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Abstract

A search for microscopic black holes has been performed in a same-sign dimuon
final state using 1.3 fb−1 of proton-proton collision data collected with the AT-
LAS detector at a centre of mass energy of 7 TeV at the CERN Large Hadron
Collider. The data are found to be consistent with the expectation from the
Standard Model and the results are used to derive exclusion contours in the
context of a low scale gravity model.
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1. Introduction

Models introducing extra dimensions can provide a solution to the hierarchy
problem, the fact that the Planck scale MPl ∼ 1016 TeV is much larger than
the electroweak scale. In some models of extra dimensions, the gravitational
field can propagate into (n+ 4)-dimensions, where n is the number of extra di-
mensions, while the Standard Model particles are restricted to four-dimensional
space-time. Therefore, the gravitational field as measured in four dimensions is
reduced in strength from the fundamental gravitational field. As a result, the
Planck scale in (n+ 4)-dimensions MD would be much smaller than the Planck
scale in four dimensions MPl, and possibly comparable to the electroweak scale.
An example of such a model of extra dimensions is the ADD model, which is a
model of large flat extra dimensions [1, 2, 3].

If extra dimensions exist and MD is in the TeV range, microscopic black
holes with masses at the TeV scale could be produced at the Large Hadron
Collider [4, 5, 6, 7, 8]. Black holes are expected to be produced when the classical
impact parameter of two colliding partons is smaller than the higher-dimensional
horizon radius corresponding to a black hole with mass equal to the invariant
mass of the colliding parton system. This paper considers higher-dimensional
Schwarzschild solutions, as well as Kerr solutions for black holes with initial
angular momentum equal to the relative angular momentum between the two
colliding partons; parton spin is ignored [9].
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The production of black holes at the LHC would occur with a continuous
mass distribution ranging from approximately the reduced Planck scale MD to
the proton-proton centre of mass energy of 7 TeV. The classical approximations
used for black hole production and the semi-classical approximations for decay
are expected to be valid only for masses well above the higher-dimensional
Planck scale. A lower threshold MTH is thus applied to the black hole mass
to reduce the contributions from regions where the models are invalid. The
production cross section is set to zero if the parton-parton centre of mass energy
is below MTH.

Once produced, a black hole starts to evaporate in a manner described by
Hawking radiation [10] which determines the energy and multiplicity distribu-
tions of the emitted particles. The relative multiplicities of the emitted particles
are determined by the number of degrees of freedom of each particle type and the
decay modes of emitted unstable particles. Black hole events should therefore
have a high multiplicity of high-pT particles which is the characteristic feature
exploited in this analysis. Models with rotating and non-rotating black holes
are considered in this paper. The multiplicity of high-pT particles is lower for
rotating black holes [11]. No graviton initial-state radiation or emission from
the black hole is considered. As a result of the emission of Hawking radiation,
the mass of the produced black hole decreases. When the mass of the black hole
approaches MD, quantum gravity effects become important. In the final stage
of the black hole decay, the classical evaporation is no longer a good descrip-
tion. In such cases where the black hole mass is near the Planck scale, the burst
model adopted by the BlackMax event generator [9, 12] is used to model the
final part of the decay.

A search for microscopic black holes in a multijet final state is presented
in Ref. [13]. In this analysis, events are selected containing two muons of the
same charge. This channel is expected to have low Standard Model backgrounds
while retaining good signal acceptance. Isolated muons (i.e. muons with very
little activity around them in the detector) can be produced directly from the
black hole or from the decay of heavy particles such as W or Z bosons. Muons
from the semi-leptonic decays of heavy-flavour hadrons produced from the black
hole can have several other particles nearby and can therefore be non-isolated.
In order to maintain optimal acceptance for a possible signal, only one of the
muons is required to be isolated in this analysis, thereby typically increasing
the acceptance in the signal region by 50%.

The decay of the black hole to multiple high-pT objects is used to divide
the observed events into background-rich and potentially signal-rich regions.
This is done by using the number of high-pT charged particle tracks as the
criterion to assign events to each region. As will be quantified below, black hole
events typically have a high number of tracks per event (Ntrk), while Standard
Model processes have sharply falling track multiplicity distributions. In the
background-rich region, where only small signal contributions are expected, data
and Monte Carlo simulations are used to estimate the number of events after
selections. This background estimate is validated by comparing to data. The
expected number of events from Standard Model processes in the signal-rich
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region is then compared with the measured number, and a constraint on the
contribution from black hole decays is inferred.

