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Abstract

This letter presents a search for singly produced vector-like quarks,Q, coupling to light quarks,q. The search is sensitive to both
charged current (CC) and neutral current (NC) processes,pp → Qq → Wqq′ and pp → Qq → Zqq′ with a leptonic decay of
the vector gauge boson. In 1.04 fb−1 of data taken in 2011 by the ATLAS experiment at a center-of-mass energy

√
s = 7 TeV,

no evidence of such heavy vector-like quarks is observed above the expected Standard Model background. Limits on the heavy
vector-like quark production cross section times branching ratio as a function of massmQ are obtained. For a couplingκqQ = v/mQ,
wherev is the Higgs vacuum expectation value, 95% C.L. lower limitson the mass of a vector-like quark are set at 900 GeV and
760 GeV from CC and NC processes, respectively.

1. Introduction

Vector-like quarks (VLQ), defined as quarks for which both
chiralities have the same transformation properties underthe
electroweak groupS U(2) × U(1), are predicted by many ex-
tensions of the SM, relating to Grand Unification, dynamical
electroweak symmetry breaking scenarios or theories with ex-
tra dimensions [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Since the cou-
plings of the light quarks are well constrained, if VLQs exist
they are generally expected to only couple sizably to the third
generation. However, in certain scenarios, corrections toquark
mixings can cancel, relaxing these constraints. The motivation
and phenomenology of heavy VLQs coupling to light genera-
tions is discussed for the Tevatron [11], where a baseline model
is introduced which considers two degenerate VLQ doublets
having hypercharges 1/6 and 7/6 and mixing only with the up
quark. This scenario can occur naturally in certain models [12].
Because the doublets are degenerate, cancellations occur which
allow VLQ coupling to the first two generations, leading to a
potentially strong signal at the Large Hadron Collider (LHC).

Following the notation of more recent work [13] which de-
scribes a model-independent approach to VLQ sensitivity atthe
LHC, a couplingκqQ = (v/mQ)κ̃qQ is defined here, whereq
stands for any light quark,Q is the VLQ,mQ is the VLQ mass,
v is the Higgs vacuum expectation value and ˜κqQ encodes all
the model dependence of theqVQ vertex (V = W or Z). Elec-
troweak precision measurements constrain the contribution of
heavy quarks to loop diagrams, but under certain conditions, as
for the degenerate VLQ doublet model above, mild bounds ap-
ply on the dimensionless couplingκ, allowing it to be as large as
∼ 1 [13]. The masses of VLQs are not constrained by vacuum
stability in the SM [14].

It has been shown that single production provides a favor-
able process to probe for the existence of these heavy quarksif
the coupling to light quarks is large, and that a significant mass

reach could be achieved at the LHC with early data [11, 13].

Single production of a VLQ occurs via the processqq′
V∗−→ q′′Q

(Fig. 1). A quark produced by this process of gauge boson
exchange can have a charge of 5/3, 2/3,−1/3 or −4/3. As a
benchmark, we consider theories with only VLQsU of charge
+2/3 or only withD of charge−1/3, without regard to the mul-
tiplet structure of the model. The experimental limits obtained
on cross section times branching ratio can then be interpreted
as limits on the couplings for different VLQ models [13]. The
contribution from thes-channel diagram is negligible compared
to that of thet-channel process. Therefore one characteristic of
the signal is the presence of a forward jet: after one of the ini-
tial state quarks emits the electroweak gauge boson, it willcon-
tinue in the forward direction with little transverse momentum
(pT ), while the other quark couples to theW or Z to produce
the heavy quark. Because the LHC is a proton-proton collider,
the charged current (CC) production of aD quark is expected
to have a higher cross section than that of aU quark. Similarly,
for the neutral current (NC) process,U quarks are expected to
be produced more abundantly. Anti-quark production is sup-
pressed since it involves antiquarks in the initial state.

