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Abstract

This Letter reports a measurement of the WW production cross section in
√

s = 7 TeV pp collisions
using data corresponding to an integrated luminosity of 1.02 fb−1 collected with the ATLAS detector.
Using leptonic decays of oppositely charged W bosons, the total measured cross section is σ(pp →
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This Letter reports a measurement of the WW production cross section in
√

s = 7 TeV pp collisions using data
corresponding to an integrated luminosity of 1.02 fb−1 collected with the ATLAS detector. Using leptonic decays of
oppositely charged W bosons, the total measured cross section is σ(pp → WW) = 54.4 ± 4.0 (stat.) ± 3.9 (syst.) ±
2.0 (lumi.) pb, consistent with the Standard Model prediction of σ(pp→ WW) = 44.4± 2.8 pb. Limits on anomalous
electroweak triple-gauge couplings are extracted from a fit to the transverse-momentum distribution of the leading
charged lepton in the event.
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1. Introduction

Measurements of WW production at the LHC pro-
vide important tests of the Standard Model (SM), in par-
ticular of the WWZ and WWγ triple gauge couplings
(TGCs) resulting from the non-Abelian nature of the
SU(2)L × U(1)Y symmetry group. Precise measure-
ments of TGCs are sensitive probes of new physics in
the electroweak sector and are complementary to direct
searches. Furthermore, since WW production is a back-
ground to possible new processes such as the production
of the SM Higgs boson, a precise measurement of the
WW cross section is an important step in the search for
new physics.

This Letter describes the measurements of the WW
cross section and of TGCs in pp collisions at

√
s = 7

TeV. The dominant SM WW production mechanisms
are s-channel and t-channel quark-antiquark annihila-
tion, with a 3% contribution from gluon-gluon fusion.
The cross section is measured in the fiducial phase space
of the detector using WW → lνlν decays in final states
with electrons and muons, and is extrapolated to the to-
tal phase space. The fiducial phase space includes geo-
metric and kinematic acceptance. The total production
cross section of oppositely charged W bosons is mea-
sured according to the equation [1]

σ(pp→ WW) =
Ndata − Nbg

AWWCWWLB
, (1)

where Ndata and Nbg are the number of observed data

events and estimated background events, respectively,
AWW is the kinematic and geometric acceptance, CWW is
the ratio of the number of measured events to the num-
ber of events produced in the fiducial phase space, L
is the integrated luminosity of the data sample, and B
is the branching ratio for both W bosons to decay to eν
or µν (including decays through tau leptons with addi-
tional neutrinos). The fiducial cross section is defined
as σ × AWW × B [1].

Previous measurements of WW production using the
CMS and ATLAS detectors, both based on the data
recorded in 2010 and corresponding to an integrated
luminosity of 36 pb−1, have found σ(pp → WW) =

41.1 ± 15.3 (stat.) ± 5.8 (syst.) ± 4.5 (lumi.) pb [2] and
σ(pp → WW) = 41+20

−16 (stat.) ± 5 (syst.) ± 1 (lumi.) pb
[3], respectively. CMS has additionally used these data
to set limits on anomalous gauge-coupling parameters at
higher center of mass energies than corresponding mea-
surements at the Tevatron [4] and LEP [5].

2. ATLAS detector

The ATLAS detector [6] consists of an inner track-
ing system (inner detector, or ID) surrounded by a su-
perconducting solenoid providing a 2 T magnetic field,
electromagnetic and hadronic calorimeters, and a muon
spectrometer (MS) incorporating three large supercon-
ducting toroid magnets arranged with an eight-fold az-
imuthal coil symmetry around the calorimeters. The ID
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consists of silicon pixel and microstrip detectors, sur-
rounded by a transition radiation tracker. The electro-
magnetic calorimeter is a lead/liquid-argon (LAr) detec-
tor. Hadron calorimetry is based on two different detec-
tor technologies, with scintillator tiles or LAr as active
media, and with either steel, copper, or tungsten as the
absorber material. The MS comprises three layers of
chambers for the trigger and for track measurements.

A three-level trigger system is used to select events.
The level-1 trigger is implemented in hardware and uses
a subset of detector information to reduce the event rate
to a design value of at most 75 kHz. This is followed by
two software-based trigger levels, level-2 and the event
filter, which together reduce the event rate to about 200
Hz recorded for analysis.

The nominal pp interaction point at the centre of the
detector is defined as the origin of a right-handed co-
ordinate system. The positive x-axis is defined by the
direction from the interaction point to the centre of the
LHC ring, with the positive y-axis pointing upwards,
while the z-axis is along the beam direction. The az-
imuthal angle φ is measured around the beam axis and
the polar angle θ is the angle from the z-axis. The pseu-
dorapidity is defined as η = − ln tan(θ/2).

