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Abstract

This letter presents measurements of the differential cross-sections for inclu-
sive electron and muon production in proton-proton collisions at a centre-of-
mass energy of

√
s = 7 TeV, using data collected by the ATLAS detector at

the LHC. The muon cross-section is measured as a function of pT in the range
4 < pT < 100 GeV and within pseudorapidity |η| < 2.5. In addition the elec-
tron and muon cross-sections are measured in the range 7 < pT < 26 GeV
and within |η| < 2.0, excluding 1.37 < |η| < 1.52. Integrated luminosities
of 1.3 pb−1 and 1.4 pb−1 are used for the electron and muon measurements,
respectively. After subtraction of the W/Z/γ∗ contribution, the differential
cross-sections are found to be in good agreement with theoretical predictions
for heavy-flavour production obtained from Fixed Order NLO calculations
with NLL high-pT resummation, and to be sensitive to the effects of NLL
resummation.

Keywords: QCD, Heavy Flavour Production

1. Introduction

An understanding of electron and muon production in proton-proton (pp)
collisions is a prerequisite for measurements and searches including these par-
ticles in the final state. Moreover, the inclusive production of these particles
can be used to constrain theoretical predictions for heavy-flavour production,
for which large uncertainties exist. At low transverse momentum (pT) the
inclusive electron and muon spectra are dominated by decays of charm and
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beauty hadrons. The contribution fromW and Z/γ∗ production, which dom-
inates in the higher pT region, is well-understood [1] and may be subtracted
in order to obtain the heavy-flavour cross-section.

In measurements of b-quark production in pp̄ collisions, an excess over the
theoretical expectation was observed in earlier experiments [2, 3, 4, 5]. This
discrepancy was later resolved by improved experimental measurements [6]
and the use of Next to Leading Order (NLO) with Next to Leading Log
(NLL) resummation theory applied to LEP data to extract the b-quark frag-
mentation function [7, 8]. The Tevatron data were, however, not sensitive to
the pT region where the deviation between the NLO and the NLO + NLL
perturbative QCD (pQCD) calculations becomes apparent. At the LHC,
NLL resummation can be probed directly in the pQCD prediction for heavy-
flavour production in hadron collisions for the first time.

In the analyses reported in this letter the pT spectra of inclusive electrons
and muons are measured using an integrated luminosity of 1.3 pb−1 and
1.4 pb−1, respectively. A kinematic acceptance of 7 < pT < 26 GeV and
pseudorapidity1 |η| < 2.0 excluding 1.37 < |η| < 1.52 is considered for
electrons, and 4 < pT < 100 GeV and |η| < 2.5 for muons.

This letter is organised as follows. The experimental and theoretical
methodology is outlined in Section 2. A short description of electron and
muon reconstruction in the ATLAS detector is provided in Section 3, with
the recorded and simulated data samples used in the analyses being discussed
in Section 4. Sections 5 and 6 describe the cross-section measurements in
the electron and muon channels respectively. For the muon analysis, the
inclusive cross-section is compared to the most recent theoretical predictions
in Section 6.6. Finally in Section 7, the electron and muon cross-sections from
heavy-flavour hadron production are determined by subtracting theW/Z/γ∗

contributions. These results are compared to the predictions of NLO+NLL
and NLO calculations using the program FONLL [9, 10]. Comparisons are
also made to the NLO predictions from the POWHEG [11, 12] program and the
Leading Order (LO) expectations from PYTHIA [13].

1ATLAS uses a right-handed coordinate system with its origin at the nominal interac-
tion point (IP) in the centre of the detector and the z-axis coinciding with the axis of the
beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η = −ln tan(θ/2).
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2. Cross-section measurement and theoretical predictions

The measured differential cross-section within the kinematic acceptance
of the charged lepton is defined by

∆σi
∆pTi

=
Nsig i

Γbin i
·
∫

Ldt ·
Cmigrationi

ǫ(reco+PID)i
· ǫtriggeri

, (1)

where Nsig i
is the number of signal electrons or muons with reconstructed pT

in bin i of width Γbin i
,
∫

Ldt is the integrated luminosity, ǫtriggeri is the trigger
efficiency and ǫ(reco+PID)i

is the combined reconstruction and identification
efficiency. Cmigrationi is the bin migration correction factor, defined as the
ratio of the number of charged leptons in bin i of true pT and the number
in the same bin of reconstructed pT (transverse energy, ET, in the electron
case). The methods used to extract Nsig i

from the total number of electron
or muon candidates observed in each pT bin are explained in Sections 5.3 and
6.4. From the extracted signals, we subtract the contribution from W/Z/γ∗

production in order to obtain a cross-section corresponding to the decays of
heavy-flavour hadrons produced in the pp collisions to electrons or muons.
In the electron analysis, the W/Z/γ∗ accepted cross-section, σ

W/Z/γ∗

acceptedi
, is

subtracted before applying the efficiency and migration correction factor,
ǫ(reco+PID)i

/Cmigrationi, which is specific to heavy-flavour electrons due to the
dependence of the identification efficiency on isolation. In the muon analysis,
the same correction factor applies for muons originating from both heavy-
flavour and W/Z/γ∗ decays, allowing the subtraction to be performed at the
cross-section level.

