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A search for diphoton events with large missing transverse momentum has been performed using 1.07 fb−1 of proton-
proton collision data at

√
s = 7TeV recorded with the ATLAS detector. No excess of events was observed above the

Standard Model prediction and 95% Confidence Level (CL) upper limits are set on the production cross section for new
physics. The limits depend on each model parameter space and vary as follows: σ < (22 − 129) fb in the context of a
generalised model of gauge-mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, σ < (27−91) fb
in the context of a minimal model of gauge-mediated supersymmetry breaking (SPS8), and σ < (15−27) fb in the context
of a specific model with one universal extra dimension (UED). A 95% CL lower limit of 805GeV, for bino masses above
50GeV, is set on the GGM gluino mass. Lower limits of 145TeV and 1.23TeV are set on the SPS8 breaking scale Λ
and on the UED compactification scale 1/R, respectively. These limits provide the most stringent tests of these models
to date.

1. Introduction

This Letter reports on the search for diphoton (γγ)
events with large missing transverse momentum (Emiss

T )
in 1.07 fb−1 of proton-proton (pp) collision data at

√
s =

7TeV recorded with the ATLAS detector in the first half of
2011, extending a prior study performed with 36 pb−1 [1].
The results are interpreted in the context of three models
of new physics: a general model of gauge-mediated su-
persymmetry breaking (GGM) [2–4], a minimal model of
gauge-mediated supersymmetry breaking (SPS8) [5], and
a model positing one universal extra dimension (UED) [6–
8].

2. Supersymmetry

Supersymmetry (SUSY) [9–13] introduces a symmetry
between fermions and bosons, resulting in a SUSY partner
(sparticle) with identical quantum numbers except a differ-
ence by half a unit of spin for each Standard Model (SM)
particle. As none of these sparticles have been observed,
SUSY must be a broken symmetry if realised in nature.
Assuming R-parity conservation [14, 15], sparticles have
to be produced in pairs. These would then decay through
cascades involving other sparticles until the lightest SUSY
particle (LSP) is produced, which is stable.
In gauge-mediated SUSY breaking (GMSB) models [16–

20] the LSP is the gravitino G̃. GMSB experimental sig-
natures are largely determined by the nature of the next-
to-lightest SUSY particle (NLSP), which for a large part
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of the GMSB parameter space is the lightest neutralino
χ̃0
1. Should the lightest neutralino have similar couplings

as the SM U(1) gauge boson, also referred to as “bino” in
this case, the final decay in the cascade would predomi-
nantly be χ̃0

1 → γG̃, with two cascades per event, leading
to final states with γγ + Emiss

T , where Emiss
T results from

the undetected gravitinos.

Searches for GMSB performed at the Tevatron [21, 22]
were optimized to be sensitive to a minimal GMSB model
(SPS8) [5]. To reduce the number of free parameters in
this model, several assumptions are made. These assump-
tions lead to a mass hierarchy in which squarks and gluinos
are much heavier than the lightest neutralino and chargino
χ̃±

1 . The SUSY breaking mass scale felt by the low-energy
sector, Λ, is the only free parameter of the SPS8 model.
The other model parameters are fixed to the following val-
ues: the messenger massMmess = 2Λ, the number of copies
of 5+ 5̄ SU(5) messengers N5 = 1, the ratio of the vacuum
expectation values of the two Higgs doublets tanβ = 15,
and the Higgs sector mixing parameter µ > 0. The NLSP
is assumed to decay promptly (cτNLSP < 0.1mm). At the
present LHC energy the main contribution to the produc-
tion cross section in the SPS8 model is via gaugino pair
production, i.e. production of χ̃0

2 χ̃±

1 or χ̃0
2 χ̃0

2 pairs. The
contribution from gluino and/or squark pairs is below 10%
of the production cross section due to their high masses.
Besides the two photons and the two gravitinos, jets, lep-
tons, and gauge bosons may be produced in the cascades.
This Letter presents the first limits on the SPS8 model
at the LHC. Furthermore, a GGM SUSY model is consid-
ered in which the gluino and neutralino masses are treated
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as free parameters. The other sparticle masses are fixed
at ∼ 1.5TeV, leading to a dominant production mode at√
s = 7TeV of a pair of gluinos via the strong interac-

tion that would decay via cascades into the bino-like neu-
tralino NLSP. Jets may be produced in the cascades from
the gluino decays if kinematically allowed. Further model
parameters are fixed to tanβ = 2 and cτNLSP < 0.1mm.
The decay into the wino-like neutralino NLSP is possible
and was studied by the CMS Collaboration [23].

