect to the horizontal plane in two perpendicular axis, based on the

movement of an internal fluid in the sensor. As it is done for tiltmeters, compasses
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are properly calibrated. The heading of the ANTARES storeys are computed based

on the Earth’s magnetic field component in the horizontal plane at the detector

position.

For the reconstruction of the line shape a global χ2 fit is performed to a model

based on the mechanical behaviour of the line (weights and drag coefficients) due

to sea water flow. This mechanical model provides the radial displacement of the

line as a function of the vertical coordinate z. The Figure 2.25 shows the positions

of the 25 storeys of a given line as a function of several sea current velocities.

Figure 2.25: Height and radial displacement of a line - The line position is

referred to the BSS at the bottom of each line. Storeys are represented by the red

dots.

The typical velocities registered in the ANTARES site do not exceed 7 cm/s. For a

extreme case of velocities above 20 cm/s, more than 10 m of radial displacement

can be expected. The Figure 2.26 shows the difference between the triangulated

positions of a storey using its hydrophone and the positions measured from the

alignment fit. The mean of the distribution is 0.8 cm and the width 4.5 cm. These

results suggest the absence of systematic errors present in the line shape model

and shows that this system provides a precision better than 10 cm (81) enough

to achieve the physics goal from the accurate detector positioning requirements.



2. The ANTARES neutrino telescope 72

Figure 2.26: Radial difference between hydrophones - The alignment fit mea-

surements are those of that March 2010 estimations. It showed a precision ∼ 10 cm

for the positioning system.



Chapter 3

The detection medium

description for deep-sea

neutrino detectors

An expert is a man who has made all the mistakes which can be made, in a

narrow field

Niels Bohr

In order to detect the correct signal from a neutrino point-like source, a good

angular resolution and effective area of the detector are mandatory. Both angular

resolution and effective area depend on the optical properties of the detection

medium. This chapter aims to show the basic concepts of the propagation of light

in water, and how the relevant optical parameters of the medium are extracted

from the studies performed by the oceanographic community and astrophysicists

working on neutrino observatories. In addition, the parameterized water model (as

detection medium) used in ANTARES will be commented, and the past and status

of the optical characterization of the site are reviewed, setting the foundations of

the work developed in this thesis to be shown in the Chapters 4 and 5.

3.1 An introductory overview

High-energy neutrinos coming from astrophysical sources can be detected in the

Earth by identifying the small fraction of up-going high-energy muons produced

in the CC interactions of such neutrinos with the detector environment. When
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relativistic muons crosses a transparent medium as water, they can be detected by

the Cherenkov light emission if their trajectory intersects the instrumented volume

of the detector. The Cherenkov light induced by particles crossing the detector has

an optical region of interest between 320 ≤ λ [nm] ≤ 620. At λ < 320 nm light is

absorbed by the glass and the silicon gel of the OM. At λ > 620 nm the quantum

efficiency of the PMT is not high enough. The light propagation through the

water is mainly affected by the convolution of two phenomena: absorption (pho-

tons disappearance) and scattering (change of direction of photons). The angular

distribution of scattered photons becomes quite relevant as well. In this way, the

total number of detected Cherenkov photons is deeply linked to the absorption

in the medium while the arrival time of such photons from the point of emission

in the track to the OMs, is critically affected by the scattering properties of the

medium. With high density of absorption centres in the medium, large fractions

of photons will be lost before reaching the OMs. The larger the scattering, the

larger the number of delayed photons that will reach the OMs.

Previous studies in ANTARES with a less detailed simulation software and recon-

struction algorithms showed that an uncertainty of the ±25% in the scattering

can change the event rate by 5-10% (82) (83). The scattering effect on angular

resolution was found most significant at large energies (∼ 100 TeV) where the

quality of the reconstruction dominates. At lower energies the angular resolution

is governed by the uncertainty in the neutrino-muon angle at the interaction ver-

tex (83). The ignorance on the accuracy of scattering suggested variations and

uncertainties about 30% and 0.2◦ for the detector efficiency and detector angular

resolution respectively (83). Photons scattered at large angles are lost, therefore

more scattering and less photons will be detected, what reflects a decrease in the

detector efficiency. A similar reasoning is applicable for the angular resolution of

the detector, since the number of useful photons for reconstruction is reduced for

large scattering in the medium, therefore degrading the detector performance for

short scattering lengths.

Concerning the absorption effects on the detector performance, for the average

distance between detector lines of 60 m, changes in absorption length of ±10%

reduce the number of detected photons between 10-20% (83). At larger energies

the performance of the detector should be less impacted by the absorption length

uncertainty since the number of photons increase with energy.
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This chapter aims to identify the basic tools to comprehend the interaction light

and matter, and how the optical properties of the environment can be extracted.

The impact of the optical properties of the water on the ANTARES detector per-

formance is the final goal of this thesis, what will be the last topic of Chapter

5.

3.2 Light propagation and interaction with matter

The optical properties of the water are mainly represented by the attenuation,

absorption and scattering phenomena. A general review about such concepts

and how they are linked to the radiative transfer equation for the medium is

presented. The Beer-Lambert law used for most of the transmission and absorption

parameterizations is roughly deduced. The determination of the scattering requires

a different rigorous treatment.

3.2.1 Fundamental concepts: transmission, absorption and scat-

tering

The study of the interaction between light and matter is associated to the under-

standing of the properties of the medium. A saline natural water as the ANTARES

environment, is composed both by dissolved and particulate matter which are vari-

able in type and concentration, therefore, impacting on the optical properties of

the medium. In this way, it may lead to temporal and spatial variations in the

detector. The optical properties are in turn linked to biological activity, chemical

and geological constituents of the water.

The optical properties of the water are classified as Inherent Optical Properties

(IOP) when depend only upon the medium and as Apparent Optical Properties

(AOP) when depend both of the medium and on the geometrical (directional)

structure of the ambient light field, as well that shows regular features and sta-

bility in order to be used as fingerprints of the water body (84). IOP are mainly

the absorption coefficient and the volume scattering function, and in second or-

der, the scattering coefficient, the refractive index and the beam attenuation (or

transmission) coefficient. For AOP are often cited the irradiance reflectance, the

average cosines and the diffuse attenuation coefficients. The radiative transfer

theory is the connection between IOPs and AOPs. The results in this thesis are
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focused to IOPs of the medium namely, transmission, absorption and scattering.

When a narrow and collimated incident beam of monochromatic light Φi(λ)

crosses a small fraction of volume of water ∆V of thickness ∆r, one part of

the beam is absorbed Φa(λ), other part is scattered out Φs(ψ, λ) at angle ψ

(0 ≤ ψ ≤ π) and the rest is transmitted along the volume unaltered in direction.

This phenomenology is graphically represented in Figure 3.1.

Figure 3.1: Geometrical inference for IOPs determination - The total effect

when a incident beam crosses a section of matter is summarized by the transmission

of light plus absorption and scattering response of the medium, as conservation of

energy. The solid angle where the light is scattered out is defined as ∆Ω at a

wavelength λ and angle ψ is measured relative to the direction of the incident beam.

The volume illuminated by the incident beams is ∆V = ∆r∆A, ∆A being the area.

By assuming scattering in all directions and considering only elastic scattering

(no changes of wavelength, no loss of energy) what will be justified in the next

subsection, it is possible by means of conservation of energy set that

Φi(λ) = Φa(λ) + Φs(λ) + Φt(λ) . (3.1)

If Equation 3.1 is divided into Φi(λ) the absorptance A(λ), scattereance B(λ)

and transmittance T (λ) are obtained. If such quantities are evaluated in the limit

when the thickness ∆r of the volume of water is so small, what is obtained are the

absorption and scattering coefficient represented by the attenuation coefficient as

c(λ) = a(λ) + b(λ) = lim
∆r→0

A(λ)

∆r
+ lim

∆r→0

B(λ)

∆r
[m−1] . (3.2)

The radiant intensity I [W/sr] defines the spectral (radiant) power Φ [W] from a

source that is directed into a particular direction along the center of a cone encom-
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passing a solid angle Ω [sr]. In general, by assuming absorption and scattering, a

beam of photons of radiant intensity I going to some propagation direction (i.e.

x-direction) is altered by the attenuation effects as (85)

dI

dx
= −I · c(λ) . (3.3)

If Equation 3.3 is integrated the Beer-Lambert law is obtained

I = I0e
−c(λ)x = I0e

−[a(λ)+b(λ)]x . (3.4)

Often Equation 3.2 is represented in terms of the inverse of such quantities as

1

λatt
=

1

λabs
+

1

λsca
. (3.5)

In Equation 3.5 the attenuation, absorption and scattering (att, abs, sca) refers

to c, a, b respectively in Equation 3.2. These quantities in turn represent the dis-

tance into a material (i.e. in the volume of water) at which the probability that a

particle (i.e. the Cherenkov photon) has not been attenuated, absorbed or scat-

tered has dropped to 1/e respectively. In other words, the “attenuation length”

is defined as the average distance between photon attenuation events (absorption

and/or scattering). In this way, the “absorption length” is defined as the average

distance travelled by the photons before being absorbed. The “scattering length”

represents the average distance between two consecutive photon scattering events.

Equation 3.5 is only valid if a collimated beam of light is considered, for isotropic

sources the scattering length has to be re-defined as it will be showed in forth-

coming sections.

On the other hand, the volume scattering function β(ψ, λ) or differential scatter-

ing cross section per unit volume which takes into account the angular distribu-

tion of the scattered light, can be expressed in terms of the radiant intensity Is

(Φs(ψ, λ)/∆Ω) as

β(ψ, λ) = lim
∆V→0

Is(ψ, λ)

Ei(λ)∆V
[m−1sr−1] , (3.6)

where Ei(λ) is the incident irradiance equal to Φi(λ)/∆A. The “irradiance” term

is used when the electromagnetic radiation is incident on the surface. In turn, the
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scattering coefficient can be obtained by integration of β(ψ, λ) over all possible

directions as

b(λ) = 2π

∫ π

0
β(ψ, λ) sinψdψ . (3.7)

The integral in Equation 3.7 is often divided into two components: forward scat-

tering (0 ≤ ψ ≤ π/2) and backward scattering (π/2 ≤ ψ ≤ π), each characterized

by their corresponding scattering coefficients bf (λ) and bb(λ) respectively. The

function β(ψ, λ) is normalized by the scattering coefficient b(λ), and the elastic

scattering phase function β̃(ψ, λ) is obtained (84)

β̃(ψ, λ) =
β(ψ, λ)

b(λ)
[sr−1] . (3.8)

According to the previous definition, the following normalization condition is pre-

served

2π

∫ π

0
β̃(ψ, λ) sinψdψ = 1 . (3.9)

The scattering phase function is often characterized by the average over all scat-

tering directions of the cosine of the scattering angle ψ as

g ≡ 2π

∫ π

0
β̃(ψ) cosψ sinψdψ , (3.10)

what is known as the average cosine or the asymmetry parameter. In this way,

g is close to 1 when β̃(ψ) is very large for small ψ. A value g = 0 is reached

when β̃(ψ) is symmetric about ψ = 90◦. Other important IOP parameter used in

the optics of natural waters is the “single-scattering” albedo or the probability of

elastic scattering (84)

w0 =
b

c
≡ b

a+ b
, (3.11)

as well as the probability of back-scattering

B(λ) =
bb(λ)

b(λ)
= 2π

∫ π

π/2
β̃(cosψ, λ) sinψdψ . (3.12)
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3.2.2 Radiative transfer equation and optical parameters

The Beer-Lambert law is commonly used by the oceanographic community and

neutrino observatories to extract optical parameters of the environment, the ex-

traction of these optical parameters is in turn linked to the scalar radiative transfer

theory (84). Based on such formalisms, the absorption and scattering spectra are

built and used as reference for the characterization of the detection media for

neutrino detection facilities. The scalar radiative transfer equation can be set as

(86)

[
1

v

∂

∂t
+ ~n▽+c(λ, ~x)]L(λ, ~x,Ω) = QE(λ, ~x,Ω) +QI(λ, ~x,Ω) , (3.13)

where L(λ, ~x,Ω) is the total spectral radiance of light in water as a function of

the solid angle Ω = Ω(θ, φ). The “radiance” or “spectral radiance” [W·sr−1·m−2]

describes the amount of light that passes through or is emitted from a particular

area and falls within a given solid angle in a particular direction. The spectral

radiance is often defined as (84)

L(x, y, z, t, θ, φ, λ) =
∆Q

∆t∆A,∆Ω∆λ
, (3.14)

where ∆Q is the amount of radiant energy incident in a time interval ∆t over a

surface ∆A located in x, y, z at wavelength λ. The quantity c(λ, ~x) as a function

of the wavelength and the spatial and time coordinates ~x = (~r, t) is the attenuation

coefficient. The v is the speed of light in water, and ~n refers to a unit vector in

the propagation of the photon direction. The right part of Equation 3.13 takes

into account the source of both elastic (E) and inelastic (I) scattering of light.

The elastic source can be described by

QE(λ, ~x,Ω) =

∫

4π
dΩ

′

β(λ,~r, cosψ)L(λ,~r,Ω
′

) . (3.15)

The inelastic scattering expression takes into account inelastic processes of Raman

scattering, red fluoresence by chlorophyll and blue fluorescence by yellow substance

also known as Gelbstoff, or coloured dissolved organic matter or CDOM present

in sea water (86) (84). The probability of Raman scattering in water is one tenth

of the probability of occurrence of elastic scattering in water (87), therefore, this

component is not included in the analysis of this thesis. In addition, at very larger
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depths in the sea (i.e. ANTARES site) the presence of chlorophyll and yellow

substance should be highly reduced, as the sunlight does not penetrate, there

is no phytoplankton and then chlorophyll. Their associated fluorescence process

takes place when a molecule absorbs the incident photon and shortly thereafter

emits a photon of greater wavelength. This photon emission is carried out at

microsecond scale (84), since the experimental procedure used in this thesis record

the light emitted into a nanosecond time interval, the contribution of fluorescence

is excluded also from this work.

In the photon interaction with an atom or molecule, the photon can be absorbed

leaving the atom or molecule in a state with higher energy (excited state), named

electronic, vibrational or rotational. If the atom or molecule promptly comes

back to its original internal state (ground state) with a photon emission of the

same energy as that absorbed, it defines the “elastic scattering”. If the excited

molecule or atom emits a photon of less energy than the incident photon, it is

at longer wavelength, it defines a “inelastic scattering”. This occurs because

the molecule or atom remains in an intermediate excited state and afterwards,

may emit another photon and go back to its original state, or even, the retained

energy could be converted to thermal or chemical energy. A fraction or the total

energy of the absorbed photon may be converted into thermal energy (kinetic) or

chemical energy (i.e. formation of new compounds), and the conversion of this

photon energy in a non radiant form is what is known as the true “absorption”.

The opposite process is called true “emission” and takes place when the chemical

energy is converted into light.

The radiative transfer equation indeed requires considerations of elastic scattering,

inelastic scattering, true absorption and true emission. The above assumptions

are the basis to set the energy balance equation for beam photons represented by

the radiative transfer equation.

3.3 Absorption of light in natural waters

Several factors are responsible of absorption of light in the sea water namely water

molecules, coloured dissolved organic matter (yellow substance) and different kinds

of chlorophyll molecules grown in phytoplankton cells in natural waters (86). The

absorption of light by pure water is associated to electronic transitions within
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the water molecule as commented. By considering pure water, at wavelengths

370 < λ[nm] < 450, the molecular scattering provides 20 to 25% of the total

beam attenuation c(λ) (84). At all visible wavelength range scattering effects

can dominate absorption in water with large particulate loads. At wavelengths

larger than 450 nm the energy of the photons is transferred to more than one

of the vibrational modes of the O-H bond in the water molecule (88). The true

absorption of a photon is translated into a non-radiative energy scheme; thermal

energy dissipation takes place as commented before.

As a reference model in the oceanographic community the absorption coefficient in

natural waters as a function of the wavelength for a given depth can be expressed

as (86)

a(λ) = aW (λ) + aY (λ) + aC(λ) , (3.16)

where aW (λ) corresponds to the absorption coefficient of pure water, aY (λ) relates

to an specific absorption coefficient of yellow substance and aC(λ) the specific

absorption coefficient for chlorophyll (84). The specific absorption coefficients in

Equation 3.16 are, therefore, due to three main factor sort as

• Absorption by pure water:

The contributions by Smith & Baker (89) have been of great interest. They

performed an indirect determination of the upper bound of the spectral

absorption coefficient of pure sea water aW (λ) in a wavelength range of

200 < λ[nm] < 800. In their study, they assume that for the clearest

natural waters absorption by salt or other dissolved substances is negligible,

the scattering is only present for water molecules and salt ions, and no

inelastic scattering is considered. This assumption leads a inequality for the

absorption of pure sea water such as

aW (λ) ≤ Kd(λ)−
1

2
bswm (λ) , (3.17)

where bswm (λ) represents the spectral scattering coefficient for pure sea water

available in tabulated data from Morel & Loisel (84). Their estimations as

well, are based in measured values of the diffuse attenuation function Kd(λ)

for very clear waters (89). By having these two contributions, the value of

aW (λ) is easily extracted. As such values for aW (λ) are consider upper
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bounds, the true value of absorption for pure water should be somewhat

lower at least at violet and blue wavelengths. The uncertainties reported

by Smith & Baker arise from Kd(λ) due to the fact that it is an AOP,

therefore influenced by environmental conditions. In addition, they remark

that at λ < 300 nm their values are closely an “educated guess”. The

accuracy of their measurements of aW (λ) are within +25 and -5 percent for

300 < λ [nm] < 480 and +10 to -15 percent between 480 < λ [nm] < 800.

Other numerical solutions as that by Gordon (84) consider a more restrictive

inequality corrected by effects of sun angle and sea state onKd(λ). By using

this, the Smith & Baker estimations could be reduced by up to 20% at blue

wavelengths. As the measurements were made based on the clearest natural

waters, a small amount of dissolved or particulate matter are present and

may contribute both absorption and scattering.

• Absorption by yellow substance (CDOM):

The contribution of the CDOM to the absorption is reasonably well described

by Equation 3.18

aY (λ) = aY (λ0)e
−0.014(λ−λ0) , (3.18)

along the wavelength range 350 < λ[nm] < 700, where factor λ0 is the

reference wavelength and aY (λ0) is the absorption due to yellow matter at

λ0 and, dependent on the concentration, values for the exponent between

-0.014 to -0.019 are in turn reported (84).

• Absorption by chlorophyll in phytoplankton:

Phytoplankton has a stronger contribution than CDOM to absorption. They

are absorbers of visible light where the absorption by chlorophyll is charac-

terized by strong absorption bands in the blue and red region, at 430 nm

and 665 nm respectively in the case of the “chlorophyll a” (main pigment

in phytoplankton cells), with very short absorption in the green region. The

concentration of chlorophyll a can reaches up to 0.01 mg·m−3 in the clear-

est open ocean waters. Its distribution along the phytoplankton cell is not

random, what means that the spectral absorption in water is flatter with

less-pronounced peaks and reduced overall absorption (84). A typical source
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of variability is the pigment composition since each pigment displays a typ-

ical absorption curve. The chlorophyll specific spectral absorption curve for

phytoplankton for different pigment composition could be approached by

Equation 3.19

aC(λ) =
ai(λ)− ai(737)

Ci
, (3.19)

where i denotes each specie of pigment composition and Ci the concen-

tration. The subtraction ai(737) is done in order to remove the effects of

absorption due to constituents different to phytoplankton pigments. The

assumption is not absorption by pigments at 737 nm and that residual ab-

sorption is wavelength independent. Nonetheless this approach, an average

specific absorption curve was done by Morel by averaging over 14 different

cultured phytoplankton species.

The determination of absorption by pure water is a difficult task because the

preparing or obtaining uncontaminated samples with unaltered physical and chem-

ical properties once removed from the site. Several aW (λ) data sets from different

authors have been produced by using different techniques. One of the widely ref-

erence data sets come from the Smith & Baker observations (89) derived from

radiative transfer theory approximations.

The common experimental procedure to measure aW (λ) for oceanic water con-

sists of the filtering of a water sample in order to retain particulate matter on a

filter pad. Once the sample is prepared, the absorption by the particulate matter

ap(λ) is determined via spectrometry, then by adding the absorption by pure water

aW (λ) to the particulate matter contribution, is obtained the global absorption

by oceanic water. This procedure involves many systematic errors from the de-

termination of the particulate matter contribution (84), in addition it assumes a

negligible contribution due to yellow substance absorption. If the contribution of

yellow substance aY (λ) is wanted, the absorption of the “filtrate” afiltrate(λ) is

measured in such a way that aY (λ) = afiltrate(λ)−aW (λ). The in-situ measure-

ments become to be a more difficult task, due to the technical challenge what it

involves.

Other interesting absorption coefficient measurements are those by Pope & Fry

(90) for 380 < λ[nm] < 700 range, by using integrating cavity measurements
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(the ICAM device). An integrating cavity is just a spherical frame that can be

uniformly illuminated by a monochromatic light from outside and whose internal

walls are made of a diffuse reflecting material of very high reflectivity (>99%).

This feature provides an isotropic illumination of the sample once introduced in

the cavity, which allows to make absorption measurements independently of the

scattering effects. The integrating cavity is made of two concentric cavities en-

closed by the diffuse reflecting wall: the outer filled with air, and the inner filled

with the sample. The high reflectivity of the cavity walls provides a long effective

optical path length in a small sample volume. The energy is lost from the radiation

field and transferred to heat, what lead to a reduction of the outward irradiance

at the inner surface of the cavity. By comparing the outward irradiance from both

empty and full cavity, the absorption coefficient can be extracted. The Figure 3.2

shows the absorption estimations by Pope & Fry compared with that obtained by

Smith & Baker.
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Figure 3.2: Representative absorption length spectra in oceanography - Smith

& Baker estimations differs systematically Pope & Fry measurements exceeding up

to 3 times in the UV and more than three times up the 500 nm, then both spectra

trend to match.

As seen, the Pope & Fry measurements differ from the Smith & Baker data sys-

tematically, for instance, the absorption length close to the UV showed to be 3

times lower. By means of the ICAM instrumentation of Pope & Fry, it was possi-

ble to obtain an absorption spectrum which differs for wavelengths less than 490

nm respect to several authors including Smith & Baker. The main differences

are attributed to more effective water purification by Pope & Fry, the absence of

scattering effects in the ICAM, and the greater sensitivity of the ICAM (90).
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The Smith & Baker model for the clearest natural waters is the reference spectra

for the ANTARES absorption parametrization of the detection media giving ac-

ceptable results in the detector performance. The clearest natural waters as the

deep oceanic one should not be confused with pure water, which is water triply

distilled.

3.4 Elastic scattering of light in natural waters

The global effect of the elastic scattering mainly comes from two contributions.

The first one is due to density fluctuations of water molecules and it is known as

“Einstein-Smoluchowsky” or “Rayleigh scattering”. In this case, the size of this

fluctuations is small enough to consider the electromagnetic field uniform over all

the extension of the scattering centre being the angular distribution of the scat-

tered photons forward-backward or symmetric. The second type of scattering is

due to suspended particulate on the water whose size is much larger and producing

a very complex angular distribution peaked on the forward direction. The total

scattering coefficient can be expressed as the addition of those two contributions

as (86)

b(λ) = bRay(λ) + bMie(λ) , (3.20)

where each scattering contribution is explained in detail as follows.

• Scattering by small centres: “Einstein-Smoluchowsky” or “Rayleigh”

scattering

This kind of scattering is experienced by particles with radius smaller than

the wavelength of light (typically ∼ λ/20). The small scattering centres in

natural waters are divided into local fluctuations in the density of the water

and very small impurities. The Einstein-Smoluchowsky theory if a formalism

based on the statistical analysis of the random motion of the water molecules

in a given volume of water, which causes local fluctuations in the molecular

number density and, therefore, fluctuations in the index of refraction which

give rise to scattering. Before the development of such formalism, Rayleigh

proposed an independent theory for scattering for small spherical particles.
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The angular distribution of the scattered radiation and wavelength depen-

dence by both approaches are the same. By comparing the expressions of

the number of scattered photons given by the Einstein-Smoluchowsky and

Rayleigh theory, it is possible to observe that the intensity of the scattered

light is proportional to λ−4, and depends on the cosine of the scattering

angle (cosψ). The exponent for λ can slightly change as a function of the

empirical models used for the relation between the dielectric constant of

the water, density and refractive index. The best average value is about

−4.32 ± 0.31. Based on the above considerations, the volume scattering

function either for pure water or pure sea water get the form (91) (84)

βRay(ψ, λ) = βRay(90
◦, λ0)

(

λ0
λ

)4.32

(1 + 0.835 cos2 ψ) . (3.21)

The normalized phase function of scattering of pure water from Equation

3.21 can be written as

β̃(ψ) = 0.06225 · (1 + 0.835 cos2 ψ) , (3.22)

where the 0.835 factor is due to the anisotropy of the water molecule (84)

and 0.06225 = β̃Ray(90
◦). In addition, the total scattering coefficient can

be obtained from

bRay(λ) = 16.06

(

λ0
λ

)4.32

βRay(90
◦, λ0) . (3.23)

The values of βRay(90
◦, λ0) and bRay(λ) both for pure water and pure sea

water can be obtained from tabulated data (84). The values for pure sea

water exceed in 30% those of pure water for all the wavelength range.

• Scattering by large centres: “Mie” scattering

Particle sizes which are larger than a wavelength (typically > λ/20) can not

be considered as simple small spheres subject to a uniform electromagnetic

field. Mie proposed an analytical solution of such equations for an arbitrary

geometry and electronic composition (85). The Mie theory is a generaliza-

tion of the Rayleigh theory leading to the same result in the limit where
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the particle sizes are small. In this case, the choice to treat the problem

goes to the solution of the Maxwell equations with the dedicate bound-

ary conditions. Mie showed that the larger the scattering centres, the more

forward-peaked scattering angular distribution is expected. The solutions for

the scattering angular distribution is complex and depends on the different

sizes and density distributions of particles. One of the most common ana-

lytical model proposal is based on the normalized Henyey-Greenstein (HG)

volume scattering function as (85)

β̃HG(cosψ, g) =
1

4π

(1− g2)

(1− 2g cosψ + g2)3/2
. (3.24)

In Equation 3.24 the relative amount of forward or backward-scattering

determined by the distribution of particle size densities in the water, can

be governed by the parameter g which is simply the average cosine of the

scattering angular distribution

g = −2π

∫ 1

−1
β̃HG(ψ, g) cos ψd cosψ . (3.25)

In addition the HG function has the advantage that is easily invertible, what

it is so useful in the sampling of such distribution in Monte Carlo simulations

such as (83)

cosψ = 2r
(1 + g)2(1− g + gr)

(1− g + 2gr)2
− 1 , (3.26)

where r is just a random number between 0 and 1. In principle, the knowl-

edge of these distributions is needed, but on practice, the scattering angu-

lar distribution is either measured experimentally or approximated by some

analytical model which can reproduces the global shape of Mie scattering

angular distribution. More refined treatments based on HG functions can be

found in Haltrin’s studies (86) (85). These approaches include the addition

of extra-terms, the usage of Legendre expansion approaches and the usage

of delta-hyperbolic approximations in order to extract the most accurate

scattering behaviour by large centres.
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• Petzold measurements and scattering phase functions

Concerning experimental scattering measurements, Petzold, by using a de-

vice with spectral response centered at 514 nm and bandwidth 75 nm of

FWHM, was able to extract a widely referenced data (84) (86). Petzold’s

measurements include volume scattering functions β(ψ, λ) for three kind

of oceanic waters in a scattering angle range 0.1 < ψ [deg] < 180. The

behaviour of the volume scattering functions of these three oceanic water

showed to be consistent in their shapes, but not for their corresponding

scattering coefficients differing by a factor of 50 (84). From the uniform

shapes is then possible to define a typical particle phase function β̃(ψ, λ).