The backgrounds from Standard Model processes are divided into two cate-
gories: processes where the two muons come from correlated decay chains and
processes that produce same-sign dimuons in uncorrelated decay chains. Same-
sign dimuon events in correlated decay chains are produced primarily in the
decays of tt̄ events and bb̄ events. In tt̄ events, the most likely case is that
the leading isolated muon arises from the decay of a W -boson from one of the
top-quarks, and the other muon of same charge comes from the semileptonic
decay of a b-quark from the other top-quark. In bb̄ events, the leading muon
arises from the semileptonic decay of one b-quark, and the other muon from the
sequential decay b→ cX → µX ′. Same-sign dimuons can also be produced due
to B0B̄0 mixing. The backgrounds from tt̄ and bb̄, and those from gauge boson
pair production such as WZ are estimated from Monte Carlo samples.

Dimuon events in uncorrelated decay chains arise predominantly from the
W+jets process, where the leading isolated muon comes from W -boson decay
and the other muon from a π/K decay-in-flight, or the semi-leptonic decay of a
b or c hadron in the remainder of the event. This background also has contribu-
tions from the Z+jets process, and from low-pT dijet events. The background
from uncorrelated decay chains is estimated from data. In the signal-rich region,
the dominant backgrounds come from tt̄ events and from muons produced in
uncorrelated decays.

The rest of this paper is organised as follows. After a brief description of
the ATLAS detector in Section 2, the data set and Monte Carlo samples are
described in Section3. The event selection and the procedures to determine the
backgrounds and their uncertainties are explained in Section 4 and 5 respec-
tively. The results and their interpretation are discussed in Section 6.

2. The ATLAS Detector

The ATLAS detector [14] covers nearly the entire solid angle∗ around the
collision point with layers of tracking detectors, calorimeters and muon cham-
bers. The inner detector is immersed in a 2 T magnetic field along the z-axis
and provides charged particle tracking in the range |η| < 2.5. The silicon pixel
detector covers the vertex region and typically provides three measurements
per track, followed by the silicon microstrip tracker (SCT) which provides mea-
surements from eight strip layers. The silicon detectors are complemented by
the transition radiation tracker (TRT) which provides more than 30 straw-tube
measurements per track and improves the momentum resolution.

∗ATLAS uses a right-handed coordinate system with its origin at the nominal interaction
point (IP) in the centre of the detector and the z-axis coinciding with the axis of the beam
pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r,φ) are used in the transverse plane, φ being the azimuthal
angle around the beam pipe, referred to the x-axis. The pseudorapidity is defined in terms of
the polar angle θ (with respect to the z-axis) as η = −ln tan(θ/2).
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The calorimeter system covers the pseudorapidity range |η| < 4.9. Lead-
liquid argon (LAr) electromagnetic sampling calorimeters cover the range |η| <
3.2, with an additional thin LAr presampler covering |η| < 1.8 to correct for
energy loss in material upstream of the calorimeters. Hadronic calorimetry
is provided by a scintillator-tile calorimeter over |η| < 1.7 and two copper/LAr
endcap calorimeters over 1.75 < |η| < 3.2. The solid angle coverage is completed
with forward copper/LAr and tungsten/LAr calorimeters for electromagnetic
and hadronic measurements respectively up to |η| < 4.9.

The muon spectrometer consists of separate trigger and high-precision track-
ing chambers which measure the deflection of muon tracks in a magnetic field
with a bending integral of approximately 2 to 8 Tm. The magnetic field is gen-
erated by three superconducting air-core toroid magnet systems. The tracking
chambers cover the region |η| < 2.7 with three layers of monitored drift tubes
and cathode strip chambers in the innermost region of the endcap muon spec-
trometer. The muon trigger system covers the range |η| < 2.4 with resistive
plate chambers in the barrel, and thin gap chambers in the endcap regions.