3. Extra dimensions

UED models postulate the existence of additional spa-
tial dimensions in which all SM particles can propagate,
leading to the existence of a series of excitations for each
SM particle, known as a Kaluza-Klein (KK) tower. This
analysis considers the case of a single UED, with compact-
ification radius (size of the extra dimension) R ≈ 1TeV−1.
At the LHC, the main UED process would be the produc-
tion via the strong interaction of a pair of first-level KK
quarks and/or gluons [24]. These would decay via cascades
involving other KK particles until reaching the lightest KK
particle (LKP), i.e. the first level KK photon γ∗. SM par-
ticles as quarks, gluons, leptons, and gauge bosons may be
produced in the cascades. If the UED model is embedded
in a larger space with N additional eV−1-sized dimensions
accessible only to gravity [25], with a (4+N)-dimensional
Planck scale (MD) of a few TeV, the LKP would decay
gravitationally via γ∗ → γ + G. G represents a tower of
eV-spaced graviton states, leading to a graviton mass be-
tween 0 and 1/R. With two decay chains per event, the
final state would contain γγ + Emiss

T , where Emiss
T results

from the escaping gravitons. Up to 1/R ∼ 1TeV, the
branching ratio to the diphoton and Emiss

T final state is
close to 100%. As 1/R increases, the gravitational decay
widths become more important for all KK particles and
the branching ratio into photons decreases, e.g. to 50%
for 1/R = 1.5TeV [7].
The UED model considered here is defined by specifying

R and Λ, the ultraviolet cut-off used in the calculation
of radiative corrections to the KK masses. This analysis
sets Λ such that ΛR = 20. The γ∗ mass is insensitive to
Λ, while other KK masses typically change by a few per
cent when varying ΛR in the range 10 − 30. For 1/R =
1200GeV, the masses of the first-level KK photon, quark,
and gluon are 1200, 1387 and 1468GeV, respectively [26].
Further details of the model are given in Ref. [1].

4. Simulated samples

For the GGM model, the SUSY mass spectra were cal-
culated using SUSPECT 2.41 [27] and SDECAY 1.3 [28]. The
Monte Carlo (MC) signal samples were produced using
PYTHIA 6.423 [29] with MRST2007 LO∗ [30] parton distri-
bution functions (PDF). Cross sections were calculated at
next-to-leading order (NLO) using PROSPINO 2.1 [31, 32].

For the SPS8 model, the SUSY mass spectra were calcu-
lated using ISAJET 7.80 [33]. The MC signal samples were
produced using HERWIG++ 2.4.2 [34] with MRST2007 LO∗

PDF. NLO cross sections were calculated using PROSPINO.
In the case of the UED model, MC signal samples were
generated using the UED model as implemented at lead-
ing order (LO) in PYTHIA [26].
The “irreducible” background from (W → ℓν)γγ and

(Z → νν)γγ production was simulated at LO using
MadGraph 4 [35] with CTEQ6L1 [36] PDF. Parton shower-
ing and fragmentation were simulated with PYTHIA. NLO
cross sections and scale uncertainties from Ref. [37, 38]
were used. In all cases the underlying event was simulated
within the respective generator.
All samples were processed through the GEANT4-based

simulation [39] of the ATLAS detector [40]. In addition,
the signal samples were overlaid with simulated minimum
bias events to model the average number of six pp interac-
tions per bunch crossing (pile-up) experienced during the
considered data-taking period. More details may be found
in Ref. [1].