3. Data sample and event selection

The data used for this analysis correspond to an inte-
grated luminosity of 1.02 ± 0.04 fb−1 [7], recorded be-
tween April and June of 2011. Events are selected with
triggers requiring either a single electron with pT > 20
GeV and |η| < 2.5 or a single muon with pT > 18
GeV and |η| < 2.4. Additional data collected with a
trigger requiring a single muon with pT > 40 GeV,
|η| < 1.05, and looser identification criteria are used to
increase efficiency. The combination of triggers results
in ≈ 100% (98%) trigger efficiency for events with WW
decays to eνµν and eνeν (µνµν) passing the selection
described below.

The WW event selection begins with the identifica-
tion of electrons and muons, requiring exactly two of
these particles with opposite charge. Electrons are re-
constructed with a clustering algorithm in the electro-
magnetic calorimeter and matched to an ID track. To
distinguish electrons from hadrons, selection criteria [8]
are applied based on the quality of the position and mo-
mentum match between the extrapolated track and the
calorimeter cluster, the consistency of the longitudinal
and lateral shower profiles with an incident electron,
and the observed transition radiation in the TRT. Elec-
trons are required to lie within the fiducial regions of
the calorimeters (|η| < 1.37 or 1.52 < |η| < 2.47), have

pT > 25 GeV (pT > 20 GeV for the lower pT elec-
tron in the eνeν decay channel), and be isolated in the
calorimeter and tracker. Calorimeter isolation requires
the summed transverse energies deposited in calorime-
ter cells, excluding those belonging to the electron clus-
ter, in a cone of radius ∆R =

√
(∆η)2 + (∆φ)2 = 0.3

around the electron direction to be < 4 GeV. Tracker
isolation requires the summed pT of ID tracks in a cone
of radius ∆R = 0.2 centered on and excluding the elec-
tron track to be < 10% of the electron pT.

The muon reconstruction algorithm begins with a
track from the MS to determine the muon’s η, and then
combines it with an ID track to determine the muon’s
momentum [9]. Muons are required to have pT > 20
GeV and |η| < 2.4, and in the µνµν channel at least one
muon must have pT > 25 GeV. Decays of hadrons to
muons are suppressed using calorimeter and track iso-
lation. The calorimeter isolation requires the summed
transverse energies deposited in calorimeter cells in a
cone of radius ∆R = 0.2 around the muon track to be
less than 15% of the muon’s pT. The track isolation
requirement is the same as for electrons. The tracks as-
sociated with muon and electron candidates must have
longitudinal and transverse impact parameters consis-
tent with originating from the primary reconstructed
vertex. The primary vertex is defined as the vertex with
the highest

∑
p2

T of associated ID tracks.
The presence of neutrinos is characterized by an im-

balance of transverse momentum in the event. The
missing transverse momentum (Emiss

T ) is the modulus
of the event −~pT vector, calculated by summing the
transverse momentum determined from each calorime-
ter cell’s energy and direction with respect to the pri-
mary vertex. Cells with |η| < 4.5 are used in the cal-
culation and a correction is applied to account for the
momentum of measured muons.

Misreconstructed leptons and jets, as well as leptons
from tau decays, are suppressed by applying cuts on
Emiss

T × sin ∆φ when ∆φ < π/2. Here, ∆φ is the az-
imuthal angle between the missing transverse momen-
tum and the nearest charged lepton or jet; small ∆φ in-
dicates that Emiss

T is dominated by a mismeasured lepton
or jet, or by the presence of neutrinos in the direction
of the lepton or jet, as would occur in a tau decay. The
lower cuts on Emiss

T , or Emiss
T × sin ∆φ for ∆φ < π/2, are

25 GeV in the eνµν channel, 40 GeV in the eνeν chan-
nel, and 45 GeV in the µνµν channel. The thresholds
in the eνeν and µνµν channels are more stringent than
in the eνµν channel to suppress the background from
Drell-Yan (DY) production of ee and µµ pairs.

Background from top-quark production is rejected
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by vetoing events containing a reconstructed jet with
pT > 25 GeV and |η| < 4.5. Jets are reconstructed
with the anti-kt algorithm [10] with a radius parame-
ter of R = 0.4. A further 30% reduction of top-quark
background is achieved by rejecting events with a jet
with pT > 20 GeV, |η| < 2.5, and identified as originat-
ing from a b-quark (b-jet). The identification of b-jets
combines information from the impact parameters and
the reconstructed vertices of tracks within the jet [11].
The additional b-jet rejection reduces WW acceptance
by 1.3%.

Resonances with dilepton decays are removed by re-
quiring ee and µµ invariant masses to be greater than 15
GeV and not within 15 GeV of the Z-boson mass. To
suppress backgrounds from heavy-flavour hadron de-
cays, events with an eµ invariant mass below 10 GeV
are also removed. The complete event selection yields
202 eνµν, 59 eνeν, and 64 µνµν candidates.