Bounds on the mass of new heavy quarks were obtained pre-
viously from a search in the pair production process at the Teva-
tron [15, 16] and LHC [17, 18]. Limits have also been ob-
tained at the Tevatron [19, 20] on single production processes
σ(pp̄ → qQ) × BR(Q → qW), which in the model [11] of
degenerate doublets with ˜κuD = 1 and decaying 100% via CC
gives a 95% confidence level (C.L.) upper limit exclusion for
D quarks with masses up to 690 GeV. Limits at 95% C.L. on
σ(pp̄→ qQ)× BR(Q→ qZ) in the same model yield an exclu-
sion of aU quark withκ̃uU =

√
2 and 100% branching ratio via

NC up to a mass of 550 GeV.
This Letter reports on a search for singly produced VLQs

in the ATLAS detector at the LHC. The search is conducted
in events with at least two jets and a vector boson, indicated
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Figure 1: Vector-like quark production and decay diagrams for s-channel (top)
andt-channel (bottom). The thick line indicates the vector-like quark.

by either two high-pT leptons (electrons or muons) in the case
of a Z, or a single lepton and missing transverse momentum
(Emiss

T ) in the case of aW. The data used in this analysis were
collected from March to June 2011, at a center of mass energy√

s = 7 TeV and correspond to an integrated luminosity ofL =
(1.04± 0.04) fb−1 [21].

2. The ATLAS Detector

The ATLAS detector is a multi-purpose particle physics de-
tector system optimized to record information coming frompp
collisions [22]. Closest to the interaction point is the inner de-
tector (ID) for charged particle tracking, which is performed
by silicon pixel and microstrip detectors in addition to a straw-
tube tracker with radiators to produce transition radiation. The
tracking system is embedded in a 2 T axial magnetic field. Sur-
rounding the solenoid are the lead and liquid argon electromag-
netic (EM) calorimeter and hadronic tile calorimeter subsys-
tems. Forward calorimetry is accomplished with liquid argon
detectors and copper and tungsten absorbers. These systemsal-
low the reconstruction of electrons and jets, both essential for
this analysis. Surrounding the calorimeter systems is a muon
spectrometer (MS) that uses drift chambers to record muon tra-
jectories in a toroidal magnetic field. A three-level trigger is
used to select events for subsequent offline analysis. Events
recorded when a subsystem was not properly functioning are
not used in this analysis.

3. Signal and background modeling

Signal Monte Carlo (MC) samples are generated using Mad-
Graph [23] based on Ref. [11, 13], then hadronized and show-

ered throughPYTHIA [24]. The CTEQ6L1 parton distribution
function (PDF) [25] is used, with factorization and renormaliza-
tion scales ofmW (mZ) for the CC (NC) channel. Nine reference
masses are generated for both CC and NC decays: 225 GeV,
300 GeV, then continuing in steps of 100 GeV up to 1 TeV. The
production cross section times branching ratio to a vector boson
and jets ranges from 194 pb to 0.47 pb for CC and from 88 pb
to 0.28 pb for NC, assuming ˜κqQ = 1.

The dominant SM backgrounds areW → ℓν + jets and
Z → ℓℓ + jets for the CC and NC channels, respectively.
Other sources of background are from multijet events,tt̄, sin-
gle top, and diboson processes, which can have electrons or
muons and jets in the final states. With the exception of multi-
jets, the contributions of these backgrounds are estimatedusing
MC samples.W + jets andZ + jets samples are generated by
ALPGEN [26] using CTEQ6L1 PDFs with parton showering per-
formed byHERWIG [27] and usingJIMMY [28] for simulation
of the underlying event model. The cross section times lep-
tonic branching ratios are 10.3 pb and 1.06 pb per lepton flavor
for W andZ’s, respectively, withpT of the leptons> 20 GeV.
This includesK-factors of 1.22 and 1.25, respectively, to re-
produce the inclusive cross sections at next-to-leading order in
QCD [29]. MC@NLO [30] is used to simulatett̄ production, giv-
ing a cross section of 165 pb. Single top quark events decay-
ing leptonically (σ = 37.5 pb) are generated withAcerMC [31]
combined with parton showering and hadronization byPYTHIA.
Diboson backgrounds are simulated withALPGEN andHERWIG
parton shower for the NC channel (σ × BR = 5.97 pb), which
requires two leptons in the final state, and standaloneHERWIG

(with a K-factor of 1.52 to reproduce the inclusive cross sec-
tion at next-to-leading order in QCD [32]) for the CC channel
(σ × BR = 69.1 pb) where a single lepton is required. Mul-
tijet backgrounds from QCD processes are derived both from
PYTHIA and data samples, described below.