Such estimation was possible by using three set of Petzold’s data from wa-

ter with a high particulate load (84). The volume scattering function for

pure sea water is determined by using Equation 3.21 (with tabulated data

of βRay(90
◦, λ0) (84)).

A generalization of the scattering models described before can be given by a

linear combination what is a weighted sum of the particle-scattering phase

function βMie(ψ, λ) and the molecular scattering βRay(ψ, λ) phase func-

tion. The average cosine 〈cosψ〉 of the global distribution can be expressed

in turn as

〈cosψ〉 = η〈cosψ〉Ray + (1− η)〈cosψ〉Mie , (3.27)

where η is the ratio of molecular scattering to total scattering (η = bRay/(bRay+

bMie) = bRay/b) coefficients.

There are two different models which can be used in ANTARES simulations

for modelling scattering: the “Partic” model (this thesis) where the scatter-

ing angular distribution is fixed to that of the experimental measurements by

Petzold with a high particle load and the analytical “MedSea” model where

the scattering angular distribution is the sum of two “Henyey-Greenstein”

functions which give the strongly forward-peaked particle contribution (rep-

resenting the Mie scattering) and a smaller back-scattering component (rep-

resenting the Rayleigh scattering). Figure 3.3 shows their scattering phase

functions estimated for η = 0.17, the Partic model with the typical Rayleigh
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and Mie scattering shapes (plus the global distribution) and the MedSea or

Mediterranean Sea model.

Figure 3.3: Scattering phase functions of molecular and particles for η = 0.17

- The isotropic trend of the Rayleigh scattering is clearly seen, the Mie (particles)

strong forward peak distribution gives mainly the overall shape labelled as global. A

comparison with the global distribution in the Mediterranean Sea is showed.

The Partic model data is the average of 3 similar measurements with very

different particle densities and it is considered as typical of particles scat-

tering in water. This particle scattering is strongly forward peaked with

〈cosψ〉Mie ∼ 0.924. Considering that 〈cosψ〉Ray ≈ 0 for the symmetri-

cal phase function of water molecule (92) (Figure 3.3), the resulting av-

erage cosine of the global distribution can be then reduced to 〈cosψ〉 =

(1 − η)〈cosψ〉Mie = (1 − η) · 0.924 (84). The MedSea model is adapted

from the HG theoretical approximation as Equation 3.24 where as com-

mented, the g parameter gives the average cosine of the global distribution.

The Equation 3.27 can be also defined in terms of HG functions by chang-

ing η by α and the average cosines at right in Equation 3.27 by g1 and g2

respectively.

Additionally, the work performed in this thesis uses not collimated light

sources (i.e. ANTARES OBs). Considering that 〈cosψ〉Ray ≈ 0, the scat-

tering length should to be re-defined as an effective scattering length as

λeffsca =
λsca

1− 〈cosψ〉 =
λsca

1− (1− η)〈cosψ〉Mie
. (3.28)
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• Wavelength dependence of scattering: Kopelevich parameterization

The λ−4.32 wavelength dependence commented before for pure water scat-

tering is not seen for natural waters, due to the diffraction from polydisperse

particles largely impacting on scattering, often larger than the wavelength

of visible light. Morel studies from the determination of volume scattering

functions (84) show an evident dependence of the shape of β(ψ, λ) on the

wavelength. This diffraction depends on the particle size-to-wavelength ra-

tio.

The Kopelevich physical model of elastic scattering relates the volume scat-

tering functions β(ψ, λ) with the wavelength and parameterizes large num-

ber of marine water bodies from the estimation of the particle size distribu-

tions (93) (84). This model is composed by three different contributions:

the volume scattering functions of pure water, large “L” (biologic particles

larger than 1µm in size) and small “S” particles (mineral particles less than

1µm in size) such as

β(ψ, λ) = βRay(ψ, λ) +

(

550

λ

)0.3

β∗L(ψ)vL +

(

550

λ

)1.7

β∗S(ψ)vS ,

(3.29)

where the concentration-specific volume scattering functions for small β∗S(λ)

and large β∗L(λ) particles as a function of the scattering angle ψ can be

found in tabulated data (84). The typical concentration of small and large

particles ranges from 0.01 ≤ vS [ppm] ≤ 0.20 and 0.01 ≤ vL [ppm] ≤
0.40 respectively. Nonetheless vS, vL are in turn parameterized in terms

of the total volume scattering function at 550 nm (84). By means of the

Kopelevich studies it was also possible to determine several parameters as

the density of the large particles, the relative refractive index and the size

distribution for large and small particle fraction (86). By integration over ψ

Equation 3.29, we obtain the formalism in terms of the scattering coefficient

as (86)

b(λ) =
1

λsca(λ)
= 0.0016(

550

λ
)4.3 + 0.312vL(

550

λ
)0.3 + 1.34vS(

550

λ
)1.7 .

(3.30)
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Figure 3.4 shows the scattering length as a function of the wavelength

(Equation 3.30) according to the Kopelevich model for three different values

of vL, vS such as vL = vS .
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Figure 3.4: Scattering length spectrum based on Kopelevich model - For

equal volume concentration of scattering centres, the low concentration of scatterers

is traduced into large values of scattering lengths.

The accuracy of the model is of the 30% as Kopelevich set it (84). This

model is used to parametrize the scattering features of the ANTARES detec-

tion media and which is used in the reconstructed track analysis for optical

properties studies to be presented in Chapter 5.

3.5 Group velocity of light and refractive index

As commented before, the refractive index is another important IOP of the sea

water. The group velocity of light crossing a given environment is defined as

vgr =
dω

dk
, (3.31)

where ω is the angular frequency and k = 2π/λ refers to the wave-vector. Taking

into account that ω/k = c/nph where nph is the phase velocity refractive index,

the group velocity can be expressed as

vgr =
c

nph
− ck

n2ph

dnph
dk

=
c

nph

(

1 +
λ

nph

dnph
dλ

)

, (3.32)
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which allows us to define the group velocity refractive index as

ngr(λ) =
c

vgr
=

nph(λ)

1 + λ
nph(λ)

dnph(λ)
dλ

. (3.33)

Looking for velocity of light signals in deep underwater neutrino experiments, the

group velocity of light and not the phase velocity has to be used. The use of phase

velocity instead group velocity for Cherenkov light signals and pulses of light from

calibration sources in neutrino detectors, leads to errors in track reconstruction

and horizontal distance measurements (94). The phase and group velocity of

light do not coincide in a medium with dispersion leading to an additional delay

of about 10 ns for a typical distance of ∼ 100 m between light source and OMs

(94).

The phase refractive index nph of water depends on the wavelength, temperature

and salinity (84) (95). It is well known that nph decreases with increasing wave-

length. This dependence is well approximated by the Cauchy Equation on the

visible region as (85)

nph = P +
Q

λ2
+
R

λ4
, (3.34)

where P,Q,R are expansion coefficients. At a fixed wavelength, nph decreases

approximately gradually with the temperature at constant salinity and increases

linearly with the salinity of sea water at constant temperature.

A representative approach for refractive index parameterization for pure and sea

water, is given by Millard & Seaver where an expression with 27 expansion coef-

ficients by using four experimental data sets (96) was used. This approximation

formula takes into account the wavelength λ of light dependence, salinity S, tem-

perature T and pressure P , with a valid range of 500 ≤ λ [nm] ≤ 700 nm, 0 ≤ T

[◦C] ≤ 30, 0 ≤ S [ppt] ≤ 43 and 0 ≤ P [dbar] ≤ 11000. The accuracy is of the

order of part-per-million over most of the parameter range. The complete Millard

& Seaver expression and the whole set coefficients can be found in (96) (85).

Another referenced model for refractive index of sea water is the Quan & Fry

parametrization, which takes well-known the Austin & Halikas experimental data
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set and fits to polynomial approximation as (95)

nph(λ, T, S) = n0+(n1+n2T+n3T
2)S+n4T

2+(n5+n6S+n7T )λ
−1+n8λ

−2+n9λ
−3 .

(3.35)

The Equation 3.35 was set under hydrostatic pressure of 0 in the range intervals 0

< T[◦C] < 30, 0 < S[%] < 35, and 400 < λ[nm] < 700. The complete data set

can be found in (85) (95). The Figure 3.5 shows the Quan & Fry refractive index

parametrization as a function of the wavelength with its corresponding pressure

corrections with a linear interpolation between the extreme values of the pressure

(97) (98). The two lines in Figure 3.5 for each case represent the extremes values

of pressure.

Figure 3.5: Refractive index by Quan & Fry - Conditions correspond to the typical

environment of the ANTARES site between 2 to 2.4 km of depth, λ[nm](307,610),

S[ppm] = 38.44, T[◦C] = 13.2, and p[atm](200,240). The blue curve represents the

group refractive index ngr, the red curve refers to phase refractive index nph.

3.6 Optical properties in neutrino astronomy experi-

ments

The high-energy neutrino detection is linked to the collecting ability of the Cherenkov

light induced by ultra-relativistic charged leptons crossing the detection environ-

ment. Such collection power is dependant on the arrival time and the amount

of light recorded in the detections units, and then on the optical properties of

the media. The optical properties in deep lakes, oceans or ice are not equivalent.

The effective scattering length is large for deep ocean sites, but the absorption
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coefficient is an order of magnitude smaller concerning to deep ice. This section

will review the knowledge about optical properties for several neutrino observatory

sites, from the past to the present of the studies performed in their facilities.

3.6.1 Pioneer studies: the DUMAND site and Baikal lake

The transmission length spectrum at the DUMAND site was measured by free

fall of a self-contained transmissometer together with equipment to measure con-

ductivity, temperature and depth, obtaining profile measurements in the deep

Pacific Ocean near Hawaii (Keahole point) (99). Concerning Baikal, along March-

April 2001 a joint collaboration between Baikal and NEMO tested complementary

methods by using dedicated and commercial instrumentation for optical properties

measurement: the ASP-15 inherent optical properties meter and the AC-9 device

(100). The most relevant details about their sea campaigns and their main results

on optical parameters are summarized as follows.

• Studies at the DUMAND site:

The self-contained transmissometer used by Zaneveld (99) with a path

length of 1 meter, contained a pulsed Xenon light source and filters to

profile the beam attenuation at intervals 50 nm wide from 400 nm to 650

nm at depths to ∼ 4500 m. A decrease on attenuation at all wavelengths

as a function of the depth was found. After correction for the scattering

length, the Figure 3.6 shows the absorption length spectrum extracted from

the DUMAND site (101).

The absorption spectra for DUMAND showed in Figure 3.6 was constructed

by other author (101) by scattering correction as bp(λ) = A(400/λ)1.7

where the exponent 1.7 is taken for small suspended particles in the shallow

ocean and valid along the wavelength region 400 < λ [nm] < 650. The only

absorption measurement at the DUMAND site was estimated by Bradner

and Blackington giving a value of λabs = 25±1 m (99). This measurement

was estimated by using an uncollimated photostrobe with an interference

filter to measure the 1/e transmission distance of the 480 nm light.

• Studies in Baikal lake:

The ASP-15 meter was designed and developed by the Baikal collaboration.

It has two receiving channels, one with a wide aperture for absorption and
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Figure 3.6: Absorption length spectra at the DUMAND site - The DUMAND

spectra (solid triangles) is compared with measurements from the early phase of

NESTOR experiment before 1997 (only for reference) and in turn with the spectrum

of the clearest natural water by Smith & Baker.

scattering coefficient estimation, and other equipped with a rotation mirror

and a narrow angle collimator for measuring the phase scattering function.

The ASP-15 meter operates in the range 369 < λ[nm] < 691, the uncer-

tainties for absorption and scattering coefficients are close to the 5% and

10% respectively (100). The AC-9 device (to be described latter) by the

NEMO collaboration was used simultaneously to the ASP-15 measurements.

The Figure 3.7 shows the absorption length spectra estimated by the both

devices (100).

Based on Figure 3.7, the agreement of the results is quite nice independently

of the intrinsic systematic errors of each device (100). The spread between

both data sets can be related to local changes in optical and hydro-physical

properties of the water column (100). The peak of the spectra is located

∼490 nm with a mean value of λabs = 28.3 ± 1.5 m for the ASP-15. This

updated value is in agreement to previous results in the Baikal collaboration

(102).

Concerning scattering spectrum, Figure 3.8 depicts what is obtained from
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Figure 3.7: Absorption length spectra measured at Baikal lake - The data set

was computed in a depth in Baikal lake of 1000 m by using the ASP 15 and AC9

devices.

the ASP-15 and AC-9 measurements for the scattering coefficient at ∼ 1

km of depth. As seen, the agreement between the experimental data set

extracted from both devices is quite good. The measured value for scattering

length at its maximum transparency (λ ∼ 488 nm) is λsca = 58.8± 3.5 m.

More details on the experimental setups, data sets and other related issues

can be found in (100) (103).

Figure 3.8: Scattering spectrum in terms of b(λ) measured at Baikal lake -

The data set was estimated at 1000 m of depth with the ASP 15 device between

March and April 2001 campaigns.
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3.6.2 Estimations in deep ice: the AMANDA and IceCube case

The optical characterization of the AMANDA site was done by using pulsed and

continuous light sources (lasers and LEDs) along the detector (104) in the wave-

length range 313 < λ [nm] < 560 and depth range 1.1 < z[km] < 2.4. These

devices included a frequency-doubled Nd-YAG laser flashing light pulses at 532

nm with a pulse width of 4 ns located in the counting house on the ice surface.

The laser light was conduced by optical fibres to diffuser balls installed in specific

locations in the detection strings, following an isotropic emission pattern. Other

two nitrogen lasers flashing at 337 nm, 3 ns width pulses located on different

strings near the centre of the detector were used. A diffusive filter was used to

generate an upward peaked intensity pattern almost proportional to the cosine

of the angle from the vertical. In addition, a variable light attenuator controlled

from the surface was used reaching up to seven decades of attenuation. Apart

from the laser sources, there were eight OMs equipped with six LEDs flashers of

470±30 nm. These blue flasher modules were located at different depths on the

detector in two of the three longest detection strings. Each LED had a lambertian

light output profile and was mounted with its symmetry axis pointing vertically

up. Other UV flashers at 370±12 nm were used as well in 41 OMs on one of the

strings.

The optical properties of the South Pole are not homogeneous along the depth,

due to the concentration of lots of impurities (dust particles) embedded into the

ice layers. Therefore, the average cosine of the global scattering has several con-

tributions from dust components as salt, minerals, acids and soot. An average

cosine of 0.94 of the global scattering distribution was estimated (105).

For the most densely instrumented depth range, typically between 1530-2000 m

it was possible to measure the scattering at four different wavelengths and to fit

the wavelength dependence to a power law such as beffsca ∝ λ−α where a factor

α = 0.90± 0.03 was extracted, as Figure 3.9 shows.

The experimental data points are wavelength averages normalized to bsca(532).

The shaded curve represents the one-standard deviation uncertainty including sys-

tematics (104). The error in α covers a 5% of systematic uncertainty added in

quadrature to the statistical error of each data point.
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Figure 3.9: Effective scattering coefficient wavelength dependence in the

South Pole - The spectrum was built by using pulsed light sources at four different

wavelengths.

On the other hand, the absorption estimation in ice is modelled empirically with

three main contributions as a function of the wavelength (104)

a(λ) = AUe
−BUλ + Cdustλ

−κ +AIRe
−λ0/λ , (3.36)

where the two exponential terms govern light absorption by ice in the UV and infra-

red respectively due to molecular absorption by pure ice (104), and the second

takes into account absorptivity by insoluble dust particles in ice. The absorption

length spectrum obtained at the South Pole at different depths between 830 and

1755 m is seen in Figure 3.10.

Other extended studies systematically performed between the deepest region from

1400 to 2400 m in deep glacial ice have been recently reported at 400 nm (106) by

the IceCube observatory, what extends the research performed by AMANDA. As

commented in Chapter 2, the IceCube detector is a large array of optical sensors

(DOMs) including LEDs as in-situ light sources for calibration.

In the case of IceCube optical characterization, each DOM is equipped with 12

LEDs on a flasher board able to produce detectable light by adjacent DOMs up to

0.5 km away. The LEDs are addressed in six different azimuth angles 60◦-spaced

and two different zenith angles. In this way, the charge and time distribution of

light is recorded throughout all detector depths and sections. Then, a global fit

approach (likelihood-based) is carried out and the result is a set of absorption and
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Figure 3.10: Absorption coefficient as a function of the wavelength in the

South Pole - Ultraviolet region up to infrared region are compared with laboratory

ice grown estimations. Measurements between 800 and 1000 m (◦, �) are from

previous studies (104).

scattering parameters in 10 m layers at depths from 1450 to 2450 m.

The ice parametrization used in these updated IceCube studies (106) follows a six-

parameter model. The effective scattering coefficient dependence on wavelength

is computed as a power law normalized to 400 nm as in AMANDA studies. The

total absorption coefficient is described as the sum of two components, one due to

dust and other being a temperature dependant variable component for ice. The

effective scattering and absorption formalism used in IceCube analysis are

be(λ) = be(400)

(

λ

400

)−α

a(λ) = adust(400)

(

λ

400

)−k

+Ae−
B
λ (1+0.01δτ) ,

(3.37)

where δτ represents the temperature difference relative to the depth of 1730 m

(the center of AMANDA).

The dashed line in Figure 3.11 represents the updated measurements of the Addi-

tionally Heterogeneous Absorption (AHA) model for AMANDA. The uncertainties

of the AHA model for depths between 1730±225 m are a 5% for scattering and

close to the 14% for absorption measurements. The values for the effective scat-

tering length at large depths where the increase of the transparency of the ice is
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Figure 3.11: Scattering and absorption coefficients at 400 nm as a function

of depth in IceCube - The grey band correspond to ±10% of systematics equivalent

to ±1σ combined statistical and systematic uncertainty at most depths.
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expected, can reach up to 50 m. For the absorption case, lengths better than

100 m are estimated. These results confirm the shortest scattering lengths and

large absorption lengths achieved in deep ice environments, what is the opposite

case of deep-sea or water based environments for neutrino facilities. Such ab-

sorption lengths have been also achieved in water-based environments as in the

Super-Kamiokande experiment which have reported values of attenuation length

exceeding 100 m in better agreement to Pope & Fry measurements than for Smith

& Baker predictions (107).

3.6.3 Contribution of NEMO and NESTOR at the Mediterranean

Sea

The highly-sensitive AC-9 transmissometer (manufactured by WETLabs (108))

used for NEMO characterization of the Capo Passero site as commented before,

can operates in the range 412 < λ[nm] < 715. Its accuracy is about 1.5 × 10−3

m−1 both for absorption and transmission coefficients estimation (100), and the

scattering coefficient can be obtained as the difference between transmission and

absorption coefficients. The set of measurements were performed for visible light

wavelengths. The attenuation coefficient was measured with a collimated source

of light with angular acceptance of ∼7◦. Both attenuation and absorption mea-

surements are done independently by using two different light paths extending the

light spectra at eight different wavelengths. The Figure 3.12 shows the absorption

and attenuation length spectra for several sea campaigns at the NEMO site.

The NEMO site inherits a water transparency comparable to the clearest natural

waters reported in results from Smith & Baker. At distances larger than 2000 m

the absorption and transmission coefficients measured in different seasons are com-

patible within their experimental errors. The complete data set reported by NEMO

can be found in (109), obtained as the weighted average values of the absorp-

tion and attenuation coefficients as a function of the wavelength. The weighted

average is computed from the values of absorption a(λ) and transmission c(λ)

measured in each instrumentation deployment at distances range between 2850 m

and 3250 m. The experimental errors are treated as the RMS of the distribution

of such parameters. As summary, the absorption and attenuation lengths obtained

close to the maximum (∼ 440 nm) were λabs = 66.5 ± 8.2stat ± 6.6syst m and

λatt = 34.7±3.3stat±1.8syst m respectively. These estimations were obtained by
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Figure 3.12: Absorption and attenuation length spectra for several sea cam-

paigns by NEMO - Left: averaged values of absorption length along ∼ 3 years in

Capo Passero. Right: averaged values of attenuation length estimations at Capo

Passero along ∼ 3 years. Absorption measurements show nice agreement with the

Smith & Baker spectrum for the clearest natural waters, and attenuation for λ >

500 nm.

using a collimated beam and not an isotropic source as for DUMAND, NESTOR

or ANTARES, which prevent us from a direct comparison (109).

On the other hand, the studies on optical properties in the deep Ionian Sea

(NESTOR site) have been performed by using diverse kinds of devices. They

have showed the consistency of the results along 20 years of research and sea

campaigns. The most recent results were obtained by means of the Long Arm

Marine Spectrometer (LAMS) (110) for transmission length measurements (May

2009). The LAMS uses eight groups of isotropic light sources in the range between

370 < λ[nm] < 530 which it can be deployed at several depths and recovered to

perform new measurements at other sites. Due to its open geometry, it can collect

both direct photons and a fraction of scattered photons in the surrounding water

(110). The light intensities of the LED sources located in one of the endings of

the LAMS are detected by a photodiode in the opposite ending. The transmis-

sion length coefficient is computed directly from the Beer-Lambert Equation. The

most updated transmission and attenuation length spectra by NESTOR is shown

in Figure 3.13.

The difference between both curves for transmission and attenuation length mea-

surements comes from the very steep slope of both curves, plus the small uncer-

tainty in the wavelengths of the different kinds of sources considered at 1992 and
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Figure 3.13: Transmission length spectra for several sea campaigns by

NESTOR - The difference between transmission and attenuation concepts comes

from the kind of light source used, attenuation (well-collimated beam) and transmis-

sion (isotropic source of light).

2009 sea campaigns. The variation of the transmission length measurements as a

function of depth is above 2-5 m with shorter transmission lengths for shallower

water (110). The maximum of such measurements are reached at depths between

3000 m and 4000 m. Transmission and attenuation length measurements have

been reported but no absorption length nor scattering studies have been given yet,

except for the ones reported in old sea campaigns in 1992 (101), where corrections

by scattering effects were done, but built up by other author (101).

3.7 Optical parameters in ANTARES R&D phase and

status

The ANTARES R&D phase was crucial in order to find the relevant hints towards

an optical characterization of the site. There were several campaigns in order

to characterize the ANTARES site: the “test 1” looking for study the optical

background, the “test 2” in order to study the biofouling and the “test 3” and “test

3’ ” focused to study the optical properties of the site by means of a continuous and

pulse source respectively. This section will describe briefly the results obtained in

the test 3, and more in detail those obtained in the test 3’. From these studies some



3. The detection medium description for deep-sea neutrino detectors 104

contributions to the characterization of the optical properties of the site have been

done in the past (111) (83) (82). More recently, some measurements have been

started by using the ANTARES OBs for measuring transmission, absorption and

scattering parameters (74) (78), and other already published as the measurement

of the group velocity in the ANTARES site (112).

3.7.1 Experimental setups

The light propagation experiments known as test 3 and test 3’, used a gradually

improved mooring line immersed at the ANTARES site, by means of which several

data sets were obtained in the sea campaigns between 1997-2000. The first set

(test 3) included a continuous and collimated DC source and a detector located at

several distances away from it with the aim to get the light attenuation dependence

on distance (111). The second setup (test 3’) allowed to compute transmission,

absorption and scattering contributions (111). The full improved device used

finally is depicted in Figure 3.14 what represents the test 3’ itself.

Figure 3.14: Sketch of the mooring line used in ANTARES test 3’ - A flexible

structure was gradually improved for light propagation studies at the ANTARES site,

the figure corresponds to the test 3’ experimental set.
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The test 3’ was basically a standalone experiment equipped with a PMT able to

measure in-situ the distribution of the arrival times of photons emitted at several

distances by means of isotropic pulsed light sources. The final mooring line used

in test 3’ housed a pulsed isotropic LED source (six LEDs, 10-cm side-length cube,

at 473±29 nm and 375±10 nm) housed in a high-pressure resistant sphere (111).

In addition, the LED intensity was fixed to reach a detection efficiency of about 1

detected photon per 100 triggers for the shortest source-detection distance, work-

ing within the SPE regime. The discriminator threshold was set at a pulse height

close to 0.3 times the amplitude of the SPE peak (111). In the upper part of the

structure there were buoys to keep it taut and vertical, and fixed at the bottom

by means of a heavy anchor. Electronics were put inside a high-pressure resistant

vessel or “energy sphere” which provided a 6 kHz trigger signal which was fed to

the LED pulsers and through a delay to a TDC, started by the delayed trigger

signal and stopped by the first PMT signal above the discriminator threshold.

One of the advantages of this final configuration was that the relative large dis-

tances used in the experiment make possible discriminates between several optical

parameters, since it is possible to take into account long absorption or scattering

lengths with different setups (83). The main disadvantage is the use of analytical

approximations for the scattering angular distribution of large scattering centres

since the angular distribution was not measured (83).

3.7.2 Attenuation, transmission, absorption and scattering of light

As commented, two campaigns or tests were used in order to extract optical pa-

rameters from the ANTARES site. The first set or test 3 used a continuous source

and was possible to extract the attenuation length of light at 473 nm. The second

set or test 3’ was carried out by using a pulse light source and transmission, absorp-

tion and scattering parameters were estimated with the associated systematics at

375 and 473 nm. The measurements obtained in each campaign are summarized

as follow.

• Effective attenuation length:

Based on December 1997 setup (test 3) with the continuous collimated

source of light at 473 nm, for each chosen distance D between the light

source and the detection unit (from 6 to 27 m), the luminosity of the beam
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ΦLED was adjusted to yield a constant current IPMT on the PMT (111),

calibrated in air environment. The emitted intensity and the current IPMT

in the PMT can be then related by

IPMT ∝ ΦLED

D2
· e

−
D

λ
eff
att , (3.38)

which allows to extract the effective attenuation length parameter from

the dependence between the LED intensity and the distance to the source

(Figure 3.15). As this method used a collimated beam, special attention

should to be paid when compares to other measurements with different light

output (i.e. isotropic).

Figure 3.15: Effective attenuation length extracted from test 3 (1997 setup)

- Statistical and systematic errors are indicated, a value ∼ 41 m can be extracted for

a wavelength of 470 nm for the case of a collimated beam.

A dedicated Monte Carlo simulation reproducing such experimental set dif-

fers in 3 meters the estimation from Figure 3.15 of λeffatt (blue, collimated) =

41 ± 1(stat.) ± 1(syst.) m, being the statistical and systematics unchanged

(111).

To disentangle the absorption and scattering lengths from such estimation

a more rigorous procedure is needed. Both standalone contributions are

extracted as will be explained in brief from the measurements made with

the test 3’, being actually the reference values for the spectra in ANTARES

site (111) (113).

• Transmission, absorption and scattering length:

The final sketch of the test 3’ mounting (Figure 3.14) allowed to extract
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the official values used in ANTARES as optical properties of the site at

375 and 473 nm, computed by using isotropic sources of light. Again, it is

important to remark that measurements of test 3 (December 1997) and test

3’ measurements (1997-2000) for attenuation and transmission length can

not be directly compared due to the kind of light output of the source. For

isotropic sources of light (test 3’), the time distributions shown in Figure

3.16 have a clear peak coming from the direct photons and a tail extended

to larger delays due to scattered photons.

Figure 3.16: Time distributions for a UV LED pulse light - Two source-detector

distances are indicated: 24 m data is normalized to the unit and 44 m data normalized

to the 24 m one in addition to a factor (44/24)2, so that the difference only comes

from the exponential attenuation factor.