4. Background estimation

The selected data sample contains 26 ± 3% back-
ground to the WW production process (Table 1). In
decreasing order of size, the main background pro-
cesses are: DY production of dileptons, with significant
Emiss

T arising from misreconstructed jet(s) or charged
lepton(s); tt̄ and tWb production, where the b-quarks
in the WWbb̄ final state are not rejected by the jet veto;
(W → lν) + jet, where the jet is misidentified as a lep-
ton; WZ → lνll production, where one lepton is not
reconstructed; (W → lν) + γ, where the photon con-
verts in the inner detector and is misreconstructed as an
electron; ZZ → llνν production; and cosmic-ray muons
overlapping a pp collision (which is negligible).

Backgrounds are estimated using a combination of
Monte Carlo (MC) samples including a full geant [12]
simulation of the ATLAS detector [13], and control
samples (independent of the measurement sample) from
data. The simulation includes the modeling of multiple
pp interactions in the same bunch crossing (pile-up), as
well as corrections (determined from data) to improve
the modeling of reconstructed objects.

The DY background is estimated using the alpgen
[14] Monte Carlo generator interfaced to pythia [15] for
parton showering. To test the modeling of Emiss

T , data
are compared to simulated Z/γ∗ events where the lepton
pair forms an invariant mass within 15 GeV of the Z-
boson mass. The DY MC accurately models the number
of events above the thresholds on Emiss

T or Emiss
T × sin ∆φ

used to select WW events, after subtracting the ≈ 20%
non-DY contributions. A 12% relative systematic un-

certainty on the DY prediction is taken from the statisti-
cal precision of the MC validation in the control sample.
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Figure 1: The multiplicity distribution of jets with pT > 25 GeV for
the combined dilepton channels, after all WW selection cuts except
the jet veto requirement. The systematic uncertainties shown in the
>0-jet bins include only those on the integrated luminosity and the
theoretical cross sections.

Background from top-quark production arises when
the final-state b-quarks have low transverse momen-
tum (pT < 20 GeV), are not identified as b-jets (for
20 < pT < 25 GeV), or are in the far forward region
(|η| > 4.5). To model this background, mc@nlo [16]
samples of tt̄ and AcerMC [17] samples of tWb pro-
duction are used, respectively, with corrections derived
from the data. An overall normalization factor is deter-
mined from the ratio of events in data to those predicted
by the top-quark MC using the WW selection without
any jet rejection. This sample is dominated by top-
quark decays, as shown in Fig. 1; a 24% contribution
from other processes is subtracted in the normalization.
The subtraction of the WW component is based on the
SM prediction of WW production, with an uncertainty
that covers the difference between the prediction and the
cross section measurement reported in this Letter. The
relative cross sections of tt̄ to tWb are set by the gen-
erator calculations of σ = 164.6 pb and σ = 15.6 pb,
respectively.

A key aspect of the top-quark background prediction
is the modeling of the jet veto acceptance. To reduce the
associated uncertainties, a data-based correction is de-
rived using a top-quark-dominated sample based on the
WW selection but with the requirement of at least one
b-jet with pT > 25 GeV [18]. In this sample, the ratio
P1 of events with one jet to the total number of events is
sensitive to the modeling of the jet energy spectrum in
top-quark events. A multiplicative correction based on
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Table 1: The estimated background event yields in the selected WW data sample. The first uncertainty is statistical, the second systematic.

Production process eνµν selection eνeν selection µνµν selection
DY 13.0 ± 2.1 ± 1.6 12.5 ± 2.3 ± 1.4 10.9 ± 2.5 ± 1.4
Top 11.9 ± 1.8 ± 2.4 3.1 ± 0.5 ± 0.6 3.8 ± 0.6 ± 0.8

W + jet 10.0 ± 1.6 ± 2.1 4.1 ± 1.3 ± 0.9 4.2 ± 1.1 ± 1.3
Diboson 5.1 ± 1.0 ± 0.7 2.1 ± 0.8 ± 0.3 2.9 ± 0.4 ± 0.4

Total background 40.0 ± 3.3 ± 3.6 21.7 ± 2.8 ± 1.8 21.8 ± 2.8 ± 2.1

the ratio Pdata
1 /PMC

1 is applied to reduce the uncertainties
resulting from the jet veto requirement. The residual un-
certainty on the background prediction due to jet energy
scale and resolution is small (4%) compared to uncer-
tainties from the b-quark identification efficiency (6%),
parton shower modeling (12%), statistical uncertainty
on the Pdata

1 /PMC
1 -based correction (12%), and unmod-

eled tt̄-tWb interference and higher order QCD correc-
tions (15%). As a cross-check, the normalization of the
top-quark background is extracted from a fit to the jet
multiplicity distribution; the result is consistent with the
primary estimate.

The W + jet process contributes to the selected sam-
ple when one or more hadrons in the jet decay to, or are
misidentified as, a charged lepton. Jets reconstructed as
electrons or muons predominantly arise from misiden-
tification or heavy-flavour quark decays, respectively.
This background is estimated with a pass-to-fail ratio
fe ( fµ), defined as the ratio of the number of electron
(muon) candidates passing the electron (muon) identi-
fication criteria to the number of candidates failing the
criteria. These ratios are measured in data samples dom-
inated by hadronic jets collected with a trigger requir-
ing an electromagnetic cluster or a muon candidate. All
candidates are required to pass a loose set of selection
criteria, including an isolation requirement. The mea-
sured fe and fµ are then applied as multiplicative factors
to events satisfying all WW selection cuts except with
one lepton failing the identification criteria but passing
the looser criteria.