5. ATLAS detector

The ATLAS detector [41] is a multi-purpose apparatus
with a forward-backward symmetric cylindrical geometry
and nearly 4π solid angle coverage. Closest to the beam-
line are tracking devices comprised of layers of silicon-
based pixel and strip detectors covering |η| < 2.51 and
straw-tube detectors covering |η| < 2.0, located inside a
thin superconducting solenoid that provides a 2T mag-
netic field. The straw-tube detectors also provide discrim-
ination between electrons and charged hadrons based on
transition radiation. Outside the solenoid, fine-granularity
lead/liquid-argon (LAr) electromagnetic (EM) calorime-
ters provide coverage for |η| < 3.2 to measure the en-
ergy and position of electrons and photons. In the region
|η| < 2.5, the EM calorimeters are segmented into three
layers in depth. The second layer, in which most of the
EM shower energy is deposited, is divided into cells of
granularity of ∆η ×∆φ = 0.025× 0.025. The first layer is
segmented with finer granularity to provide discrimination
between single photons and overlapping photons coming
from the decays of neutral mesons. A presampler, cover-
ing |η| < 1.8, is used to correct for energy lost upstream
of the EM calorimeter. An iron/scintillating-tile hadronic
calorimeter covers the region |η| < 1.7, while copper and
liquid-argon technology is used for hadronic calorimeters
in the end-cap region 1.5 < |η| < 3.2. In the forward re-
gion 3.2 < |η| < 4.5 liquid-argon calorimeters with copper

1ATLAS uses a right-handed coordinate system with its origin
at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the
IP to the centre of the LHC ring, and the y-axis points upward.
Cylindrical coordinates (R, φ) are used in the transverse plane, φ
being the azimuthal angle around the beam pipe. The pseudorapidity
is defined in terms of the polar angle θ as η = − ln tan(θ/2).
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and tungsten absorbers measure the electromagnetic and
hadronic energy. A muon spectrometer consisting of three
superconducting toroidal magnet systems, tracking cham-
bers, and detectors for triggering surrounds the calorime-
ter system.

6. Object reconstruction

The reconstruction of converted and unconverted pho-
tons and of electrons is described in Refs. [42] and [43],
respectively.

Converted photons have EM calorimeter clusters
matched to tracks coming from a conversion vertex. A con-
version vertex is either a vertex that has two tracks with
large transition radiation in the straw-tube detector and an
invariant mass of the two tracks consistent with a massless
particle, i.e. a photon, or one track with large transition
radiation that has no associated hits in the pixel layer clos-
est to the beam line. Electrons have a track matched to
the EM calorimeter cluster, and the track must have hits
in the silicon detectors, momentum not smaller than one
tenth the cluster energy, and transverse momentum of at
least 2GeV. Clusters matched to neither a track or tracks
coming from a conversion vertex nor an electron track as
described above are classified as unconverted photons. A
heuristic using the pixel hits closest to the beam line and
the track momenta is applied to choose between the pho-
ton and electron interpretation in cases where the object
can be both.

Photon candidates were required to be within |η| < 1.81,
the value being chosen by an optimisation of the signal ac-
ceptance versus background rejection, and to be outside
the transition region 1.37 < |η| < 1.52 between the barrel
and the end-cap calorimeters. The analysis used “loose”
and “tight” photon selections [42]. The loose photon selec-
tion includes a limit on the fraction of the energy deposit
in the hadronic calorimeter as well as a requirement that
the transverse width of the shower, measured in the middle
layer of the EM calorimeter, be consistent with the narrow
shape expected for an EM shower. The tight photon se-
lection additionally uses shape information from the first
layer to distinguish between isolated photons and photons
from the decay of neutral mesons.

The reconstruction of Emiss
T is based on energy deposits

in calorimeter cells inside three-dimensional clusters with
|η| < 4.5 and is corrected for contributions from muons,
if any [44]. The cluster energy is calibrated to correct for
the non-compensating calorimeter response, energy loss in
dead material, and out-of-cluster energy.

Jets were reconstructed using the anti-kt jet algo-
rithm [45] with four-momentum recombination and radius
parameter R = 0.4 in η-φ space. They were required to
have pT > 25GeV and |η| < 2.8.
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Figure 1: The ET spectrum of the leading photon in the γγ candidate
events in the data (points, statistical uncertainty only) together with
the spectra from simulated GGM (mg̃ , mχ̃0

1

= (800, 400)GeV), SPS8

(Λ = 140TeV), and UED (1/R = 1200GeV) samples, prior to the
application of the Emiss

T
> 125GeV cut. The signal samples are

scaled by a factor of 100 for clarity.