The effective transmission length can be determined from the ratio of the

integrated time distributions measured at two distances as

∫

Nd1(t)dt
∫

Nd2(t)dt
=
d22
d21

· e
−

d1−d2

λ
eff
tr , (3.39)

where d1, d2 are the light source - detection unit distances and Ndi is the

time distribution at a distance di after background suppression and multi-

photon event correction (111). It leads to the extraction of transmission

lengths for 375 and 473 nm showed in Table 3.1.

Such estimations mismatch within their statistical errors. The systematic

uncertainties due to LED luminosity are not monitored and assumed to be

the same for the time distributions collected at the distance where the mea-

surements were performed.

The way to extract the absorption and scattering parameters is based on
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Epoch (wavelength [nm]) λefftr

July 1998 (473) 60.6±0.4

March 1999 (473) 51.9±0.7

July 1999 (375) 21.9±0.8

September 1999 (375) 22.8±0.3

June 2000 (375, 473) (26.0±0.5, 46.4±1.9)

Table 3.1: Such estimations were performed by using an isotropic pulse light source.

The blank in table corresponds to no measurements in that epoch, the error is that

of the statistical.

a global fit of the experimental time distributions to Monte Carlo distribu-

tions (111), including the geometry of the experiment as well as the optical

properties of the medium (λabs, λsca, η), the light source - detection unit

distance di, the origin of time of each distribution and the collection effi-

ciency for each distribution (111).

In the Monte Carlo simulation, probability distribution both for absorp-

tion and scattering are used (111), which are proportional to e−x/λabs and

e−x/λsca respectively. Weights were applied to take into account the depen-

dence of the PMT detection efficiency on the incidence angle of photons

(111). The final Monte Carlo spectrum can be associated to a low inten-

sity light source generated in a non-noise environment. Multi-photons event

correction is applied since the TDC is working in single-hit mode where only

the first one is detected (111). Both results for λabs and λsca extracted

from the global fit method are represented in Figure 3.17.

The horizontal error bars in Figure 3.17 refer to the spectral resolution of

the source (±1σ) and the vertical ones for statistical errors. The circles

represent measurements in pure sea water found in the literature (i.e. as

(84)). The scattering length for pure water is used as an upper limit for

sea water measurements. The measurements of the scattering length at

the ANTARES site both for 375 and 473 nm are roughly compatible with

the Kopelevich parametrization for small scattering centres concentrations

at vL ≈ vS ≈ 0.0075 (113) and in agreement with reference values for the

clearest natural waters (vL ≈ 0.01) (84).



109 3.7 Optical parameters in ANTARES R&D phase and status

Figure 3.17: Absorption and effective scattering lengths (mean values) at the

ANTARES site during the R&D phase - A dedicated simulation was needed due

to the difficult of disentangle both parameter from in-situ transmission/attenuation

data. Each set of three measurements comes from the data summarized in Table

3.1.

3.7.3 Group velocity of light

The group velocity of light can be estimated by means of Equation 3.32 using

empirical models for the refractive index and evaluated for the parameters of the

ANTARES site: p = 230 atm, S = 38.44 % and T = 13.2◦. The refractive

index model of Millar & Seaver nicely agrees with Quan & Fry parametrization at

the ANTARES site natural conditions. Figure 3.18 shows the set of experimental

points at 375 and 473 nm for the refractive index computations at the ANTARES

site that were obtained with data from the test 3’. The parameterizations by

Millar & Seaver (MS) and Quan & Fry (QF) for the phase and group velocity of

light are also shown.

The experimental measurements were done by estimating the group velocity of

light as vg = ∆d/∆t where ∆d corresponds to the difference between the light

source and the detection unit, and ∆t represents the time difference between the

times at which the direct photons flashed by the light source reach the detection

units at two different distances from the source. The values for the group velocity

of light obtained were

vg(experimental) =

{

0.2185 ± 0.0015 m/ns blue

0.2153 ± 0.0015 m/ns UV .
(3.40)

The main systematic error comes from the length of the cables linking the source

to the detection unit. As it can be seen (Figure 3.18), the experimental formalism
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Figure 3.18: Group velocity of light in ANTARES R&D - Data points correspond

to ANTARES measurements at 375 and 473 nm from the test 3’. Comparison with

Quan & Fry (QF) and Millar & Seaver (MS) are indicated, as well as the phase

velocity of light. The experimental measurements in ANTARES R&D lies on the

predictions for the group velocity.

(Millar & Seaver) and analytical values are in good agreement.

Recently, a new sort of measurements of the group velocity have been performed

using the LEDs of the multi-wavelength OB (112) whose results are summarized

in Figure 3.19.

The new measurements on the group velocity of light in sea water is measured by

registering the time delay of the photons arriving at the OMs at different distances

from the OB along the same line. The time distributions on each storey are fitted

by the convolution of a Gaussian and an exponential function and the peak time

is plotted as a function of the distance to the OB. Its slope is related to the group

velocity of light. The group velocity of light in sea water was parameterized by

Quan & Fry based on in-situ measurements performed by Austin & Halikas (95).

The parameterization as a function of the wavelength and pressure includes the

dependence on the temperature and the salinity of the ANTARES environment.

Measurements of the refractive index at different wavelengths from the multi-

wavelength OB data are compatible with the Quan and Fry predictions within its

systematic uncertainty.

3.7.4 Status and prospects about water optical properties estima-

tion

The role of the knowledge on the optical properties in underwater neutrino obser-

vatories, as well as its continuous monitoring aims at knowing its impact on the
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Figure 3.19: Updated refractive index estimations at different wavelengths

- The data sets indicate the measurements performed along the period when the

kind of source was fully available for measuring, except 2000 data what concerns to

ANTARES R&D showed before. Such estimations covers the usage of the standard

ANTARES OB and the multi-wavelength OB.

detector performance.

In the ANTARES R&D phase important advances were reported inside the col-

laboration as the works done in (111) (83) (82).

In addition to the results obtained during the R&D phase, a first attempt to

measure and monitor the water optical properties in ANTARES by using its own

instrumentation is reported in (114) where the transmission length of light is ob-

tained by fitting to the Beer-Lambert law, data obtained from OBs calibration

runs. The main conclusion extracted from this preliminary study was the feasi-

bility to estimate the transmission length of light at 470 nm as an average value

equal to λefftr = 43.00 ± 1.1(stat) m, the reproducibility of the measurement in

time was left as a work to be continued. In addition, the depth influence was

roughly estimated.

The statistical errors in the test 3’ (115) for the different optical parameters, as

well as the concerning to the preliminary OB studies commented before, are mat-

ter of study on this thesis. Other systematics (115) as the source anisotropy, noise

subtraction, stability of LED intensity and PMT efficiency, angular distribution of

light output, ARS calibration, seasonal and depth variations are matter of review

also.

The main subject of this thesis leads to the determination of the main IOP of
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the water named transmission, absorption and effective scattering length looking

for their impact on the detector performance. The estimation of such parameters

by using the OBs are determined by using the Beer-Lambert law (transmission

length) and a dedicated data - Monte Carlo time residuals comparison for OBs

data through a robust χ2-minimization. The result of these experimental pro-

cedures are connected to their evaluation in the ANTARES track reconstruction

chain and the validity of the minimization by using and independent technique

based on raw comparisons of data - Monte Carlo distributions for different track

reconstruction parameters. The impact of the results on the main track recon-

struction parameters and detector performance, and their discussion with previous

and less detailed results in ANTARES is performed.



Chapter 4

Estimation of the optical

properties with the OB

technique

Hard work defeats natural talent

Rock Lee

Several efforts have been done in the past to characterize optically the ANTARES

detection environment. Results in the test 3’ (113) were relevant, but their repro-

ducibility was not possible and their systematics a matter of review. A monitoring

from online measurements is needed in order to know its possible seasonal varia-

tion or stability. Very preliminary studies of the ANTARES detection environment

with its own instrumentation (116) gave some hints in the past towards a more

detailed study performed in this thesis.

This chapter presents one of the two strategies developed to determine the water

optical properties at the ANTARES site by means of its own instrumentation. The

first one is based on the Optical Beacon data analysis (OB technique) and the

second one is based on the analysis of reconstructed track data (reconstructed

track technique). The OB technique is presented in this Chapter 4 and the re-

constructed track technique in the final Chapter 5. In the OB technique two

independent methods are considered, one to measure the transmission length and

other for absorption and scattering length measurements.

The transmission length of light is obtained from an exponential fit (Beer-Lambert

equation) to the decrease of signal hits along a target line and at three different
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wavelengths (402, 470 and 531 nm). The absorption and scattering lengths are

computed from the arrival time distributions of the OB light at 470 nm comparing

real data with Monte Carlo samples generated with different optical parameters,

namely absorption, scattering and the contribution of Rayleigh scattering. The

absorption and scattering lengths are determined from a modified Pearson’s χ2-

test.

This chapter is structured in three parts. First, several issues common to both

methods, such as data selection and quality, signal extraction and handling, noise

subtraction, PMT efficiency and systematic effects, are explained. Secondly, the

method to estimate the transmission length as well as the analysis of the preci-

sion achieved, the quality of the fit and the evolution of this parameter in time

are described in detail. Finally, concerning the extraction of the absorption and

scattering lengths, the development, optimization and results of the method are

presented. After analysing data and Monte Carlo arrival time distributions, the

method to discriminate the optical parameters based on a modified Pearson’s χ2-

test is set and tested with Monte Carlo samples and extended to real data. All

the experience in the method leads to the use of a “run-by-run” simulation taking

into account the most realistic conditions during data acquisition.

4.1 Data handling and systematics

The data quality and good acquisition conditions are relevant to obtain the best

estimation of the optical parameters in ANTARES. The use of the Beer-Lambert

equation and a modified Pearson’s χ2-test are the basis for transmission, absorp-

tion and scattering lengths determination, respectively. To reach the most reliable

results, appropriate data run selection, signal filtering and handling are manda-

tory. These considerations and the treatment of some identified systematics are

presented in this section.

4.1.1 Data run acquisition, signal extraction and run selection

More than 250 special OB runs for optical properties studies with the OB technique

have been taken in about four years, for all types of OBs described in Chapter 2.

In these OB runs, light pulses are flashed from a single or set of LED(s) of a given

OB and recorded by the OMs throughout the detector. In each storey there are six
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ARSs (2 per OM) numbered from 0 to 5. If the storey contains an OB, its ARS

is labelled as 6. An OB event is identified by means of an algorithm which looks

for the ARS 6 label corresponding to signals in the small PMT in the case of the

LED OB, or the built-in photo-diode in the case of the laser OB. The data stored

in such OB events are the time and charge information of the hits recorded (ROOT

TTree structure) in all the lines, storeys, OMs and ARSs along the detector. As

mentioned in Chapter 2, a hit is a pulse, time and charge, in one OM processed

by one of its ARSs. A special set of programs for OB data analysis has been

developed by the calibration group in Valencia called HistoFiller which sorts

all the information in histograms and ROOT TNtuples, which are easily handled.

Figure 4.1 shows a typical hit time residual distribution (difference between the

emission time of the OB light and the time recorded by the OM when the flash

arrives) as an example. The hit time residual distributions are shifted by the direct

time taken by photons to arrive at each OM. The measurement of the group

velocity of light (112) is used as an input for HistoFiller. In addition, the

positions of the OMs and time calibration constants in the detector are extracted

directly from the ANTARES database.
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Figure 4.1: Time information extracted from OB runs - Example of hit time

residual distribution. The time window where the OB technique is carried out is

restricted to the time range [Tmin, Tmax] described in the text.

As seen in Figure 4.1, there is a clear signal fingerprint (N signal
hits ) formed by

the peak and the tail of the time distribution associated to direct and scattered

photons, respectively. Before the signal arrival as well as for very long times, the
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counting rate on the OM is entirely due to the optical background hits (Nnoise
hits )

(bioluminescence + 40K).

The first step to extract the signal is to determine the noise contribution per

storey/OM/ARS due to this optical background. This is evaluated as the mean

baseline in the noise region defined before the signal arrives, typically 10 ns before

the peak, Tmin, as indicated in Figure 4.1. Once the background contribution

has been estimated, the signal is obtained by computing the difference between

the contribution of all the hits contained in the time interval [Tmin, Tmax] and

the estimated background. Here, Tmax is typically set to 1000 ns after the first

signal arrival, where most of the hits come from the optical background.

The level of optical background is used as an indicator of the quality of the

run. The OB runs have been rigorously performed when the optical background

in the detector is low enough (< 100 kHz). At very high background rates,

the HistoFiller code gets in trouble to find the signal peak biased by noise

fluctuations, since the statistics at large distances from the OB becomes too low.

In order to avoid this, low background conditions and moderately high statistics

for OB runs are required. About six minutes of data taking enable to obtain

nearly 100k light flashes which are found to be enough to perform suitable optical

properties measurements. In this way, the “golden runs” to be used in the OB

technique are featured by:

• a background rate below 100 kHz,

• a flat-shape trend along the line,

• Nflashes > 100k.

A typical example of golden run is shown in Figure 4.2-left.

In the selection of golden runs, runs with an increasing background along the line

reaching 100 kHz rates are discarded. Likewise, runs with very low Nflashes are

also rejected, these runs are called “copper runs” (see Figure 4.2-right).

On the other hand, some OMs have a counting rate outside the nominal values,

or they can be inactive during acquisition. A cut in the minimum number of hits

per OM, NOM
hits > 500, is applied, in such a way that it ensures the rejection of

very low counting OMs and guarantees minimum statistics.

For the blue LEDs in the standard OBs, several configurations and OBs in the
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Figure 4.2: Background rate as a function of the OB-OM (ROB−OM ) distance

for two different periods of data taking - Two kinds of behaviour are shown. Left:

the “golden run” with low values of background rate and a flat-shape. Right: the

“copper run” where the background rate is high and increases along the line.

detector were used to test different issues: different light intensities (reduced

scattering), several heights in the line (deep relation studies) and different lines

(homogeneity). If the light intensity of the LED is decreased, it leads to work at

closer distances from the OB position, thus the number of scatterings is reduced

and the transmission length is closer to the absorption length. However, as there

were not enough available runs, the studies related to low LED intensity and the

OB position for deep relation studies could not be done and are not included in

this thesis. The homogeneity of the measurement by using several lines in the

detector is, nonetheless, included.

Most of the runs were taken with the “single top-LED” configuration for the

modified OB with UV LEDs (L12F2f1-f2), the OB with multi-wavelength LEDs

(L6F2f1-f6) and the standard OB equipped with blue LEDs. As commented in

Chapter 2, “L”, “F”, “f” denote the line of the detector, the floor where the OB

is located in the line, and the face of the OB, respectively. Other runs with “all

top-LEDs” (only top LEDs switched on) or “full OB” configuration (top, middle

and four LEDs groups switched on) were performed.

The data for optical properties measurements with the OB technique includes

the high intensity runs performed with L12F2 (faces 1-2, UV), L6F2 (face 2,

UV), L1F2-L2F2-L4F2 (face 1, blue), L2F2-L4F2 (all top-LEDs, blue) and L8

(laser, green). These data runs were filtered and 35% (92/263) of the total data
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collected along the last 4 years survived the quality requirements and availability

for the analysis. The final data set for optical properties measurements with the

OB technique are summarized in Table 4.1.

Line (L) OB position (F) face (f) Wavelength [nm] Number of runs

6 2 2 406 10

12 2 1-2 406 22

32

1 2 1 470 9

2 2 1 470 16

2 2 all top 470 1

4 2 1 470 5

4 2 all top 470 3

34

8 BSS - 531 26

26

All OBs 92

Table 4.1: The data set used in the OB technique was filtered and 35% (92 runs)

collected along the last 4 years was considered suitable for the analysis. It includes

32 runs at 406 nm, 34 runs at 470 nm and 26 runs at 531 nm.

4.1.2 Systematic effects

The time distributions of the hits are a convolution of different physics phenomena

as absorption and scattering, and diverse detector features related to the geometry

and the acquisition system of the detector. In order to minimize the impact of

some systematics on the detector some considerations for the OB technique have

been taken into account:

• Shadowing effect due to upper structures above the OB

Intermediate OMs and other detector components can prevent direct pho-

tons from reaching the OM of the same line where the OB is located. This

effect reduces the number of direct photons and distorts the angular distri-

bution of the light measured at the OMs depending of the line considered.

Figure 4.3 shows the arrival time distributions for the OMs located at floor

16 either in the neighbouring line (L4) and the emitter line (L2). As seen,

the number of collected photons is significantly smaller when it is evaluated
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Figure 4.3: Shadowing effect - Number of hits collected in the same (red) and

neighbouring (blue) line at the same height for several OMs. Left: OM0. Center:

OM1. Right: OM2. The measurements are shown for the storey 16 (F16 ∼ 210 m

up the OB) with the lowest OB of the emitter line L2.

along the same line where the OB is placed, which shows a different atten-

uation of light along the light paths between the OB and OMs depending

of the line considered. By measuring along the same line where the OB is

placed, mechanical structures forming the upper storeys above the OB plus

the water environment are present. However, measuring along a neighbour-

ing line only the sea water environment is responsible of the attenuation

of light. The loss of direct photons due to intervening material is called

“shadowing effect”. This effect is present no matter the line, light output

profile, OB configuration or wavelength. The shadowing effect is not strong

enough at the tails where scattered photons are expected, which shows that

the impact is only on the direct light detected. In Figure 4.3, the relative

difference between the amount of direct photons detected in each of the

three OMs of the same storey is due to the relative orientations of the OM-

axis in the storey with respect to the OB-OM direction.

In order to avoid the shadowing effect only measurements in neighbouring

lines to the emitter OB are used in the analysis, both for transmission and

absorption-scattering measurements.

• The PMT efficiency

At the beginning of the development of the OB technique, a noise-based

efficiency correction for PMTs calibration was tried. This method assumed

that the number of noise hits was proportional to the efficiency of the PMT,
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with the idea of normalizing the PMT signal to their own noise. However, as

the noise-based efficiencies could introduce correlations due to noise subtrac-

tion in the OMs along the line, an independent method for PMT calibration

was needed. In this sense, the coincident signals due to 40K decay close

to a given storey can be used to compute the sensitivity for each OM. The

coincidence rate is proportional to the sensitivity of both OMs as

rij ∝ sisj , i = 1, 2, 3 , (4.1)

where rij is the coincidence rate between the i-th and j-th OMs and si, sj

are the sensitivities of the i-th and j-th OM, respectively. By means of

the proportionality constant r0 (71) the rate of genuine coincidences for

two nominal OMs is obtained. The rate of genuine coincidences from 40K

decays is represented by the integral of the peak in the coincidence time

histograms after subtraction of the flat pedestal of random coincidences, r0

∼ 16 Hz. Therefore, Equation 4.1 can be written as

rij = r0sisj . (4.2)

The solution of such three equation system allows to know the sensitivity

(or efficiencies) for each of the three OMs of the storey:

s1 =

√

1

r0

r12r31
r23

, s2 =

√

1

r0

r23r12
r31

, s3 =

√

1

r0

r31r23
r12

. (4.3)

The sensitivity of the detector channel includes the intrinsic detection ef-

ficiency of the OM and the electronics threshold. Figure 4.4-right shows

the relative sensitivity computed for a particular detection line in a stan-

dard physics run. In Figure 4.4-left the correlation with the noise-based

sensitivities is shown.

When one of the three OMs is not properly working in the storey, only one

coincidence rate can be measured, not enough to estimate the other two

remaining sensitivities. In such cases, equal sensitivities for the other two

OMs are assumed. If two OMs were missing in a 40K + physics data taking

run, efficiencies are set to 0 for the corresponding storey.
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Figure 4.4: Relative sensitivities computed for ANTARES detection line 2 -

Left: correlation between noise-based and 40K sensitivities for those OMs above the

OB. Right: 40K efficiencies for all active OMs in the line.

The choice of 40K efficiencies plays a sanity role in order to avoid correlated

errors from the noise treatment. This method is not affected by time vari-

ations of the background since the light output of 40K per unit volume is

constant over depth (71).

The OB technique both for transmission and absorption-scattering measure-

ments uses the 40K PMT efficiency.

• The LED position in the OB and the OB-OM orientation

The relative position of the top LEDs inside the OB can produce a bias. In

Figure 4.5, the amount of light collected by several target lines (except that

of the emitter OB) when each of the six top LEDs of a given OB flashes, is

shown.

When one single top LED of the lowest OB in the line flashes upwards, the

amount of light recorded in the neighbouring lines can differ significantly.

For instance, when the top LED of the face 1 in L2 is flashing, the target

lines L3 and L4 register the same amount of light in average, whereas line

L1 collects smaller amounts of light in the region of interest, i.e., where

there is no more saturation of the PMTs (the saturation is reached when

the output signal, the anode current in the PMTs, is no longer proportional

to the incident light intensity).

This effect appears when only one top-LED is flashing and can be explained
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Figure 4.5: Light collected in several target lines where each LED of the OB

in L2F2 is flashing - Each plot corresponds to one of the six top LEDs (1-6, from

top-left to bottom-right) of the L2F2 flashing OB, where the closest neighbouring

target lines Tl1 (red), Tl3 (blue) and Tl4 (pink) collect the light.

by the different trajectories of the light on the interface air-glass-water de-

pending on the LED position in the OB, in such a way that the light distri-

bution in the azimuth angle is not uniform. This anisotropy mainly affects

the normalization or total light of the curve in Figure 4.5. Changes in the

slopes are linked to the uncertainty of the transmission of light. In general,

the LED that produces more light in one line gives the smallest amount the

opposite line. It is the case for face 1 (f1) and face 4 (f4), or face 3 (f3)

and face 6 (f6) in Figure 4.5.

A way to avoid this effect is to use the “all top-LEDs” or “full OB” OB

configurations, covering a more uniform solid angle. Figure 4.6 depicts what

is obtained for several neighbouring lines with these two configurations.

As seen in Figure 4.6-left, the isotropy of the light recorded by the OMs

in most of the neighbouring target lines is confirmed. Practically, all the

lines surrounding the emitter line (L4) collect the same amount of light in

average. On the other hand, if the “full OB” configuration is used (see

Figure 4.6-right), there are no differences: all the neighbouring lines collect
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Figure 4.6: Uniform light output configuration of the OB - Left: number of

signal hits collected by several target lines with the “all top-LEDs” OB configuration.

Right: number of signal hits collected by several target lines with the “full OB”

configuration.

in average the same number of signal hits along the line. In this case, a

factor ∼ 1.5 of light (normalization constant) is gained compared to the

“all top-LEDs” configuration.

The OB technique for transmission length measurements uses the neigh-

bouring line with the maximum number of signal hits for “single top-LED”

and the few “all top-LEDs” runs available. For absorption and scattering

lengths measurements all the neighbouring lines are considered. The “single

top-LED” configuration is only used for testing the method, but the final

results are obtained with the “all top-LEDs” configuration of the OB.

On the other hand, the relative orientation between the OM-axis and the

OB-OM line of sight influences the amount of light detected. Due to the

translation and rotation of the lines because of sea water currents, this rela-

tive orientation can change and the OM could receive the OB light forward

looking (facing) or slightly deviated from its line of sight. When measuring

in neighbouring lines, the symmetry of flashing the same line where the OB

is located is lost, thus the analysis is very sensitive to the orientation of the

OM-axis with respect to the OB-OM line of sight and the LED position in

the OB.

• Angular distribution of light and the width of the arrival time distri-
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bution

In order to see the impact of the LED angular distribution, two different

emission profiles were tested with Monte Carlo: an isotropic distribution

and the real angular distribution measured in the laboratory. In both cases,

the azimuthal angle distribution of light was assumed to be uniform. Regard-

ing the zenith angle, the distribution of light can be chosen: OB UNIF (an

isotropic single LED distribution), OB LABO (single LED distribution mea-

sured in air) and OB 6TOP (convolution of six distribution measurements).

The refraction of light in the physical borders of the OB and its environ-

ment, air-to-glass and glass-to-water, is taken into account in all the cases.

The angular distribution in the laboratory was found to be isotropic within

±10% up to 30◦ and decreasing a factor 2 down to 60◦. In the Monte

Carlo simulation, the isotropic distribution and that measured in the labo-

ratory used the same number of photons. Figure 4.7 shows the arrival time

distribution of hits obtained for the two different emission profiles.

Figure 4.7: Example of arrival time distribution of the hits for two different

LED angular distributions - Left: two time distributions are compared in logarithmic

scale, an isotropic distribution (OB UNIF) and a non-uniform distribution (OB LABO).

Right: a zoom in a reduced time window for the such isotropic and non-uniform

distributions and represented in linear scale. Both distributions are scaled to the

area.

As it can be seen in Figure 4.7-left, the long tail in the isotropic distribu-

tion (OB UNIF) due to scattered photons is higher since more photons are

expected at high angle (θ >60◦). However, non large effects are expected

whether a non-uniform or isotropic light emission is used to be modelled in

Monte Carlo since a zenith angle up to 30◦ showed to be enough to repro-
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duce the same emission features of the LEDs, and sufficient to cover the

active area of the OMs of the neighbouring lines. A suitable cut in θ <50◦

allows to reduce the PMT acceptance uncertainty. Nonetheless, in order to

have a more realistic approach of the light emission the non-uniform distri-

bution (OB LABO) was adopted.

The arrival time distribution of light is a convolution of the time width

of the LED pulse, the TTS of the PMT and the optical properties of

the water. The leftmost part of the time distributions can be approxi-

mated to a Gaussian whose width (σ) is governed by the above parameters

σ2 = σ2LED + σ2TTS + σ2OP .

By measuring one single LED time distribution in the laboratory, it was

possible to find a value for σLED ∼ 2 ns (FWHM, ∼ 4.8 ns, risetime 1.7

ns). The contribution from the TTS of the PMT was estimated to be σTTS

∼ 1.5 ns. Therefore, the contribution due to the optical properties could

be evaluated. To do this, several Monte Carlo simulations with different

optical parameters were generated. By varying λeffsca , the change in σ of the

Gaussian was evaluated at several distances between OB and OM. Due to

the optical properties the width of the distribution is enlarged between 2 ≤
σ [ns] ≤ 2.5 depending on the effective scattering, the shorter the λeffsca , the

wider σ.

• The ARS token ring effect and noise fluctuations at large distances

As commented in Chapter 2, the readout of every PMT is performed by two

ARS chips using a token ring protocol in order to minimize the dead-time in

the data processing. The digitization of the signal allows to obtain the time

and integrated charge information of each PMT, defining the SPE hit. The

charge is integrated along a time window of ∼ 35 ns and digitized by the

AVC. Afterwards, the ARS chip is idle for about 200 ns, and passes the job

onto the second ARS about 10 ns after the SPE hit integration, being the

tail of the analogical signal processed as a new hit. This leads to a broad

enhancement starting at 45 ns, when the token is passed to the second ARS,

that is seen as a dip in Figure 4.8-left, more striking the shorter one distance

to the OB.
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Figure 4.8: ARS token ring and noise fluctuation effects on arrival time

distributions - A particular example in L4 when the OB in L2F2 flashes. Left:

the ARS token ring effect is evident at shorter distances from the OB (i.e. 80 m),

at larger distances (i.e. 155 m) the effect becomes negligible. Right: the signal

fingerprint close to 0 is highly contaminated by noise fluctuations at large distances

from the OB, as seen here at ∼ 280 m.

The dip at 45 ns in Figure 4.8-left is, therefore, due to the loss of the time

information of a second pulse arriving either before the 35 ns integration

gate or during the 10 ns dead-time that the swapping from one ARS to

the other takes place. The small dip at 280 ns is consequence of the time

integration gate cycle (35 ns + 35 ns), the time after SPE integration (10

ns) and the dead-time (200 ns).

