
 

Awell-known classroom demonstration 

involves the rolling of hollow and solid 
objects down an incline.1 The fact that the 

objects roll at different rates can be used as a starting 
point in introducing students to rotational dynam- 
ics and rotational kinetic energy. In this paper we 
describe a simple quantitative version of the demon- 
stration that is suitable for use as a laboratory experi- 
ment. 

We begin by posing the following problem to our 
students: A solid sphere, a hollow cylinder, and a solid 
cylinder, all having the same mass M and radius R, are 
placed at the top of an incline having angle θ. If the 
three objects are released from rest at the same instant 
and all roll down without slipping, which will reach 
the bottom first? After they have made their predic- 
tions, they do the demonstration for themselves and 
observe that the sphere reaches the bottom first, then 
the solid cylinder, and the hollow one. 

Having already introduced the concepts of torque 
and moment of inertia, we next ask the students to de- 
termine, theoretically, the acceleration of each object. 
They quickly realize that in the absence of friction all 
three would accelerate at the same rate, a = g sin θ, 
which is contrary to their observations. Therefore, an 
additional force—one that depends on the shape of 
the object—must be introduced. Since the objects roll 
rather than slide, they must experience a force of static 
friction, Fs. Therefore,  the equation for the linear mo- 
tion of the center of mass is 
 

M g sin θ – Fs = M a, (1) 
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involves the rolling of hollow and solid 
objects down an incline.1 The fact that the 

objects roll at different rates can be used as a starting 
point in introducing students to rotational dynam- 
ics and rotational kinetic energy. In this paper we 
describe a simple quantitative version of the demon- 
stration that is suitable for use as a laboratory experi- 
ment. 

We begin by posing the following problem to our 
students: A solid sphere, a hollow cylinder, and a solid 
cylinder, all having the same mass M and radius R, are 
placed at the top of an incline having angle θ. If the 
three objects are released from rest at the same instant 
and all roll down without slipping, which will reach 
the bottom first? After the students have made their 
predictions, they do the demonstration for themselves 
and observe that the sphere reaches the bottom first, 
then the solid cylinder, and then the hollow one. 

We next ask the students to determine, theoreti- 
cally, the acceleration of each object. They quickly 
realize that in the absence of friction all three would 
accelerate at the same rate, a = g sin θ, which is con- 
trary to their observations. Therefore, an additional 
force—one that depends on the shape of the object— 
must be introduced. Since the objects roll rather than 
slide, they must experience a force of static friction, Fs. 
Therefore, the equation for the linear motion of the 
center of mass is 

 
Mg sin θ – Fs = Ma,  (1) 

 

while the rotation about the center of mass (we 
have already introduced the concepts of torque and 
moment of inertia) is governed by 
 

Fs R = I α ,  (2) 
 
where I is the moment of inertia and α is the angu- 
lar acceleration. If the body rolls without sliding, α 
= a/R, and from these equations we obtain 

a = Mg sin θ/(M + I/R 2). (3) 

This shows that the acceleration depends on the 
moment of inertia. Substituting the expressions for 
the moment of inertia of a solid sphere [I = 
(2/5)MR2], a solid cylinder (I = MR2/2 ), and a hol- 
low one (I = MR2), we find that the accelerations are 
a = (5/7)g sin θ, a = 2/3g sin θ, and a = 1/2g sin θ, 
respectively. 

Then we ask our students to do an experiment to 
check the predicted results. They use an inclined plane 
with a motion sensor positioned at its upper end, as 
shown in Fig. 1. They roll the objects, one at a time, 
down the incline (θ = 5o) and set up the motion sensor 
to measure the position and velocity as functions of 
time. They plot velocity versus time and fit a straight 
line to the data. The slope of the line is the measured 
acceleration. Typical results are shown in Table I. The 
agreement between measured and theoretical values is 
generally very good, and students quickly understand 
that the sphere must reach the bottom first because its 
acceleration is the largest. 
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Table  1.  Predicted   and  measured acceleration  for  objects 
rolling down  an incline. 

 

Object Predicted 
acceleration  (m/s2) 

Measured 
acceleration  (m/s2) 

sphere 0.61 0.65 
solid cylinder 0.57 0.59 
hollow cylinder 0.43 0.41 

 
 
 
 
 
 

Fig. 1. Experimental setup. 
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2)—it appears that mechanical energy is not conserved, i.e., 
the kinetic energy (naively assumed to be Mv2/2) does not 
increase at the same rate as the potential energy decreases. 
We guide them to the conclusion that the model they are 
using is too simple—that because the object is undergo- 
ing rotational as well as translational  motion, the correct 
expression for its kinetic energy is actually KE = Mv2/2 + 
KErot , where KErot  = Iω2/2. The angular  speed ω is equal to 
v/R. In the case of a solid sphere, I = 2MR 2/5 and so KErot 

= Mv2/5. Therefore, KE = 0.7Mv2. When students use this 
new expression for the kinetic energy, they obtain plots like 

0,00 0,20 0,40 0,60 0,80 1,00 

Position (m) 
 

Fig. 2. Energy plots for a solid sphere rolling down  a 10o 

incline.  Because rotational kinetic  energy  is not  includ- 
ed, the total mechanical energy  seems to decrease. 

those in Fig. 3, which show that the total mechanical energy 
is, in fact, nearly constant over the whole range of motion. 

Our students have found this quantitative laboratory ex- 
ercise to be interesting and thought provoking. We believe 
that they learned a great deal from carrying it out. 
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Fig. 3. Energy plots for the solid sphere on an incline. 
Rotational kinetic  energy  is included, and the total 
mechanical energy  remains  nearly  constant. 

 
The same experimental setup can be used to inves- 

tigate the law of mechanical energy conservation in 
the case of an object rolling down an inclined plane. 
The potential energy is given by PE = Mgh, where h = 
s sin θ and s is the displacement of the object measured 
from the bottom of the incline. We ask our students to 
roll one of the objects down the incline and produce 
a plot of Mgh + Mv2/2 versus position as the object 
rolls. Many are at first surprised by the results (see Fig. 
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