7. Data analysis

The data sample, corresponding to an integrated lu-
minosity of (1.07 ± 0.04) fb−1, was selected by a trigger
requiring two loose photon candidates with a transverse
energy (ET) above 20GeV. In the offline analysis events
were retained if they contained at least two tight photon
candidates with ET > 25GeV. In addition, a photon iso-
lation cut was applied, whereby the ET deposit in a cone
of radius 0.2 in the η-φ space around the centre of the
cluster, excluding the cells belonging to the cluster, had
to be less than 5GeV. The ET was corrected for leak-
age from the photon energy outside the cluster and for
soft energy deposits from pile-up interactions. A cut of
Emiss

T > 125GeV [1] defined the signal region. Preference
was given to a common signal region for the three models
considered.
A total of 27293 γγ candidate events were observed pass-

ing all selections except the Emiss
T cut. The ET distribution

of the leading photon for events in this sample is shown
in Fig. 1. Also shown are the ET spectra obtained from
GGMMC samples formg̃ = 800GeV andmχ̃0

1

= 400GeV,
from SPS8 MC samples with Λ = 140TeV, and from UED
MC samples for 1/R = 1200GeV, representing model
parameters near the expected exclusion limit. After the
Emiss

T > 125GeV cut, 5 candidate events survived.

8. Background estimation

Following the procedure described in Ref. [1], the contri-
bution to large Emiss

T diphoton events from SM sources can
be grouped into two primary components and estimated
with dedicated control samples using data. The first of
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Figure 2: Emiss
T

spectra for the γγ candidate events in data (points,
statistical uncertainty only) and the estimated QCD background
(normalised to the number of γγ candidates with Emiss

T
< 20GeV),

the W (→ eν) + jets/γ and tt̄(→ eν) + jets backgrounds as esti-
mated from the electron-photon control sample, and the irreducible
background of Z(→ νν̄) + γγ and W (→ ℓν) + γγ. Also shown are
the expected signals from GGM (mg̃ ,mχ̃0

1

= (800, 400)GeV), SPS8

(Λ = 140TeV), and UED (1/R = 1200GeV) samples.

these components, referred to as “QCD background” for
brevity, arises from a mixture of processes that include γγ
production as well as γ + jet and multijet events with at
least one jet mis-reconstructed as a photon. The second
background component is due to W + X and tt̄ events,
where mis-reconstructed photons can arise from electrons
and jets, for which final-state neutrinos produce significant
Emiss

T .

In order to estimate the QCD background from γγ, γ
+ jet, and multijet events, a “QCD control sample” was
extracted from the diphoton trigger sample by selecting
events for which at least one of the photon candidates does
not pass the tight photon identification. Electrons were
vetoed to remove contamination from W → eν decays.
The QCD background contamination in the signal region
Emiss

T > 125GeV was obtained from this QCD template
after normalising it to data in the region Emiss

T < 20GeV.
This gives a QCD background expectation in the signal
region of 0.8 ± 0.3(stat) events. An alternate model for
the QCD background was obtained using a sample of di-
electron events, with no jets, selected by requiring two
electrons with ET > 25GeV and |η| < 1.81 and an invari-
ant mass consistent with the Z boson mass. As confirmed
by MC simulation, the Emiss

T spectrum of this Z → ee
sample with no additional jets, which is dominated by
the calorimeter response to two genuine EM objects, ac-
curately represents the Emiss

T spectrum of SM γγ events.
This spectrum was normalised in the same way as the QCD
control sample. A systematic uncertainty of 0.6 events
was assigned as the systematic uncertainty on the back-
ground prediction from the relative fractions of γγ, γ + jet,
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Figure 3: Emiss
T

spectrum for the electron-photon control sample in
data (points, statistical uncertainty only), normalised according to
the probability for an electron to be mis-reconstructed as a tight
photon, compared to the expected backgrounds displayed by compo-
nents (stacked histograms). For the purpose of this comparison, the
expected contributions from W (→ eν) + jets/γ and tt̄(→ eν) + jets
events are taken from MC simulation.

and multijet events using the difference between the back-
ground estimates obtained using the QCD and the Z → ee
templates, yielding the result of 0.8± 0.3(stat)± 0.6(syst)
events. The Emiss

T spectra of the QCD background and
the γγ sample are shown in Fig. 2.