The above procedure measures fe and fµ ratios av-
eraged over misidentified jets and heavy-flavour quark
decays in jet-dominated samples. If, for example, the
ratio fe differs for these two contributions, the W + jet
prediction could be biased. To address this issue, two
sets of loose criteria are applied to electron candidates,
one based on the track and the shower profile and ex-
pected to enhance the misidentification fraction, and the
other based on the isolation and expected to enhance
the heavy flavour fraction. The fe ratio is measured for
these criteria separately in events where there is an addi-

tional b-jet and events where there is no such jet. From
the combination of measurements, the heavy-flavour
and misidentification contributions are separated; the re-
sulting W + jet background is consistent with that ob-
tained using the inclusive fe for the misidentification
and heavy-flavour components. A similar separation is
not performed for fµ, since heavy-flavour decays domi-
nate the contribution of background muons from the W
+ jet process.

The systematic uncertainty on the W + jet prediction
is dominated by a 30% variation of the ratios fe and fµ
with the jet pT threshold. This variation is sensitive to
the relative fraction of quarks and gluons in the samples
used to measure fe and fµ, and thus encompasses poten-
tial differences in fe and fµ ratios between these samples
and those used to estimate the W + jet background.

Several alternative methods are used to check the W
+ jet prediction and give consistent results. The first
method applies the measured fe and fµ ratios to an in-
clusive W + jets data sample, and then determines the
fraction of expected events with no additional jets using
W + jets Monte Carlo events with two identified leptons.
The second method defines different sets of “loose” lep-
ton criteria and independently measures efficiencies for
lepton identification and rates for misidentified or de-
caying hadrons to pass the standard identification crite-
ria. Background from dijet production is estimated with
this method and is found to be small; it is implicitly in-
cluded in the primary estimate.

Monte Carlo estimates of the Wγ, WZ, and ZZ back-
grounds are obtained using a combination of alpgen and
pythia (for Wγ) and herwig [19] with jimmy [20] (for the
others), normalized to the next-to-leading order (NLO)
cross sections calculated with mcfm [21]. The O(10%)
systematic uncertainty on these backgrounds is domi-
nated by the uncertainty on the jet energy scale.

5. WW acceptance modeling

The WW total cross section measurement requires
the knowledge of the AWW and CWW factors given in
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Eq. 1. The acceptance factor AWW is defined as the ra-
tio of generated WW events in the fiducial phase space
to those in the total phase space. The correction fac-
tor CWW is defined as the ratio of measured events to
generator-level events in the fiducial phase space. The
value of this ratio is determined primarily by lepton trig-
ger and identification efficiencies, with a small contribu-
tion from differences in generated and measured phase
space due to detector resolutions. The fiducial phase
space is defined at generator level as:

• Muon pT > 20 GeV and |η| < 2.4 (pT > 25 GeV
for at least one muon in the µνµν channel);

• Electron pT > 20 GeV and either |η| < 1.37 or
1.52 < |η| < 2.47 (pT > 25 GeV in the eνµν chan-
nel and for at least one electron in the eνeν chan-
nel);

• No anti-kt jet (R = 0.4) with pT > 25 GeV, |η| <
4.5, and ∆R(e,jet) > 0.3;

• No anti-kt jet with pT > 20 GeV, |η| < 2.5,
∆R(e,jet) > 0.3, and ∆R(b,jet) < 0.3, where the
b-quark has pT > 5 GeV;

• Neutrino |
∑
~pT| or |

∑
~pT| × sin ∆φ (for ∆φ < π/2)

> 45, 40, 25 GeV in the µνµν, eνeν and eνµν chan-
nels, respectively (∆φ is the azimuthal angle be-
tween the neutrino

∑
~pT and the nearest charged

lepton);

• m`` > 15 (10) GeV in the µνµν and eνeν channels
(eνµν channel);

• |m``−mZ | > 15 GeV in the µνµν and eνeν channels,

where mZ is the Z boson mass. To reduce the depen-
dence on the model of QED final-state radiation, the
electron and muon pT include contributions from pho-
tons within ∆R = 0.1 of the lepton direction.

Estimates of AWW and CWW are based on samples of
qq̄ → WW and gg → WW events generated with
mc@nlo and gg2WW [22], respectively. Initial parton
momenta are modeled with CTEQ 6.6 [23] parton distri-
bution functions (PDFs). The underlying event and par-
ton showering are modeled with jimmy, and hadroniza-
tion and tau-lepton decays with herwig. Data-based cor-
rections measured with W and Z boson data are applied
to reduce uncertainties, as described below. Because the
corrections are applied to WW MC samples, residual
uncertainties on the fiducial cross section measurement
are based on the kinematics of SM WW production.