The spectrum of charged leptons from heavy-flavour decays is calculated
in a theoretical framework, FONLL, permitting direct comparison with the
data. FONLL is based on three main components: the heavy quark produc-
tion cross-section calculated in pQCD by matching the Fixed Order NLO
terms with NLL high-pT resummation, the non-perturbative heavy-flavour
fragmentation functions determined from e+e− collisions and extracted in
the same framework, and the decays of the heavy hadrons to leptons using
decay tables and form factors from B-factories. The theoretical uncertainties
associated with the FONLL prediction will be discussed in Section 7 when
the comparisons to the measured cross-sections are made.
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3. Electron and muon reconstruction in the ATLAS detector

The ATLAS detector consists of three main components: an Inner De-
tector (ID) tracking system immersed in a 2 T magnetic field, surrounded by
electromagnetic (EM) and hadronic calorimeters and an outer muon spec-
trometer (MS). A full description can be found in [14]. The ID provides
precise track reconstruction within |η| < 2.5, employing pixel detectors close
to the beam-pipe, silicon microstrip detectors (SCT) at intermediate radii
and a Transition Radiation Tracker (TRT) at outer radii. Within |η| < 2.0
the TRT provides substantial discriminating power between electrons and
pions over a wide energy range. The inner-most pixel layer (the B-layer) is
located at a radius of 50 mm and provides precision vertexing and significant
rejection of tracks produced by photon conversions.

Within |η| < 2.5, EM calorimetry is provided by the barrel and end-cap
lead/Liquid-Argon (LAr) EM sampling calorimeters, and hadronic calorime-
try by the three-part steel/scintillating tile barrel calorimeter plus the two
copper/LAr end-caps. The EM calorimeter is segmented in the longitudi-
nal and transverse directions, with fine granularity along the η direction in
the first (strip) layer. The identification of electron candidates is seeded by
a preliminary set of clusters in the EM calorimeter using a sliding window
algorithm, with those clusters having a match to a suitable ID track being
reconstructed [15]. In the transition region between the barrel and end-cap
calorimeters at 1.37 < |η| < 1.52 the electron identification and energy reso-
lution is degraded by the large amount of material in front of the first active
layers, prompting the exclusion of this region from the electron analysis.

The MS comprises separate trigger and high-precision tracking chambers
which measure the deflection of muons in a magnetic field generated by three
super-conducting air-core toroids. The precision chamber system covers the
region |η| < 2.7 with three layers of Monitored Drift Tube (MDT) chambers.
In the forward region, 2.0 < |η| < 2.7, higher granularity Cathode Strip
Chambers (CSCs) replace the first station of MDTs. The trigger chambers
provide coverage within |η| < 1.05 using Resistive Plate Chambers (RPCs)
and for 1.05 < |η| < 2.4 using Thin Gap Chambers (TGCs). The MDT
chambers measure the coordinate in the bending plane, while the RPCs and
TGCs measure the coordinate in the non-bending plane (φ) and provide a
further hit in the bending plane.

Reconstruction of muon candidates begins with the reconstruction of
track segments in the MS. Segment candidates formed from hits in the pre-
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cision chambers are required to point loosely to the centre of ATLAS. A
minimum of two track segments and one hit in each coordinate of the RPCs
in the barrel and the TGCs in the end-caps are required to build an MS track.
For |η| < 2.5 the track parameters are then back-extrapolated to the IP and
matched to all tracks in the ID having hits in at least two ID sub-detectors.
The ID track that best matches the MS track is retained, and the track pa-
rameters are computed by the statistical combination of back-extrapolated
MS parameters and ID track parameters, the resulting track being referred
to as a combined muon in the following.

4. Data and simulated samples used

The analysis is based on a data sample collected at
√
s = 7 TeV during

April-August 2010. Requirements were made on the detector conditions (no-
tably the ID plus either the EM calorimeter or the MS) and data quality,
yielding total integrated luminosities of 1.28±0.04 pb−1 and 1.42±0.05 pb−1

for the electron and muon analyses, respectively, the integrated luminosity
being measured with an uncertainty of 3.4% [16].

For the electron analysis events were selected using the hardware-based
first-level (L1) calorimeter trigger, which identifies EM clusters within |η| <
2.5 above a given energy threshold. The data were recorded under four dif-
ferent trigger conditions, with a progressively higher minimum cluster trans-
verse energy requirement applied as the instantaneous luminosity of the LHC
increased. The bulk of the integrated luminosity (76%) was obtained with
the L1 calorimeter trigger configured with an energy threshold of approxi-
mately 15 GeV, with the remaining 14%, 9% and 1% recorded with 11, 6
and 3 GeV thresholds, respectively. The integrated luminosity available for
the electron analysis is limited to these early data, since the Higher Level
Trigger algorithms used in later periods of higher instantaneous luminosity
are designed to be efficient only for isolated electrons.

In the muon channel, events were selected by one of two L1 muon triggers.
The first 3.5% of the data were recorded under the loosest requirement of
at least three trigger hits in time coincidence with the collision (referred to
as the lower threshold trigger), while the remaining data were obtained with
the further requirement that the hit pattern be compatible with a track with
pT > 10 GeV. In the subsequent analysis it is required for muons with pT less
than 16 GeV to be triggered by the lower threshold trigger, while the 10 GeV
trigger is required for muons with pT in the range 16-100 GeV.
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Simulated data samples have been generated in order to estimate back-
grounds and correct for the trigger and reconstruction efficiencies and the
resolution of the detector. PYTHIA 6.421 was used to simulate samples
of electrons and muons from heavy-flavour and W/Z/γ∗ decays. PYTHIA

was also used to simulate all sources of background electrons and muons.
Further samples of electrons from heavy-flavour decays were also gener-
ated with POWHEG-hvq v1.0 patch 4, interfaced to either PYTHIA or HERWIG
v6.510 [17]. In conjunction with HERWIG, JIMMY v4.31 [18] was used to
model the underlying event. The POWHEG samples use PHOTOS v2.15 [19] to
model final state QED radiation. The PDF set used was MRST LO* [20] for
the PYTHIA samples and CTEQ6.6 [21] for the POWHEG samples. All signal and
background samples were generated at

√
s = 7 TeV using the ATLAS MC09

tune [22], and passed through the GEANT4 [23] simulation of the ATLAS
detector.