The detector response simulation [33] is based on
GEANT4 [34, 35]. The MC samples are generated with super-
imposed minimum bias events to simulate the conditions that
occur in data. In order to improve the modeling of both signal
and backgrounds, lepton reconstruction and identificationeffi-
ciencies, energy scales and resolutions in the MC are corrected
to correspond to the values measured in the data.

4. Analysis

The analysis is subdivided into four channels: charged and
neutral current, each with either electrons or muons in the fi-
nal state. Particle definitions and selections are identical in all
channels, but signal and control regions for the CC and NC
channels are defined independently.

Events are selected in which there is at least one vertex recon-
structed with at least three tracks. The vertex with the greatest
total transverse momentum,

∑ |pT |, of the associated tracks is
designated as the primary vertex. The trigger requires at least
one cluster in the EM calorimeter withpT > 20 GeV or at least
one muon candidate in the MS with a track originating from the
primary vertex withpT > 18 GeV. In both cases, the trigger
requires a matching ID track.
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Electron candidates are required to pass tight quality selec-
tion criteria based on the calorimeter shower shape, track qual-
ity and track matching with the calorimeter cluster [36]. They
must havepT > 25 GeV and lie in the pseudorapidity1 re-
gion |η| < 2.47, excluding the regions of transition between the
central and forward detector sub-elements, 1.37 < |η| < 1.52.
During most run periods of the data set, a region of the EM
calorimeter corresponding to about 1% of channels was less
efficient than the rest of the detector. An exclusion window
around the affected area was defined as−0.1 < η < +1.5 in
pseudorapidity and−0.9 < φ < −0.5 in azimuth. Electrons in
this region are removed from data collected during these peri-
ods. The same procedure is applied to simulated events cor-
responding to the fraction of data covered by these run peri-
ods. Finally, no more than 4 GeV of transverse energy is al-
lowed outside the core of the electron defined by a cone of size
∆R =

√

(∆η)2 + (∆φ)2 = 0.2.
Muon candidates are reconstructed by combining tracks from

both the ID and the MS. They are required to pass ID quality
requirements [37] and havepT > 25 GeV and|η| < 2.4. To
suppress cosmic rays, muon candidates must have a distance
of closest approach to the primary vertex in the longitudinal
direction|z0| < 5 mm and in the transverse plane|d0| < 0.1 mm.
Isolated muons are selected by requiring that the sum of ID
track transverse momentum around the muon track, in a cone
of ∆R = 0.2 divided by thepT of the muon itself be less than
0.1.

Jet four-vectors are reconstructed from calorimeter clusters
using the anti-kT algorithm [38] with a radius parameter of
0.4. After correcting for calorimeter non-compensation and
inhomogeneities by usingpT andη dependent calibration fac-
tors [39], jets are required to havepT > 25 GeV and|η| < 4.5.
Events containing jets that fail quality criteria [40] are rejected
to ensure an accurateEmiss

T measurement. Furthermore, events
containing jets passing through the inefficient region of the EM
calorimeter are vetoed. To remove jets originating from other
pp interactions within an event, the selected jets are required to
have more than 75% ofpT -weighted ID tracks associated to the
primary vertex. Finally, to avoid counting electrons as jets, any
jet candidate within∆R < 0.2 of a selected electron is removed.

The Emiss
T is calculated as the negative vector of the trans-

verse components of energy deposits in the calorimeters within
|η| < 4.5. For events containing muons, any calorimeter energy
deposit from a muon is ignored and the muon energy measured
in the MS is used instead [41].

The CC candidates are required to have (i) exactly one
electron or muon, (ii) missing transverse momentumEmiss

T >

50 GeV, (iii) one jet withpT > 50 GeV and at least one more
jet with pT > 25 GeV, (iv) a minimum pseudorapidity separa-
tion |∆η| > 1.0 between the highest-pT (leading) jet and sec-
ond or third-leading jet, since the presence of a forward jetis
expected in signal events, (v)mT (ℓ, Emiss

T ) > 40 GeV, where

1ATLAS uses a right-handed coordinate system with thez-axis along the
beam pipe. Thex-axis points to the center of the LHC ring, and they-axis
points upward. The pseudorapidity is defined in terms of the polar angleθ as
η = − ln tan(θ/2).

mT (ℓ, Emiss
T ) =

√

2EℓT Emiss
T (1− cos∆φℓ,Emiss

T
) is the transverse

mass of theW candidate, and (vi) an azimuthal angle separation
between the lepton andEmiss

T vector∆φℓ,Emiss
T
< 2.4 rad since the

W in the signal is expected to be boosted. To reconstruct the
mass of the VLQ candidate, the longitudinal momentumpz of
the neutrino is calculated such that the invariant mass of the lep-
ton andEmiss

T equals the mass of theW. Of the two solutions,
the one which leads to the larger value of|∆η| between the re-
constructed neutrino four-vector and the leading jet is chosen,
since the simulation shows it to be the correct solution about
60% of the time. If no real solution is found, the real part of
the complex solutions is taken. The system composed of the
leading jet and the reconstructedW is taken to be the VLQ can-
didate.