The combined factor AWW × CWW is estimated sepa-
rately for each leptonic decay channel, including decays

to tau leptons (Table 2). Tau-lepton decays to hadrons
are not included in the denominator for the acceptances
in the table. The impact of pile-up is modeled by adding
pythia-generated low-Q2 events to the WW MC accord-
ing to the distribution of the number of additional colli-
sions in the same bunch crossing in the data. Effects on
detector response from nearby bunches are also mod-
eled using this distribution.

A correction to the qq̄ → WW MC modeling of the
jet veto is derived using Z-boson data. The fraction of
Z-boson events with no additional jets is compared be-
tween data and mc@nlo simulated samples. The ratio of
this fraction in data to the fraction in the MC is applied
as a multiplicative correction factor of 0.963 to the WW
MC. The correction reduces the uncertainties due to jet
energy scale and resolution to 1.1%. A theoretical un-
certainty of 5.0% on the jet veto acceptance contributes
the largest uncertainty to AWW , as shown in Table 3.

Contributions to Emiss
T include energy from the in-

teracting protons’ remnants (the underlying event), and
from pile-up. The dominant uncertainty arises from
the detector response to the underlying event, and is
evaluated by varying the individual calorimeter cell en-
ergy deposits in the MC [24]. To determine the un-
certainty due to additional pp interactions in the same
bunch crossing as the hard-scattering process, the event
~pT measured with the calorimeter is compared between
data and MC in Z → µµ events. The mean |~pT| as a
function of the number of reconstructed vertices agrees
to within 3% between data and MC, yielding a negli-
gible uncertainty on the WW acceptance. The effect of
collisions from other bunch crossings is studied by split-
ting Z-boson samples in data and MC according to the
bunch position in the LHC train, and by smearing Emiss

T
in the simulation samples to match the acceptance of a
given Emiss

T cut in the data samples. The resulting uncer-
tainty on the WW acceptance is small.

The efficiencies for triggering, reconstructing, and
identifying charged leptons are measured as a function
of lepton pT and η using Z boson events and (for elec-
trons) W boson events [1]. Corrections to the MC de-
rived from these data are within 1% of unity for trigger
and muon identification efficiencies and deviate from
unity by up to 11% at low pT for the electron identi-
fication efficiency. Uncertainties on the corrections are
largely due to the limited number of events available for
the measurements and, in case of electron identification,
from the estimate of the jet background contamination.

Finally, there are small uncertainties on the WW pro-
duction model. Uncertainties on PDFs are determined
using the CTEQ eigenvectors and the acceptance dif-
ferences between the CTEQ 6.6 and MSTW 2008 PDF
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Table 2: The total WW acceptance AWW × CWW in the individual decay channels, and the expected number of SM WW events (NWW ) for an
integrated luminosity of 1.02 fb−1.

eνµν selection eνeν selection µνµν selection
WW → eνµν WW → lντν WW → eνeν WW → eντν WW → µνµν WW → µντν

AWW ×CWW 10.8% 3.0% 4.4% 1.1% 7.6% 1.6%
NWW 114.9 12.0 23.4 2.3 40.3 3.3

Table 3: Relative uncertainties, in percent, on the estimate of the product AWW × CWW for the individual WW decay channels. The uncertainty on
AWW (CWW ) receives contributions from the last three (first six) sources.

Relative uncertainty (%)
Source of uncertainty eνµν selection eνeν selection µνµν selection

Trigger efficiency 1.0 1.0 1.0
Lepton efficiency 2.3 4.1 1.8

Lepton pT scale and resolution 0.4 1.0 0.1
Emiss

T modeling 0.6 1.0 2.2
Jet energy scale and resolution 1.1 1.1 1.1

Lepton acceptance 2.0 2.1 1.6
Jet veto acceptance 5.0 5.0 5.0

PDFs 1.4 1.2 1.2
Total 6.2 7.2 6.2

sets [25]. The impact of unmodeled higher-order contri-
butions is estimated by varying the renormalization and
factorization scales coherently by factors of 2 and 1/2.

The total acceptance uncertainty on the three chan-
nels combined is 6.2%.

6. Cross section results

The WW cross section is measured in the fiducial
phase space and extrapolated to the total phase space.
The total cross section is defined in Eq. 1, while the
fiducial cross section is

σfid =
Ndata − Nbg

LCWW
. (2)

Uncertainties on the fiducial cross section measurement
result from modeling lepton and jet efficiency, energy
scale and resolution, and Emiss

T (the first five rows of
Table 3). Small uncertainties of 1.4% (µνµν and eνeν
channels) and 0.5% (eνµν channel) arise from the im-
pact of QCD renormalization and factorization scale
variations on lepton momenta (included in the sixth row
of Table 3). Table 4 shows CWW and the other compo-
nents of the cross section measurements for each chan-
nel. The measurements are performed by minimizing a
likelihood fit to the observed data with respect to the

WW and background predictions for the three chan-
nels combined. The measured cross sections are consis-
tent with the SM predictions, differing by +1.7σ (eνµν
channel), +1.3σ (eνeν channel) and −0.1σ (µνµν chan-
nel). Contributions from a hypothetical SM Higgs bo-
son would be small: 2.9, 0.9, and 1.8 events in the eνµν,
eνeν and µνµν channels, respectively, for a Higgs boson
mass of 125 GeV.