5. Electron analysis

5.1. Electron candidate selection

Events from pp collisions are selected by requiring a collision vertex with
more than two associated tracks. From these events, reconstructed electron
candidates are required to pass a minimum cluster ET cut between 7 and
18 GeV depending on the trigger condition, to lie within the pseudorapidity
coverage of the TRT, |η| < 2.0, and to be outside the transition region
between the barrel and end-cap calorimeters, 1.37 < |η| < 1.52. Candidate
clusters with their energy-weighted centre close to problematic regions in the
EM calorimeter are rejected, as are those with tracks passing through dead
B-layer modules: the corresponding loss of acceptance varied by run period
but amounted to no more than 7% and 3%, respectively.

Preselected candidates must be associated to tracks containing at least
ten TRT and four silicon hits and are required to pass a minimum require-
ment on the fraction of the raw energy deposited in the strip layer of the
EM calorimeter. Candidate electrons are then selected from those passing
the preselection by imposing further identification criteria [15] designed to
suppress electron-like (fake) signatures from hadrons. These identification
criteria comprise ET and |η| dependent cuts on the energy deposits in the
strip and middle layers of the EM calorimeter as well as on the track quality
and track-cluster matching.
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The cluster transverse energy spectrum for the selected electron candi-
dates in the data and simulation is shown in Fig. 1(a), in which data with
ET < 18 GeV have been rescaled to 1.3 pb−1 from lower integrated lumi-
nosities. The discontinuities in the spectrum at 10, 20 and 30 GeV corre-
spond to boundaries in the ET-dependent identification cuts, which mainly
affect the yield of hadronic fakes. The candidates in the simulation are sub-
divided according to their dominant origins, which for ET < 26 GeV are
non-isolated signal electrons from semi-leptonic decays of charm and beauty
hadrons (∼10%), a background of secondary electrons, largely dominated by
electrons from photon conversions (∼20%) and the dominant background of
misidentified hadronic fakes. The fraction of isolated signal electrons from
W/Z/γ∗ production is also shown. For ET > 26 GeV this contribution
starts to become significant, with the efficiency of the identification cuts be-
ing higher for these isolated electrons, motivating the choice of the restricted
7-26 GeV analysis region.

The signal purity could be improved through the application of further
cuts on the fraction, fTR, of high-threshold (transition radiation) TRT hits
out of all TRT hits measured on the track, the number of hits in the pixel
B-layer, nBL and the ratio of the measured energy of the EM cluster to the
track momentum, E/p. These variables offer excellent discriminating power
against the hadronic fake (fTR) and photon conversion (nBL) backgrounds,
as illustrated in Fig. 1(b-d). Applying tighter cuts on these variables would
increase the signal fraction to 50% in the range 7 < ET < 26 GeV but leave no
means of estimating the remaining background fraction from data. The cuts
are therefore not applied, permitting the full distributions of the variables to
be used in the fitting procedure described in Section 5.3.

5.2. Electron trigger efficiency measurement

The efficiency with which the signal electrons pass the L1 EM trigger is
measured from the data in bins of cluster ET. For the 3 and 6 GeV threshold
triggers, the efficiencies are measured using events selected by an alternative,
very inclusive minimum bias trigger, based on hit information in the Min-
imum Bias Trigger Scintillator [24]. The efficiencies of the 11 and 15 GeV
triggers are measured using events recorded by the 6 GeV trigger, which is
fully efficient in the ET region for which the higher threshold triggers are
used. Since these data-derived measurements are performed on the selected
electron candidates, dominated by the hadronic background, a systematic
uncertainty is estimated by comparing the measured trigger efficiencies to
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Figure 1: (a) Distribution of cluster transverse energy, ET, for the electron candi-
dates. The simulation uses PYTHIA with the W and Z/γ∗ components normalised
to their NNLO total cross-sections and the heavy-flavour, conversion and hadronic
components then normalised to the total expectation from the data. (b-d) PYTHIA
simulations of the distributions of discriminating variables used to extract the elec-
tron heavy-flavour plus W/Z/γ∗ signal compared to data: (b) the ratio, fTR, be-
tween the number of high-threshold hits and all TRT hits on the electron track;
(c) the number of hits, nBL, on the electron track in the pixel B-layer; (d) the
ratio, E/p, between cluster energy and track momentum.

those expected in the simulation for heavy-flavour electrons. The trigger ef-
ficiencies are measured to be between 92.1% and 100.0%, with a maximum
uncertainty of 1.8%.

5.3. Electron signal extraction

In order to extract the heavy-flavour plus W/Z/γ∗ signal electrons from
the selected candidates, a binned maximum likelihood method is used, based
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on the distributions of fTR, nBL and E/p. From simulation, a twelve-bin
three-dimensional probability density function (pdf) in these variables is
constructed for the signal and conversion components. For the hadronic
background, the shapes of the three template distributions are described by
additional free parameters (as in [25]) and are fitted to the data: in doing so,
the method assumes no correlations exist between the three discriminating
variables in the hadronic component. The likelihood fit is performed in bins
of η (on which the discriminating distributions depend) and in ET in the
range 7-26 GeV, allowing the fraction of signal, conversion and hadronic fake
candidates to be found in each ET bin.

The systematic uncertainty on the number of extracted signal electrons
arising from the differences between the data and simulation in the discrimi-
nating variables for the signal and conversion components is estimated to be
less than 4%, evaluated by repeating the signal extraction with the signal and
conversion templates adjusted within their systematic uncertainties. For fTR

and E/p, which have the largest effect, the differences were evaluated by com-
paring the distributions in data and simulation for a pure sample of photon
conversions, selected by imposing the additional requirements of nBL = 0 and
either E/p > 0.8 or fTR > 0.1, respectively. The impact of the finite statis-
tics of the simulated samples (< 2.5%) and any possible bias in the method
(7.3%) arising from the assumption that the template distributions for the
hadron background are uncorrelated were studied using pseudo-experiment
techniques. The uncertainty associated with the electron energy scale (3.5%)
has been assessed by varying the electron candidate cluster energy by 1% for
|η| < 1.4 and by 3% for |η| > 1.4, these systematic effects having been eval-
uated from Z → e+e− events. Overall a statistical (systematic) uncertainty
on the extracted signal component of approximately 3 (9) % is obtained.