In order to avoid saturation effects and the small dead-time effect due to

the token ring mechanism in the ARS, the OB technique for optical proper-

ties determination is performed in the photo-electron region, avoiding any

influence coming from the electronics. As defined in Chapter 2, the photo-

electron region is the region where the probability to get more than one

photon per flash is negligible. Therefore, the single photo-electron profile is

analysed, no double pulses are recorded and no loss because of dead-time

effects is present. Requiring a rate of 0.1(0.35) hits per flash, the probabil-

ity of having two o more hits is smaller than 1(5)% according to Poisson

statistics. At 470 nm and maximum LED intensity this rate is achieved at

Rmin ∼ 125 m in the same line where the OB is located. When neigh-

bouring lines are considered, the optimum distance to start the analysis is
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estimated as Rmin ∼ 165 m (high intensity at 470 nm). This value slightly

differs for the other wavelengths used in the analysis. At 402 and 531 nm,

Rmin is about 150 and 220 m respectively.

On the other hand, when the distance ROB−OM is large enough, the sig-

nal peak is comparable to the noise fluctuations (see Figure 4.8-right) and

the HistoFiller code is not able to find the correct peak. An educated

approach is to take distances for which the signal is several times greater

than the noise fluctuations such as Nsignal/
√
Nnoise > 6(5). Typically this

condition leads to consider maximum distances Rmax ≈ 1.5(1.6)Rmin.

Both transmission length and absorption-scattering estimations by using the

OB technique minimize the ARS token ring effect and avoid the noise fluc-

tuations at large distances performing the analysis in the interval [Rmin,

Rmax].

• Wavelength spectra of the sources

The measurements of the LED light spectra of the OBs (UV, multi-wavelength

and standard OBs) were performed by using a high-resolution calibrated

spectrometer from Ocean Optics (79) whose main parameters are summa-

rized in Table 2.3 (Chapter 2). As Figure 4.9-top shows, the typical width

of each spectrum is about 10 nm except that of the LED emitting at 518

nm (L6F2f6) which is larger, and the laser spectrum which is practically

monochromatic (532 nm).

Due to the wavelength dependence on the absorption of light in water, the

wavelength spectra of the light change as a function of the distance travelled

by the light. The expected wavelength distributions at a given distance from

the OB have been estimated by using a dedicated Monte Carlo consisting in

the convolution of the LED light spectra with the absorption length spectrum

from Smith & Baker. Figure 4.9 shows the evolution of the source spectra

along several distances of the light propagation path. The shift of the peaks

and the distortion of the shapes of the distributions can be observed except

for the laser which is almost monochromatic. As the distributions have been

renormalized to unity for each peak at each distance, the relative effect of

absorption between sources is not observed. The uncertainty linked to each
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Figure 4.9: Spectra for all available sources of light in the ANTARES OBs

(8 in total) - The evolution of the spectra as a function of distance is obtained

by a Monte Carlo simulation which includes the spectra measured in the laboratory

and the effect of absorption as described by Smith & Baker. Data points have been

smoothed and the highest value of each spectrum has been normalized to unity for

each distance.
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wavelength is defined from the RMS of the wavelength distribution given by

the simulation.

As a summary of this section, the data runs acquisition, signal extraction, runs

selection and systematics commented before apply both for transmission and ab-

sorption and scattering measurements by using the OB technique. However, there

are some slight differences concerning how the systematics are treated in each in-

dependent analysis, which are summarized in Table 4.2.

Cuts/corrections for OB data Transmission analysis Absorption - scattering analysis

Shadowing neighbouring line with maximum Nsignal all neighbouring lines

effect

PMT no cuts 0.5 < S
40K < 1.5

efficiency

LED position single + all top-LEDs single (trial) + all top-LEDs (final)

in the OB

Angular distribution no cuts θ < 50◦

of light

ARS token Rmin(406,470,531) ≥ (150,165,220) m Rmin(470) ≥ 165 m

ring effect

Noise fluctuation Rmax(406,470,531) ≈ (1.6,1.5,1.3) Rmin Rmax ≈ 1.6 Rmin

effect

Wavelength spectra yes yes

of sources

Table 4.2: Description of the main cuts used in the measurements of the water

optical properties with the OB technique. Most of the cuts used in transmission

length measurements are in turn used for absorption and scattering estimations.

All the measurements listed in Table 4.2 are performed in neighbouring lines,

avoiding shadowing effects in both measurements. By measuring in the neigh-

bouring line with the maximum number of signal hits (Nsignal), enough statistics

are obtained to safely perform the transmission length measurements. The PMT

efficiency cut is used since it slightly improves the accuracy of the absorption and

scattering determination. The cut θ < 50◦ allows to reject the backward looking

OMs by having most of them inside a large cone aperture solid angle. The cuts

for the ARS token ring and noise fluctuation effects ensure that both analysis are
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done in the photo-electron region with an acceptable amount of signal hits in the

interval [Rmin, Rmax]. These cuts are implemented in a general analysis script.

However, some details of the time distributions in the OMs are visually inspected

and rejected when rare failures of the OMs give strange shapes in the arrival time

distributions of light.

4.2 Estimation of the transmission length

As previously commented, the transmission length of light is computed by fitting

the decrease of signal hits of the target line as a function of the distance to the

Beer-Lambert equation. The transmission length measurements made at several

wavelengths from the LEDs installed on the OBs throughout the detector and the

uncertainty of the measurements are showed and discussed. Afterwards, the qual-

ity of the fits is evaluated by means of the analysis of the χ2-probabilities and the

analysis of pulls. The time stability of the transmission length and the comparison

with other sites, concludes the results of the OB technique for transmission length

estimations to be shown in this section.

In order to avoid the shadowing effect described before, the transmission and

absorption-scattering measurements are performed in neighbouring lines. In trans-

mission length estimation, for each calibration run the number of signal hits in all

the lines is evaluated and the one with the maximum signal hits is picked to carry

out the measurement. In this way, the more forward looking oriented line (faced)

to the OB emitter face, considered as target line, is chosen. In the following, the

target line should be meant as the neighbouring line with the largest amount of

signal hits collected.

4.2.1 Fit and estimation of the optical parameter

The first proposal for transmission length measurements with the OB technique

was based on the “single top-LED” setup. Nonetheless, as commented in the

previous section, a few runs performed with the “all top-LEDs” configuration are

in turn used. In the transmission length estimation, the lowest OB (F2) in the line

flashes upwards and the amount of light collected in the upper storeys of the target

line is plotted as a function of the distance. Afterwards, these measurements are

fitted to the Beer-Lambert equation in the fit interval [Rmin, Rmax]. In this way,
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it is possible to obtain an optical parameter related to the transmission length of

light which describes the convoluted effect of absorption and scattering. Figure

4.10 shows an example of the number of signal hits collected along the line as a

function of the distance. The signal hits along the distance include the geometric

factor R2 related to the OM and it is normalized to the number of flashes of light

(Nflashes) fired in the calibration run.
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Figure 4.10: Exponential decrease of signal hits as a function of the distance

between OB-OM - Left: non-corrected by the PMT efficiency. Right: corrected

by the PMT efficiency. The measurements are made on the neighbouring line which

collects the largest number of signal hits, designated as “target line”.

The OMs not depicted in Figure 4.10 were not properly working during data

acquisition. Signal hits are corrected by the PMT efficiency. As seen in Figure

4.10-right, once the correction by the PMT efficiency is done, the number of signal

hits given by each OM of the storey becomes to be close enough to be considered

safety inside its statistical error (not depicted here).

As seen, three different intensities are registered in each storey, one by each of

the OMs. Instead of using the values separately in the fit, a good alternative to

treat such intensities is to assume that they are independent measurements and

Gaussian distributed. Therefore, we can consider one signal intensity per storey

computed as the sample mean of the three OMs. The most suitable method to

compute the error of the sample mean is from the “t-statistics”. In this sense,

when the mean and the standard deviation of a Gaussian distribution are not

known, the Student’s t-distribution formalism can be used to test the hypothesis
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that x̄ = µ in such a way that the error of the sample mean can be taken as

σ(x̄) = t
s√
n

, (4.4)

where the sample mean from the group of intensity observations is an estimate

of the population mean, and s represents the estimator of the standard deviation

(for sample standard deviation). In order to have 68.27% confidence level errors

(±1σ), the one side tail of cumulative Student’s function must be 84.13% and

thus t = 1.32 for n = 3 (2 dof) and t = 1.83 for n = 2 (1 dof) (117) (118). In

the case where only one OM is working (n = 1) in the storey, the point is not

used for the exponential fit. The total error assigned to the storey is the sum

in quadrature of the statistical error of the storey and the value of the error in

terms of t defined in Equation 4.4. The statistical error per storey per OM for

each detector line, arises from the fluctuation in the number of signal hits per bin

in the time distributions and by assuming a 10% of error for the PMT efficiency.

Having the error of the mean from Student’s t-distribution and the statistical error

in the number of signal hits, the quoted signal for each storey of the line is finally

expressed as

Nsignal = x̄± σ = x̄±
√

σ2stat + σ2(x̄) . (4.5)

The transmission length of light is extracted from the slope of the exponential

fit which is strictly done in the interval [Rmin,Rmax], defined in the previous

section. It comprises the photo-electron region, thus, the ARS token ring and

noise fluctuations effects are largely reduced. The fit range covers ∼ 100 m for

most of the wavelengths considered. Figure 4.11-center-right (non-corrected and

corrected by PMT efficiency) shows the exponential decrease of signal hits fitted

to the Beer-Lambert equation for a “single top-LED” of the L2F2 OB (470 nm)

flashing and L4 collecting the light. The transmission length obtained is labelled

as “L”. The signal hits are thus normalized to the geometric factor related to the

OM and the number of flashes of light fired in the data run.

The plateau of the signal hits shown up to 100 m obeys to a saturation effect of

the PMTs (as previously commented). At higher values the exponential decrease

of signal hits starts, however, at such distance the ARS token ring effect is still

non-negligible.

The minimum distance to start the fit, Rmin ∼ 160 m (Nsignal/Nflashes ∼ 0.1),
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Figure 4.11: The Beer-Lambert equation fitting for the standard OB - Left:

estimation of the minimum distance to fit Rmin. Center: estimation of the transmis-

sion length of light “L” without corrections in the PMT efficiency. Right: equivalent

measurements including correction by PMT efficiency.

ensures a negligible probability to get more than one photo-electron in each OM

of the storey (see Figure 4.11-left). The maximum distance to fit Rmax is found

close to 240 m where Nsignal/
√
Nnoise > 6.

In order to show the influence of Rmin on L, Figure 4.12-left depicts the estimation

with four storeys before Rmin when Rmax (240 m) is fixed. In Figure 4.12-right,

it is represented the effect of changes in Rmax when Rmin (160 m) is fixed, for

two storeys after the reference value. The reference case is in Figure 4.12-center

where there are not changes in the fit interval [Rmin,Rmax].
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Figure 4.12: The effect of the fit limits in transmission length estimation (470

nm) - Left: evaluation adding four storeys before Rmin. Center: evaluation inside

the fit interval [Rmin,Rmax] (reference). Right: evaluation adding two storeys after

Rmax.

As Figure 4.12-left shows, the influence of the ARS token ring effect on the

choice of Rmin trends to increase the real value of “L”. The impact of noise

fluctuations at large distances on Rmax is not so remarkable sometimes, and leads

to transmission length values unchanged as Figure 4.12-right shows. However, the
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noise fluctuations can quite often mask the signal extraction, thus impacting on

the measurement. By fitting into the interval [Rmin,Rmax] (Figure 4.12-center) a

safe estimation of L (label as λtr afterwards) is achieved.

The fit interval at other wavelengths differs since the light absorption depends

on the wavelength. Figure 4.13 shows the fit example for the UV LED (406

nm) in the multi-wavelength OB in L6F2 at high intensity and Figure 4.14 shows

the exponential fit at high intensity for the two UV LEDs located in L12F2 OB

(406 nm). As observed, no systematic effects are seen, being the measurements

compatible within their statistical errors and also compatible with that of the

L6F2f2 LED shown in Figure 4.13.
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Figure 4.13: The Beer-Lambert equation fitting for the UV LED in L6F2 (406

nm) - Transmission length fit at 406 nm is showed for the face 2 (f2) flashing to the

target line (Tl) with the maximum number of hits surrounding the emitter line (L)

by using the lowest (F) OB in the line.

Concerning laser OB measurements, Figure 4.15 shows an example of the trans-

mission length fit obtained with maximum light output from the laser.

The transmission length distributions for UV measurements both for L6F2f2 and

L12F2f1-f2 OBs faces are shown in Figure 4.16.

The correction by the wavelength spectra of sources previously commented, is

taking into account: at Rmin ∼ 150-170 m → λ = 406 ± 10 nm, a correction

in λ of ± 6 nm, although within its uncertainty. Figure 4.16-left shows the

measurements at UV by using the L6F2f2 LED. A value of λtr = 31.5±3.3 m is

obtained for the transmission length. On the other hand, the Figure 4.16-right

shows the transmission length distributions obtained with L12F2f1-f2 LEDs with

a mean value of λtr = 31.1±2.5 m. The agreement of both measurements free
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Figure 4.14: The Beer-Lambert equation fitting for the UV LEDs in the L12F2

OB (406 nm) - Left: transmission length fit using face 1 data. Right: transmission

length fit using face 2 data.
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Figure 4.15: The Beer-Lambert equation fitting for the data of the laser OB

at bottom of L8 (531 nm) - Measurements correspond to the lowest transmission

length able to reach in the ANTARES site.
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Figure 4.16: Transmission length estimations at the UV (406 nm) - Left:

estimations by using the L6F2f2 LED. Right: estimations by using the L12F2f1-f2

LEDs.
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of shadowing effect is achieved. Results obtained with measurements along the

same line where the OB is placed (shadowing effect) are also shown. In both cases

the effect is quite small and of the same order going in the same direction, i.e.,

increasing the value of the transmission length.

Figure 4.17 shows the transmission length measured with three different lines for

the standard OB at 470 nm.
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Figure 4.17: Transmission length estimations at the blue (470 nm) - Left: esti-

mation with the L1F2 OB. Center: estimations with the L2F2 OB. Right: estimations

with the L4F2 OB.

The correction by the wavelength spectra of sources in this case is negligible:

at Rmin ∼ 170-180 m → λ = 470 ± 12 nm, a correction in λ of ± 1 nm

clearly kept into its uncertainty. A value of 40 m for the transmission length free

of shadowing is obtained in average. Such measurements are found statistically

compatible both for L1, L2 and L4. This result in turn, suggest the homogeneity

of the measurement throughout the detector. In this case, the shadowing effect

becomes more relevant than in the previous case (406 nm), being bigger than the

fit error.

When using the “all top-LEDs” configuration of the OB, the average value of the

transmission length free of shadowing effect is found λtr = 42.1 ± 3.2 m for 470

nm with L2F2 and L4F2 OBs, for a total of 4 entries (runs). Such measurements

are in agreement with that obtained with the “single top-LED” configuration

previously considered. It is also important to remark that the angular anisotropy

of the light output is reduced when “all top-LEDs” configuration is used, which is

not possible for the multi-wavelength OB in L6F2 and the UV LEDs in the L12F2

OB due to their particular design.
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The available set of wavelengths for transmission length estimations is completed

with that of the laser OB at the bottom of L8 as can be seen in Figure 4.18,

in this case, the shadowing effect does not bias the measurement and a value of

λtr = 20.5±2.1 m is extracted. The correction by the wavelength spectra is not

needed because the monochromatic feature for the laser OB.
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Figure 4.18: Transmission length estimations at the green (532 nm) - Distri-

butions for the laser OB shows the negligible effect due to shadowing effects along

the line.

4.2.2 Transmission length and analysis of the error

The distribution of the errors from the fits can be cross-checked with the RMS

of the transmission length distributions. Figure 4.19 shows the distribution of

the transmission length measurements at 406 nm obtained with the “single top-

LED” configuration of L6F2f2 and L12F2f1-f2 OBs and the distribution of errors

obtained from each fit.

As can be seen, an estimation of λtr(406) = 31.2 ± 2.8 m is extracted. The

mean of the distribution of errors from the fits in Figure 4.19-right is 3.3 ± 0.9

m, which is in agreement with the RMS of Figure 4.19-left.

For the maximum level of transparency at 470 nm, Figure 4.20 shows the equiv-

alent transmission length measurements obtained with L1F2, L2F2, L4F2 “single

top-LED” and L2F2-L4F2 “all top-LEDs” configuration of the OBs. As seen, a

value of λtr(470) = 39.9 ± 2.9 m is obtained. Having a look to the RMS of the

transmission length distribution shown in Figure 4.20-left, it can be noted that

the agreement with the mean of the distribution of errors from the fits in Figure

4.20-right (3.3 ± 0.9 m) is reached.
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Transmission length at 406 nm
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Figure 4.19: Equivalent transmission length at 406 nm and errors from the

fit - Left: estimations performed with the face 2 of L6F2 and the two faces of the

L12F2 OBs statistically compatible. Right: Distribution of the errors from the fits.
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Figure 4.20: Equivalent transmission length at 470 nm and errors from the

fit - Left: estimations with “single top-LED” configuration and “all top-LED” con-

figuration statistically compatible. Right: Distribution of the errors from the fits.
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Finally, the measurements obtained with the laser OB at 531 nm are shown on

Figure 4.21 which constitutes the largest wavelength available in ANTARES to

characterize the detection media.
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Figure 4.21: Equivalent transmission length at 531 nm and errors from the

fit - Left: contribution obtained for measurements carried out by using the laser OB

installed in the bottom of L8 at the center of the detector. Right: Distribution of

the errors from the fits.

As it can be seen in Figure 4.21, a value of λtr(531) = 20.5 ± 2.1 m is extracted.

The agreement between the RMS of the transmission length distribution and the

mean of the distribution of the errors from the fit is fulfilled. In this case, the

Figure 4.21-left gives an estimation of the RMS compatible with the mean of the

errors from the fit in Figure 4.21-right as 2.1 ± 1.0 m.

For all wavelengths, the relative error for the transmission length measurements

(σtrrel) is ≤ 10% (RMS/Mean): 8.9%, 7.3% and 10.0% for 406, 470 and 531 nm

respectively.

The distribution of relative or fractional errors of the measurements of each storey

(σstoreyrel ) used in the fit and for all the calibration runs, is a good tool for system-

atics evaluation impacting the measurement. The Figure 4.22 shows the σstoreyrel

distributions built with all the points used in the fits, for all the calibration runs

used, for each wavelength.

The distribution of relative errors at 406 nm points to an assignment of ∼ 21%

of systematics. The estimation of relative errors at 470 nm is smaller being about

the 15% and the relative error at 531 nm is found to be ∼ 19%. So, the influence

of systematics on the transmission length measurements is ≤ 21%. As seen,

this estimation is just for measuring in the neighbouring target line, where the
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Figure 4.22: Distribution of relative errors for each wavelength in the analysis

- Left: estimations at 406 nm. Center: estimations at 470 nm. Right. Estimations

at 531 nm. Each entry represents the quotient between the sample error and mean

in each storey. Only active storeys in the fit interval are considered.

symmetry of being flashing the same line is lost. The relative error distribution

for the storeys of the same line where the OB is located, and thus affected by

the shadowing effect is in turn represented in Figure 4.22 (in-grey distributions).

As seen from Figure 4.22, the relative errors for storeys are reduced (16%, 9.8%

and 13% for 400, 470 and 531 nm respectively) due to the geometrical symmetry

that the OMs present to the flashing OB, but unfortunately these measurements

are affected by the shadowing effect of the intermediate material. The Table 4.3

summarizes the results.

Wavelength [nm] λtr ± RMS [m] Mean σfit (RMS) [m] σtrrel [%] σstoreyrel [%] σstorey∗rel [%]

406 31.2 ± 2.8 3.3 (0.9) 8.9 21.3 16.0

470 39.9 ± 2.9 3.3 (0.9) 7.3 15.0 9.8

531 20.5 ± 2.1 2.1 (1.0) 10.0 19.2 13.0

Table 4.3: The relative error for transmission length measurements (σtr
rel) is found ≤

10%. The RMS of λtr distribution is in agreement with the mean of σfit distributions.

Relative errors for measurements in each storey (σstorey
rel ) for all the wavelengths are

found ≤ 21% in average, what can be reduced by recovering the flashing symmetry

along the same line where the emitter OB is placed, but affected by shadowing, as

represented by σstorey∗
rel .

To conclude, the σtrrel is used for quantifying the variation of the transmission

length and the σstoreyrel is just for quantifying the variation of the signal intensity

in each storey, leading to the evaluation of associated systematics. The identi-

fied systematics which impact the analysis based on the OB technique are those

described in Table 4.2. As it was shown, some of them become negligible, and
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the strongest effect comes from the loss of symmetry when flashing neighbouring

lines.

4.2.3 Goodness of the fit: χ
2-test and pulls distributions

In order to test the quality of the fits on the transmission length measurements an

analysis of the χ2-probability (P(χ2)) and the pulls distribution (117) (119) has

been made. The χ2-test is used to test whether a given data set is well described

by some hypothesized function. The pulls (i.e. difference between observations

and fitted values, relative to the uncertainty or error) are able to detect various

forms of bias.

Figure 4.23-up shows the distribution of the P(χ2) for all the runs (entries) used

in the analysis at 406 nm. In Figure 4.23-down, a scatter plot of the transmission

length versus P(χ2) is shown. The P(χ2) values for measurements at 406 nm trend

to accumulate at high values. As the P(χ2) comes from a cumulative integral the

distribution has to be uniform over the interval [0,1]. Large P(χ2) comes from

small χ2 values of the fit and then from overestimated values of the errors.
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Figure 4.23: P(χ2) at 406 nm - Up: χ2-probability distribution. Down: transmis-

sion length versus P(χ2).
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On the other hand, Figure 4.24 shows the pulls distribution for all the points

contained in the fit interval for all the runs considered in the analysis at 406

nm. In agreement to the pulls distribution theory, the pulls should be distributed

as a standard Gaussian with mean (µ) zero and unit width (σ). Despite the

evident overestimation of errors detected in the P(χ2) distribution, what in turn

is seen such as σ < 1 in the pulls distribution, the mean value is centred in 0

as expected. In this way, the deviations between observations and fitted values

are minimal, thus, the consistency of an exponential fit to data for transmission

length estimation is reasonable.

h406
Entries  190
Mean   0.05999
RMS    0.6171

Pull
-5 -4 -3 -2 -1 0 1 2 3 4 5

E
nt

rie
s

0

5

10

15

20

25

30

35

40

45
h406

Entries  190
Mean   0.05999
RMS    0.6171

Figure 4.24: Pulls distribution at 406 nm - Pulls distribution for all the points

used on the fit to the Beer-Lambert equation.

Concerning the measurement at 470 nm, the Figure 4.25 shows the P(χ2) dis-

tribution (up) and the scatter-plot of transmission length versus P(χ2) (down).

Again, there is an accumulation at high values of the P(χ2) meaning that the er-

rors have been overestimated. This overestimation is also confirmed on the pulls

distribution shown in Figure 4.26. As in the previous case, the width σ < 1 is

observed. However, the mean of the distribution is again centred in 0, and allows

to verify the low presence of bias in the exponential fit of the transmission length.

For the set of calibration runs at 531 nm, Figure 4.27 shows the P(χ2) distribution

where a more flat behaviour is obtained according to expectations. Contrary to the

previous wavelengths for 406 and 470 nm, in this case almost half of these collected

values are greater than the median value (0.5±0.3) and about half being less than

the median value. Therefore, the errors assigned to 531 nm become reasonable

at this wavelength. The correlation between the impact on the error assigned and

the light isotropy reached in the target line, could be explored after the conclusion
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Figure 4.25: P(χ2) at 470 nm - Up: χ2-probability distribution. Down: transmis-

sion length vs P(χ2).
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Figure 4.26: Pulls distribution at 470 nm - Pulls distribution for all the points

used on the fit to the Beer-Lambert equation.
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of this work. Figure 4.28 depicts the pulls distribution obtained for all the points

included in the fits at 531 nm.
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Figure 4.27: P(χ2) at 531 nm - Up: χ2-probability distribution. Down: transmis-

sion length vs P(χ2).

As seen the width σ ∼ 1 and mean close centred at 0, evidence the good level of

agreement concerning statistical expectations.

Finally, the Table 4.4 summarizes the main statistical results obtained for the three

different wavelengths studied in this subsection.

Wavelength [nm] λtr ± RMS [m] Mean Prob(χ2) (RMS) Mean Pull (RMS)

406 31.2 ± 2.8 0.9 (0.2) 0.0 (0.6)

470 39.9 ± 2.9 0.8 (0.2) 0.0 (0.6)

531 20.5 ± 2.1 0.6 (0.3) 0.1 (0.9)

Table 4.4: The analysis of the P(χ2) and pulls distribution evidence the overesti-

mation errors at 406 and 470 nm. Such distributions at 531 nm are fairly close to

statistical expectations, and the assignment of errors become reasonable.
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Figure 4.28: Pulls distribution at 531 nm - Pulls distribution for all the points

used on the fit to the Beer-Lambert equation.

4.2.4 Time stability of transmission length. Cross-check with other

sites

The data taken for the measurement of the optical properties allows to evaluate

the time evolution of the transmission length at the ANTARES site. It is known

from the oceanographic community and undersea neutrino observatories that for

large depths where neutrino telescopes are deployed, the transparency of the water

should reach its maximum. In this sense, it is important to check that there are

not seasonal, chemical, biological or physical variations in the properties of the

water, thus in transmission, absorption and scattering properties of the media.

Looking at the stability of the transmission length in time for the three different

wavelengths considered in this analysis, Figure 4.29 shows the evolution of these

parameters for about 4 years of data taking (06/10/2008 - 11/06/2012, run 36035

- run 64771). As it is observed, the transmission length is maintained almost con-

stant for the three different wavelengths, and its variation is not larger than the

≤ 10% reported before. The measurements depicted in Figure 4.29 suggests that

there are not strong changes on the physical, biological or chemical properties

that can affect the water transparency along the time. This leads that consequent

measurements of standalone contributions of absorption and scattering should be,

in turn, maintained stable in time.

Finally, Figure 4.30 compares the three transmission lengths obtained in this anal-

ysis with those reported by the NESTOR collaboration in the N4.5D site com-

mented in Chapter 3. Both measurements were carried out by using isotropic light

sources, thus, the comparison of results is valid. The data points for ANTARES

correspond to the mean and RMS of the distributions in Figures 4.19, 4.20 and
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4.21. The wavelengths as previously commented, are corrected by the wavelength

spectra of sources, as well as their spectral width.
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Figure 4.29: Time stability for transmission length measurements - Top: trans-

mission length stability at 406 nm (UV). Middle: transmission length stability at 470

nm (blue). Bottom: transmission length stability at 531 nm (green). For each

plot, in the y-axis it is represented the transmission length and in the x-axis the run

number. The measurements were carried out along a 4-years period.

The transmission length measurements at the Mediterranean Sea by NESTOR and

ANTARES (this thesis) trend to be compatible. The Smith & Baker transmission

length spectrum for the clearest natural waters represents a well defined upper limit

for such optical parameter. Particularly, at larger wavelengths the measurements

reported at the Mediterranean Sea by NESTOR and ANTARES in this work agree

with the Smith & Baker curve.
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Figure 4.30: Transmission length at the ANTARES site and cross-check with

other sites - The comparison with the transmission length spectrum reported by

NESTOR at the Mediterranean Sea is showed as well as the transmission length

spectrum deduced for the clearest natural waters by Smith & Baker. The measure-

ments in green corresponds to the result of this thesis for 406, 470 and 531 nm.