The second significant background contribution, from
W + X and tt̄ events, was estimated via an “electron-
photon” control sample composed of events with at least
one photon and one electron, each with ET > 25GeV,
and scaled by the probability for an electron to be mis-
reconstructed as a tight photon, as estimated from a study
of the Z boson in the ee and eγ sample. The scaling
factor varies between 5% and 17% as a function of η,
since it depends on the amount of material in front of
the calorimeter. Events with two or more photons were
vetoed from the control sample to keep it orthogonal to
the signal sample. In case of more than one electron, the
one with the highest pT was used. The Emiss

T spectrum
for the scaled electron-photon control sample is shown in
Fig. 3, where it is compared to the expected contributions
from various background sources as computed from MC
simulation. The electron-photon control sample has a sig-
nificant contamination from Z → ee events, in which one
electron is mis-reconstructed as a photon, and from QCD
processes mentioned above. Both of these contaminations
must be subtracted in order to extract the contribution
to the Emiss

T distribution from events with genuine Emiss
T ,

such as W +X and tt̄. The contribution from QCD and
Z → ee events was estimated by normalising the QCD
control sample to the scaled electron-photon Emiss

T distri-
bution in the region Emiss

T < 20GeV where they dominate,
as shown in Fig. 3. This distribution was then subtracted
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Table 1: Number of observed γγ candidates in various Emiss
T

ranges in the data, as well as the expected numbers of SM background events
estimated from the QCD and electron-photon control samples and, for the irreducible Z(→ νν̄) + γγ and W (→ ℓν) + γγ processes, from MC
simulation. Also shown are the expected numbers of signal events from GGM with (mg̃ ,mχ̃0

1

) = (800, 400)GeV, SPS8 with Λ = 140TeV,

and UED with 1/R = 1200GeV. The uncertainties are statistical only. The Emiss
T

< 20GeV region (first row) is used to normalise the QCD
background to the number of observed γγ candidates.

Emiss
T range Data Predicted background events Expected signal events
[GeV] events Total QCD W/tt̄(→ eν) +X Irreducible GGM SPS8 UED
0 - 20 20881 - - - - 0.20± 0.05 0.22± 0.04 0.02± 0.01

20 - 50 6304 5968± 29 5951± 28 13.3± 8.1 3.55± 0.35 0.45± 0.08 1.53± 0.10 0.11± 0.01
50 - 75 86 87.1± 3.3 60.9± 2.8 25.2± 1.7 1.01± 0.16 0.48± 0.08 2.19± 0.12 0.14± 0.01
75 - 100 11 14.7± 1.2 6.7± 0.9 7.4± 0.8 0.52± 0.10 0.75± 0.10 2.09± 0.11 0.15± 0.01
100 - 125 6 4.9± 0.7 1.6± 0.4 3.0± 0.5 0.32± 0.08 1.20± 0.12 2.53± 0.13 0.29± 0.02

> 125 5 4.1± 0.6 0.8± 0.3 3.1± 0.5 0.23± 0.05 17.2± 0.5 12.98± 0.28 9.67± 0.11

from the scaled electron-photon control sample, yielding
a prediction for the contribution to the high-Emiss

T dipho-
ton sample from W + X and tt̄ events. This procedure
led to an estimate of the background from W +X and tt̄
production of 3.1 ± 0.5(stat) events in the signal region.
A systematic uncertainty of 0.06 events was assigned by
using the Z → ee template in place of the QCD template
when subtracting the contamination due to Z → ee and
QCD processes. The contribution from WW events to the
electron-photon control sample was estimated using MC
simulation and found to be negligible.
A parallel study using MC samples of W (→ eν)+jets/γ

and tt̄(→ eν) + jets, rather than the electron-photon con-
trol sample, gave an estimate of 1.8 ± 1.2(stat) back-
ground events. The difference was taken as an esti-
mate of the systematic uncertainty, yielding the result
of 3.1 ± 0.5(stat) ± 1.4(syst) events. Also included in
the quoted systematic uncertainty is the relative uncer-
tainty (±10%) on the probability for an electron to be
mis-reconstructed as a photon.
A small irreducible background of 0.23 ± 0.05(stat) ±