5.4. Determination of the electron efficiency and migration correction

The overall efficiency and migration correction factor, ǫ(reco+PID)i
/Cmigrationi ,

is determined from PYTHIA-simulated samples of heavy-flavour decays to elec-
trons and varies between 0.6 and 0.7 as a function of the true electron pT.
Efficiencies of individual cuts were cross-checked on data control samples
where possible, and a systematic uncertainty of 5-10% is estimated by re-
calculating ǫ(reco+PID)i

/Cmigrationi from simulated samples produced with an
increase in the amount of material inside the EM calorimeter, corresponding
to the estimated uncertainty on the material budget (see [26] and references
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therein). The statistical uncertainty on ǫ(reco+PID)i
/Cmigrationi is found to be

between 0.4 and 3.5%.
Additionally, the efficiency of the electron identification cuts in the simu-

lation is compared with a measurement made on data using a tag-and-probe
(T&P) technique. The probe candidates, which must pass only the preselec-
tion cuts of Section 5.1, are taken from a sample of events enriched in heavy
quark pair production where both heavy hadrons decay semi-leptonically.
To select such events, the tag electron candidate is subject to more strin-
gent identification cuts than those described in 5.1, including requirements
on fTR and nBL, and the T&P candidate pair must have opposite charge and
an invariant mass below the Z mass window and outside of the J/ψ mass re-
gion. The signal purity remains low after the T&P selection, being 9 (31) %
for probe candidates before (after) applying the identification criteria. The
signal component of the probe candidates before and after the identification
cuts must therefore be extracted with a method similar to that described in
Section 5.3. By comparing the measured identification efficiency of the ex-
tracted probe electrons to that expected in simulation as a function of ET, an
uncertainty of 5% is obtained on the identification efficiency, with a further
7% systematic uncertainty coming from the T&P method itself.

Overall the uncertainty on ǫ(reco+PID)i
/Cmigrationi is found to be 12-14%,

depending on the true electron pT. Possible effects of the choice of heavy-
flavour hadron decay model and the prompt J/ψ contamination are found to
be negligible.

5.5. Electron production cross-section result

The differential cross-section for electrons from heavy-flavour production
is found from Eqn. 1 using a bin-by-bin unfolding method. Before apply-
ing the efficiency and migration correction factor, ǫ(reco+PID)i

/Cmigrationi, the
theoretical prediction for the accepted electron cross-section from W/Z/γ∗

decays, σ
W/Z/γ∗

accepted, must first be subtracted.2 σ
W/Z/γ∗

accepted is obtained from PYTHIA,
with the high-mass W/Z contribution normalised to the NNLO total cross-
section [27, 28]

The differential cross-section for electrons from heavy-flavour production
within |η| < 2.0 (excluding 1.37 < |η| < 1.52) and 7 < pT < 26 GeV is plotted

2The uncertainty on the heavy flavour cross-section arising from the overall uncertainty

on σ
W/Z/γ∗

accepted is negligible, reaching at most 1% in the highest pT bin where the W/Z/γ∗

contribution to the signal reaches its maximum of 13%.
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in Fig. 4 (left) and reported in Table 3. The statistical uncertainty originates
from the signal extraction procedure (Section 5.3), and the sources of system-
atic uncertainty, as discussed in the preceding sub-sections, are summarised
in Table 1. Correlations between the systematic uncertainties common to
the signal extraction and the T&P efficiency measurement, such as discrep-
ancies between the data and simulation in the signal and conversion pdfs and
the energy scale uncertainty, are taken into account in the evaluation of the
overall systematic uncertainty on the cross-section. To account for possible
biases due to the pT distribution of the signal, the predictions of simulated
heavy-flavour samples from different programs (PYTHIA, POWHEG+PYTHIA and
POWHEG+HERWIG) are compared and found to yield consistent results.

We obtain a fiducial heavy-flavour electron cross-section in the range 7 <
pT < 26 GeV and within |η| < 2.0, excluding 1.37 < |η| < 1.52, of

σe
HF = 0.946± 0.020(stat.)± 0.146(syst.)± 0.032(lumi.) µb.

Table 1: Summary of systematic uncertainties on the electron heavy-flavour cross-
section. The uncertainties apply in the pT bins of the measurement; an interval or
upper limit is given where the uncertainty varies as a function of pT. Correlations
between the systematic uncertainties reported independently for the signal extrac-
tion and the T&P efficiency measurement in Sections 5.3 and 5.4 are taken into
account.

Source of systematic uncertainty
Cross-section
uncertainty (%)

Energy scale uncertainty 1.5
Possible bias in signal extraction 8
Mis-modelling of discriminating variables 8
Stat. uncertainty on pdfs for signal extraction 0.8−2.5
Material uncertainty on ǫ(reco+PID)

i
/Cmigration

i
5−10

Stat. uncertainty on ǫ(reco+PID)
i
/Cmigration

i
0.4−3.5

Efficiency dependence on pT from T&P 5
Trigger efficiency (stat.+syst.) < 2
Accepted W/Z/γ∗ cross-section (stat.+syst.) < 1
Integrated luminosity 3.4%

Total 14−17

11



6. Muon analysis

6.1. Muon candidate selection

Muon candidates within a pseudorapidity of |η| < 2.5 are selected if they
have at least two MDT segments and an ID track with hits in two different
sub-detectors. In addition to signal muons from charm, beauty and W/Z/γ∗

decays, the selected candidates comprise a significant fraction of background
muons from pion and kaon decays in flight (π/K) and misidentified muons
from hadronic showers in the calorimeter that reach the MS and are wrongly
matched to a reconstructed ID track (fakes). The π/K background is subdi-
vided into those that decay close enough to the IP such that the majority of
hits on the ID track come from the decay muon (early-π/K) and those that
do not (late-π/K). The signal purity of the sample, determined using the
method discussed in Section 6.4, ranges from 45% at pT = 4 GeV to 90% at
40 GeV in the region of the W/Z Jacobian peak.