4.3 Estimation of absorption and scattering lengths

The measurement of the absorption and scattering lengths is performed by means

of the comparison of arrival time distributions for data and Monte Carlo. The

procedure is based on a modified Pearson’s χ2-test for comparison of weighted

histograms. This test is incorporated as a special routine inside the ROOT software

package via the Chi2Test routine (120). This is done because the content of

each bin in the histograms has been manipulated to suppress the background and

correct by PMT efficiencies.

The comparison gives a normalized χ2 value for each OM which are then grouped

into a χ2 for each line, which determines the level of agreement or discrepancy

between data and Monte Carlo. A “run-by-run” Monte Carlo simulation has been

gradually improved towards a more realistic comparison of Monte Carlo samples

and data, and therefore, the most accurate χ2-minimization procedure as possible.

This section shows all the partial and final results gradually obtained for absorption

and scattering parameters in the development of the OB technique.
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4.3.1 Monte Carlo simulation for Optical Beacons light

The Monte Carlo simulation package for the OB light is inherited from the general

ANTARES simulation framework for Cherenkov light induced by particles crossing

the detector, KM3, which uses a full absorption and scattering spectra. The KM3

package (121) (122) is a step-by-step full simulation software for the response

of the ANTARES detector to the passage of High-energy muons including the

effect of the optical properties of the water. Based on the KM3 structure, a spe-

cial code to simulate the pulsed light emission from the Optical Beacons, named

CALIBOB, was developed for calibration and optical properties analysis. The KM3

and CALIBOB Monte Carlo packages are performed at three different stages: GEN,

HIT and KM3MC (CAL for OBs case). In GEN the photons field at several radii from

the source of light (electromagnetic shower, muon track or OB) is modelled for

a given detector medium description. The HIT code construe the photon fields

from GEN into hit probability distributions in a PMT. In the KM3MC stage or CAL for

the OBs case, the positions and orientations of the OBs and OMs are evaluated

for the detector geometry set by the user. The full description of this simulation

chain will be commented in more detail in the next Chapter 5 for the results on

optical properties of the reconstructed track technique.

As previously commented, CALIBOB is able to simulate the different angular dis-

tributions of light for the LED OB and laser OB. In the case of single or grouped

LEDs in the upper part of the OB, the configuration can be set by the user. In

addition, the number of photons per pulse and the number of light flashes per run

can be also selected. The double refraction through the glass cap of the upper

mounting of the LED OB can be taken into account. The photons are prop-

agated from the OB internal region (air environment), going through the glass

(barrier) and finally along the water to the OMs. It is assumed that the azimuthal

distribution of light from a single LED is uniform. The propagation of light in

water is modelled, as commented, in the first stage of the simulation by input of

absorption-scattering lengths and the contribution of the Rayleigh scattering.

The different triggers, calibrations and main electronics features are coupled to

the final KM3MC and CAL output through the TriggerEfficiency program (123)

(124). The PMT and ARS features are modelled based on a hit simulator package

which contains different hit generators. The PMT charge of the analogue pulses,

are generated following a Gaussian distribution of particular width and relative
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gain. In turn, the hit times are modelled from a Gaussian distribution featured by

its width (TTS). The coupling of early after-pulses and late pulses can be set with

a given probability, typically 0.5% and 1% respectively. In the ARS simulation, the

analogue pulses for the PMT are timestamped and interpolated in time by using

the TVC calibration values of the ARS for a given period. The charge of consec-

utive pulses are added during the ARS integration gate. Once the total charge

exceeds a pre-set threshold, a hit is triggered and raw data (SPE) are generated,

then the integrated charge in the AVC is estimated from the charge calibration of

the ARS. The time of the hit is set from the first photon within the ARS gate.

These arrival times are offset according to the time calibration of the ARS.

4.3.2 Arrival time distributions for data and Monte Carlo

As mentioned before, there is no analytic formula that from the optical parameters

that describe theoretically the physical processes can provide the quantities that

are measured in our set-up, i.e. the amount of light and the photon arrival times at

the OMs at different distances. To have a rough idea of how the data compares

to Monte Carlo and prepare for a more rigurous analysis, several samples with

different optical parameters were simulated. They included the testing of five

absorption lengths, seven scattering lengths and eight values for the Rayleigh

scattering contribution, η, providing a total of 280 (5×7×8) combinations of

optical parameters or water models, which were compared with 28 data runs taken

with the “single top-LED” configuration. In this thesis, it is assumed η as a non-

wavelength dependant parameter, nonetheless, current studies into ANTARES

could lead to rethink this. The goal is to find the simulated water model with the

best optical parameters that describes the photon arrival time distributions of as

many PMTs observed on data as possible. The Figure 4.31 shows a typical data

- Monte Carlo comparison of arrival time distributions at three different distances

(storeys or floors) in the line L4 when the OB in L2F2 is flashing. The time

distributions are normalized to the peak of the first floor used in the analysis (the

analysis starts at floor 12).

For the particular example in Figure 4.31, it is possible to see that the agreement at

the tails is better at large distances from the OB where more scattering is expected,

despite some deviation at the norm. On the other hand, if the absorption and
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Figure 4.31: An example of data - Monte Carlo comparison for OB data -

Photon arrival time distributions at 210 m (left), 240 m (centre) and 270 m (right)

from the OB position. The black histogram is data recorded by the OMs of L4 when

the OB in L2F2 was flashing. The red histogram is the Monte Carlo simulation with

λabs = 50 m, λsca = 50 m, η = 0.25 and λeffsca = 163 m.

scattering lengths are kept, and η is slightly increased, the agreement in the tails

remains but at the peaks it gets slightly worse as Figure 4.32 shows.

Figure 4.32: An example of data - Monte Carlo comparison for OB data -

Photon arrival time distributions at 210 m (left), 240 m (centre) and 270 m (right)

from the OB position. The black histogram is data recorded by the OMs of L4 when

the OB in L2F2 was flashing. The red histogram is the Monte Carlo simulation with

λabs = 50 m, λsca = 50 m, η = 0.30 and λeffsca = 142 m.

If the values of the λabs and η are kept as in the first example and λsca increases

in order to enlarge the λeffsca , what is seen is a very slight improvement of the

expected data - Monte Carlo agreement as Figure 4.33 shows.

In particular, if the absorption length is increased five meters respect to this last
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Figure 4.33: An example of data - Monte Carlo comparison for OB data -

Photon arrival time distributions at 210 m (left), 240 m (centre) and 270 m (right)

from the OB position. The black histogram is data recorded by the OMs of L4 when

the OB in L2F2 was flashing. The red histogram is the Monte Carlo simulation with

λabs = 50 m, λsca = 60 m, η = 0.25 and λeffsca = 195 m.

example and the contribution of η is increased a 10% such as λeffsca reaches 154

m, the agreement is improved as Figure 4.34 shows.

4.3.3 The χ
2-test method

These first observations led to define an adequate estimator of the data - Monte

Carlo agreement aimed to confirm such visual inspections. A modified Pearson’s

χ2-test was chosen as indicator of the data - Monte Carlo discrepancy.

When comparing two histograms with the same binning and the same number of

bins (r), assuming that both histograms represent random distributions from the

same parent distribution, the following χ2 statistics can be defined:

χ2
iom =

1

MN

r
∑

i=1

(Mni −Nmi)
2

ni +mi
, (4.6)

where M =

r
∑

i=1

mi is the total number of events in the first histogram and

N =

r
∑

i=1

ni is the total number of events in the second histogram. In this way,

we can compare the corresponding arrival time distribution from data and Monte

Carlo for a given OM. However, if we perform this comparison for each OM

separately, we are non-sensitive to the light absorption along the line. To include
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Figure 4.34: Data - Monte Carlo comparison for OB data - Photon arrival time

distributions at 210 m (left), 240 m (centre) and 270 m (right) from the OB position.

The black histogram is data recorded by the OMs of L4 when the OB in L2F2 was

flashing. The red histogram is the Monte Carlo simulation with λabs = 55 m, λsca

= 60 m, η = 0.34 and λeffsca = 154 m.

the information of light absorption, the method have to be extended to several

OMs of the same line:

χ2 =
1

NOMs · r

NOMs
∑

iom=1

χ2
iom =

1

NOMs · r
1

MN

NOMs
∑

iom=1

r
∑

i=1

(Mniomi −Nmiom
i )2

niomi +miom
i

,

(4.7)

where the scale factors M and N are fixed to the average of the integral of the

nearest OM distributions to the OB.

In order to test the method, a more wide set of water models was produced.

A new simulation composed of 480 (8×6×10) models were generated uniformly

distributed in λabs, λ
eff
sca and η (see Table 4.5). Again, the Monte Carlo samples

were compared with the 28 data runs with “single top-LED” configuration of the

OB at 470 nm. In order to test the validity of the method, some Monte Carlo

models from Table 4.5 were chosen and handled playing the role of “real data”.

These models, which were called “trial models”, were then compared with the rest

of the Monte Carlo samples. To include the trial models, random copies of their

time distributions were generated by using the FillRandom routine from ROOT

software analysis.

Two trial models with similar time distributions previously inspected were thus

considered:
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Optical parameter Minimum value [m] Maximum value [m] Step size [m]

λabs 35 70 5

λeffsca 75 575 100

η 0.05 0.95 0.1

Table 4.5: Monte Carlo mass production for OB data used for the testing of a

preliminary χ2-minimization procedure. It includes 8 different values of λabs, 6 values

of λeffsca and 10 values of η equally distributed.

• T1 → λabs = 50 m, λsca = 59 m, η = 0.15, λeffsca = 275 m.

• T2 → λabs = 55 m, λsca = 58 m, η = 0.25, λeffsca = 175 m.

The contour plots in Figure 4.35 show the result of the χ2-minimization by as-

suming the “T1” trial model playing the role of real data and comparing with the

Monte Carlo samples previously defined in Table 4.5. Results are shown grouping

the Monte Carlo models by the same η value.

Figure 4.35: χ2-minimization for the first trial water model - The figure shows

the results of the χ2-test as a consequence of the arrival time distributions comparison

between the Monte Carlo trial model and the rest of the Monte Carlo samples. Left:

comparison with models at η = 0.05. Center: comparison with models at η = 0.15.

Right: comparison with models at η = 0.25. The dot indicates the test input water

model.

As observed, the method works reasonably well, being able to find a defined χ2

minimum for the case of the test input model (T1). It also happens for the second

test input model (T2) as can be seen in Figure 4.36 where the method converges

also to the last model at λabs = 55 m and λeffsca = 175 m. A small effect of

binning and smoothing is seen in the minimization region. The use of Monte

Carlo samples as test input models for the validity of the χ2 method set a good

basis for water properties determination.
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Figure 4.36: χ2-minimization for the second trial water model - The figure

shows the results of the χ2-test as a consequence of the arrival time distributions

comparison between the Monte Carlo trial model and the rest of the Monte Carlo

samples. Left: comparison with models at η = 0.05. Center: comparison with

models at η = 0.15. Right: comparison with models at η = 0.25. The dot indicates

the test input water model.

The results obtained from the minimization by using the pair of trial models tested

lead to χ2 values about 2 in each case, what suggested that a little uncertainty was

still present in the method. However, it is clear that the minimization is achieved

and therefore, it can be considered as a good indicator of the level of agreement

for arrival time distributions in our case of weighted histograms. The treatment

of this remaining uncertainty is considered from a “run-by-run” simulation to be

described in the next subsection. The “run-by-run” simulation is the final bet in

the development and full incorporation of a simulation reproducing the same data

acquisition features, and thus, the most accurate comparison as possible between

them.

4.3.4 The “run-by-run” simulation and final results

Up to this point, the Monte Carlo simulations have used what is known as the “fix

geometry” of the detector, which considers the lines as straight-rigid structures.

In addition, it assumes identical behaviour (gain, etc.) for all the OMs as well

as the same background rate along the line. However, when comparing Monte

Carlo with real data several issues have to be taken into account. First of all, we

have to be aware that due to the shadowing of frames and intermediate OMs,

the arrival time distributions are distorted when the light detection occurs on the

PMTs on the same line where the flashing OB is. As this shadowing effect has

a great impact on the results of the optical properties, only neighbouring lines

are used, where this effect can be considered negligible. But then, the analysis
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become more complicated since the symmetry of the geometrical position of the

OMs of the same line where the OB is located is lost, and the real OM orientation

of the OM axis with respect to the OB-OM line of sight becomes relevant to

simulate the correct amount of light in the OMs.

For overcoming such a drawback, a “run-by-run” simulation for OB data where

each data file is associated with its “alter ego” in Monte Carlo has been gradually

developed. In this “run-by-run” simulation, the real rotation and translation of

the OMs are taken into account, by means of a special routine which downloads

from the database the alignment table which is closer in time to the mid-time

of the considered run. In addition, in these Monte Carlo samples generated in a

“run-by-run” mode, the angular sensitivity of the PMTs is modelled according to

the description given in (125) and PMT efficiencies are taken into account from

40K measurements offline. Finally, the “all top-LEDs” configuration of the OB is

used since the Monte Carlo simulation reproduce better this angular distribution

of light output. Nowadays, the analysis has been only done at 470 nm. The final

Monte Carlo production is shown in Table 4.6, which constrain the minimization

region where the best favoured water model should be represented.

Optical parameter Minimum value [m] Maximum value [m] Step size [m]

λabs 35 70 5

λsca 25 81 7

η 0.15 0.40 0.05

Table 4.6: The mass production performed in a “run-by-run” mode includes the

largest range of optical parameters looking for the best water model fitting to data.

In total 432 models are available for analysis.

The Monte Carlo models are uniformly distributed and form 8×9×6 samples for

a total of 432 water models suitable for the analysis.

As previously said, to be sensitive to the absorption length, the comparison of

data - Monte Carlo distributions have to be done with several histograms over

different distances compared along the same neighbouring line. To do this, several

time distribution histograms are merged into one larger one, called hereafter the

“super-histogram”. The super-histogram is the previous step before the final χ2-

minimization, which allow to better visualize the level of agreement between data

and Monte Carlo samples. An example of a super-histogram is presented in Figure

4.37.
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Figure 4.37: A super-histogram for data - Monte Carlo - The number of signal

hits is represented as a function of the time window when they are collected. Time

distributions of all the PMTs of the same line used in the analysis are merged together

to perform the data - Monte Carlo comparison.

In this plot, the number of hits as a function of the photon arrival time is shown

for the OMs inside the photo-electron region defined previously (typically from

storeys 13 to 21) of line 2 when the OB of line 4 is flashing. The histograms

corresponding to different OMs have been artificially separated in arrival time to

better show each attenuation curve. Starting from the earliest peak, every three

consecutive peaks correspond to the OMs of a given storey. The height of the

peaks decrease with distance, as expected due to the attenuation, except for those

corresponding to the OMs of the same storey, where the orientation determines

their relative height. This is better seen in Figure 4.38, where only three OMs of

one storey are plotted. The difference in height is mainly due to their different

orientation with respect to the flashing OB. As can be seen, the Monte Carlo

simulation with the parameters indicated in the figure describes reasonably well

the data.

Before performing the data - Monte Carlo comparison, a visual inspection of the

arrival time distributions is done as sanity check to detect bad behaving OMs and

remove them from the analysis of the χ2-minimization.

The procedure to compare data and Monte Carlo is as follows:

• Take a run with a flashing OB and obtain the hit arrival time distributions
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Figure 4.38: Zoomed version of the super histogram - The number of signal

hits is represented as a function of the time window when they are collected for three

OMs of the same storey. The different heights are related to the orientation of the

OM-axis with respect to the OB-OM direction.

for all OMs.

• Simulate many Monte Carlo samples with same data acquisition conditions

and different input parameters for λabs, λsca and η.

• Loop over the selected floors and OMs which pass the selection criteria for

the quality cuts for OB data in Table 4.2.

• Select “good” OMs of one line (sanity check).

• Select a fixed range of hit arrival time distribution where the peak and tail

is apparently well defined for each storey. Typically [-10,190] ns with a bin

size of 20 ns.

• Merge all the good time distributions of one line (extracted from the above

statement for all storeys) in one super-histogram.

• Compare the super-histogram for data and Monte Carlo with the χ2-test of

the Chi2Test routine from ROOT, with the Weighted-Weighted option since

the arrival time distributions were previously manipulated by subtraction of

the noise component and the addition of PMT efficiencies.

• Repeat for all the lines except for the line where the flashing OB is located.
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There are two additional factors which impact on the χ2-test: the histogram

binning and the statistics on the Monte Carlo samples. When very small bins

are considered, large statistical errors are obtained and χ2 values turn out to be

small. If very large bins are considered, small statistical errors and large χ2 values

are achieved. A bin size of above 20 ns (10 bins in a time window between -10

ns and 190 ns) smooths the impact of the binning giving reasonable values in

the χ2-minimization. The χ2 values are normalized to the number of degrees of

freedom by the Chi2Test routine from ROOT. Concerning the statistics in Monte

Carlo sample, to reach similar statistics at a given distance for each water model,

the number of flashes depends on the absorption and scattering lengths of the

model. Each Monte Carlo simulation has been produced from the propagation of

2×108 photons per flash.

The data runs used to be compared with the Monte Carlo samples are those of

Table 4.7

Run number Events OB line OB floor Date [dd/mm/yyyy]

58120 205161 4 2 17-06-2011

58607 200481 4 2 12-07-2011

58609 200281 2 2 12-07-2011

61518 460000 4 2 12-12-2011

Table 4.7: The set of OB runs used for the final comparison with Monte Carlo

samples follows the “all top-LEDs” configuration of the OB. There are three runs of

the central line L4 of the detector and one of the peripheral line L2, with more than

200k flashes each.

As an example for a particular special OB run (r58120), Figure 4.39 shows the

χ2-minimization obtained in the different lines of the detector comparing with all

the Monte Carlo models defined in Table 4.6 where the value of η is fixed to η

= 0.3. The disposal of the lines in the figure is equivalent to their layout in the

detector. As seen in Figure 4.39 all the lines behave similar, however showing

slight differences in the values of λabs and λsca depending on the closeness to the

emitter line (line 4, not shown). For the closest lines (i.e. lines 2, 6, 8 or 3) to the

emitter line, the λabs value is practically unaltered, but the uncertainty on λsca

is something larger. On then other hand, for the farthest lines (i.e. lines 11 or

12), the uncertainty on both magnitudes trends to increase. Figure 4.40 shows

the sum of the χ2 of all the lines of the detector for the calibration run used.
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Figure 4.39: χ2-minimization, one data run (r58120) - Each pad corresponds

to one line of the detector. The L4 is not shown since it is used as emitter and the

shadowing effect spoils the comparison. In the y-axis it is represented the absorption

length, in the x-axis the scattering length, and the colour bar the value for the χ2-test.

Only Monte Carlo models with η = 0.3 are shown.
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Figure 4.40: Overall χ2 result, data run r58120, all lines - Left: the sum of the

values of the χ2 tests for all the lines in the detector lines are represented. Center:

the corresponding contour plot is shown. Right: surface plot where is clearly seen

the minimum achieved. Only Monte Carlo models with η = 0.3 are shown.



4. Estimation of the optical properties with the OB technique 160

Figure 4.41 represents the χ2 minimization for a different special OB run (r58607)

close in time to the previous one.
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Figure 4.41: Overall χ2 result, data run r58607, all lines - Left: the sum of the

values of the χ2 tests for all the lines in the detector lines are represented. Center:

the corresponding contour plot is shown. Right: surface plot where is clearly seen

the minimum achieved. Only Monte Carlo models with η = 0.3 are shown.

From Figures 4.40 - 4.41, the level of agreement between the results for both OB

runs is clearly seen. The technique shows to be a good tool for water models

discrimination and the results are reproducible in time. The best data - Monte

Carlo agreement concerning the contribution for Rayleigh scattering is particularly

seen for values larger than 0.25. Figure 4.42 shows the result obtained when

comparing with models with η = 0.15.
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Figure 4.42: Overall χ2 result, data run r58120, all lines - Left: the sum of the

values of the χ2 tests for all the lines in the detector lines are represented. Center: the

corresponding contour plot is shown. Right: the equivalent surface plot is depicted.

Only Monte Carlo models with η = 0.15 are shown.

The best values of the absorption and scattering parameters are taking from the

Monte Carlo sample with the smallest χ2. Afterwards, we put these values for

all the 4 special OB runs into an histogram for all the detector lines, excluding

the farthest lines to the emitter line. These final results are represented in Figure

4.43.

The absorption and scattering parameters at the ANTARES site measured with
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Figure 4.43: Final results on absorption and scattering, OB technique -

Top-left: absorption length distribution. Top-right: scattering length distribution.

Bottom-left: Rayleigh scattering distribution. Bottom-right: effective scattering

length distribution. The number of entries in each histogram correspond to all the

active lines (44) evaluated for a total of 4 data runs taken and excluding the lines

too distant from the used OB: L9 for OB flashing in L4 (3 runs), and L9, L11, L12

for OB flashing in L2 (one run).
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the OB technique gives λabs(470) = 52.1 ± 5.5 m, λsca(470) = 58.7 ± 8.2 m for

a λeffsca (470) = 166.2 ± 23.1 m, where the quoted uncertainty are the root mean

square of the distributions. If different lines in the detector or different OB light

intensity is considered, the impact on the result is inside the quote systematic

error (±10%).



Chapter 5

Complementary studies on

optical properties with

reconstructed track

Education is not the filling of a pail, but the lighting of a fire

William Butler Yeats

As previously commented, two techniques have been developed for optical parame-

ters estimations: the OB technique (presented in Chapter 4) and the reconstructed

track technique (this chapter).

The reconstructed track technique is used to quantify the uncertainty in the de-

tector performance (tracks parameters and angular resolution and effective area

of the detector) due to the water optical properties estimation and to check the

consistency of the results of the OB technique. In this technique, several distri-

butions of physics quantities or magnitudes of real data are compared with the

same distributions obtained with Monte Carlo but computed with different values

of the optical parameters (absorption length, scattering length and fraction of

Rayleigh scattering). Basically, distributions of the quality parameter, directional

(i.e., zenith angle) and time information associated to the track are used for data

- Monte Carlo comparison.

This chapter is structured as follows. Firstly, the simulation of Monte Carlo events

and the reconstruction of tracks are described. Secondly, the data selection proce-

dure is presented, as well as the Monte Carlo production of samples with different

absorption and scattering spectra (water models). As before, by water model we
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means the values of the inherent optical properties as absorption length, scattering

length and fraction of Rayleigh scattering. Afterwards, a preliminary study about

how some parameters associated to the track are affected by the optical proper-

ties is performed. Then, the quantification of the uncertainty and the estimation

of the best model that describes the reconstructed data are carried out. Finally,

the effective area and angular resolution of the detector are studied for several

water models, including those extracted from the final analysis of the OB and

reconstructed track data.

5.1 Event simulation and track reconstruction

An ANTARES physics run consists of Physics events data corresponding to a group

of correlated hits in different parts of the detector. In the Monte Carlo simulation

of hits, the simulation of the Cherenkov light including photon scattering is taken

into account by means of “photon tables” which store the number of photons

and distributions of arrival times of PMT hits at different distances, positions

and orientations with respect to a given muon track or electromagnetic shower.

The reconstruction of the direction of the track which originates such correlated

hits is a six-step detailed algorithm involving a pre-selection of hits, linear pre-

fit minimization, maximization and finally a maximum likelihood procedure. The

main aspects in the simulation and reconstruction of tracks are presented in this

section.

5.1.1 Event generation

The present subsection shows the several stages of the simulation of particle tracks

crossing the ANTARES environment. The Monte Carlo physics generators and

the simulation of Cherenkov light induced by the relativistic particles crossing the

detector environment and the response of the detector are explained as follow.

• Monte Carlo physics generators:

The interaction processes of primary particles with the atmosphere are used

in the generation of secondary charged particles. Then, the resulting parti-

cles are propagated throughout the detection media reaching the detector

sensitive volume. Afterwards, the emission, propagation and detection of
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Cherenkov light released by the particles crossing the detector are simulated.

Finally, the transformation of photo-electrons into OM “hits” (i.e., the in-

formation of charge and arrival times) is performed.

Different codes are used depending on the particles to be simulated. Cosmic

and atmospheric neutrinos and their interaction with the Earth are gener-

ated with GENHEN (v5r6 this thesis) (126). Atmospheric muons are first

simulated in the atmosphere by CORSIKA (127) or MUPAGE (v3r4 this the-

sis) (128) (129) (130) and then propagated in sea water with MUSIC (126).

The Cherenkov light released by the particles and the electromagnetic show-

ers are simulated by the KM3 package (v3r7 this thesis) (121) (122). The

light propagation and detector response for hadronic showers is performed by

GEASIM (v4r10 this thesis) (131), analogous to KM3 for Cherenkov photons.

The propagation of atmospheric neutrinos and muons from the atmosphere

to the detector is simulated as follows:

– Neutrinos:

The GENHEN code models the interaction of neutrinos in a chosen en-

ergy range 10 ≤ Eν [GeV] ≤ 108 in a large detection volume defined

as a function of the maximum muon range for a given energy interval.

The simulation includes the deep-inelastic scattering and resonant and

quasi-elastic interactions using the LEPTO (132) and RSQ (133) pack-

ages respectively. The CTEQ6-D PDF parton distribution is set and the

hadronization is carried out by means of the PYTHIA/JETSET (134)

physics event generation package. Different models of the atmospheric

neutrino flux, as the case of Bartol flux (this thesis) (135) or prompt

flux as the RPQM (136) can be chosen to weight the events. The neu-

trino spectrum is generated as E−1.4 but can be weighted after the

simulation as atmospheric and signal neutrinos with an isotropic flux

as E−3.6
atm and E−2.0

cos respectively. The neutrino fluxes are simulated in

a solid angle of 2πsr as up-going events since down-going atmospheric

muons are six orders of magnitude higher, and a cut at zenith θ = 90◦

is applied. In this sense, the simulation uses a random time for each

event in order to apply a transformation from local to the Equatorial

system of reference.
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– Muons:

The simulation of atmospheric muons is performed at two stages: the

tracking of particles from the atmosphere to the sea level (MUPAGE),

and the propagation below the sea level and to reach the detector

(MUSIC). The MUPAGE package is a muon generator based on para-

metric formulas from a detailed Monte Carlo simulation of cosmic ray

showers releasing muon bundles and reaching the sea level. Afterwards,

these muon bundles can be propagated down up to 5 km w.e. (water

equivalent) below the sea level with the MUSIC package, which consists

in a 3D muon propagation code using the cross sections of the muons

interaction with water. The muon event kinematics is produced on the

surface of the “can” (see Figure 5.1), an imaginary cylinder surround-

ing the instrumented volume of the detector that defines the volume

within the Cherenkov light is generated, i.e., the limit between simple

muon propagation and propagation plus Cherenkov light simulation.

Figure 5.1: Generic detector geometry for Monte Carlo event generation -

The so-called “can”, is vertically and radially extended about 2.5·λabs away from the

instrumented volume.

The multiplicity of the muons in the bundle, the muon lateral distri-

bution and the energy spectrum can be modelled from the primary

CR flux models as HEMAS (this thesis) (137). The muon flux and

energy spectrum in MUPAGE are parametrized in terms of the vertical

depth, the zenith angle, and the bundle multiplicity. For each muon

in the bundle, the energy depends as well on the distance of the muon

from the shower axis. The atmospheric muon production takes into ac-
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count the muon bundle energy threshold and the events are generated

following the atmospheric spectra, so no re-weighting is needed.