The AWW uncertainty comes from PDFs and scale
variations affecting the lepton and jet veto acceptances
(the last three rows of Table 3). The combined AWW ×

CWW and the total measured cross section in each chan-
nel are shown in Table 4. The contribution of leptons
from tau decays is included. The channels are combined
by maximizing a log likelihood, yielding

σ(pp→ WW) =

54.4 ± 4.0 (stat.) ± 3.9 (syst.) ± 2.0 (lumi.) pb,

to be compared with the NLO SM prediction ofσ(pp→
WW) = 44.4 ± 2.8 pb [16, 22]. Figure 2 shows the
following distributions for data and MC: Emiss

T , trans-
verse mass, the azimuthal angle between the charged
leptons [∆φ(l, l)], and invariant mass of the charged
leptons [m``]. The transverse mass is mT(llEmiss

T ) =

6



Table 4: The measured total (σ(pp → WW)) and fiducial (σfid) cross sections and the components used in the calculations, as well as the SM
predictions for the fiducial cross sections (σSM

fid ). The first uncertainty is statistical and the second systematic. The 3.7% relative uncertainty on the
integrated luminosity is the third uncertainty on the measured cross sections. The uncertainties on σSM

fid are highly correlated between the channels.

eνµν selection eνeν selection µνµν selection
Data 202 59 64

Background 40.0 ± 3.3 ± 3.6 21.7 ± 2.8 ± 1.8 21.8 ± 2.8 ± 2.1
CWW 0.541 ± 0.005 ± 0.022 0.396 ± 0.005 ± 0.019 0.721 ± 0.005 ± 0.025
AWW 0.161 ± 0.001 ± 0.008 0.089 ± 0.001 ± 0.005 0.082 ± 0.001 ± 0.004

AWW ×CWW 0.087 ± 0.001 ± 0.005 0.035 ± 0.001 ± 0.003 0.059 ± 0.001 ± 0.004
σ(pp→ WW) [pb] 56.3 ± 4.9 ± 3.9 ± 2.1 64.1 ± 13.0 ± 7.4 ± 2.4 43.2 ± 8.1 ± 4.5 ± 1.6

σfid [fb] 294 ± 26 ± 15 ± 11 92.0 ± 18.9 ± 9.4 ± 3.4 57.2 ± 10.8 ± 5.2 ± 2.1
σSM

fid [fb] 230 ± 19 63.4 ± 5.3 59.0 ± 4.7
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Figure 2: The Emiss
T (top left), mT (top right), ∆φ(l, l) (bottom left) and m`` (bottom right) distributions for the combined dilepton channels after

all selection requirements. The data (dots) are compared to the expectation from WW and the backgrounds (histograms). The W + jet and dijet
backgrounds are estimated using data. The hashed region shows the ±1σ uncertainty band on the expectation.

√
(pl1

T + pl2
T + Emiss

T )2 −
∑

(pl1
i + pl2

i + Emiss
i )2, where the

sum runs over the x and y coordinates and l1 and l2 refer
to the two charged leptons.

7. Anomalous triple-gauge couplings

The s-channel production of WW events occurs via
the triple-gauge couplings WWγ and WWZ. Contribu-
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tions to these couplings from new physics processes at a
high energy scale would affect the measured cross sec-
tion, particularly at high momentum transfer [26]. Be-
low the energy scale of these new physics processes, an
effective Lagrangian can be used to describe the effect of
non-SM processes on the WWV (V = γ,Z) couplings.
Assuming the dominant non-SM contributions conserve
C and P, the general Lagrangian for WWV couplings is

LWWV/gWWV = igV
1 (W†µνWµVν −W†µVνWµν) +

ikVW†
µWνVµν +

iλV

m2
W

W†λµWµ
ν Vνλ, (3)

where gWWγ = −e, gWWZ = −e cot θW , Vµν = ∂µVν −

∂νVµ and Wµν = ∂µWν − ∂νWµ. The SM couplings
are gV

1 = kV = 1 and λV = 0. Individually, non-
zero couplings lead to divergent cross sections at high
√

s, and non-SM values of the gV
1 or kV couplings break

the gauge cancellation of processes at high momentum
transfer. To regulate this behavior, a suppression factor
depending on a scale Λ with the general form

λ(ŝ) =
λ

(1 + ŝ/Λ2)2 , (4)

is defined for λ, ∆g1 ≡ g1 − 1 and ∆k ≡ k− 1. Here, λ is
the coupling value at low energy and

√
ŝ is the invariant

mass of the WW pair. The gγ1 coupling is fixed to its SM
value by electromagnetic gauge invariance.