0.04(syst) events from Z(→ νν̄) + γγ and W (→ ℓν) + γγ
events was estimated from MC simulation. The system-
atic uncertainty accounts for variations in the factorisa-
tion and renormalisation scales in the NLO calculations.
The contamination from cosmic-ray muons was found to
be negligible.
Figure 2 shows the Emiss

T spectrum of the selected γγ
candidates, superimposed on the estimated backgrounds.
Table 1 summarises the number of observed γγ candi-
dates, the expected backgrounds, and three representa-
tive GGM, SPS8, and UED signal expectations, in several
Emiss

T ranges. No indication of an excess at high Emiss
T val-

ues, where the signal is expected to dominate, is observed.

9. Signal efficiencies and systematic uncertainties

The GGM signal efficiency was determined using MC
simulation over an area of the GGM parameter space that
ranges from 400GeV to 1200GeV for the gluino mass,

and from 50GeV to within 20GeV of the gluino mass for
the neutralino mass. The efficiency increases smoothly
from 5.5% to 31% for (mg̃,mχ̃0

1

) = (400, 50)GeV to
(1200, 1100)GeV. The SPS8 signal efficiency increases
smoothly from 9.2% (Λ = 80TeV) to 29.4% (Λ =
220TeV). The UED signal efficiency, also determined
using MC simulation, increases smoothly from 48.9%
(1/R = 1000GeV) to 52.6% (1/R = 1500GeV).

The various relative systematic uncertainties on the
GGM, SPS8, and UED signal cross sections are sum-
marised in Table 2 for the chosen GGM, SPS8, and UED
reference points. The uncertainty on the luminosity is
3.7% [46, 47]. The trigger efficiency of the required dipho-
ton trigger was estimated from the efficiency of the corre-
sponding single photon trigger, which was estimated using
a bootstrap method [48]. The result is 99.92+0.04

−0.18% for
events passing all selections except the final Emiss

T cut. To
estimate the systematic uncertainty due to the unknown

Table 2: Relative systematic uncertainties on the expected sig-
nal yield for GGM with (mg̃ ,mχ̃0

1

) = (800, 400)GeV, SPS8 with

Λ = 140TeV, and UED with 1/R = 1200GeV. No PDF and scale
uncertainties are given for the UED case as the cross section is eval-
uated to LO.

Source of uncertainty Uncertainty
GGM SPS8 UED

Integrated luminosity 3.7% 3.7% 3.7%
Trigger 0.6% 0.6% 0.6%
Photon identification 3.9% 3.9% 3.7%
Photon isolation 0.6% 0.6% 0.5%
Pile-up 1.3% 1.3% 1.6%
Emiss

T reconstruction and scale 1.7% 5.6% 0.7%
LAr readout 1.0% 0.7% 0.4%
Signal MC statistics 2.9% 2.3% 1.8%
Total signal uncertainty 6.6% 8.3% 6.0%
PDF and scale 31% 5.5% −
Total 32% 10% 6.0%
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composition of the data sample, the trigger efficiency was
also evaluated on MC events using mis-reconstructed pho-
tons from filtered multijet samples and photons from signal
(SUSY and UED) samples. A conservative systematic un-
certainty of 0.6% was derived from the difference between
the obtained efficiencies. Uncertainties on the photon se-
lection, the photon energy scale, and the detailed material
composition of the detector, as described in Ref. [1], result
in an uncertainty of 3.9% for the GGM and SPS8 signals
and 3.7% for the UED signal. The uncertainty from the
photon isolation was estimated by varying the energy leak-
age and the pile-up corrections independently, resulting in
an uncertainty of 0.6% for GGM and SPS8 and 0.5% for
UED. The influence of pile-up on the signal efficiency, eval-
uated by comparing GGM/SPS8 (UED) MC samples with
different pile-up configurations, leads to a systematic un-
certainty of 1.3%(1.6%). Systematic uncertainties due to
the Emiss

T reconstruction, estimated by varying the cluster
energies within established ranges and the Emiss