• The KM3 code for Cherenkov light induced by particles:

A full simulation where every Cherenkov photon is generated and propa-

gated individually is not yet feasible in ANTARES. As alternative, a detailed

photon scattering process based on “photon tables” is performed. The KM3

simulation code (121) (122) is organized in three different programs: GEN,

HIT and KM3MC. These programs are designed to run in a step-by-step ba-

sis. Some introduction about GEN and HIT codes was already explained in

Chapter 4, but a slight extended description is as follows:

– The GEN package:

The GEN code simulates the generation of Cherenkov light by a particle

in a given medium (ice, water), including the light coming from sec-

ondary particles. The GEN code tracks the Cherenkov photons through

space with wavelength-dependent absorption and scattering, recording

the position (end point of the track segment), direction and arrival

time of photons at spherical shells of various radii centred on the ori-

gin, until the photon is absorbed or leaves the volume, as Figure 5.2

indicates.

Figure 5.2: The photon tables reference diagram - In the shells scheme, muons

and electrons are propagated along the detection medium and the Cherenkov photons

are stored in spheres at different distances.



5. Complementary studies on optical properties with reconstructed track 168

The absorption length spectrum in ANTARES simulations is normal-

ized from in-situ data of absorption length measurements at 375 nm

and 473 nm (R&D phase) (111). The shape of Smith & Baker spec-

trum is used, but the normalization is adjusted for tuning the measure-

ments from ANTARES data. The photon scattering in this thesis is

described in terms of a linear combination of Rayleigh and Mie scatter-

ing, where the Mie angular distribution is fixed to the measurements of

Petzold (82). The free parameters are the relative contributions of Mie

and Rayleigh scattering and the dependence of the scattering lengths

on the photon wavelength, based on the Kopelevich parametrization

(86) (84).

– The HIT package:

This program creates hit probability distributions due to muon track

segments and electron showers for the PMT features (i.e., the response

for a 10-inch Hamamatsu PMT as gain fluctuation and TTS). The pho-

ton fields recorded in shells by GEN are read shell-by-shell, converted

into hit probabilities and stored in arrays. For each case (muon or

electron) probabilities for direct and scattered hits, as well as the cu-

mulative arrival time distributions, are computed as a function of the

distance, the angle with respect to the track and the OM orientation.

– The KM3MC package:

The KM3MC code is the detector simulation program which uses as in-

put the hit probability distributions generated in HIT for muons and

electrons, and the geometrical description of the detector.

The MUSIC program is used for muon tracking by iterating through

track segments (typically 1 m long) until the muon is stopped or it

leaves the detector. A muon is processed if its distance of closest ap-

proach to the detector is smaller than 150 m. For each step, the energy

lost, the start and end positions, the direction and time of the muon

are stored in arrays. If the energy lost by a muon in a segment exceeds

the average energy loss by ionization (∼0.22 GeV/m), an independent

electromagnetic shower is considered in a random location along the

segment, it is added to the event particle stack and treated separately

as an electron. Once the array with the parameters of each segment
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for both particles (muons and electrons) is filled, KM3MC computes the

direct and scattered hits produced by such particles.

In order to make it looks like data, the Monte Carlo output file after

KM3MC is connected to the TriggerEfficiency package (triggers, cali-

brations and electronics features) described in Chapter 4. By means of

TriggerEfficiency, the Monte Carlo events are coupled with background

hits due to 40K and bioluminescence and the identical trigger criteria de-

fined in the online trigger is applied in order to select candidate events in

Monte Carlo samples. The background added to Monte Carlo is extracted

from real data acquisition conditions what includes number of active OMs,

low efficiency PMTs, baseline rate and bursts due to bioluminescence. In

the reconstructed track technique the PMT efficiencies are left with their

nominal values in the detector, both for data and Monte Carlo.

Concerning systematics attributed to the physics generators, the uncertainty

on the atmospheric neutrino flux considered from the GENHEN package, Bar-

tol’s or RPQM prompt neutrino flux is ∼ 15% (138). The uncertainty on the

atmospheric muon flux generated with MUPAGE is ∼ 30%. The uncertainty

on the angular acceptance of the OMs (June 2009, this thesis) is other rele-

vant systematic source of uncertainty for the simulated flux of atmospheric

neutrinos and muons (138).

5.1.2 Muon track reconstruction

The track reconstruction in this analysis is done with the so-called “Aafit recon-

struction algorithm” (139), which is able to work both for data and Monte Carlo

samples. For the track reconstruction, the arrival time of a Cherenkov photon to

a PMT and other space parameters associated to the track are computed based

on the geometrical inference shown in Figure 5.3. Five parameters are required

for the reconstruction of a track coming from a relativistic particle: the zenith θ

and azimuth φ angles respect to the detector, x and y coordinates to locate the

point A defined by the intersection of the perpendicular plane P , and the initial

time of the muon track t0 where it crosses A.

In agreement to Figure 5.3, each photon direction is scanned trying to find an

equivalence between the hit times and the ones expected for Cherenkov photons
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Figure 5.3: Scheme of the geometry used for track reconstruction (i.e., a

muon) - A set of five angular, distance and time parameters are needed for the

reconstruction of the track by using the Aafit algorithm.

emission by a track addressed to that direction. The expected time tiexp of a hit

coming from a Cherenkov photon from a given track can be estimated as

tiexp = t0 +
1

c
(Li −

di
tan θc

) +
1

vg

di
sin θc

. (5.1)

The second term in Equation 5.1 refers to the time used by the muon for travelling

from the initial position to the point where the detected photons are emitted. The

last term is just the required time for photons to reach the PMT, where vg is the

group velocity of light. The difference between the true arrival time (thit) and

the expected or theoretical (texp) time of the hit is known as “time residual”

(tres = thit − texp). The expected arrival time is computed from the muon track

time and space parameters as shown, the true arrival time can vary due to photons

emitted from secondary electrons or being their path influenced by light scattering.

The Aafit reconstruction algorithm run along six defined steps:

• Pre-selection of hits: the interest is focused to reject as much amount of

optical background hits as possible by using a predefined selection algorithm.

• Linear pre-fit: it is a first linear fit independent of the starting point, it only

uses a sub-sample of the pre-selected hits picked up from local coincidences
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(combination of 2 or more hits on one floor in 25 ns) and from hits with

amplitudes typically larger than 3.0 photo-electrons.

• M-estimator fit: the fit in this step uses the hits which are at distance

shorter than 100 m to the initial fitted track and fall on a ± 150 ns window

with respect to the expected time calculated with the parameters of the

linear pre-fit. This stage guarantees hits selection with amplitudes larger

than 2.3 photo-electrons.

• Maximum likelihood fit with the original PDF: here a maximum likeli-

hood fit is done considering time residual from the main fit.

• Repetition of steps 3 and 4 with different starting points: the steps 3

and 4 are re-done (9 times) since it improves the efficiency of the algorithm

with different starting points concerning the linear pre-fit.

• Maximum likelihood fit with improved PDF: the best result obtained in

the previous step is used as new starting point for a maximum likelihood fit

with an improved PDF (p). In this case, hits are selected with time residual

in the [-250, 250] ns interval with amplitudes larger than 2.5 photo-electrons

or found in local coincidences. The function p is extracted from Monte Carlo

simulations and includes the time residual, the incident angle, the photon

path length, and the rate background. Afterwards, p is maximized by using

a maximum likelihood function L which includes the hits with small time

residual with respect to the original PDF.

The quality of the reconstruction (Λ) can be estimated as the logarithm of the

likelihood function normalized to the degrees of freedom Ndof

Λ =
log(L)

Ndof
+ 0.1(Ncomp − 1) , (5.2)

where Ncomp represents the number of starting points (number of compatible

solutions) result of the track estimation compatible with the preferred result (i.e.,

which give the same track direction within 1◦). The Ncomp is also an indicator for

rejection of mis-reconstructed tracks. For badly reconstructed events Ncomp = 1

in average, and can reaches up to 9 for well reconstructed events what means

that all of the starting points have resulted in the same track. In addition to tres
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and Λ, additional track variables can be extracted from the Aafit reconstruction

algorithm as:

• beta: angular uncertainty on the muon track direction such as

β =
√

sin2(θrec)σ2φ + σ2θ , (5.3)

• tcosth: cosine of the zenith (θ) of the fitted track,

• tphi: azimuth (φ) [−π, π] of the fitted track (not used for single line fit).

Other track parameters not commented before can be easily obtained by a slight

modification in the Aafit code and suitable treatment of data formats (140)

(141).

5.2 Optical properties analysis with reconstructed track

As previously commented, the optical properties studies using reconstructed track

are performed comparing distributions of physics quantities associated to the real

track, with the same distributions obtained with Monte Carlo samples generated

with different inherent optical parameters as absorption length, scattering length

and fraction of Rayleigh scattering. A preliminary comparison of quantities such as

the quality parameter of the track, the angular error associated to the track, and

the zenith angle is performed before the quantification of the uncertainty due to the

exact water model (combination of different optical parameters) which describes

the data, and the subsequent estimation of the best favoured water model. The

preliminary data - Monte Carlo comparison lead as well, to the definition of some

quality cuts for tracks used in the analysis. An estimation of the uncertainty

associated to the knowledge of the exact water model is performed. The simulated

water model that better agrees with the data uses a similar approach as the one

used to represented the χ2-minimization in the OB technique, but considering the

mean values (and RMS) of the data - Monte Carlos ratios of muon time residual

distributions (tres).
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5.2.1 Data run selection

The physics and calibration data in ANTARES are recorded in ROOT format during

specific data taking sessions (the so-called runs). The duration of the physics run

depends on the number of switched triggers along the acquisition period, thus

on the number of triggered hits. Once recorded, the triggered hits are used

to reconstruct the particle track which originates them. Two sub-samples (for

a preliminary and extended analysis) of the official runs selection used in the

ANTARES neutrino point sources searches, have been used for optical properties

studies by using the reconstructed track technique.

The first data set is a sub-sample extracted from the official analysis of point-like

sources in ANTARES for 2007-2008 data (142) (143). It includes 1044 data files

for a 12-lines configuration of the detector in a period defined between 08/05/2008

and 30/12/2008 (34091 ≤ run-number ≤ 38216) which means a total lifetime of

the data sample of 76.77 days. The second data set (which includes the first one)

covers almost two years between 2008 and 2010 (31051 ≤ run-number ≤ 54244)

with a total lifetime of 618.96 days with about 6000 physics data runs. This

second data set was extracted from the last official analysis of point-like sources

in ANTARES for 2007-2010 data (144) (35). Both data sets are referred to as

official reconstructed data in May 2011. The chosen data sets followed the official

quality criteria in ANTARES based on “basic” runs, for which no problems where

found during data acquisition. These “basic quality runs” are featured by some

minimum requirements as:

• Effective duration of the run larger than 1000 s. This is to avoid runs

accidentally started, i.e., by human errors or with the wrong configuration.

• No double frames are present. This is thought in order to reject two data

frames (array of hits) coming from the same ID label, i.e., the same ARS,

what could mess the configuration, etc.

• No synchronization problems. This is part of consistency checks on the

timestamp and index of the timeslices, in order to ensure that no timeslices

are lost, or duplicated, or coming in the wrong order.

• Reasonable muon rate between 0.001 Hz and 100 Hz. This is a very loose

criterion just to ensure that the 3N trigger rate (Chapter 2) has reasonable
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values, i.e., away of recording wrong data as coming from a switched OB

or something messy. It is not supposed to cut any physics event.

Each data run in ANTARES is associated to a specific run setup which defines

the trigger logics and the calibration set to be used in the data taking. For the

time-range when the data taking took place, a mean baseline rate about 70 kHz

with two periods of high optical activity were registered. The whole selected data

is reconstructed by using the Aafit algorithm into the official SeaTray framework

(145). The reconstruction chain consists of “modules” which interpret the raw

data, apply the calibration and perform the reconstruction. The relevant data

stream is ordered as “frames” storing quantities related to the position, direction,

particle, hit, track and the detector geometry (including OM and PMT features).

Some additional features are set by the user related to the reconstruction, analysis

and simulation if it is the case.

5.2.2 Monte Carlo production (water models)

A reduced range of optical parameters was used for preliminary studies with recon-

structed track. A total of ten Monte Carlo samples were generated following the

“Partic” model (Chapter 3). Such Monte Carlo samples consisted in simulated

and reconstructed physics events in water assuming different water properties, it

is, several combinations of inherent optical properties of the medium as absorption

length, scattering length and fraction of Rayleigh scattering. The absorption and

scattering spectra used for these simulations are depicted in Figure 5.4.

The Monte Carlo samples (water models) were generated in such a way that two

absorption lengths (λabs) were tested. For each λabs, three models had the same

effective scattering length (λeffsca ) and different fraction of Rayleigh scattering (η),

and three of them had the same η and different λeffsca (see Table 5.1 for exact

values).

On the other hand, an extended study was performed producing a larger number

of Monte Carlo water models. This new set consisted of 27 new combinations of

λabs, λsca and η. They were constructed from 9 different scattering spectra (3

values of λeffsca and η) and 3 absorption spectra as represented in Figure 5.5 and

summarized in Table 5.2.

The results from the OB technique on λabs and λsca at 470 nm are used as input for

the simulation and reconstruction of tracks. Some water models which minimizes
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Figure 5.4: Preliminary water models set tested in track reconstruction -

Left: two absorption length spectra are considered and compared with the Smith &

Baker spectrum for the clearest natural waters, the values in the legend correspond

to the maximum. Right: three scattering spectra are used based on the Kopelevich

parametrization. The contributions of large and small scattering centres are assumed

as equal.

λabs [m] λsca [m] η λeffsca [m]

55 53 0.17 227

55 41 0.17 176

55 22 0.17 94

55 41 0.11 227

55 22 0.02 227

63 53 0.17 227

63 41 0.17 176

63 22 0.17 94

63 41 0.11 227

63 22 0.02 227

Table 5.1: The first water models tested comprises ten generated Monte Carlo

samples, to be compared with the preliminary data sample.
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λabs [m] λsca [m] η λeffsca [m]

50 17 0.10 100

50 34 0.10 200

50 51 0.10 300

50 26 0.20 100

50 52 0.20 200

50 78 0.20 300

50 55 0.30 100

50 71 0.30 200

50 106 0.30 300

55 17 0.10 100

55 34 0.10 200

55 51 0.10 300

55 26 0.20 100

55 52 0.20 200

55 78 0.20 300

55 55 0.30 100

55 71 0.30 200

55 106 0.30 300

60 17 0.10 100

60 34 0.10 200

60 51 0.10 300

60 26 0.20 100

60 52 0.20 200

60 78 0.20 300

60 55 0.30 100

60 71 0.30 200

60 106 0.30 300

Table 5.2: The water models of the second set comprises 27 Monte Carlo samples

chosen uniformly in λabs, λ
eff
sca and η, extending the range of study.
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Figure 5.5: Second extended water models set tested in track reconstruction

- Left: three absorption length spectra are used. Right: nine scattering spectra

based on the Kopelevich parametrization are used. Large and small centres equally

contribute.

the data - Monte Carlo discrepancy in the final results of the OB technique (see

Table 5.3) were generated as well in the track simulation and reconstruction chain

for a full absorption and scattering spectra.

λabs [m] λsca [m] η λeffsca [m] Run number (OB)

55 70 0.35 175 61518

50 50 0.2 192 58607

50 50 0.3 142 58120

Table 5.3: Additional water models tested in reconstruction. Each combination of

optical parameters as λabs, λsca and η in Monte Carlo gives the minimal χ2 when it is

compared with the OB run, specified in the last column. The aim of this production

is the study of the detector performance, namely angular resolution and effective

area.

5.2.3 Influence on the reconstructed track

Once the reconstruction chain is applied for the triggered events both for data and

Monte Carlo, several parameters associated to the track can be extracted. This

section starts from a qualitative analysis of the influence of the water properties

in the distributions of track parameters as the quality parameter, the angular error

and the zenith angle. Afterwards, the quantification of this influence is presented

and discussed.

As commented before, the quality of the track reconstruction is evaluated by
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means of the parameter Λ, or in other words, Λ is used to discriminate good and

badly reconstructed events. Figure 5.6 shows the distribution of the reconstruction

quality parameter Λ for real data and for different simulated water models (Table

5.1). The plots in the left (respectively right) column correspond to models with

λabs = 55 m (respectively λabs = 63 m). The upper row plots are for Λ >

-10, while the lower row plots are for Λ > -5.4 (a value customarily used to

select good reconstructed tracks since it rejects most of the atmospheric muons

wrongly reconstructed as up-going). For all the plots, a cut in cos θ > 0 (tracks

reconstructed as up-going) and β < 1◦ (tracks with low angular uncertainty) are

applied.
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Figure 5.6: Distribution of the quality parameter Λ for data and Monte Carlo

generated with different optical parameters. Scattering preliminary checks -

In order to see the influence of the scattering, absorption length is fixed in each plot

and the scattering parameters are changed. Up-left: distributions with absorption

length of 55 m. Up-right: distributions with absorption length of 63 m. Down-left:

a zoomed version for the λabs = 55 m case. Down-right: a zoomed version for the

λabs = 63 m case. The quality cuts β < 1◦ and cos θ > 0 are applied in all the

cases.

The first observation in both cases is the poor level of agreement when short λeffsca
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values are assumed, being the corresponding distributions systematically below

the data. The water model in red constitutes the ANTARES official water model

used on the Monte Carlo simulation of the detector.

On the other hand, Figure 5.7 shows Λ distributions for water models where

scattering parameters are fixed and absorption lengths are different (55 m and 63

m). As seen, the favoured models point to large λeffsca values, while models with

low values of λeffsca (< 100 m) show a large discrepancy with real data and can be

discarded. As observed, the shortest absorption length (λabs = 55 m) seems to

agree better with data.
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Figure 5.7: Distribution of the quality parameter Λ for data and Monte Carlo

generated with different optical parameters. Absorption preliminary checks

- In order to see the influence of the absorption, in each plot scattering parameters

remain fixed and absorption length is changed. The quality cuts β < 1◦ and cos θ > 0

are applied in all the cases.
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Nonetheless, for combinations of very low values of λsca and η (i.e. Figure 5.7-

bottom-left), a larger λabs can not be totally rejected. There is, apparently, a

degeneracy between water models with the same λeffsca , which is to be expected,

since the quality of the fit, Λ, only depends on the time residuals of the track hits.

Figure 5.8 shows the Λ distributions of ratios data and Monte Carlo obtained

bin-to-bin of all the cases previously presented. By means of the data - Monte

Carlo ratios is better seen that λabs = 55 m agrees better with data, although the

bad agreement for λeffsca < 100 m is also clear. Moreover, from these ratio plots a

change in the shape for Λ distributions is observed when several combinations of

λabs and λsca values are considered. The optical properties clearly influence the

quality of the reconstructed tracks.

In the track reconstruction the likelihood function near the fitted maximum is

assumed to follow a multivariate Gaussian distribution, where the error of zenith

and azimuth angles are estimated from the covariance matrix. The angular un-

certainty or angular error on the muon track direction, β, can be obtained from

these errors, as shown in Equation 5.3. A cut of β < 1◦ ensures a rejection of at

least 50% of atmospheric muons which are mis-reconstructed as up-going tracks

(144) (35). As previously seen, the changes due to optical properties on the main

track reconstruction parameters are better observed from their corresponding data

- Monte Carlo ratios. The data - Monte Carlo ratios of β for different water mod-

els for up-going (cos θ > 0) and well reconstructed (Λ > -5.4) tracks are shown

in Figure 5.9.

As a general observation, the distributions with λabs = 55 m seems to agree

better with data despite a slight overestimation of the expected data - Monte

Carlo ratio in some cases. For λabs = 63 m underestimations are observed, but

the slight flat trend of some models do not clearly allow to discard them. Once

again the degeneracy between water models is seen. Additionally, it is observed

that changes on the optical properties of the water do not show a strong influence

on the determination of the angular error associated to the track, β. There are not

significant changes in the shape of the data - Monte Carlo ratio plots, although

the normalization in the distributions varies since the number of reconstructed

tracks depends on absorption.

The cut in zenith angle governs the selection of up-going (cos θ > 0) or down-going

(cos θ < 0) tracks. Up-going events are those used (naturally) for identification of
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Figure 5.8: Ratio between data and Monte Carlo for Λ distributions with

different Monte Carlo water models - In the left column, water models with λabs

= 55 m are shown. In the right column the models with λabs = 63 m are depicted.

Each row corresponds to a different value of scattering parameter. The quality cuts

β < 1◦ and cos θ > 0 are applied in all the cases.
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Figure 5.9: Ratio between data and Monte Carlo for β distributions with

different Monte Carlo water models - In the left column, water models with λabs

= 55 m are shown. In the right column the models with λabs = 63 m are depicted.

Each row corresponds to a different value of scattering parameter. The quality cuts

cos θ > 0 and Λ > -5.4 are applied in all the cases.
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neutrino point sources. The data - Monte Carlo ratio for the cosine of the zenith

angle distribution for the different water models is shown in Figure 5.10 for Λ >

-5.4 and β < 1◦ cuts.

As it was seen for β, the data - Monte Carlo ratio for cos θ shows that the

directional information provided by the zenith angle of the track is not spoiled

due to the uncertainty on the water model determination for up-going tracks.

The discrepancy between data and Monte Carlo for down-going tracks is to be

expected since the reconstruction algorithm is optimized to reconstruct up-going

tracks and moreover the OMs are looking downwards, therefore most of the hits

collected come from scattered photons. Several combinations of λabs, λsca and

η do not distort the shape of the data - Monte Carlo ratio distributions and the

loss of tracks by absorption effects does not give a sizeable slant on the cos θ

distributions for up-going tracks. As the atmospheric muon and neutrino events

are uniformly distributed in azimuth angle, not any distribution or cut related to

azimuth at all were relevant in this analysis.

As general comment, for all the magnitudes showed before, low values of λsca (i.e.,

≤ than 35 m) combined with very large values of λabs could lead to degenerated

solutions and both effects can be compensated. It is the reason why a more wide

range of optical parameters have been evaluated in this thesis.

Once a first look to the influence of the water properties on the main track

reconstruction parameters has been done, a quantification of such influence on

the reconstruction quality parameter Λ becomes appropriate. This quantification

is done independently for up-going atmospheric neutrinos (ν+ν̄) and down-going

atmospheric muons (µ). The idea is to estimate how much this quality parameter

of the reconstruction can change when some optical parameter as λabs and λsca

are modified as Equation 5.4 indicates

dN(ν,µ)

N(ν,µ)
= K ·

dλ(abs,sca)

λ(abs,sca)
, (5.4)

where K is the proportionality constant which quantify the impact of the optical

parameter in the quality of the reconstruction.

In Figure 5.11, four cases of distributions of Λ are represented: neutrino and muon

distributions with different λabs and the same scattering parameters (Figure 5.11-

up), and neutrino and muon distributions with different scattering parameters

and same λabs (Figure 5.11-down). Only the quality cut at Λ > -5.4 was applied.
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Figure 5.10: Ratio between data and Monte Carlo for the cosine of the

zenith angle cos θ distributions with different Monte Carlo water models - In

the left column ,water models with λabs = 55 m are shown. In the right column the

models with λabs = 63 m are depicted. Each row corresponds to a different value of

scattering parameter. The quality cuts Λ > -5.4 and β < 1◦ are applied in all the

cases.
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Based on Table 5.1, the first two cases correspond to increase λabs from 55 to

63 m (first and sixth row respectively, 15% of uncertainty) leaving λsca fixed at

53 m. The second two cases correspond to a fixed value of λabs at 55 m (or 63

m) decreasing λsca from 53 m to 41 m (first and second row respectively, 23% of

uncertainty).
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Figure 5.11: Extraction of the uncertainties in Λ distributions due to absorp-

tion and scattering - In agreement to Table 5.1, four cases are evaluated. Up-left:

neutrino distributions with λabs non-fixed and fixing λsca. Up-right: muon distri-

butions with λabs non-fixed and fixing λsca. Down-left: neutrino distributions with

λsca non-fixed and fixing λabs. Down-right: muon distributions with λsca non-fixed

and fixing λabs. Only the quality cut Λ > -5.4 is applied in all the cases.

In each case in Figure 5.11, the bin with the maximum occupancy (maximum bin)

is determined and the number of reconstructed tracks (bin content) is evaluated for

each pair of distributions. Then, Equation 5.4-left can be applied. The Equation

5.4-right represents the uncertainty on the parameter whose influence we want to

evaluate, for instance λabs or λsca.

By solving the particular case for absorption in Figure 5.11-up for Λ we have for

neutrinos and muons respectively

dNν

Nν
= 0.18 ,

dNµ

Nµ
= 0.32 . (5.5)
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In turn, looking for the uncertainties due to scattering in Figure 5.11-down we

have for neutrinos and muons respectively

dNν

Nν
= 0.06 ,

dNµ

Nµ
= 0.27 . (5.6)

As it can be deduced, up-going neutrinos become less affected (∼18%, ∼6%)

by the optical properties (λabs and λsca) than atmospheric down-going muons

(∼32%, ∼27%) respectively. On the other hand, the absorption has a stronger

effect both for neutrinos and muons than scattering. The relative change of the

number of tracks as a function of the change in the absorption length is then:

dNν

Nν
= 1.2

dλabs
λabs

dNµ

Nµ
= 2.2

dλabs
λabs

, (5.7)

while the change as a function of the variation in the scattering length case is:

dNν

Nν
= 0.3

dλsca
λsca

dNµ

Nµ
= 1.2

dλsca
λsca

, (5.8)

where the proportionality constant is extracted applying Equation 5.4 to neutrino

and muon distributions for λabs and for λsca. The results obtained with this

method are reasonably in agreement within the uncertainties reported by other

similar studies performed in ANTARES (146).

5.2.4 Muon time residual. Most favoured water model estimation

As commented before, the difference between the true arrival time (thit) and the

expected time (texp) of the hit is known as “time residual” (tres = thit − texp).

The muon time residual comparison between data and Monte Carlo is used as a

complementary analysis to estimate the water model that agrees better with data.

The method is similar to that of the OB technique, but using the mean value

(and RMS) of the data - Monte Carlo ratio for muon time residual distributions

instead of the χ2-test. Only the up-going muon tracks with Λ > −5.4 and β < 1◦

are considered. In this case, the correct selection of events is relevant since bad

reconstructed events can spoil the estimation of the water model that better

describes the data. Therefore, soft cuts in the quality parameter for up-going

tracks have to be applied since less up-going events are expected than down-

going ones.

The distribution of the time residual of the hits used in the reconstructed tracks
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is computed for the water models listed in Table 5.2 and then compared with the

time residual distribution extracted from data. Figure 5.12 shows the comparison

of the muon time residual distributions for up-going tracks between data and

Monte Carlo distributions for the water models of Table 5.2.

The normalization of the Monte Carlo time residual distributions (among others)

in Figure 5.12 depends on two factors: the scaling to the lifetime of the data

concerning that of the sample and the generation weight relative to the number

of physics events generated for the whole sample. The latter depends of the size

of the whole Monte Carlo samples, which is not the same in all the cases and

explains the statistical fluctuations for some models seen in Figure 5.12.

As observed in Figure 5.12, the agreement with data gets worst as the scattering

length decreases (denoted by “ls”), no matter the absorption length considered

(denoted by “la”). This is clearly seen for λsca < 35 m (plots P-Z). Such observa-

tions were also previously commented for different track parameters. A short scat-

tering length (i.e., λsca < 35 m) seems not compatible with data at the ANTARES

site. Concerning the remaining models, evident over/under-estimations allows to

reject some of them. The models labelled as A, H, K, L, N or O seem to agree

better with data. These first assessments from visual inspection can be better

quantified from the data - Monte Carlo ratio distributions shown in Figure 5.13.