3. Data and Monte Carlo Samples

The data used in this analysis were collected between March and July 2011
at the LHC operating at a centre of mass energy of 7 TeV. The total inte-
grated luminosity after detector and data-quality requirements is 1.3 fb−1, with
an uncertainty of 3.7% [15, 16]. The data were recorded with a single muon
trigger with the threshold at 20 GeV on the muon’s transverse momentum. The
muon trigger efficiency reaches the plateau regime for transverse momenta above
25 GeV. The plateau efficiency is 75% in the barrel and 88% in the endcap for
muons reconstructed offline. In this analysis it is required that at least one of the
selected muons with pT above 20 GeV matches the trigger criteria. During the
considered data-taking period, the LHC configuration was such that the mean
number of primary proton-proton interactions per bunch crossing was close to
6. The effect of this “pile-up” is taken into account in the analysis.

Several Monte Carlo samples are used both for signal modelling and back-
ground estimation. These samples are processed with the ATLAS full detector
simulation [17] which is based on the GEANT4 toolkit [18]. The simulated
events are then reconstructed with the same software chain as the data. The
effect of pile-up is modelled by overlaying simulated minimum bias events onto
the original hard-scattering event. Monte Carlo events are then re-weighted so
that the reconstructed vertex multiplicity distribution agrees with the data.

Background Monte Carlo samples are generated for tt̄, as well as for bb̄ and
cc̄ processes. The latter are considered together in the following and referred
to as b/c for simplicity. The tt̄ events are generated with MC@NLO [19, 20]
with an assumed top-quark mass of 172.5 GeV, and with the next-to-leading
order CTEQ66 [21] parton distribution function (PDF) set. Fragmentation
and hadronisation of the events is done with Herwig [22] using Jimmy [23]
for the underlying event model. The b/c Monte Carlo sample is generated and
hadronised with Pythia [24] using the ATLAS AMBT1 tune [25]. It is produced
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with a filter at the generator level requiring two muons with pT > 10 GeV each.
The diboson samples (WZ and ZZ) are generated with Herwig. They are
filtered to have at least one electron or muon with pT > 10 GeV. The single top
background in the Wt channel is estimated with AcerMC [26]. The single top
backgrounds in the t−channel and s−channel are included in the background
estimate derived from data. The b/c, diboson and single top samples are all
generated using the MRST2007 PDF [27]. Samples of W+jet and Z+jet events
produced using Alpgen [28] are also used for cross-checks.

Signal Monte Carlo samples are generated using BlackMax 2.01 and hadro-
nised with Pythia using the ATLAS AMBT1 tune. The samples are produced
with the CTEQ66 PDF set with the mass of the black hole used as the QCD
scale. For the signal samples, MD is varied between 0.5 TeV and 2.5 TeV and
MTH is varied between 3 TeV and 5 TeV. In each case, samples are generated
with 2, 4 and 6 extra dimensions.

4. Event Selection

Events passing the single muon trigger are required to have at least one
primary vertex with at least five associated tracks with p track

T > 400 MeV. If
the event has multiple primary vertices, the vertex with the largest

∑
(p track

T )2

is identified as the “hard-scattering vertex”.
Tracks found in the inner detector (ID) are selected using the following

criteria:

p track
T > 1 GeV, Npixel ≥ 1, NSCT ≥ 6,

|η| < 2.4, |d0| < 1.5 mm, |z0 sin θ| < 1.5 mm,

where Npixel and NSCT are the number of hits† from the pixel and the SCT
detectors, respectively, that are associated with the track, and d0 and z0 are the
transverse and longitudinal impact parameters measured with respect to the
hard-scattering vertex. Muon candidates are reconstructed from tracks mea-
sured in the muon spectrometer (MS). The MS tracks are then matched with
ID tracks using a procedure that takes material effects into account. The pa-
rameters for the resulting matched muon candidates are obtained by a statistical
combination of the measurements in the MS and the ID.

At least two muons passing these selections are required in each event. Both
must come from the hard-scattering vertex and satisfy |η| < 2.4. The muon with
the highest transverse momentum is required to have pT > 25 GeV. This leading
muon is also required to be isolated by requiring that the sum of transverse
momenta of ID tracks in a cone in η − φ space of radius ∆R = 0.2 around
the muon is less than 0.2×pT of the muon. The muon with the next highest
transverse momentum is required to have pT > 15 GeV and the same charge
as the leading muon. No isolation requirement is made on this second muon.

†A hit is a signal above threshold in a particular detector element.

5



The two muons are required to satisfy ∆R > 0.2 to explicitly ensure that the
isolated muon is not close to the second muon. The leading muon is required
to have small impact parameter significance by imposing |d0/σ(d0)| < 3. The
impact parameter is calculated with respect to the hard-scattering vertex in the
event.