T resolution
between the measured performance and MC expectations,
contribute an uncertainty of 0.1% to 12.4% (GGM), 1.7%
to 13.8% (SPS8), and 0.5% to 1.5% (UED). A systematic
uncertainty was also assigned to account for temporary
failures of the LAr calorimeter readout during part of the
data-taking period, which was not modelled in the MC
samples. Electrons and photons were removed from the
afflicted area, but jets, being larger objects, were not. Jet
energy corrections were therefore applied. Varying these
corrections over their range of uncertainty results in sys-
tematic uncertainties of 1.0%, 0.7%, and 0.4% for GGM,
SPS8, and UED, respectively. Added in quadrature, the
total systematic uncertainty on the signal yield varies be-
tween 6.3% and 15% (GGM), 6.2% and 15% (SPS8), and
5.8% and 6.0% (UED).

The PDF uncertainties on the GGM (SPS8) cross sec-
tions were evaluated by using the CTEQ6.6M PDF error
sets [49] in the PROSPINO cross section calculation and
range from 12% to 44% (4.7% to 6.6%). The factori-
sation and renormalisation scales in the NLO PROSPINO

calculation were increased and decreased by a factor of
two, leading to a systematic uncertainty between 16% and
23% (1.7% and 6.7%) on the expected cross sections. The
different impact of the PDF and scale uncertainties of the
GGM and SPS8 yields is related to the different produc-
tion mechanisms in the two models (see Section 2). In
the case of UED, the PDF uncertainties were evaluated
by using the MSTW2008 LO [50] PDF error sets in the LO
cross section calculation and are about 4%. The scale of
αs in the LO cross section calculation was increased and
decreased by a factor of two, leading to a systematic un-
certainty of 4.5% and 9%, respectively. NLO calculations
are not yet available, but are expected to be much larger
than the PDF and scale uncertainties. Thus, the LO cross
sections were used for the limit calculation without any
theoretical uncertainty, and the effect of PDF and scale
uncertainties on the final limit is given separately.
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Figure 4: Expected and observed 95% CL lower limits on the gluino
mass as a function of the neutralino mass in the GGM model with
a bino-like lightest neutralino NLSP (the grey area indicates the
region where the NLSP is the gluino, which is not considered here).
The other sparticle masses are fixed to ∼ 1.5TeV. Further model
parameters are tan β = 2 and cτNLSP < 0.1mm. The previous
ATLAS [1] and CMS [51] limits are also shown.

10. Results

Based on the observation of 5 events with Emiss
T >

125GeV and a background expectation of 4.1±0.6(stat)±
1.6(syst) events, a 95% CL upper limit is set on the num-
ber of events in the signal region from any scenario of
physics beyond the SM using the profile likelihood and
CLs method [52]. The result is 7.1 events at 95% CL.
Further, 95% CL upper limits on the cross sections of

the considered models are calculated, including all sys-
tematic uncertainties except for theory uncertainties, i.e.
PDF and scale. In the GGM model the upper limit on the
cross section is (22− 129) fb, where the larger value corre-
sponds to mg̃,mχ̃0

1

= (400, 50)GeV. For mχ̃0

1

≥ 150GeV,
the limit is below 30 fb, reaching 22 fb for heavy neutralino
masses. Figure 4 shows the expected and observed lower
limits on the GGM gluino mass as a function of the neu-
tralino mass. For comparison the lower limits from AT-
LAS [1] and CMS [51] based on the 2010 data are also
shown. The total systematic uncertainty includes the the-
ory uncertainties, which are dominant. Excluding the PDF
and scale uncertainty in the limit calculation would im-
prove the observed limit on the gluino mass by ∼10GeV.
In the SPS8 model the cross section limit is σ <

(27 − 91) fb as shown in Fig. 5, corresponding to Λ =
220 − 80TeV. For illustration the cross section depen-
dence as a function of the lightest neutralino and chargino
masses is also shown. A lower limit on the SPS8 breaking
scale Λ > 145TeV at 95% CL is set including the the-
ory uncertainties, i.e. PDF and scale uncertainties, in the
total systematic uncertainty.
For the UED model the cross section limit is σ < (15−

27) fb for 1/R = 1000 − 1500GeV. Figure 6 shows the
limit on the cross section times branching ratio for the
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Figure 5: Expected and observed 95% CL upper limits on the spar-
ticle production cross section in the SPS8 model, and the NLO cross
section prediction, as a function of Λ and the lightest neutralino and
chargino masses. Further SPS8 model parameters are Mmess = 2Λ,
N5 = 1, tanβ = 15, and cτNLSP < 0.1mm.