The NC candidates are required to have exactly two oppo-
sitely charged same-flavor leptons with an invariant mass inthe
range 66< M(ℓ, ℓ) < 116 GeV and a transverse momentum
pT (ℓ, ℓ) > 50 GeV. At least two jets ofpT > 25 GeV are re-
quired, with the same|∆η| > 1.0 requirement as described for
the CC selection. The invariant mass of the system composed
of the two leptons and the leading jet is taken to be the VLQ
candidate mass.

To evaluate the level of multijet background in the CC anal-
ysis, a procedure is used based on a fit to theEmiss

T distribution
in the range 0< Emiss

T < 100 GeV. For this purpose, only selec-
tion criteria (i) and (v) above are required. For both the electron
and muon modes, template shapes for the non-multijet back-
grounds are taken from the MC samples described earlier and
summed according to their relative cross sections. The overall
normalization of this non-multijet template is left floating. In
the electron mode, a sample enriched in objects misidentified
as electrons (fakes) is selected from data usingmedium qual-
ity electrons, excludingtight electrons, as defined in [36]. The
Emiss

T distribution of this sample serves as the electron multijet
template shape. For the muon mode, multijet background is pri-
marily expected to come from heavy flavor decays. Therefore,
the multijet template shape is taken from aPYTHIA sample of
bb events. For both lepton flavors, a fit to theEmiss

T distribu-
tion is performed using the multijet and non-multijet templates
to determine the normalization of the multijet component. The
modeling of the multijet background was tested in a control re-
gion defined by the range of 10< Emiss

T < 30 GeV. The model-
ing of the kinematic variable distributions, and in particular of
the VLQ candidate mass, was found to agree with data within
statistics.

In the case of the NC selection, the multijet background is
estimated from data-driven studies to be negligible. In theelec-
tron channel the selection for electron candidates is changed to
require the medium criteria, excluding tight electrons, toobtain
a fake di-electron template shape inmee, which is then scaled to
make the total background expectation match the data with the
same selection. In the muon channel the isolation requirement
is inverted, and themµµ template scaled to the data in the same
way.

With the above selections, the observed event yields and cor-
responding predictions are given in Tables 1 and 2. From these
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yields, no significant excess is observed in the data that canbe
accounted for by a VLQ signal. Figure 2 shows the invariant
mass distributions of the reconstructed VLQ candidate in the
signal regions for both channels. These distributions are used
in a binned likelihood fit to extract signal yields and production
cross section upper limits. A slight shape discrepancy between
data and MC is apparent in Figure 2. Before extracting an up-
per limit, a correction is applied to the MC background shape,
as described in Section 6.

5. Systematic uncertainties

Systematic uncertainties on the simulation of the signal arise
from uncertainties in PDFs and the factorization and renormal-
ization scales. In order to estimate the uncertainty due to the
parton distributions, the CTEQ66 [42] PDF set is used, for
which the eigenvectors of the Hessian matrix are known. The
difference in signal cross section due to the PDF uncertainty is
found to range from 3.0% at a signal mass of 225 GeV to 4.4%
at 1000 GeV. The uncertainty due to the factorization and renor-
malization scales is estimated by taking the difference between
signal cross sections at the nominal value of the scales, andat
values of one-half and twice the nominal. The uncertainty is
found to vary between 4% and 12% for the same mass range.
Uncertainties due to the simulation of initial and final state ra-
diation are found to be about 1%. These uncertainties on the
theoretical cross section are added in quadrature.