The track multiplicity is constructed by counting the number of ID tracks as-
sociated to the hard-scattering vertex which satisfy pT > 10 GeV and |η| < 2.4.
By definition, the track count includes the two muon candidates. A signal-rich
region is defined by selecting events with at least ten such tracks, while events
with less than ten tracks are used to validate the prediction of the expected
backgrounds.

All selections except the trigger are applied to the Monte Carlo events. To
account for the trigger efficiency, the Monte Carlo events are weighted with the
efficiency measured from data, while the differences in muon reconstruction and
identification between data and simulation are accounted for by applying pT and
η dependent scale factors [29, 30] to the Monte Carlo events when calculating
the acceptance. This is important when the sub-leading muon provides the
trigger as the trigger efficiency varies with pT in the region between 20 and 25
GeV.

The tracking efficiency in data is well reproduced by the Monte Carlo sim-
ulation [31]. This is confirmed by additional studies of tracking performance
in a dense environment [32]. No corrections to the Monte Carlo are therefore
applied.

5. Background Estimation

The two components of the background from correlated and uncorrelated
particle decays are determined using a mixture of Monte Carlo simulation and
techniques using data.

5.1. Correlated Background Estimates

The correlated background arises from processes such as tt̄ production where,
for example, the isolated muon comes from top decay (t→ bW → bµν) and the
other (non isolated) from the antitop decay (t → Wb → Wµνc). The back-
ground from tt̄ production is estimated from Monte Carlo simulation. The ap-
proximate next-to-next-to-leading-order production cross section of 165 pb [33,
34, 35] is used to normalise the Monte Carlo prediction. This cross section is
in agreement with the measurement of the tt̄ cross section at ATLAS [36]. The
sources of systematic uncertainty on the tt̄ background described in Ref. [37]
are considered and the uncertainty from each source is shown in Table 1. The
sources considered are the choice of generator, the amount of initial and final
state radiation (ISR/FSR), the top-quark mass, and the theoretical uncertainty
on the predicted production cross section. The largest contribution to the un-
certainty is 9.6% on the cross section which arises from variations in the renor-
malisation and factorisation scales (5.6%) and the PDF uncertainty (4%). The
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Source Muon+fake (%) tt̄ (%) b/c (%) Signal (%)
Measurement statistics 4.1

Subtraction of 20
tt̄+ b/c+Wt+diboson

ISR/FSR 7.1
t-quark mass 4.5
Cross section +7

−9.6
Monte Carlo Generator 5.1

Luminosity 3.7 3.7
µ reco/trig 2.6 1.5

PDF(Acceptance) 3.0
Rescaled Truth Acceptance 14.3
Ratio (nominal/inverted) 8.5

Extrapolation to Ntrk ≥ 10 100
Total uncertainty 20.4 14.4 100.4 15.1

Table 1: Systematic uncertainties in percent on the background and signal estimates in the
signal region from various sources. µ reco/trig stands for the uncertainty due to trigger
efficiency and muon reconstruction efficiency scale factors applied to the Monte Carlo events.
A blank entry indicates that the particular systematic uncertainty does not apply to that
particular background.

uncertainty due to the choice of generator is evaluated by comparing the pre-
dictions of MC@NLO with those of Powheg [38] interfaced to Pythia. The
Powheg samples are generated using the MRST2007 PDF set. The uncertainty
due to the top-quark mass is obtained by generating tt̄ samples with top mass
±2.5 GeV from the nominal choice of 172.5 GeV. The ISR/FSR uncertainty
is determined by using the AcerMC generator interfaced to Pythia, and by
varying the ISR and FSR ΛQCD, and the ISR and FSR cutoff. There is also an
additional 2.6% uncertainty on the tt̄ estimate from trigger weight and muon
reconstruction efficiency scale factors.

The background from b/c production is estimated in two steps. In the first
step, the background is determined in the Ntrk < 10 (background) region using
a heavy-flavour enriched data sample to normalise the Monte Carlo prediction.
In the second step, the estimated background is extrapolated from Ntrk < 10
to Ntrk ≥ 10 using Monte Carlo.