6.2. Muon trigger efficiency measurement

The trigger efficiency for the muon candidates is evaluated using events
recorded by an independent trigger based on calorimeter information alone.
The efficiency for the lower threshold trigger is found to be 68% at pT = 4
GeV and to reach a plateau of 84% at 9 GeV. The 10 GeV threshold trigger
efficiency is constant for pT > 16 GeV with a value of 74%. (The muon
trigger efficiency is dominated by the limited acceptance of the muon trigger
chambers). The data samples used to compute the efficiency contain back-
ground muons. In order to obtain the efficiencies for signal muons, correction
factors of 1.04 for the low threshold trigger and 1.08 for the 10 GeV trigger
are estimated from simulation. Systematic uncertainties on these correction
factors come from the simulation statistics (0.5% and 0.7% for the lower
threshold and 10 GeV triggers, respectively) and from the mis-modelling of
the signal fraction by the simulation (0.7% and 0.2% for the two triggers), the
latter being assessed by reweighting the simulated sample according to the
measured signal fraction. Other sources of systematic uncertainty arise from
the statistical fluctuations in the independent trigger sample (from 0.4% to
0.9% for the low threshold trigger, and 0.5% for the 10 GeV trigger) and
from the bias introduced by the independent trigger (evaluated to be 2.3%
for the 10 GeV trigger by comparing to events triggered by the low threshold
trigger).
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6.3. Muon reconstruction efficiency measurement

The combined muon reconstruction efficiency has three components: the
ID efficiency (ǫID), the MS efficiency (ǫMS) and the matching efficiency (ǫMatch).
The overall efficiency has been determined from high-statistics simulated
muon samples from heavy-flavour hadron and W/Z/γ∗ decays, with correc-
tion factors for each component of the reconstruction, αx = ǫdatax /ǫsimulation

x

(x = ID, MS, Match), being determined by comparing the simulation-derived
efficiencies with those observed in data. The overall reconstruction efficiency
is found to be 85% at pT = 4 GeV, reaching 95% at 7 GeV. The plateau
value of 95% is the same for both isolated and non-isolated muons.

The ID correction factor αID is evaluated with a T&P method on J/ψ
and Z events, using a combined muon track as a tag and an MS track as
a probe. The fraction of ID tracks found over the number of probes has
been computed and compared to the expectation in simulation, giving a
value of αID = 1.000±0.005, where the quoted uncertainty includes both the
statistical and systematic contributions.

The product αMS ·αMatch is obtained with two methods. The first method
identifies single muon tracks in jets from energy deposits corresponding to
minimum-ionising particles in calorimeter cells matched to extrapolated ID
tracks. In order to reject the background from pions and kaons from the
primary vertex, a cut on the impact parameter (d) to the primary vertex
in the transverse plane is applied: |d/σd| > 3, where σd is the error on d
from the tracking algorithm. According to simulation this cut selects muons
from beauty decays with a purity of 99%. The factor ǫdataMS · ǫdataMatch is then
computed by evaluating the fraction of these tracks that are reconstructed in
the MS and matched to the ID track. The second method identifies muons
by matching ID tracks with hits in the MS trigger chambers. The trigger
bias of this method has been evaluated with simulated data to be 2% for
pT < 6 GeV and less than 0.2% at higher momenta. Overall a value of
αMS ·αMatch = 0.986±0.003(stat.)±0.010(syst.) is obtained, the central value
being the average of the results from the two methods and the systematic
uncertainty coming from the difference between the two. Both methods are
sensitive up to pT = 30 GeV, in the region where the control sample is
dominated by the non-isolated muons. To take into account isolated muons
and muons with pT > 30 GeV, the result has been compared with αMS ·αMatch

computed from two other T&P techniques, using muons from J/ψ [29] and
Z [30] decays. The T&P technique used here is the same as that used in the
determination of ǫID but with the probe muon selected among the ID tracks,
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and a full combined track being required in the numerator. The αMS ·αMatch

scale factors obtained with the T&P methods are fully compatible with those
obtained using the single muon track methods.

Overall the systematic uncertainty on the muon reconstruction efficiency
is dominated by the uncertainties on the scale factors reported above and
evaluates to 1.2%.

6.4. Muon signal extraction

The muon reconstruction provides independent information on the pT
of the track reconstructed in the ID and in the MS. The difference in pT,
∆pT = pIDT − pMS

T , where both momenta are extrapolated to the IP, is sen-
sitive to the origin of the muons: signal, early-π/K, and late-π/K or fakes,
as illustrated in Fig. 2 for three pT intervals. A fit to the data distribu-
tion is performed to extract the signal component using templates from the
simulation. The early-π/K component template, like the signal, has a ∆pT
distribution peaked around zero, since the pT reconstructed in the ID for a
π/K that decays close to the IP is dominated by hits from the decay muon.
The late-π/K component and the fake component may be described by a
single template with a broader ∆pT distribution shifted towards higher val-
ues. Since the early-π/K component is significant only for pT < 10 GeV
and cannot be strongly discriminated from the signal, we fix the ratio of
the early-π/K component to the late-π/K plus fakes component to its ex-
pectation in the simulation and use only a single background template in
the fit. A systematic uncertainty is assigned to cover the possible difference
in the (early-π/K)/(late-π/K+fakes) ratio between data and simulation as
explained below.