For signal and background events, the jet-energy-scale un-
certainty is calculated by shifting thepT of all jets up and down
by factors that vary as a function ofpT andη. The factors range
from 4.6% for jets withpT = 20 GeV to 2.5% for jets withpT

above 60 GeV [39]. This procedure results in an uncertainty
of about 20% on the background normalization, and about 5%
on the signal efficiency. The jet-energy-resolution uncertainty
is calculated by smearing thepT of each jet depending on the
jet pT andη, typically by around 10%. This source of uncer-
tainty is found to impact both the background normalization
and signal efficiency by about 1%. The lepton-energy-scale un-
certainty is evaluated and found to be much less than 1% for
both signal and background. The effect of the previously men-
tioned EM calorimeter inefficiency is also found to be much
less than 1%. Uncertainties also arise from the trigger, identifi-
cation, and reconstruction efficiency corrections applied to the
MC simulation. They affect the signal efficiency uncertainty by
1-2% depending on the mass. The rate uncertainty from MC
statistics after event selection is 3-5%. Finally, the uncertainty
on the luminosity is 3.7% [21]. None of the systematics studied
have been found to significantly affect the shape of the VLQ
candidate mass distribution.

6. Results

To determine signal yields, a binned maximum likelihood fit
is performed using template histograms of the VLQ candidate
mass distribution. The fit is performed separately for each sig-
nal mass. The electron and muon final states are fitted simul-
taneously. The overall signal and background normalizations
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Figure 2: Invariant mass distribution of VLQ candidates in both the CC (top)
and NC (bottom) channels, summed over both the electron and muon final
states. The dashed line shows the signal shape, normalized by 100 times the
leading order theoretical cross section. The bottom part ofeach plot shows the
ratio of the data to the background model. The last bin contains events with
invariant mass candidates equal to or higher than 1200 GeV.
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Process Electron channel Muon channel
W+jets 14500± 100± 4400 16600± 100± 5000

tt̄ 2360± 50± 270 2530± 50± 290
Single Top 700± 30± 120 740± 27± 120
Multijet 670± 30± 270 340± 20± 410
Z+jets 128± 11± 90 432± 21± 170

Diboson 174± 13± 53 198± 14± 62

Expected Total Background 18500± 100± 4400 20900± 100± 5100
Data 17302 20668

Expected Signal,D(225 GeV) 2360± 50± 350 2380± 50± 400
Expected Signal,D(600 GeV) 133± 12± 10 133± 12± 11
Expected Signal,D(1000 GeV) 14± 4± 1 14± 4± 1

Table 1: Expected and observed event counts in the kinematically allowed VLQ mass range after the final selection in the CCchannel with an integrated luminosity
of 1.04 fb−1. Uncertainties are statistical and systematic, respectively. The signal predictions assume a coupling ˜κuD = 1.

Process Electron Channel Muon Channel

Z+jets 3250± 60± 430 5350± 70± 700
tt̄ 58± 8 ± 3 90± 9 ± 5

Diboson 38± 6 ± 4 58± 8 ± 4

Expected Total Background 3350± 60± 430 5500± 70± 700
Data 3105 5070

Expected Signal, U(225 GeV) 192± 14± 9 339± 18± 19
Expected Signal, U(600 GeV) 15± 3.9± 0.6 23± 4.8± 0.7
Expected Signal, U(1000 GeV) 1.9± 1.4± 0.1 2.7± 1.6± 0.1

Table 2: Expected and observed event counts in the kinematically allowed VLQ mass range after the final selection in the NCchannel with an integrated luminosity
of 1.04 fb−1. Uncertainties are statistical and systematic, respectively. The signal predictions assume a coupling ˜κuU = 1.

are left floating in the fit. Systematic uncertainties on the tem-
plate normalizations are incorporated as Gaussian-distributed
nuisance parameters, as are the signal efficiency systematics
used in determining the cross section limits. Signal template
shapes are taken from MC, while background templates are as
shown in Fig. 2, with an additional correction described next.

A heavy VLQ signal would appear as a peak on top of a
smooth background in the VLQ candidate invariant mass distri-
bution. It is therefore important to have a good estimate of the
background shape in the region around a signal mass hypoth-
esis. The fit procedure described above makes use of the full
range of mass, but the normalization is dominated by the lower
mass region where the number of events is higher. A small
shape difference between Monte Carlo and data can therefore
yield a systematic bias in the fit at high mass. For that reason
a correction is applied to the background model for each signal
mass. It is obtained from linear fits to the reconstructed invari-
ant mass of the ratio of data/MC after the full event selection,
excluding bins in the range [-200,+100] GeV around each sig-
nal mass tested. The asymmetric choice in the excluded mass
is motivated by the fact that the expected signal has a low mass
tail. The 1σ uncertainty in the slope is taken as a systematic
shape uncertainty. It was verified that no significant difference
to the fit results arose from choosing a narrower excluded mass
window, or even no exclusion at all.