The most favoured model should be close to the unit (green line) and with low

fluctuations along the time residual window (narrow RMS). Table 5.4 shows the

mean and RMS values extracted from the data - Monte Carlo ratio distributions

from Figure 5.13.

Data/MC ratio (x̄±rms)

λeffsca (η = 0.1) [m] λeffsca (η = 0.2) [m] λeffsca (η = 0.3) [m]

100 200 300 100 200 300 100 200 300

λ
a
b
s
[m

] 60 2.28±0.53 1.38±0.42 1.12±0.35 2.20±0.46 0.97±0.39 0.76±0.31 2.35±0.25 0.84±0.35 0.68±0.26

55 3.04±0.25 1.36±0.61 1.22±0.52 2.34±0.79 1.00±0.41 0.83±0.42 2.21±0.67 0.94±0.41 0.64±0.21

50 3.73±0.34 1.84±0.65 1.68±0.67 3.51±0.41 1.80±0.70 1.21±0.70 3.43±0.34 2.07±0.64 1.08±0.58

Table 5.4: The table shows the mean and RMS values extracted from the Data/MC

ratio distributions for the water models used in the muon time residual analysis. Each

three columns the results are grouped by each of the 3 values of η used, and for the

3 different values of the λeffsca . Each row corresponds to the results grouped by each

of the 3 λabs.
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Figure 5.12: Time residual distributions for data and Monte Carlo for up-

going tracks - Each Monte Carlo distribution extracted from the 27 models listed

in Table 5.2 is compared with that of data. The λabs (“la”) increases (from 50 to

60 m) from left to right column and λsca (“ls”) decreases (from 106 to 17 m) from

top to bottom row, λeffsca is labelled as “lse”. In the y-axis the number of hits is

represented, the x-axis for the muon time residual. The quality cuts cos θ > 0, Λ >

-5.4 and β < 1◦ are applied in all the cases.
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Figure 5.13: Data - Monte Carlo ratios for time residual for up-going tracks -

Each plot corresponds to a different water model from Table 5.2. Absorption lengths

(“la”) increases (50 m - 60 m) from left to right and scattering length (“ls”) decreases

(106 m - 17 m) from top to bottom, the effective scattering length is labelled as

“lse”. In the y-axis it is represented the Data/MC ratio, in the x-axis the muon time

residual. The quality cuts cos θ > 0, Λ > -5.4 and β < 1◦ are applied in all the

cases.
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As can be seen, for η ≥ 0.2 similar values for the mean and RMS of the data -

Monte Carlo ratios for some models are achieved. From Table 5.4-center (η = 0.2),

the proximity to unity of the mean value of the data - Monte Carlo ratio distribu-

tions is something clear only for a pair of water models, those giving 0.97±0.39

and 1.00±0.41. The results for the same pair of water models but with η = 0.3

are 0.84±0.35 and 0.94±0.41 respectively. Based on the qualitative analysis and

results showed in Table 5.4, the most favoured water model searching leads to an

educated choice of λabs = 55 m, λsca = 52 m, η = 0.2 and λeffsca = 200 m, what

matches within the uncertainty of the final results of the OB technique (Figure

4.43). However, as it was suggested in the previous section, due to the degeneracy

between water models a largest λabs could not be discarded.

As conclusion, Figure 5.14 compares the most favoured water models extracted

from the OB and reconstructed track techniques. In turn, it shows the upper

limits for λabs and λsca for pure water (90). The reference with predictions for

clean sea water for λabs and λsca is as well represented (89).
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Figure 5.14: Summary of absorption and effective scattering lengths estima-

tions at the ANTARES site (470 nm) - The data - Monte Carlo ratios method

for the reconstructed track technique seems to match reasonably with the results of

the χ2-minimization of the OB technique at 470 nm. The upper limits for pure and

clearest natural waters are shown for reference.

As seen, the results of λabs estimations from both methods, OB and reconstructed

track, are compatible within the uncertainties. The λeffsca obtained from the recon-

structed track technique differs by a 17% concerning the measurement with the

OB technique. The clean sea water absorption estimation from Smith & Baker
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(89) seems to agree within the measurements obtained from OB and reconstructed

track techniques and below the upper limit set by Pope & Fry measurements for

pure water (90). Concerning scattering measurements, the λeffsca estimations by

both techniques differ in about 100 m with the predictions for clean sea water

from Morel studies (91) and about 150 m respect to the pure water scattering

length upper limit set by Morel (91). The λabs has the strongest effect in the

reconstruction of tracks and it is estimated with less uncertainty than the λeffsca

which has a weaker effect.

5.3 Influence on the detector performance

The angular resolution and the effective area of the detector are the most im-

portant parameters concerning the search for point sources of cosmic neutrinos,

therefore, the influence of the water properties on such magnitudes has to be

known. This study is performed comparing such magnitudes as a function of the

neutrino energy. The study of the influence of the water properties on the detector

performance namely angular resolution and effective area is the final subject of

this thesis, with special attention to the analysis of such magnitudes based on the

water models estimated from the reconstructed track and OB techniques. Such

water models and the official ANTARES model are summarized in Table 5.5.

λabs [m] λsca [m] η λeffsca [m] Method

55 53 0.17 227 ANTARES official

55 52 0.2 200 Reconstructed up-going tracks

55 70 0.35 175 OB CALIBOB-r61518

50 50 0.2 192 OB CALIBOB-r58607

50 50 0.3 142 OB CALIBOB-r58120

Table 5.5: The table shows the most favoured water models obtained from the

OB and reconstructed track techniques, which are used to study their influence on

the angular resolution and effective area estimations of the detector. The reference

ANTARES water model is used for comparison.

5.3.1 Angular resolution

The angular resolution of the detector is defined as the median of the distribution

of the difference in absolute value between the reconstructed direction (θrec) and
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the true direction (θtrue) of the track. As commented in Chapter 1, the angular

resolution can be only estimated by Monte Carlo simulations. As starting point,

the Figure 5.15 shows the angular resolution of the detector for two water models

from Table 5.1, where λabs has been changed by a 15% keeping fixed λsca (left)

and contrariwise (right), where λsca is changed by a 23% keeping fixed λabs.
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Figure 5.15: Angular resolution as a function of the neutrino energy, water

models changing λabs and λsca - Left: angular resolution for two different ab-

sorption lengths (15%) and λsca fixed. Right: angular resolution for two different

scattering lengths (23%) and λabs fixed. Quality cuts (Λ > −5.4, β < 1◦) for tracks

defined in the last section are applied for up-going events.

The influence due to both λabs and λsca on the angular resolution becomes less

than 0.1◦ for the whole neutrino energy range, where λabs slightly dominates at

high energies. The angular resolution at lower neutrino energies is mainly linked

to the kinematics as the ν − µ angle, and at higher energies governed by the

quality of the reconstruction. In general, from medium to higher neutrino energies

(i.e. Eν > 104 GeV) the λabs has a “stronger” influence on angular resolution

(∼0.05-0.1◦) comparing to λsca (∼0.05◦). At lower energies (i.e. Eν < 104 GeV)

both λabs and λsca behave similar (∼0.05◦). Higher the λabs and λsca, better

angular resolution is achieved.

On the other hand, the angular resolution estimated for the most favoured water

model from the reconstructed track technique (Up-going tracks) and those from

the OB technique (CALIBOB-r∗) are compared in Figure 5.16. The ANTARES

official angular resolution is also shown which corresponds to that estimated until

the release of the last Monte Carlo production done in this thesis.
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Figure 5.16: Angular resolution of ANTARES compared for the most favoured

water models from the reconstructed track and OB techniques - Left: angular

resolution as a function of the neutrino energy (full energy range). Right: a zoomed

version for intermediate energies. Quality cuts for tracks (Λ > −5.4, β < 1◦) defined

in the last section are applied for neutrino up-going events.

As seen on Figure 5.16, the angular resolution for the water models estimated

from the reconstructed track and OB techniques is slightly improved concerning

the official one in ANTARES (red curve). The reconstructed track and OB strate-

gies, show similar results on the angular resolution of the detector for the whole

neutrino energy range considered. The equivalence of the techniques allows an

improvement about 0.05◦ in average concerning the official angular resolution of

ANTARES.

5.3.2 Effective area

The effective area can be considered as the ANTARES detection efficiency, and

as commented in Chapter 1, can be only calculated by Monte Carlo simulations.

The estimation of the effective area for the same uncertainties considered in the

study of the angular resolution is depicted in Figure 5.17.

For the λabs, at lower energies (i.e. Eν < 104 GeV) an overall change of 16% in

the effective area of the detector is estimated. This uncertainty decreases down to

a 5% at higher energies (i.e. Eν > 106 GeV). Therefore, a change between 16-5%

in the effective area is seen due to the uncertainty on the λabs along the neutrino

energy range considered. Concerning λsca, at lower energies an overall change of

5% in the effective area of the detector is extracted, but slightly increased up to
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Figure 5.17: Effective area as a function of the neutrino energy, water models

changing λabs and λsca - Up: effective area for two different absorption lengths

(15%) and λsca fixed. Down: effective area for two different scattering lengths

(23%) and λabs fixed. Quality cuts for tracks (Λ > −5.4, β < 1◦) defined in the last

section are applied for up-going events. Right plots in non-log scale.
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7% at higher energies. A change between 5-7% in the effective area is seen due

to the uncertainty on the λsca for the whole neutrino energy range considered.

Higher the λabs and λsca, higher the detector effective area and more neutrinos

are detected.

A final look to the influence due to water properties on the effective area based

on the selected water models from the reconstructed track and OB techniques is

represented in Figure 5.18.
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Figure 5.18: Effective area of ANTARES compared with the best favoured

water models from the OB and reconstructed track techniques - Left: effective

area as a function of the whole neutrino energy range considered. Right: a zoomed

version (no-log scale) at intermediate energies. Quality cuts (Λ > −5.4, β < 1◦) for

tracks defined in the last section are applied for neutrino up-going events.

As it can be seen from Figure 5.18, the best model estimated from the recon-

structed track technique does not show difference enough concerning the “official”

estimations in ANTARES. On the other hand, the water models obtained from the

OB technique are compatible among them since no large differences are shown in

terms of effective area, what is clearly seen in Figure 5.18-right where a zoom to

intermediate energies is represented.
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Chapter 6

Summary and Conclusions

6.1 Overview

Neutrino Astronomy aims to scientifically exploit neutrinos as a new cosmic mes-

senger to explore high energy astrophysical phenomena in the TeV–PeV energy

range. The very low fluxes and the small interaction cross-section of neutrinos

with matter require the construction of massive detectors. When the incoming

neutrino direction can be reconstructed with a reasonable angular accuracy, the

detector is dubbed “telescope”, since the neutrinos, having no electric charge,

point back to their source. In the Cherenkov technique, the observation of the

neutrino is carried out through the detection of the Cherenkov light induced by

the charged relativistic particles produced in the neutrino interaction with matter,

mainly the muon in the case of the charged current interactions of muon neu-

trinos. From the arrival time and position of the detected Cherenkov photons

induced by those secondary particles which cross the medium where the detector

is located, information on the neutrino direction and energy can be inferred. Since

the optical properties of the medium in which the telescope is located determine

the transmission of the Cherenkov photons, a proper understanding of the influ-

ence of these properties in the track reconstruction and detector performance is

required.

The ANTARES deep-sea neutrino detector is the first fully operational undersea

neutrino telescope in the Northern Hemisphere. It consists in a three-dimensional

layout of 885 photomultipliers (PMTs) arranged in 12 detection lines plus one

instrumentation line. Each detection line has 25 storeys, each of them containing
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triplets of PMTs housed in optical modules (OMs) and independent modules with

the associated electronics. Some of these storeys are equipped with extra devices

for time calibration and positioning of the detector. The Optical Beacon system,

in particular, was designed for the in-situ time calibration of the apparatus, i.e.

for the proper synchronization of its OMs. Although originally designed to this

end, the OB system can be used to have a handle on the optical properties of the

surrounding water.

The objective of this thesis is to characterize the ANTARES detection medium. In

this sense, some optical properties of the water namely, transmission, absorption

and effective scattering lengths are measured with the OB system. Additionally,

a complementary study on how such properties influence the reconstruction of

tracks and the detector performance is carried out.

To reach this goal, special calibration runs were commissioned and new instru-

ments for water properties measurements were built and operated, e.g. the multi-

wavelength beacon and the nano-beacons. The tuning of the operating param-

eters and the handling of such devices once installed in the detector were also

tasks performed during this work to achieve the aforementioned goal. Likewise,

the development of specialised software codes for calibration and physical analy-

ses together with the production of large simulation samples were, in addition, an

important part of this work.

The analysis of the data taken by such devices and of the dependence of the track

reconstruction parameters has led to the following results.

6.2 Results on optical properties at the ANTARES site

Two techniques were developed for optical properties measurements: the OB

technique (main strategy) and the reconstructed track technique (complementary

analysis). The OB technique was used to determine the transmission, absorption

and scattering lengths of light. The reconstructed track technique was used to

quantify the uncertainty on the reconstruction of tracks due to water properties,
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support the OB results for absorption and scattering and quantify their influence

on the detector performance.

6.2.1 The OB technique - Systematics

One of the first qualitative results of this work is the realization that the OB

system, which is well suited for time calibration, has several important limita-

tions when applied to the investigation of optical properties for which it was not

specifically designed. Losses or inefficiencies that do not affect substantially the

determination of the time offsets do have, however, an influence on the measure-

ment of optical properties, which are extremely sensitive to instrumental effects.

The systematic effects discovered and treated during this work are the following:

• Shadowing

Intervening material reduces the amount of direct photons that reach the

OMs in the same line where the OB is located. This has a negligible influence

in time calibration, but has a sizeable effect for optical properties, since

forward scattering is large. This problem has been circumvented using OMs

in a line different from the one where the OB is located.

• Electronic effects

The token ringmode of the ARS seriously distorts the time distribution of the

photons when more than one photon arrives within the ARS time window.

This effect is not present for the first arriving photons and therefore does

not affect time calibration. The cure to this problem is to operate at the

one photo-electron level in the target OMs.

• Source characteristics and its relative location

The position of the LED inside the OB, the angular distribution of the emit-

ted light and the width of its time distribution are instrumental effects that

are convoluted with the light transmission effects to be measured. Likewise,

the intrinsic width of the wavelength spectra of the different LEDs change

with distance since absorption depends on wavelength, but absorption is in

turn one of the optical properties to be measured. Therefore, source effects

are inextricably intermingled with the optical properties influencing the final

measured quantities, i.e. arrival time and amount of light.



6. Summary and Conclusions 200

• OM efficiencies

OM efficiencies have, in general, a negligible effect on timing, but they have

to be determined accurately enough for the determination of the optical

properties.

These instrumental effects influence each other. For instance, the fact that the

shadowing imposes the use of the OMs in neighbouring lines has as a consequence

the need to know the angular distribution of the emitted light in regions where its

variation with angle is larger and less well determined. Moreover, the symmetry

is lost and the actual orientation of the target OMs with respect to the emitting

OB has to be known. Likewise, since we are obliged to operate in the one-

photoelectron regime, the range of usable OB-OM distances is limited by this

requirement and by the need to have sufficient signal over background.

6.2.2 The OB technique - The Transmission Length

The transmission length of light at three different wavelengths (406 nm, 470 nm

and 531 nm) was estimated with different OBs in the detector. The method uses

a fit to the Beer-Lambert equation of the exponential decrease of signal hits along

the neighbouring line with the maximum number of signal hits collected. The

single top-LED and all top-LEDs OB configurations were used. The results for

transmission length can be summarised as follows:

λtr(406 nm) = 31.2 ± 2.8 m

λtr(470 nm) = 39.9 ± 2.9 m

λtr(531 nm) = 20.5 ± 2.1 m

Additionally:

• the results are reasonably homogeneous across the detector, without any

significant deviation;

• there is a good agreement between the root mean square of the transmission

length distribution and the mean value from the distribution of errors from

the fits.

The uncertainties in the transmission length measurements are smaller than
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10% and that in the signal intensity by storey smaller than 20%, mainly

due to the loss of symmetry by the flashing neighbouring lines. The un-

certainties in the measurements at 406 nm and 470 nm may be somewhat

overestimated, as indicated by the χ2 and pull distribution analysis. The

test at 531 nm agrees with expectations;

• the variation with time of the transmission length does not exceed its uncer-

tainty, therefore this quantity can be considered stable at least in the course

of these measurements.

6.2.3 The OB technique - The Absorption and Scattering Lengths

The goal of this analysis is the extraction of the theoretical parameters that de-

scribe the transmission of light in water, i.e. the absorption and scattering lengths

and the fraction of Rayleigh scattering, using the amount of photons and their

arrival times at different distances. In this case, the main problems faced were the

following:

• There is no analytical formula of the optical parameters to describe the

distributions of the measured quantities. Therefore, a set of Monte Carlo

simulations were generated for a combination of the values of the different

optical parameters and compared to data.

The experimental set-up implies a large probability to have several scat-

terings and the relative values of the optical parameters do not allow to

neglect absorption or scattering. This prevents any possible simple analyt-

ical approximation. Therefore, the theoretical expectations to which the

experimental data are compared have to be produced by means of Monte

Carlo simulation. A total of 432 water models were generated correspond-

ing to the combination of 8 absorption lengths, 9 scattering lengths and 6

fractions of Rayleigh scattering.

• Given the limited amount of information at our disposal, i.e. time and num-

ber of photons at a few positions with respect to the source, the sensitivity

to the variation of the parameters is limited and instrumental effects are

important.

It is known that forward scattering is large, but due to the shadowing effect
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we cannot collect data at low angle. The instrumental effects are large and

mixed with the physical phenomena.

• Shadowing effects prevent the use of the OMs located in the same line as

the emitting OB. The orientation of the OMs in neighbouring lines changes

the amount of light received.

To tackle this problem, the simulation was performed run-by-run, i.e. the ac-

tual conditions of the lines concerning the pointing direction of the relevant

OMs was reproduced in the Monte Carlo for each actual data run.

The absorption and scattering lengths at 470 nm were estimated comparing, by

means of a modified Pearson’s χ2-test, the arrival time distributions for the data

and for Monte Carlo samples produced with different combinations of the optical

parameters, for the “all top-LEDs” configuration of the OB. The main results

obtained were the following:

• the method works well on simulated samples;

The method was firstly validated on Monte Carlo simulation itself. Two

trial simulation models were generated playing the role of real data. From

all the models, such with the smallest χ2 value is chosen.

• the method was applied to a total of 4 different data runs. Taking into

account the behaviour of the χ2 distribution around the minimum the values

obtained for different lines were in reasonable agreement. Nevertheless,

some instrumental effects were clearly observed in particular for the lines

more distant from the OB line.

• An overall minimization was performed using all the available runs for all

the lines excluding the most distant ones. The parameters obtained are:

λabs(470 nm) = 52.1 ± 5.5 m

λsca(470 nm) = 58.7 ± 8.2 m

λeffsca (470 nm) = 166.2 ± 23.1 m

The overall minimization used four data runs, each of which employed all

the lines excluding the line where the OB was located and those too distant
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from the emitting OB, namely: L9 for the OB flashing in L4 (3 runs), and

L9, L11, L12 for the OB flashing in L2 (one run). The best values of

the absorption and scattering parameters are taking from the Monte Carlo

sample with the smallest χ2. This gives a total of 38 entries for each optical

parameter. Since the modified χ2 function around the minimum has not

a parabollic behaviour and the spread of the values obtained hints to a

non-statistical origin, it was considered that the root mean square of the

distribution of the minimized parameters was an adequate estimator of the

uncertainty in the measurements.

6.2.4 The reconstructed track technique - The Absorption and

Scattering Lengths

The absorption and scattering results from the OB data analysis were comple-

mented by an independent study based on reconstructed tracks. In this study,

the distributions of variables associated to the track as the reconstruction quality

parameter, Λ, the angular uncertainty extracted from the track fit, β, the zenith

angle, cos θ, and the muon time residuals, tres, extracted from data and Monte

Carlo were compared.

After a preliminary study with 10 water models, an independent set of 27 water

models, corresponding to three absorptions lengths (λabs = 50 m, 55 m and 60 m)

three Rayleigh scattering proportions (η = 0.1, 0.2 and 0.3) and three effective

scattering lengths (λeffsca = 100 m, 200 m and 300 m) were finally simulated and

the distributions of the aforementioned variables compared to those in data for

tracks with cos θ > 0 (up-going), β < 1◦ (low angular error) and Λ > −5.4 (well

reconstructed). The main results obtained from the reconstructed track technique

are summarized as follows:

• From the comparison of the Λ distributions, the main result obtained is the

poor level of agreement with data for Monte Carlo samples with λeffsca ≤ 100

m, λsca ≤ 35 m and η ≤ 0.11.

This is in agreement with the expectation of large effective scattering lengths

in deep–sea water and a high fraction of forward scattering.

• For good reconstructed tracks, Λ > −5.4 and β < 1◦, even though the

overall normalization changes with the value of the water properties, the
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shape of the distributions of the ratio of data over Monte Carlo as a func-

tion of the estimated angular error and of the zenith angle does not vary

dramatically, i.e. there is no sizeable bias toward any specific region of these

variables. This indicates that the uncertainty on the water properties does

not induce a bias in the angular determination of the tracks.

• The comparison of the Λ distributions for different water models indicates

that for up-going atmospheric neutrinos a relative variation in λabs induces

a variation in the number of reconstructed events 1.2 times larger, while

this number of events varies only a factor of 0.3 times the variation in λsca.

For down-going atmospheric muons, the number of reconstructed tracks

changes the relative variation in λabs a factor 2.2 larger, while it is a factor

1.2 the variation in λsca.

• The model that better agrees with data in the tres distribution has λabs =

55 m, λsca = 52 m and λeffsca = 200 m.

This is in agreement with the result of the OB technique. However, longer

absorption lengths cannot be discarded if the Rayleigh proportion is (some-

what artificially) lowered to very small values. These “degenerate” solutions

(with extreme combinations of parameters) can also describe the data and

this degeneracy is somehow intrinsic to this method for which only a limited

amount of information is available.

Concerning the impact of the water properties on the detector performance, i.e.

on the angular resolution and the neutrino effective area, the following statements

can be made:

ANGULAR RESOLUTION:

• If λabs is increased from 55 m to 63 m (∼15% bigger) keeping constant

the rest of parameters, the neutrino angular resolution changes by less than

0.1◦ in the neutrino energy range 102 – 107 GeV.

The parameters λsca and η were fixed to 53 m and 0.17, respectively, but

within reasonable limits they should not influence the change of angular

resolution with λabs, which is small in any case.
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• If λsca is decreased from 53 m to 41 m (a ∼23% smaller), keeping constant

the rest of parameters, the neutrino angular resolution changes by less than

0.05◦ in the neutrino energy range 102 – 107 GeV.

The parameters λabs and η were fixed to 63 m and 0.17, respectively, but

within reasonable limits they should not influence the change of angular

resolution with λsca, which is small in any case. For a value of η = 0.17,

λeffsca decreases from 227 m to 176 m, still a very high value and therefore,

the change in photon arrival times is expected to be small and not influence

sizeably the angular resolution, as this study confirms. This is a known

quality of deep–sea water as a medium for neutrino telescopes: the high

effective scattering length provides very good angular resolution.

• The angular resolution estimated for the water models preferred by the OB

and the reconstructed track techniques is slightly better (∼0.05–0.1◦) than

the official ANTARES estimation and therefore the latter can be considered

a conservative estimate of the angular resolution.

EFFECTIVE AREA:

• If λabs is increased from 55 m to 63 m (∼15% bigger) keeping constant

the rest of parameters, the effective area increases by 16% (5%) in the low

(high) end of the neutrino energy range 102 – 107 GeV.

As expected, the absorption length has a non-negligible influence on the

effective area. The higher the energy of the neutrino, and therefore the

higher the amount of light deposited, the lower the influence of a variation

in the absorption length.

• If λsca is decreased from 53 m to 41 m (a ∼23% smaller) keeping constant

the rest of parameters, the effective area decreases by 5% (7%) in the low

(high) end of the neutrino energy range 102 – 107 GeV.

As expected, the photon loss due to an increase in scattering is smaller than

in absorption, since photons do not disappear and a good fraction of them

are deviated by small angles.
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Chapter 7

Resumen

7.1 Una nueva era en la astronoḿıa

Rayos cósmicos, rayos gamma y astronoḿıa de neutrinos: la astronoḿıa

tradicional proviene de la información que proporcionan los fotones, part́ıculas es-

tables y eléctricamente neutras. Sin embargo, existen ciertas limitaciones a la hora

de estudiar algunos sistemas astrof́ısicos ubicados en regiones densas y distantes

en el cosmos. Los fotones de alta enerǵıa, o rayos gamma, pueden interaccionar

con la luz de fondo extra galáctica (Extragalactic Background Light ó EBL) re-

stringiendo su alcance a distancias del orden de decenas de Mpc. Igualmente la

interacción con el fondo cósmico de microondas (Cosmic Microwave Background

ó CMB) puede limitar las distancias recorridas a las decenas de kpc. Debido a

estas limitaciones, mensajeros cósmicos alternativos como los neutrinos cumplen

con las cualidades necesarias para realizar esta “nueva” astronoḿıa. El neutrino

es una part́ıcula que solo interacciona débilmente y al no tener carga eléctrica

puede proceder de sistemas astrof́ısicos muy distantes y densos apuntando di-

rectamente hacia su fuente de emisión. Desafortunadamente, debido a su baja

sección eficaz de interacción y bajo flujo esperado, hacen falta grandes volúmenes

de detección para su captura. Actualmente, el enfoque más aceptado para estu-

diar los fenómenos más energéticos del universo consiste en una astronoḿıa de

multi-mensajeros, lo que incluye la astronoḿıa de rayos cósmicos, astronoḿıa de

rayos gamma y astronoḿıa de neutrinos.

Astronoḿıa de rayos cósmicos: los rayos cósmicos se clasifican como primarios

(aquellos que vienen de la fuente: e−, p+, He, Fe, etc.) y secundarios (resultado
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de la interacción de los primarios con el gas estelar o la atmósfera de la tierra).

A pesar de haber sido descubiertos hace más de 100 años, el origen (part́ıculas,

enerǵıa y sitio de aceleración) de los rayos cósmicos permanece aún sin resolverse.

El mecanismo más aceptado de aceleración de rayos cósmicos es el “Mecanismo de

aceleración de Fermi”, procesos de dispersión iterativa de part́ıculas cargadas en

una onda de choque a lo largo de sus trayectorias dentro de los campos magnéticos

cósmicos. Los principales sitios de aceleración basados en la teoŕıa de Fermi están

representados en el “gráfico de Hillas” e incluyen: explosiones de rayos gamma

(Gamma Ray Bursts ó GRBs), remanentes de supernovas (Super Nova Remnants

ó SNRs) y núcleos de galaxias activas (Active Galactic Nuclei ó AGNs).

Astronoḿıa de rayos gamma: la astronoḿıa de rayos gamma utiliza fotones

con enerǵıas superiores a los 100 keV para estudiar sistemas astrof́ısicos exóticos.

Actualmente, dos tipos de mecanismos de aceleración que dan lugar a este tipo de

part́ıculas son comúnmente referenciados: el mecanismo de aceleración leptónico y

el mecanismo de aceleración hadrónico. El tipo leptónico da lugar a rayos gamma

por dispersión Compton inversa (Inverse Compton ó IC), mientras en los mode-

los hadrónicos los rayos gamma se producen a partir de procesos de decaimiento

de piones neutros producidos por la interacción de protones muy energéticos con

materia o radiación de la fuente, implicando, por otra parte, producción de piones

cargados y consecuentemente neutrinos de alta enerǵıa.