To reduce the number of WWV coupling parameters,
three specific scenarios are considered. The first is the
“LEP scenario” [27, 28], where anomalous couplings
arise from dimension-6 operators and electroweak sym-
metry breaking occurs via a light SM Higgs boson. This
leads to the relations

∆kγ = −
cos2 θW

sin2 θW
(∆kZ − ∆gZ

1 ) and λγ = λZ , (5)

leaving three free parameters (∆gZ
1 , ∆kZ , λZ). The pa-

rameter space can be further reduced by requiring equal
couplings of the SU(2) and U(1) gauge bosons to the
Higgs boson in the dimension-6 operators. This adds
the constraint ∆gZ

1 = ∆kγ/(2 cos2 θW ) and is referred to
as the “HISZ scenario” [27]. A third “Equal Coupling
scenario” assumes common couplings for the WWZ and
WWγ vertices (∆kZ = ∆kγ, λZ = λγ, ∆gZ

1 = ∆gγ1 = 0).
The differential cross section as a function of the in-

variant mass of the WW pair is the most direct probe
of anomalous couplings, particularly at high invariant
mass. The mass can not be fully reconstructed but is
correlated with the momentum of the individual leptons.

 [GeV]
T

Lepton p
20 40 60 80 100 120 140

E
ve

nt
s 

/ 2
0 

G
eV

0

50

100

150
∫  = 7 TeVs, -1Ldt = 1.02 fbATLAS

Data
SM WW

=0.1Zκ∆
=0.15γλ=Zλ

=0.2Z
1

g∆
Background

stat+systσ

Figure 3: The pT distribution of the highest-pT charged lepton in WW
final states. Shown are the data (dots), the background (shaded his-
togram), SM WW plus background (solid histogram), and the follow-
ing WW anomalous couplings added to the background: ∆kZ = 0.1
(dashed histogram), λZ = λγ = 0.15 (dotted histogram), and ∆gZ

1 =

0.2 (dash-dotted histogram). The last bin corresponds to pT > 120
GeV.

The pT distribution of the highest-pT charged lepton is
therefore a sensitive probe of anomalous TGCs and is
used in a binned likelihood fit to extract the values of the
anomalous couplings preferred by the data (Fig. 3). The
dependence of the distribution on specific anomalous
couplings is modeled by reweighting the mc@nlo SM
WW MC to the predictions of the BHO generator [29] at
the matrix-element level. Figure 3 demonstrates the sen-
sitivity to anomalous TGCs at high lepton pT; the cou-
pling measurement is negligibly affected by the excess
in the data at low pT. The fiducial cross section is mea-
sured in the last bin of Fig. 3. The result σfid(pT ≥ 120
GeV) = 5.6+5.4

−4.4 (stat.) ± 2.9 (syst.) ± 0.2 (lumi.) fb is
consistent with the SM WW prediction of σfid(pT ≥ 120
GeV) = 12.2 ± 1.0 fb.

Table 5 and Fig. 4 show the results of the coupling
fits to one and two parameters respectively in the LEP
scenario, with Λ = 3 TeV and the other parameter(s) set
to the SM value(s). One-dimensional limits on λZ in the
HISZ and Equal Coupling scenarios are the same as in
the LEP scenario. In the HISZ scenario, the 95% CL
limits on ∆kZ are [−0.049, 0.072] and [−0.037, 0.069]
for Λ = 3 TeV and Λ = ∞, respectively. The cor-
responding limits in the Equal Coupling scenario are
[−0.089, 0.096] and [−0.065, 0.102], respectively.

The anomalous coupling limits in the LEP scenario
are compared with limits obtained from CMS, CDF, D0
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Table 5: 95% CL limits on anomalous TGCs in the LEP scenario assuming the other couplings are set to their SM values.

Λ ∆gZ
1 ∆kZ λZ

3 TeV [−0.064, 0.096] [−0.100, 0.067] [−0.090, 0.086]
∞ [−0.052, 0.082] [−0.071, 0.071] [−0.079, 0.077]

Zκ∆
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0

0.1

0.2
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∞ = Λ

95% CL

68% CL

Zκ∆
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Z 1g∆
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Zλ
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Z 1g∆
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∞ = Λ
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68% CL

Figure 4: Two-dimensional fits to the anomalous couplings in the LEP scenario: ∆kZ vs. λZ (left), ∆kZ vs. ∆gZ
1 (middle), and λZ vs. ∆gZ

1 (right).

and the combined LEP results in Fig. 5. The sensitiv-
ity of this result is significantly greater than that of the
Tevatron due to the higher center-of-mass energy and
higher WW production cross section. It is also compa-
rable to the combined results from LEP, which include
data from four detectors and all WW decay channels.