Since no significant excess of data over the background pre-
diction is observed in either channel, limits as function ofthe
VLQ mass are obtained based on the likelihood fits. Pseudo-
experiments are generated by sampling the likelihood function
to compute the expected limits, using a Gaussian prior for all
nuisance parameters and including the shape uncertainty from
the linear correction.

The 95% C.L. exclusion limits onσ(pp → Qq) × BR(Q →
Vq) as a function of the VLQ mass, based on the CLs

method [43], are shown in Fig. 3. Taking the intersection of
the observed (expected) cross section limits with the central
value of the theoretical cross section, masses below 900 GeV
(840 GeV) are excluded for the CC channel and 760 GeV
(820 GeV) for the NC channel, assuming a coupling ˜κ2qQ = 1
and a 100% branching ratio for VLQs to decay to a vector boson
and a jet. Within the±1σ theoretical uncertainties, the observed
CC mass limit ranges from 870− 920 GeV. The corresponding
range for the NC limit is 730− 770 GeV. Limits for each mass
tested are given in Table 3. The fourth and fifth columns show
an interpretation of the cross section limits in terms of limits on
the couplings ˜κ2uD and κ̃2uU , in each case assuming onlyD pro-
duction or onlyU production, respectively, and 100% branch-
ing fraction to a vector boson and jet.

A stronger limit in the CC channel may be obtained by re-
peating the CC analysis, requiring a negatively charged lepton
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Figure 3: Upper limits at 95% confidence level on the cross section times
branching ratioσ(pp → Qq) × BR(Q → Vq) for the CC (top) and NC (bot-
tom) channels as a function of mass. The leading-order (LO) theoretical cross
section assumes ˜κuD = 1 andκ̃uU = 1 on the top and bottom respectively. The
width of the dark band around it corresponds to the theoretical uncertainty de-
scribed in the text. The expected cross section upper limit is determined by the
median result of background-only pseudoexperiments, and is shown with its 1σ
and 2σ uncertainties, respectively.

because the SM background fromW−+jets is lower than for
W++jets. The upper limits onσ(pp → D−

1
3 q) × BR(D−

1
3 →

W−u) are given in the sixth column of Table 3.

7. Conclusion

A search for single production of vector-like quarks coupling
to light generations has been presented. No evidence is found
for such quarks above the expected background in either the CC
or NC channel. Upper limits on the production cross section
times branching ratio to a vector boson and a jet were deter-
mined at 95% confidence level. Assuming couplings ˜κ2uD = 1
andκ̃2uU = 1, the upper bounds obtained for the mass of vector-
like quarks are 900 GeV for the CC channel and 760 GeV for
the NC channel. These limits, which can be used to constrain
different models of vector-like quarks [13], are the most strin-
gent to date on this benchmark model.
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C. Zendler20, O. Zenin127, T. Ženiš143a, Z. Zinonos121a,121b, S. Zenz14, D. Zerwas114, G. Zevi della Porta57, Z. Zhan32d,
D. Zhang32b,ag, H. Zhang87, J. Zhang5, X. Zhang32d, Z. Zhang114, L. Zhao107, T. Zhao137, Z. Zhao32b, A. Zhemchugov64,
S. Zheng32a, J. Zhong117, B. Zhou86, N. Zhou162, Y. Zhou150, C.G. Zhu32d, H. Zhu41, J. Zhu86, Y. Zhu32b, X. Zhuang97,
V. Zhuravlov98, D. Zieminska60, R. Zimmermann20, S. Zimmermann20, S. Zimmermann48, M. Ziolkowski140, R. Zitoun4,
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4 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
5 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
6 Department of Physics, University of Arizona, Tucson AZ, United States of America
7 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
8 Physics Department, University of Athens, Athens, Greece
9 Physics Department, National Technical University of Athens, Zografou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
11 Institut de Fı́sica d’Altes Energies and Departament de Fı́sica de la Universitat Autònoma de Barcelona and ICREA, Barcelona,
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132 (a)INFN Sezione di Roma Tor Vergata;(b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
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