To estimate b/c production in the background region, a heavy-flavour rich
sample is selected by inverting the isolation and impact parameter significance
requirements on the leading muon. This yields 6480 events. The b/c Monte
Carlo sample is used to measure the ratio of events passing the nominal muon
selection to those passing the inverted selection. The ratio is 0.33± 0.03 where
the uncertainty comes from the limited size of the Monte Carlo sample. Apply-
ing this ratio to the heavy-flavour rich sample in data gives the b/c estimate in
the background region. The shapes of the kinematic distributions for the b/c
background, such as pT of the muons are also obtained from the heavy-flavour
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rich sample.
The Ntrk distribution in the Monte Carlo is then fit with an exponential

to determine the fraction of events with Ntrk ≥ 10. The method is validated
by varying the fit range, testing the extrapolation procedure in the tt̄ Monte
Carlo, as well as by relaxing the pT requirements on the muons to enhance the
statistics of the b/c Monte Carlo. Based on these studies, a 100% systematic
uncertainty due to the extrapolation is assigned to the b/c background in the
signal region.

The backgrounds from diboson (WZ,ZZ) and single-top processes are esti-
mated from the corresponding Monte Carlo samples and are found to be negli-
gible.

5.2. Uncorrelated Background Estimate

The uncorrelated background arises when the second muon is not a true
muon (fake), or is a muon from K or π decay, or from events where there is no
correlation between the production mechanisms of the two muons. The back-
ground from uncorrelated decays is estimated by first measuring the probability
for a track to be reconstructed as a muon in a control sample from data. This
‘fake’ probability is then applied to data events with one muon and one or more
tracks to obtain a prediction for µ+fake dimuon events.

The control sample consists of W -boson + track events. Events are selected
with at least one isolated muon with pT > 25 GeV and missing transverse
momentum (Emiss

T ) satisfying 25 GeV < Emiss
T < 80 GeV. Emiss

T is constructed
from the sum of all cells contained in calorimeter clusters and is corrected for
the presence of muons in the event. The transverse mass calculated from the
muon and the Emiss

T is required to be between 50 GeV and 120 GeV. These
events are also required to have at least one track in addition to the muon,
with pT > 15 GeV and the same charge as the muon. If an event has more
than one such track, then all tracks are considered for the measurement. The
events are also required to have less than ten tracks to remove possible signal
contributions.

A subset of the W -boson + track control sample is then selected by requiring
an additional muon passing the analysis selection criteria with pT > 15 GeV and
of the same charge as the first selected muon. Using this subset, the fraction of
events where a second muon is present is determined directly from data. This
fraction contains contributions from fakes, K or π decay, and heavy-flavour de-
cays. To avoid double-counting, the contributions from the correlated decays
from tt̄, b/c, and diboson processes are estimated from Monte Carlo (as de-
scribed) and subtracted. The per-track rate is measured in three pT bins; for
pT < 20 GeV the rate is (4.4 ± 0.2) × 10−3, for 20 < pT < 60 GeV the rate is
(3.7±0.1)×10−3, and for pT > 60 GeV the rate is (3.7±2)×10−3. This rate is
applied to all events in data with one muon and at least one track of the same
charge with pT > 15 GeV. If more than one track is found, then each track is
considered in calculating a total probability for the event to be reconstructed as
a dimuon event. The uncertainty on the background estimate from the nominal
fake rate measurement due to measurement statistics is 4.1%.
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Process Events
b/c 2120 ± 30(stat) ± 200(syst)
tt̄ 750 ± 100(syst) ± 30(lumi)

µ+fake 1300 ± 2(stat) ± 260(syst)
Wt 53 ± 2(syst)

WZ + ZZ 36 ± 1(syst)
Predicted 4270 ± 30(stat) ± 340(syst)
Observed 3775

Table 2: Numbers of expected and observed events in the background-rich control region
with Ntrk < 10. Only the uncertainties due to the limited size of the Monte Carlo samples
are included for the diboson (WZ + ZZ) and single-top (Wt) backgrounds.

To determine the systematic uncertainty, shown in Table 1, the amount of
subtracted tt̄ + b/c + Wt+diboson background is varied up and down by 1σ.
The corresponding variation in the fake estimate is 20% which is taken as the
systematic uncertainty on this background.

This method is verified by using the W+jet and single-top Monte Carlo
samples as pseudo-data to measure the rate and then make a prediction. Similar
studies on fake muon probability, with different selection criteria, are reported
in Ref. [39] and show consistent results.