Astronoḿıa de neutrinos: el objetivo de la astronoḿıa de neutrinos es extender

el conocimiento de la astronoḿıa tradicional usando como mensajeros cósmicos

neutrinos en el rango de enerǵıas del TeV en adelante. Las únicas fuentes de

neutrinos de origen extraterrestre conocidas actualmente son el sol y la Super

Nova SN1987A. Sin embargo, a finales de 2013, la colaboración IceCube ha pub-

licado la primera evidencia firme de neutrinos procedentes de fuera del sistema

solar. Un total de 28 eventos con una enerǵıa superior a 30 TeV y con una signif-

icancia >4σ, son inconsistentes con lo esperado para fondos de muones y neutri-

nos atmosféricos. A su vez, estas propiedades son consistentes con predicciones

genéricas para una componente adicional de origen extraterrestre. Se habla de

fuentes candidatas galácticas (SNRs, Micro-quásares, Galaxias Starburst o Cen-

tro galáctico) capaces de acelerar protones hasta el rango de los PeV o extra
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galácticas (AGNs, GRBs) asociadas al origen de las part́ıculas más energéticas

jamás detectadas. Además de astronoḿıa, los telescopios de neutrinos pueden

realizar estudios sobre materia oscura y búsqueda de part́ıculas exóticas como

monopolos, nuclearidades y defectos topológicos, etc.

Los detectores de neutrinos son considerados como telescopios cuando la dirección

del neutrino puede ser reconstruida con una resolución angular de unas decimas

de grado. Básicamente, consisten en redes 3-D de sensores de luz siguiendo un

patrón geométrico, buscando la detección de luz Cherenkov inducida por part́ıculas

cargadas resultado de la interacción del neutrino con el entorno a su paso por el

detector. Las técnicas más investigadas actualmente en detección de neutrinos

cósmicos incluyen: detección de luz Cherenkov a través de entornos basados en

agua-hielo-roca, detección a través de cascadas aéreas, detección radio y detección

acústica. Los telescopios Cherenkov son la mejor opción para estudiar eventos

de neutrinos con enerǵıas superiores al GeV (Gigaelectron volt), como lo es el

telescopio de neutrinos ANTARES objeto de esta tesis. Las prestaciones de un

telescopio de neutrinos pueden ser analizadas en términos de resolución angular y

el área efectiva del detector. El impacto de las propiedades ópticas del medio de

detección en dichas magnitudes es el objetivo final de esta tesis.

7.2 El telescopio de neutrinos ANTARES

Arquitectura del detector: ANTARES es actualmente el telescopio de neutrinos

submarino más grande del hemisferio norte. Está ubicado a una distancia de 40 km

de la costa francesa de Toulon y 2.5 km de profundidad en el Mar Mediterráneo.

ANTARES está conectado a una estación de control en la costa a través de un

cable principal electro-óptico (Main Electro-Optical Cable ó MEOC) de 40 kms

de longitud. Básicamente, el detector consiste en una red tridimensional de 885

fotomultiplicadores (Photo-Multiplier Tubes ó PMTs) distribuidos a lo largo de

12 ĺıneas de detección. Cada ĺınea de detección en ANTARES se compone de

25 pisos donde están ubicados los PMTs en tripletes. Cada ĺınea está anclada al

lecho marino a través de un peso muerto colocado en el anclaje inferior de la ĺınea

(Bottom String Socket ó BSS). En la parte inferior de cada ĺınea se encuentra

también el módulo de control de la ĺınea (String Control Module ó SCM) donde

se recoge todo el flujo de información de la ĺınea y se env́ıa a la estación de control



7. Resumen 210

de la costa a través del MEOC, comunicados por la caja de unión (Junction Box ó

JB) donde convergen todas las ĺıneas del detector. Cada PMT (10”, 14 d́ınodos)

está dentro de una estructura llamada módulo óptico (Optical Module ó OM), que

consiste en una esfera de vidrio altamente resistente a la presión. La separación

entre pisos es de aproximadamente 15 m y la distancia entre ĺıneas de unos 60

m. Cada piso cuenta además con un contenedor de titanio donde se encuentra

la electrónica asociada y se conoce como módulo de control local (Local Control

Module ó LCM). Algunos pisos contienen además dispositivos para la calibración

temporal (balizas ópticas) y espacial (hidrófonos). Cada 5 pisos (o sector) se

encuentra el módulo de control local maestro (Master Local Control Module ó

MLCM) el cual está equipado con dispositivos extra para la multiplexación (com-

binación de dos o más canales de información en un solo medio de transmisión) de

la señal, comunicación y conversión electro-óptica a través de complejas tarjetas

eléctronicas. El módulo de enerǵıa de la ĺınea (String Power Module ó SPM) está

ubicado en la parte inferior de cada ĺınea y proporciona a cada sector hasta 400

Voltios. El MLCM y los LCM de ese sector se alimentan en paralelo, donde la caja

de alimentación local (Local Power Box ó LPB) en el LCM distribuye voltajes de

baja enerǵıa hacia las tarjetas electrónicas.

Señales de fondo en el detector: dos tipos de fondo están presentes en un

detector submarino como ANTARES: uno proveniente de la actividad óptica del

entorno (fondo óptico) y otro resultado de procesos f́ısicos en la atmósfera que dan

lugar a muones y neutrinos atmosféricos (fondo f́ısico). El fondo óptico procede

de dos tipos de fuente: la emisión de bioluminiscencia por parte de micro y macro

organismos, y los dos modos de decaimiento radiactivo del 40K. La emisión por

bioluminiscencia tiene dos componentes: una continua (aunque variable entorno

a 60 kHz) y otra componente aleatoria de emisión espontánea (hasta 1 MHz) no

constante en el tiempo. Los modos de decaimiento del 40K dan lugar a la emisión

de part́ıculas β y γ a través de procesos de desintegración-β (liberando un electrón

de cerca de 1.3 MeV) y captura-electrónica (liberando fotones de cerca de 1.46

MeV). El umbral Cherenkov en el sitio de ANTARES está estimado en 0.25 MeV.

El 40K contribuye a la parte continua (ĺınea base) de la componente del fondo

óptico.

Por otro lado, dos clases de fondo f́ısico están presentes: un “fondo reducible” que
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proviene de los muones atmosféricos y un “fondo irreducible” procedente de los

neutrinos atmosféricos. Los muones atmosféricos se producen en la interacción

de los rayos cósmicos de alta enerǵıa con la atmósfera terrestre, llegando a pro-

ducir una traza a su paso por el detector. Un muon generado por un neutrino

atmosférico no puede ser distinguido de un muon creado por un neutrino cósmico

(señal). El fondo de muones atmosféricos se puede reducir al ubicar los OMs del

detector orientados a 45◦ hacia abajo y con un algoritmo de reconstrucción de la

dirección de la traza que discrimine los muones hacia abajo de manera que solo los

muones hacia arriba son seleccionados. Por otro lado, debido a que el flujo difuso

de neutrinos atmosféricos tiene un espectro energético más suave que el esper-

ado para neutrinos cósmicos, la distribución energética de los eventos constituye

una herramienta para separar la señal del fondo. En el caso de fuentes puntuales

de neutrinos cósmicos, la única forma de separarlos del fondo es através de la

búsqueda de agrupaciones (clusters) de eventos en una determinada y reducida

dirección en el cielo.

El sistema de adquisición de datos: la digitalización de las señales analógicas

registradas en los PMTs/OMs se lleva a cabo mediante un chip electrónico lla-

mado ARS. Las señales de cada PMT (tiempo y carga) son digitalizadas in-situ

por dos ARS funcionando en una configuración “token ring”, con el objetivo de

disminuir el tiempo muerto de la electrónica. El ARS tiene dos modos de op-

eración: modo foto-electrón (Single Photo-Electron ó SPE) o modo muestreo

(Wave-Form ó WF). La información temporal se realiza mediante un convertidor

Tiempo-Voltaje (Time-to-Voltage Converter ó TVC), mientras que la medida de

la carga se lleva a cabo mediante un convertidor Amplitud-Voltaje (Amplitude-

to-Voltage Converter ó AVC) en tres pasos: integración, memorización y borrado

de la carga. El esquema de transferencia de datos se conoce como “all-data-to-

shore”, donde todas las señales que excedan un umbral de 0.3 foto-electrones

(p.e.) son digitalizadas, enviadas a la estación de control en la costa y procesadas

en tiempo real por una granja de ordenadores.

Sistemas de calibración: en términos generales, los sistemas de calibración en

ANTARES pueden resumirse en: sistema de calibración de la carga, sistema tem-

poral y sistema de posicionamiento.
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Sistema de calibración de la carga (amplitud): la precisión en la calibración de la

carga resulta determinante en la estimación de la enerǵıa del neutrino. La cali-

bración de la carga se basa en la medida del correspondiente pico del p.e. y el

valor del pedestal del canal del AVC.

El sistema de calibración temporal: la calibración temporal hace referencia tanto

a una calibración absoluta como a una calibración relativa. La calibración abso-

luta está vinculada al tiempo requerido para correlacionar eventos en el detector

con eventos astrof́ısicos. La precisión necesaria es de 1 ms lo cual está dentro

de las especificaciones o requisitos de ANTARES. La calibración relativa se lleva

a cabo para medir los desfases temporales entre OMs. La precisión al nivel del

nanosegundo (∼ 0.5 ns) permite al detector alcanzar una resolución angular por

debajo de los 0.5◦ para enerǵıas mayores a 10 TeV. La calibración temporal en

el detector se realiza primero antes de la inmersión de las ĺıneas en el mar en un

cuarto oscuro a través de un laser pulsado y un sistema de reloj. Posteriormente,

una vez las ĺıneas han sido desplegadas en el sitio de operación del detector, las

constantes relevantes medidas anteriormente son re-calculadas con el sistema de

balizas ópticas (Optical Beacons ó OBs) el cual consiste en un conjunto de fuentes

de luz pulsadas ubicadas estratégicamente a lo largo del detector. El sistema de

OBs puede utilizarse también como una herramienta para estudiar las propiedades

ópticas del agua. De este modo, la luz emitida por los OBs es detectada por los

OMs vecinos donde el efecto de atenuación de la luz se hace presente.

Sistema de calibración de la posición: la calibración de la posición se realiza con

un transceptor/receptor en la parte inferior de las ĺıneas y 5 hidrófonos por ĺınea

que reciben la señal a determinadas alturas, junto con un conjunto de transponde-

dores autónomos anclados en posiciones conocidas en el lecho marino. También

se cuenta con veloćımetros de sonido (Sound Velocimeters ó SV) (uno por piso)

que determina localmente la velocidad del sonido, y un sistema de brújulas e in-

clinómetros. Las medidas se hacen por triangulación del tiempo de llegada de las

señales acústicas intercambiadas entre los hidrófonos receptores y los transponde-

dores emisores. El sistema cuenta con una precisión mejor de 10 cm, suficiente

para los objetivos f́ısicos del detector.
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7.3 La descripción del medio de detección

Propagación de la luz e interacción con la materia: la luz Cherenkov in-

ducida por las part́ıculas cargadas que atraviesan el medio de detección de un

telescopio de neutrinos tiene una región óptica de interés entre 320 y 620 nm.

Por debajo de 320 nm la luz es absorbida por el vidrio y el gel de acoplamiento

del PMT al OM. Por encima de los 620 nm la eficiencia cuántica del PMT no es

lo suficientemente alta. La propagación de la luz en el agua está principalmente

descrita por la convolución de dos efectos: absorción (desaparición de los fotones)

y dispersión (cambio de dirección de los fotones), la suma de ambos efectos se

conoce como transmisión. Dichos efectos suelen ser cuantificados en términos

de coeficientes, cuyos inversos se conocen como longitudes. De esta forma, la

longitud de absorción representa la distancia promedio recorrida por los fotones

antes de ser absorbidos, la longitud de dispersión es la distancia promedio entre

dos eventos consecutivos de dispersión de fotones. Por lo tanto, el número total

de fotones Cherenkov detectados va a depender de cuantos fotones son absorbidos

y del tiempo de llegada desde el punto de emisión en la traza hasta los OMs. La

ley de Beer-Lambert describe el cambio en la intensidad de la luz con la distan-

cia debido a efectos de atenuación/transmisión de la luz, por tanto involucrando

efectos de absorción y dispersión. Las propiedades ópticas del medio se clasifican

en propiedades ópticas inherentes (Inherent Optical Properties ó IOP) cuando

dependen solamente del medio y propiedades ópticas aparentes (Aparent Opti-

cal Properties ó AOP) cuando dependen tanto del medio como de la estructura

geométrica del campo de luz del entorno. Las longitudes de transmisión, absorción

y dispersión son las IOP estudiadas en esta tesis.

Absorción, dispersión y velocidad de grupo de la luz en aguas naturales:

varios factores son responsables de la absorción de la luz en el agua de mar:

moléculas de agua, materia orgánica disuelta y diferentes clases de moléculas de

clorofila. El coeficiente de absorción en aguas naturales es función de la longitud

de onda de la luz y se puede expresar como la suma de cada coeficiente de ab-

sorción debido a los factores comentados anteriormente. La absorción de la luz por

el agua pura está asociada a las transiciones electrónicas dentro de las moléculas

de agua. La verdadera absorción de un fotón se traduce en un esquema de enerǵıa

no radiativa, en el que la enerǵıa del fotón se convierte en enerǵıa térmica. Dos de
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los espectros de absorción más referenciados son las medidas de Smith & Baker

para las aguas naturales más claras, y las medidas de Pope & Fry para el agua

pura.

En el caso de los fenómenos de dispersión en el agua de mar, el efecto puede

describirse globalmente en términos de dos contribuciones. La primera de ellas se

debe a las fluctuaciones de densidad de las moléculas de agua y se conoce como

“dispersión Rayleigh” o de “Einstein-Smoluchowski”, t́ıpica de part́ıculas cuyo ra-

dio es más pequeño que la longitud de onda (∼ λ/20). La segunda contribución

se debe a la concentración de part́ıculas suspendidas en el agua, cuyos tamaños

son más grandes que la longitud de onda de la luz (> λ/20) y se conoce como

“dispersión Mie”. La proporción de la dispersión Rayleigh respecto a la dispersión

total (Rayleigh+Mie) se expresa como η. La dependencia de la longitud de dis-

persión con la longitud de onda se puede describir aceptablemente mediante el

formalismo de Kopelevich (30% de incertidumbre).

Por otro lado, un modelo que describe razonablemente bien el ı́ndice de refracción

de la luz en función de la longitud de onda y diferentes funciones termodinámicas

como la presión, la temperatura y la salinidad, es el modelo de Quan & Fry.

Propiedades ópticas en experimentos de astronoḿıa de neutrinos. La fase

de investigación y desarrollo de ANTARES: para la detección de fuentes de

neutrinos cósmicos y llevar a cabo los programas de f́ısica trazados por un tele-

scopio de neutrinos, es necesario conocer el impacto de las propiedades ópticas

del medio en las prestaciones del detector. Como prestaciones del detector se en-

tenderá de aqúı en adelante, el estudio de la resolución angular y área efectiva del

detector. Las propiedades ópticas en lagos, océanos y hielo no son equivalentes.

La longitud de dispersión efectiva, función del coseno promedio de la distribución

global de dispersión, es grande para el caso de los océanos en aguas profundas,

pero la longitud de absorción es un orden de magnitud más pequeña con respecto

a la estimada para el hielo profundo.

En el caso de ANTARES, el llamado test 3’ fue una campaña marina totalmente

enfocada en el estudio de las propiedades ópticas del sitio a través de fuentes de

luz pulsadas. Las medidas obtenidas para la longitud de transmisión, absorción y

dispersión mostraron grandes variaciones asociadas a errores sistemáticos, por lo

que se planteó la necesidad de realizar un seguimiento online de tales magnitudes
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con la propia instrumentación del detector, en lo cual consiste gran parte el trabajo

desarrollado en esta tesis.

7.4 Estimación de propiedades ópticas con la técnica

de los OB

La medida de los parámetros de propagación de la luz en el entorno del detector,

significa tener un control muy estricto de las condiciones del ambiente y del de-

tector. En este sentido, los principales sistemáticos descubiertos y tratados en el

análisis incluyen:

• el efecto “sombra” (shadowing), responsable de la reducción de fotones

directos debido a componentes del detector localizados entre el OB y el OM

de la misma ĺınea,

• efectos de la electrónica como el modo “token ring” del chip ARS que

distorciona la distribución temporal de los fotones cuando más de un fotón

llega dentro de la ventana temporal del ARS,

• las caracteŕısticas de emisión de la fuente y su ubicación relativa respecto a

los OMs,

• las eficiencias de los OMs.

Estos efectos instrumentales estan influenciados unos a otros, por lo tanto, las

medidas a realizar resultan extremadamente sensibles a dichos efectos. De hecho,

algunas de las discrepancias en la literatura muestran que este tipo de medidas

están lejos de ser triviales cualquiera que sea el método empleado.

El trabajo llevado a cabo en esta tesis fue concebido con el propósito de deter-

minar algunas IOP del sitio de ANTARES usando la propia instrumentación del

detector y evaluar su impacto en las prestaciones del mismo. Dos técnicas han

sido desarrolladas para alcanzar estos propósitos: la técnica de los OBs (técnica

principal) cuyos resultados se presentan a continuación, y la técnica de las trazas

reconstruidas (estudios complementarios) cuyos resultados se presentan en la sigu-

iente sección.
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Estimación de la longitud de transmisión de la luz: la longitud de transmisión

de la luz ha sido medida para tres diferentes longitudes de onda (406, 470 y 531

nm) usando diferentes OBs ubicados en diferentes ĺıneas del detector. El método

está basado en el ajuste a la ley de Beer-Lambert de la disminución de los hits de

señal con la distancia. Para evitar el efecto “sombra” se utilizaron los datos de los

OBs situados en las ĺıneas adyacentes a la ĺınea donde se ubicaba el OB emisor.

Los datos de OBs utilizados fueron en la configuración “single top-LED” y “all

top-LEDs”. Los valores de la longitud de transmisión obtenidos conducen a:

λtr(406 nm) = 31.2 ± 2.8 m

λtr(470 nm) = 39.9 ± 2.9 m

λtr(531 nm) = 20.5 ± 2.1 m

La RMS en cada caso resulta ser compatible con el valor medio extráıdo de la

distribución de errores de los ajustes, el error relativo de la medida es ≤10%.

El error relativo de la intensidad de señal en cada piso es ≤20%, principalmente

asociado a la pérdida de simetŕıa al registrar la luz en ĺıneas vecinas. Las incer-

tidumbres en las medidas a 406 nm y 470 nm pueden estar algo sobreestimadas,

como lo indica el análisis de las distribuciones de P(χ2) y pulls. No obstante, se

concluye la correcta descripción de los datos por la ley de Beer-Lambert. A 531

nm el resultado de ambos test se corresponde con las expectativas. La estabilidad

en el tiempo y la concordancia con otras medidas en el Mar Mediterráneo fueron

alcanzadas.

Estimación de la longitud de absorción y dispersión de la luz: las longitudes

de absorción y dispersión de la luz han sido estimadas únicamente a 470 nm, pero

se espera ser extendida a otras longitudes de onda después de la conclusión de

esta tesis. El método está basado en la comparación de distribuciones de tiempo

de llegada de fotones para datos y muestras Monte Carlo generadas con diferentes

IOP (modelos de agua) para la configuración “all top-LEDs” del OB. La simulación

Monte Carlo ha sido desarrollada a partir del paquete general de simulación de

trazas en ANTARES, pero con una sola longitud de onda representando eventos de

OB. La cuantificación del acuerdo entre datos y Monte Carlo se realiza a través de



217 7.4 Estimación de propiedades ópticas con la técnica de los OB

la aplicación de un test de χ2 de Pearson modificado para histogramas pesados,

aplicado para cada OM pero extendido a toda la ĺınea para poder apreciar los

efectos de las propiedades ópticas del agua. Para esto, una simulación “run-a-

run” fue obligatoria, reproduciendo las mismas condiciones de adquisición que para

los datos. En esos runes de OBs, pulsos de luz son emitidos desde un conjunto de

LEDs o un LED sencillo de un determinado OB, siendo los pulsos de luz grabados

por todos los OMs a lo largo del detector. El evento de OB es identificado a través

de un algoritmo que busca la referencia de las señales que provienen del OB emisor.

Antes de aplicar el test a los datos, se realiza una prueba con muestras Monte

Carlo, para lo cual se elije un modelo de prueba que hace el papel de “datos reales”,

generándose copias aleatorias de sus distribuciones temporales, comprobándose

de este modo la validez del método. Tanto para la prueba realizada en muestras

Monte Carlo, como para su aplicación en datos, es necesario seleccionar un rango

fijo en las distribuciones temporales donde aparentemente el pico y la cola de la

señal están bien definidos para cada piso de la ĺınea. Esta comparación se realiza

con todas las distribuciones de los OMs de una misma ĺınea. Seguidamente,

aquellas “buenas” distribuciones para cada piso son agrupadas para cada ĺınea

(exceptuando aquella donde está el OB emisor) formando con ellas un “súper-

histograma” sobre el que se aplica posteriormente el test de χ2. Los mejores

valores para los parámetros de absorción y dispersión corresponden a los valores

utilizados en las muestras Monte Carlo con el valor más pequeño de χ2. A partir

de las distribuciones de estos valores, para los runes de datos considerados, se

obtienen los resultados que se presentan a continuación:

λabs(470 nm) = 52.1 ± 5.5 m

λsca(470 nm) = 58.7 ± 8.2 m

λeffsca (470 nm) = 166.2 ± 23.1 m

Como puede observarse, los errores relativos en la medida son≤14%. En este caso,

el tratamiento de la contribución de la dispersión Rayleigh se realiza asumiendo

dicho parámetro como un parámetro libre (no dependiente de la longitud de onda),

resultando un valor de η = 0.3 para el presente análisis. Sin embargo, estudios que

se están llevando a cabo actualmente en ANTARES podrian llevar a reconsiderar

este comportamiento para η.
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7.5 Estudios complementarios de propiedades ópticas

con trazas reconstruidas

Los resultados obtenidos en la medida de parámetros de absorción y dispersión

de la luz mediante la técnica de los OBs, se complementan mediante un estudio

independiente basado en la reconstrucción de trazas en el detector. En este caso,

se generan un gran número de muestras Monte Carlo con diferentes espectros

de absorción y dispersión y se comparan las distribuciones de magnitudes f́ısicas

asociadas a la traza como el parámetro de calidad, Λ, el error angular, β y el

ángulo cenital, cos θ, aśı como los residuos temporales, tres, del ajuste de trazas

de muones, tanto para datos como para Monte Carlo. El objetivo consiste en

cuantificar el impacto en la reconstrucción de trazas debido a las propiedades

ópticas del agua, estimar el modelo de agua que más se ajusta a los datos, y

estudiar el impacto en las prestaciones del detector.

Influencia de parámetros de absorción y dispersión en la traza reconstruida:

de las principales observaciones extráıdas del análisis, se puede concluir el pobre

nivel de acuerdo para longitudes de dispersión efectiva, dispersión y la fracción de

dispersión Rayleigh menores a 100 m, 35 m y 0.11 respectivamente. Para trazas

bien reconstruidas (Λ > -5.4 y β < 1◦), a pesar de que la normalización global de

las distribuciones cambia con el valor de las propiedades ópticas, la forma de las

distribuciones de la proporción entre datos y Monte Carlo como una función del

error angular estimado y el ángulo cenital no varian drásticamente. Esto indica

que la incertidumbre en las propiedades ópticas del agua no influyen en la deter-

minación angular de las trazas.

El impacto de las propiedades ópticas en la reconstrucción de trazas en el detector

es cuantificado por medio de las variaciones relativas en el número de trazas. En

este método, se comparan distribuciones de muones atmosféricos y neutrinos at-

mosféricos independientemente, que coincidan sus parámetros de dispersión pero

no su longitud de absorción, y viceversa, 4 casos en total resultan para su evalu-

ación en la distribución del parámetro de calidad de la traza Λ. Para cada caso

se evalúa la variación en el número de trazas reconstruidas (dN/N) debida a cada

incertidumbre (dλ/λ) en absorción (15%) y dispersión (23%). De esta manera,

un factor de proporcionalidad K tal que dN/N = Kdλ/λ se usa para cuantificar
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el impacto, el cual se calcula fácilmente usando las estimaciones anteriores, lo que

lleva a deducir unas incertidumbres debido a las propiedades ópticas de:

• Neutrinos atmosféricos: λabs ⇒ 18%, λsca ⇒ 6% ,

• Muones atmosféricos: λabs ⇒ 32%, λsca ⇒ 27% .

Como puede observarse, los neutrinos atmosféricos se ven menos afectados por

las propiedades ópticas que los muones atmosféricos. Por otra parte, la longitud

de absorción tiene un efecto más considerable en ambos casos que la longitud

de dispersión. Estos resultados son consistentes con breves estudios realizados

previamente en ANTARES.

Para determinar el modelo Monte Carlo o modelo de agua que más se ajusta

a los datos reconstrúıdos, se realiza una comparación entre distribuciones de

residuos temporales de muones para datos y un conjunto de modelos de agua

estratégicamente generados. A partir de las distribuciones obtenidas de la pro-

porción o razón entre datos y Monte Carlo, se extraen los valores medios y la ráız

cuadrática media para todos los casos, el valor medio más cercano a 1 y con la ráız

cuadrática media más pequeña es finalmente seleccionado. Este procedimiento ll-

eva a concluir educadamente que el modelo de agua que mejor se ajusta a los datos

ha sido generado a partir de una λabs = 55 m, λsca = 52 m and λeffsca = 200 m.

Dichos resultados son compatibles dentro de las incertidumbres obtenidas desde

los resultados de la técnica de los OBs. No obstante, longitudes de absorción

mayores no pueden ser descartadas si la proporción de dispersión Rayleigh llega a

tener valores muy pequeños. Estas soluciones “degeneradas”, con combinaciones

extremas de parámetros, pueden describir también los datos y esta degeneración

es de cierto modo intŕınseca al método donde solo cierta cantidad de información

está disponible.

Influencia de parámetros de absorción y dispersión en las prestaciones del

detector: las prestaciones del detector en términos de resolución angular y área

efectiva solo pueden estudiarse mediante simulaciones Monte Carlo. Las estima-

ciones de dichas magnitudes para diferentes casos de modelos de agua y para

aquellos modelos sugeridos por los resultados de las técnicas de los OBs y trazas

reconstruidas, se han estudiado cuidadosamente.
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Para una incertidumbre del 15% en la longitud de absorción y un 23% en la lon-

gitud de dispersión, la resolución angular del detector se ve afectada en menos de

0.1◦ a lo largo de un intervalo de 102-107GeV para la enerǵıa del neutrino siendo

más impactante la longitud de absorción. La resolución angular para los mode-

los de agua extráıdos de la técnica de OBs y trazas reconstruidas, se encuentra

ligeramente mejor que las estimaciones oficiales en ANTARES, entre 0.1-0.05◦,

mostrando similares resultados entre ellas.

Respecto al área efectiva del detector, para una variación del 15% en la longitud

de absorción se obtiene un cambio entre el 16-5% desde bajas a altas enerǵıas

(102-107GeV). Sin embargo, para una variación del 23% en la longitud de dis-

persión se obtiene un cambio entre el 5-7%. La estimación de área efectiva para

los modelos de agua obtenidos con las técnicas de los OB y trazas reconstruidas,

son cercanamente equivalentes a las estimaciones para el modelo oficial de las

simulaciones en ANTARES, siendo compatibles entre ellos.
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