The fit is performed in pT bins over the whole range. For pT < 52 GeV
the template distributions are taken from a PYTHIA dijet sample with p̂T >
15 GeV (where p̂T is the pT of the primary parton) with the additional
requirement that at least one set of particles crossed a surface of ∆η×∆φ =
0.12×0.12 with a total energy greater than 17 GeV. For pT > 52 GeV a dijet
sample with p̂T > 280 GeV is used.

The systematic uncertainty on the extracted signal fraction arising from
the difference in the ∆pT distributions between the simulated template sam-
ples and the expected data distributions is evaluated on simulated samples of
QCD jets (light and heavy-flavour) andW/Z inclusive events that reproduce
the expected composition of data. The maximum possible bias is found to
be 3%. The effect of any mis-modelling of the background ∆pT template
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is also checked by comparing the extracted signal fraction to that obtained
when using a background template taken from a simulated sample whose
pT spectrum is weighted to reproduce the spectrum observed in data before
the signal extraction. A difference of 1.5% is found, within the bias men-
tionned above. Therefore we quote an overall 3% systematic uncertainty for
the template modelisation. The systematic uncertainty on the signal frac-
tion due to the finite statistics of the simulated samples used for the template
distributions is found to be between 1% and 8%.

The accuracy of the assumption that the ratio of the early-π/K com-
ponent to the combined late-π/K plus fakes component, r, is reproduced
correctly by the simulation is tested by comparing the ∆pT distributions in
data and simulation as a function of the early-π/K fraction. A correction
factor rdata/rsimulation is determined as 1.1 ± 0.1. This 10% uncertainty on r
corresponds to an uncertainty on the signal of 2% at pT = 4 GeV, rapidly
falling to zero for pT > 10 GeV.
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Figure 2: The ∆pT distribution in the pT bins 4-5 GeV (a), 10-11 GeV (b) and
18-20 GeV (c) for muon combined track candidates. The signal, early-π/K and
late-π/K plus fakes components from simulation are shown. The early-π/Ks are
defined as those that decay close enough to the IP that the majority of hits on the
ID track come from the decay muon.

6.5. Muon resolution and unfolding

The muon momentum resolution has been studied using tracks from the
decays Z → µ+µ− and J/ψ → µ+µ−. With an iterative procedure, the sim-
ulated muon track momenta are smeared and scaled as a function of pseudo-
rapidity to reproduce the J/ψ and the Z invariant mass shapes measured in
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Figure 3: Muon differential cross-section as a function of the muon transverse
momentum for |η| < 2.5 compared to theoretical predictions. The Drell-Yan com-
ponent corresponds to the Z/γ∗ for Mµ+µ− < 60 GeV.

data [31]. A full set of smearing parameters for the MS and ID are obtained,
and the corresponding effect on the combined muon derived. The corrected
sample is used to obtain the unfolding coefficients Cmigrationi in Eqn. 1. The
uncertainty on the unfolding coefficients is determined by varying indepen-
dently the cross-section values of the heavy-flavour andW/Z components by
30% and 10% respectively. The associated systematic uncertainty is at the
level of 0.1% over almost the whole spectrum with a maximum value of 1.2%
around the W/Z Jacobian peak.

6.6. Muon production cross-section result

The signal fraction of the muon transverse momentum spectrum has been
corrected for the trigger and reconstruction efficiencies and unfolded from the
detector response. Figure 3 shows the resulting inclusive muon differential
cross-section for muons within |η| < 2.5 as a function of pT, compared to the
overall theoretical expectation. The expected W/Z component comes from
MC@NLO [32, 33] using the CTEQ6.6 PDFs, normalised to the cross-sections
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for muons measured by ATLAS [28]3. The FONLL prediction is used for
the heavy-flavour component and the remaining, small contributions are ob-
tained from PYTHIA simulation. The theoretical uncertainty is dominated
by the heavy-flavour prediction, being approximately 20% and discussed in
Section 7, and is not shown in the figure. The systematic uncertainties on
the measurement are summarised in Table 2.

Table 2: Summary of systematic uncertainties on the muon cross-section measure-
ment. The uncertainties apply in the pT bins of the measurement; an interval or
upper limit is given where the uncertainty varies as a function of pT.

Cross-section
Source of systematic uncertainty uncertainty

(%)

Possible bias in signal extraction 3
Early-π/K fraction <2
Stat. uncertainty on signal extraction templates 1−8
Efficiency scale factor 1.2
Trigger efficiency control sample statistics 0.4−0.9
Trigger efficiency control sample bias <2.3
Trigger efficiency background bias 0.2−0.7
Trigger efficiency mis-modelling of signal fraction 0.5−0.7
Unfolding procedure 0.1−1.2
Integrated luminosity 3.4

Total 5−8

Integrating over the full 4-100 GeV pT range, in |η| < 2.5, we find a
fiducial cross-section for inclusive muons of

σµ
Inc. = 6.55± 0.01(stat.)± 0.37(syst.)± 0.22(lumi.) µb.

In order to compare to the results of the electron analysis, the muon cross-
section has been studied in the same acceptance region (7 < pT < 26 GeV
and |η| < 2.0, excluding 1.37 < |η| < 1.52) and with the subtraction of the

3σµ
W+ = 6.21± 0.02(stat.)± 0.25(syst.) nb, σµ

W−
= 4.107± 0.02(stat.)± 0.19(syst.) nb,

σµ
Z = 0.941 ± 0.008(stat.) ± 0.038(syst.) nb, where the systematic uncertainty excludes

contributions from the luminosity and acceptance which are fully correlated with those
presented here.
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W/Z/γ∗ contribution, giving a fiducial heavy-flavour muon cross-section of

σµ
HF = 0.818± 0.003(stat.)± 0.036(syst.)± 0.028(lumi.) µb.