UED model, which is σ < (13−15) fb. For illustration the
cross section dependence as a function of the KK quark
and KK gluon masses is also shown. A lower limit on the
UED compactification scale 1/R > 1.23TeV at 95% CL
is set. In this case PDF and scale uncertainties are not
included when calculating the limits. Including PDF and
scale uncertainties computed at LO degrade the limit on
1/R by a few GeV.

11. Conclusions

A search for events with two photons and Emiss
T >

125GeV, performed using 1.07 fb−1 of 7TeV pp collision
data recorded with the ATLAS detector at the LHC, found
5 events with an expected background of 4.1± 0.6(stat)±
1.6(syst). The results are used to set a model-independent
95% CL upper limit of 7.1 events from new physics. Up-
per limits at 95% CL are also set on the production
cross section for three particular models of new physics:
σ < (22 − 129) fb for the GGM model, σ < (27 − 91) fb
for the SPS8 model, and σ < (15 − 27) fb for the UED
model. Under the GGM hypothesis, a lower limit on
the gluino mass of 805GeV is determined for bino masses
above 50GeV. A lower limit of 145TeV is set on the SPS8
breaking scale Λ, which is the first limit on the SPS8
model at the LHC. A lower limit of 1.23TeV is set on the
UED compactification scale 1/R. These results provide
the most stringent tests of these models to date, signifi-
cantly improving upon previous best limits of 560GeV [1]
for the GGM gluino mass, 124TeV [22] for Λ in SPS8, and
961GeV [1] for 1/R in UED, respectively.
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Figure 6: Expected and observed 95% CL upper limits on the KK
particle production cross section times branching fraction to two pho-
tons in the UED model, and the LO cross section prediction times
branching fraction, as a function of 1/R and the KK quark (Q∗)
and KK gluon (g∗) masses. The UED model parameters are N = 6,
MD = 5TeV, and ΛR = 20.
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M. Kenyon53, O. Kepka125, N. Kerschen29, B.P. Kerševan74, S. Kersten174, K. Kessoku155, J. Keung158, M. Khakzad28,
F. Khalil-zada10, H. Khandanyan165, A. Khanov112, D. Kharchenko65, A. Khodinov96, A.G. Kholodenko128,
A. Khomich58a, T.J. Khoo27, G. Khoriauli20, A. Khoroshilov174, N. Khovanskiy65, V. Khovanskiy95, E. Khramov65,
J. Khubua51b, H. Kim7, M.S. Kim2, P.C. Kim143, S.H. Kim160, N. Kimura170, O. Kind15, B.T. King73, M. King67,
R.S.B. King118, J. Kirk129, L.E. Kirsch22, A.E. Kiryunin99, T. Kishimoto67, D. Kisielewska37, T. Kittelmann123,
A.M. Kiver128, E. Kladiva144b, J. Klaiber-Lodewigs42, M. Klein73, U. Klein73, K. Kleinknecht81, M. Klemetti85,
A. Klier171, A. Klimentov24, R. Klingenberg42, E.B. Klinkby35, T. Klioutchnikova29, P.F. Klok104, S. Klous105,
E.-E. Kluge58a, T. Kluge73, P. Kluit105, S. Kluth99, N.S. Knecht158, E. Kneringer62, J. Knobloch29,
E.B.F.G. Knoops83, A. Knue54, B.R. Ko44, T. Kobayashi155, M. Kobel43, M. Kocian143, A. Kocnar113, P. Kodys126,
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120 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
122 (a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
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CNRS/IN2P3, Paris, France
af Also at Department of Physics, Nanjing University, Jiangsu, China
∗ Deceased

20


	1 Introduction
	2 Supersymmetry
	3 Extra dimensions
	4 Simulated samples
	5 ATLAS detector
	6 Object reconstruction
	7 Data analysis
	8 Background estimation
	9 Signal efficiencies and systematic uncertainties
	10 Results
	11 Conclusions