8. Summary

Using 1.02 fb−1 of
√

s = 7 TeV pp data, the pp →
WW cross section has been measured with the ATLAS
detector in the fully leptonic decay channel. The mea-
sured total cross section of 54.4 ± 5.9 pb is consistent
with the SM prediction of 44.4 ± 2.8 pb and is the most
precise measurement to date. In addition, a first mea-
surement of the WW cross section in a fiducial phase
space region has been presented. Limits on anomalous
couplings have been derived in three scenarios using the
pT distribution of the leading charged lepton. No sig-
nificant deviation is observed with respect to the SM
prediction. These limits are competitive with previous
results and are sensitive to a higher mass scale for new
physical processes.
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H. Ji174, W. Ji82, J. Jia149, Y. Jiang32b, M. Jimenez Belenguer41, G. Jin32b, S. Jin32a, O. Jinnouchi158,
M.D. Joergensen35, D. Joffe39, L.G. Johansen13, M. Johansen147a,147b, K.E. Johansson147a, P. Johansson140,
S. Johnert41, K.A. Johns6, K. Jon-And147a,147b, G. Jones119, R.W.L. Jones72, T.W. Jones78, T.J. Jones74, O. Jonsson29,
C. Joram29, P.M. Jorge125a, J. Joseph14, K.D. Joshi83, J. Jovicevic148, T. Jovin12b, X. Ju174, C.A. Jung42,
R.M. Jungst29, V. Juranek126, P. Jussel62, A. Juste Rozas11, V.V. Kabachenko129, S. Kabana16, M. Kaci168,
A. Kaczmarska38, P. Kadlecik35, M. Kado116, H. Kagan110, M. Kagan57, S. Kaiser100, E. Kajomovitz153,
S. Kalinin176, L.V. Kalinovskaya65, S. Kama39, N. Kanaya156, M. Kaneda29, S. Kaneti27, T. Kanno158,
V.A. Kantserov97, J. Kanzaki66, B. Kaplan177, A. Kapliy30, J. Kaplon29, D. Kar53, M. Karagounis20, M. Karagoz119,
M. Karnevskiy41, V. Kartvelishvili72, A.N. Karyukhin129, L. Kashif174, G. Kasieczka58b, R.D. Kass110,
A. Kastanas13, M. Kataoka4, Y. Kataoka156, E. Katsoufis9, J. Katzy41, V. Kaushik6, K. Kawagoe70, T. Kawamoto156,
G. Kawamura82, M.S. Kayl106, V.A. Kazanin108, M.Y. Kazarinov65, R. Keeler170, R. Kehoe39, M. Keil54,
G.D. Kekelidze65, J.S. Keller139, J. Kennedy99, M. Kenyon53, O. Kepka126, N. Kerschen29, B.P. Kerševan75,
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C. Schmitt82, S. Schmitt58b, M. Schmitz20, A. Schöning58b, M. Schott29, D. Schouten160a, J. Schovancova126,
M. Schram86, C. Schroeder82, N. Schroer58c, G. Schuler29, M.J. Schultens20, J. Schultes176, H.-C. Schultz-Coulon58a,
H. Schulz15, J.W. Schumacher20, M. Schumacher48, B.A. Schumm138, Ph. Schune137, C. Schwanenberger83,
A. Schwartzman144, Ph. Schwemling79, R. Schwienhorst89, R. Schwierz43, J. Schwindling137, T. Schwindt20,
M. Schwoerer4, G. Sciolla22, W.G. Scott130, J. Searcy115, G. Sedov41, E. Sedykh122, E. Segura11, S.C. Seidel104,
A. Seiden138, F. Seifert43, J.M. Seixas23a, G. Sekhniaidze103a, S.J. Sekula39, K.E. Selbach45, D.M. Seliverstov122,
B. Sellden147a, G. Sellers74, M. Seman145b, N. Semprini-Cesari19a,19b, C. Serfon99, L. Serin116, L. Serkin54,
R. Seuster100, H. Severini112, M.E. Sevior87, A. Sfyrla29, E. Shabalina54, M. Shamim115, L.Y. Shan32a, J.T. Shank21,
Q.T. Shao87, M. Shapiro14, P.B. Shatalov96, L. Shaver6, K. Shaw165a,165c, D. Sherman177, P. Sherwood78,
A. Shibata109, H. Shichi102, S. Shimizu29, M. Shimojima101, T. Shin56, M. Shiyakova65, A. Shmeleva95,
M.J. Shochet30, D. Short119, S. Shrestha64, E. Shulga97, M.A. Shupe6, P. Sicho126, A. Sidoti133a, F. Siegert48,
Dj. Sijacki12a, O. Silbert173, J. Silva125a, Y. Silver154, D. Silverstein144, S.B. Silverstein147a, V. Simak128,
O. Simard137, Lj. Simic12a, S. Simion116, B. Simmons78, R. Simoniello90a,90b, M. Simonyan35, P. Sinervo159,
N.B. Sinev115, V. Sipica142, G. Siragusa175, A. Sircar24, A.N. Sisakyan65, S.Yu. Sivoklokov98, J. Sjölin147a,147b,
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Casablanca; (b)Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c)Faculté des Sciences
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