7. Comparison of electron and muon cross-sections with theoretical

predictions for heavy-flavour production

The results for both channels within the acceptance of the electron anal-
ysis (7 < pT < 26 GeV, |η| < 2.0 excluding 1.37 < |η| < 1.52) are shown
in Fig. 4 (left) and summarised in Table 3. Additionally, the measured
muon cross-section is given over the full pT (4-100 GeV) and pseudorapidity
(|η| < 2.5) range in Fig. 4 (right) and Table 4.4

In the electron analysis the W/Z/γ∗ contribution has been subtracted
as described in Section 5.5 in order to obtain the heavy-flavour differen-
tial cross-section; whereas, in the muon case the subtraction is made at the
cross-section level from the fully inclusive measurement. The systematic
uncertainties on the electron and muon results are independent except for
that arising from the uncertainty on the total luminosity. In the common
acceptance region, the two measurements are in good agreement with each
other.

The measured heavy-flavour cross-sections are compared to the FONLL
calculations, with a rigorous evaluation of the associated uncertainty shown
as a band in Fig. 4. The theoretical uncertainties originate from several
different sources. The dominant contribution comes from the renormalisa-
tion and factorisation scales (up to 35% at low pT).

5 The uncertainty on
the heavy quark masses contributes up to 9% at low pT

6, and the PDF-
related uncertainty (taken from the CTEQ6.6 error set) is below 8% over the
whole pT range. Uncertainties arising from the value of αs and on the non-
perturbative fragmentation function are found to be small, approximately
1% and less than 5% [9] respectively. The total uncertainty, dominated by

4The results as shown in Tables 3 and 4 are available in the HEPDATA database [34]
and a Rivet [35] routine is provided.

5The renormalisation (µR) and factorisation (µF) scales are defined as µR,F =

ξR,F

√

p2T +m2
Q. The central value is computed using ξR,F = 1 while the scale uncer-

tainty is determined by changing the scales independently within 0.5 < ξR,F < 2.0 while
keeping the ratio 0.5 < ξR/ξF < 2.0.

6The heavy quark masses are set to mb = 4.75± 0.25 GeV and mc = 1.5± 0.2 GeV.
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Figure 4: (Left) Electron and muon differential cross-sections from heavy-flavour
production as a function of the charged lepton transverse momentum for |η| < 2.0
excluding the 1.37 < |η| < 1.52 region. (Right) Muon differential cross-section as a
function of the muon transverse momentum for |η| < 2.5. The data points include
statistical and systematic uncertainties. The ratio of the measured cross-section
and the other predicted cross-sections to the FONLL calculation is given in the
bottom of each plot. The PYTHIA (L0) cross-sections are normalised to the data in
order to compare the shape of the spectra.

the renormalisation and factorisation scales, is in the approximate range 20-
40%, decreasing with pT. The electron and muon results are seen to be fully
compatible with the overall FONLL uncertainty bands.

The results are also compared to the NLO predictions of the POWHEG

program, interfaced to either PYTHIA or HERWIG for the parton shower sim-
ulation, and to the LO plus parton shower predictions of PYTHIA. Whereas
POWHEG+PYTHIA agrees well with the FONLL predictions, POWHEG+HERWIG

predicts a significantly lower total cross-section. Less than half of this differ-
ence may be accounted for by the different heavy-flavour hadron decay mod-
els, checked by implementing a common decay simulation, EVTGEN [36], for
both showering and hadronisation programs. PYTHIA (LO) describes the pT-
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Table 3: Differential cross-sections dσ/dpTe(µ) (in nb/GeV) for electron (muon)
heavy-flavour production in the pseudorapidity region |η| < 2.0 (excluding 1.37 <
|η| < 1.52), with statistical (stat.) and systematic (syst.) uncertainties. The 3.4%
luminosity uncertainty is included in the latter. The predictions of FONLL are
also given.

pTinterval[GeV] dσ
dpT

e ± stat. ± syst. dσ
dpT

µ ± stat. ± syst. dσ
dpT

FONLL

7–8 351 ± 15 ± 56 302 ± 2 ± 17 308 +115
−74

8–10 167 ± 6 ± 27 142 ± 1 ± 8 146 +50
−33

10–12 67 ± 2 ± 11 58.0 ± 0.6 ± 3.0 60 +19
−13

12–14 30.3 ± 1.1 ± 4.7 26.1 ± 0.4 ± 1.4 28 +8
−5

14–16 15.3 ± 0.4 ± 2.2 14.1 ± 0.3 ± 0.8 14 +4
−3

16–18 8.0 ± 0.3 ± 1.3 7.92 ± 0.05 ± 0.41 7.8 +2.0
−1.5

18–20 4.58 ± 0.15 ± 0.72 4.52 ± 0.04 ± 0.24 4.5 +1.1
−0.8

20–22 2.75 ± 0.09 ± 0.48 2.78 ± 0.03 ± 0.15 2.7 +0.6
−0.4

22–26 1.29 ± 0.05 ± 0.21 1.37 ± 0.02 ± 0.08 1.4 +0.3
−0.2

dependence well but predicts approximately a factor two higher total cross-
section.

Comparisons are also made to the NLO central value expectation obtained
from the FONLL program by excluding the NLL resummation part of the
pQCD calculation. As shown in Fig. 4 (right), the data deviate significantly
from the NLO prediction, showing sensitivity to the NLL resummation term
in the pQCD calculation for the first time in heavy-flavor production at
hadron colliders.
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Table 4: Differential cross-sections dσµ/dpT (in nb/GeV) in the pseudorapidity
region |η| < 2.5, before and after subtraction of the W/Z/γ∗ component, with
statistical (stat.) and systematic (syst.) uncertainties. The 3.4% luminosity un-
certainty is included in the latter. The uncertainty on the W/Z/γ∗ component is
not included and amounts to 4% of the subtraction, increasing the systematic error
by 5–10 % for pT > 32 GeV.

pT interval
dσµ/dpT

dσµ/dpT
± stat. ± syst.

[GeV] W/Z/γ∗ sub.

4–5 3490 3490 7 230
5–6 1390 1390 4 90
6–7 680 680 3 40
7–8 364 364 2 23
8–9 210 210 2 13
9–10 130 130 1 8
10–11 84 84 1 5
11–12 53 53 0.9 3
12–14 31 31 0.5 2
14–16 16.3 16.1 0.4 1.1
16–18 9.4 9.2 0.06 0.6
18–20 5.5 5.3 0.04 0.3
20–22 3.4 3.2 0.03 0.2
22–24 2.11 1.87 0.03 0.13
24–26 1.46 1.20 0.02 0.10
26–28 1.11 0.84 0.02 0.07
28–30 0.88 0.60 0.02 0.06
30–32 0.73 0.43 0.02 0.05
32–34 0.58 0.26 0.02 0.04
34–36 0.54 0.20 0.02 0.03
36–38 0.48 0.13 0.01 0.03
38–40 0.428 0.088 0.014 0.029
40–44 0.311 0.074 0.009 0.020
44–48 0.176 0.056 0.007 0.011
48–52 0.085 0.025 0.005 0.007
52–60 0.042 0.015 0.002 0.003
60–70 0.0197 0.0083 0.0013 0.0013
70–80 0.0081 0.0029 0.0008 0.0006
80–90 0.0048 0.0021 0.0006 0.0004
90–100 0.0024 0.0009 0.0005 0.0002
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8. Conclusions

The differential cross-sections of electrons and muons arising from heavy-
flavour production have been measured and found to be in good agreement
in the transverse momentum range 7 < pT < 26 GeV and pseudorapidity
region |η| < 2.0 (excluding 1.37 < |η| < 1.52). The inclusive differential
cross-section of muon production has also been measured in the extended
pT range 4 < pT < 100 GeV within |η| < 2.5.

The theoretical predictions for heavy-flavour production from the FONLL
computation are in good agreement with the electron and muon measure-
ments. Good agreement is also seen with the predictions of POWHEG+PYTHIA,
although POWHEG+HERWIG predicts a significantly lower total cross-section.
PYTHIA describes the pT-dependence well but predicts approximately a fac-
tor two higher total cross-section. For muons with pT > 25 GeV a deviation
from the NLO central prediction is seen, indicating sensitivity of the heavy-
flavour production data to the NLL high-pT resummation terms.
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T. Göpfert43, C. Goeringer81, C. Gössling42, T. Göttfert99, S. Goldfarb87,
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S. Kotov99, V.M. Kotov65, A. Kotwal44, C. Kourkoumelis8,
V. Kouskoura154, A. Koutsman105, R. Kowalewski169, T.Z. Kowalski37,
W. Kozanecki136, A.S. Kozhin128, V. Kral127, V.A. Kramarenko97,
G. Kramberger74, M.W. Krasny78, A. Krasznahorkay108, J. Kraus88,
A. Kreisel153, F. Krejci127, J. Kretzschmar73, N. Krieger54, P. Krieger158,
K. Kroeninger54, H. Kroha99, J. Kroll120, J. Kroseberg20, J. Krstic12a,
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F. Spanò34, R. Spighi19a, G. Spigo29, F. Spila132a,132b, E. Spiriti134a,
R. Spiwoks29, M. Spousta126, T. Spreitzer158, B. Spurlock7,
R.D. St. Denis53, T. Stahl141, J. Stahlman120, R. Stamen58a, E. Stanecka29,
R.W. Stanek5, C. Stanescu134a, S. Stapnes117, E.A. Starchenko128,
J. Stark55, P. Staroba125, P. Starovoitov91, A. Staude98, P. Stavina144a,
G. Stavropoulos14, G. Steele53, P. Steinbach43, P. Steinberg24, I. Stekl127,

40



B. Stelzer142, H.J. Stelzer88, O. Stelzer-Chilton159a, H. Stenzel52,
K. Stevenson75, G.A. Stewart29, J.A. Stillings20, T. Stockmanns20,
M.C. Stockton29, K. Stoerig48, G. Stoicea25a, S. Stonjek99, P. Strachota126,
A.R. Stradling7, A. Straessner43, J. Strandberg147, S. Strandberg146a,146b,
A. Strandlie117, M. Strang109, E. Strauss143, M. Strauss111, P. Strizenec144b,
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E. Torró Pastor167, J. Toth83,w, F. Touchard83, D.R. Tovey139, D. Traynor75,
T. Trefzger173, L. Tremblet29, A. Tricoli29, I.M. Trigger159a,
S. Trincaz-Duvoid78, T.N. Trinh78, M.F. Tripiana70, W. Trischuk158,
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C. Zendler20, O. Zenin128, T. Ženǐs144a, Z. Zenonos122a,122b, S. Zenz14,
D. Zerwas115, G. Zevi della Porta57, Z. Zhan32d, D. Zhang32b,aa, H. Zhang88,
J. Zhang5, X. Zhang32d, Z. Zhang115, L. Zhao108, T. Zhao138, Z. Zhao32b,
A. Zhemchugov65, S. Zheng32a, J. Zhong151,ae, B. Zhou87, N. Zhou163,
Y. Zhou151, C.G. Zhu32d, H. Zhu41, J. Zhu87, Y. Zhu172, X. Zhuang98,
V. Zhuravlov99, D. Zieminska61, R. Zimmermann20, S. Zimmermann20,
S. Zimmermann48, M. Ziolkowski141, R. Zitoun4, L. Živković34,
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Santiago; (b)Departamento de F́ısica, Universidad Técnica Federico Santa
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