The background estimation is tested in events with the same selections as
the signal region except the track multiplicity which is required to be Ntrk < 10.
The prediction from the Standard Model is shown in Table 2, along with the
number of observed events in data in the background region. The contribution
from the signal in the background region has been checked to be less than
0.1% of backgrounds for various choices of the signal parameters. The event
rates observed in the background region agree with the prediction within the
uncertainties.

6. Results and Interpretation

Figures 1 and 2 show the pT distributions of both muons and the track
multiplicity in all same-sign dimuon events respectively before applying the Ntrk

requirement. The prediction for a sample signal model for non-rotating black
holes with MD = 800 GeV, MTH = 4 TeV, and six extra dimensions is also
shown. Good agreement is observed between the measured distributions and
the background expectations. As shown in Figure 2, the backgrounds peak at
low values of the track multiplicity while a possible signal has a higher number of
tracks. Table 3 shows the expected and observed numbers of same-sign dimuon
events in the signal region. No excess over the Standard Model predictions is
observed in the data.

The background in the signal region is dominated by the tt and by the
uncorrelated decays from W+jet events. The relative contributions of the vari-
ous backgrounds are different in the background-rich (Table 2) and signal-rich
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Figure 1: The leading (left) and sub-leading (right) muon pT distributions for same-sign
dimuon events before the Ntrk cut. The background histograms are stacked. The signal
expectation for a non-rotating black hole model with parameters MD = 800 GeV, MTH =
4 TeV, and six extra dimensions is overlaid for illustrative purposes. The bottom panels show
the ratio of data to the expected background (points) and the total systematic uncertainty on
the background (shaded area).
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Figure 2: The track multiplicity distribution for same-sign dimuon events. The region with
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(Table 3) regions. In particular the b/c contribution falls more rapidly with
increasing Ntrk than the other backgrounds and is very small in the signal-rich
region. By removing the isolation requirement on the leading muon, the distri-
bution is dominated by b/c background and the Monte Carlo simulation agrees
with data giving confidence in the b/c prediction.

Process Events
b/c 0.77 ± 0.77(syst)
tt̄ 29.2 ± 4.1(syst) ± 1.1(lumi)

µ+fake 25.6± 0.3(stat) ± 5.2(syst)
Other backgrounds 0.25 ± 0.11(syst)

Predicted 55.8 ± 0.3(stat) ± 6.7(syst) ± 1.1(lumi)
Observed 60

Signal MTH = 4 TeV 72.1 ± 4.5(syst)

Table 3: Number of expected and observed events in the signal region, like-sign dimuon events
with Ntrk ≥ 10. The other backgrounds are from diboson and single-top processes. The signal
expectation for a non-rotating black hole model with MD = 800 GeV, MTH = 4 TeV, and six
extra dimensions is also shown.

Using the number of events observed in data and the background expecta-
tions, upper limits are set on σ × BR × A, where σ is the cross section, BR
the branching ratio to dimuons, and A the acceptance of non Standard Model
contributions in this final state in the signal region. The CLs method [40] is
used to derive these limits assuming Gaussian uncertainties on the predicted
background and signal, and Poissonian fluctuations on the observed number
of events. The observed 95% confidence level upper limit on σ × BR × A is
0.018 pb. This result is compatible with the expected limit of 0.016 pb, which is
determined from pseudo-experiments using simulation. The 1σ and 2σ ranges
on the expected limit are from 0.012 to 0.022 pb and from 0.008 to 0.029 pb
respectively. The BR × A for the signal model shown in Table 3 is 3%, and
typically varies between 1% and 6% for the signal models considered here.

Limits on the reduced Planck mass (MD) and the minimum mass of the
black hole (MTH) for several models are set using the BlackMax generator
and the CTEQ66 PDF. The signal yield is affected by the PDF choice due to
two distinct effects: the change in the production cross section and the change in
signal acceptance. The signal cross section obtained from MRST2007 is typically
40% to 50% higher than that from CTEQ66 for MD = 1 TeV, MTH = 4 TeV.
This difference is somewhat larger than the uncertainty on the cross section
from the CTEQ66 PDF error sets. At the large values of MTH near the quoted
limits, the invariant mass of the incoming partons is large and the PDFs are
therefore used in a range of parton momentum fraction x where they are not
well constrained. The theoretical uncertainty on the production cross section
is potentially very large. For these reasons, no theoretical uncertainty on the
signal cross section is assigned, that is, the exclusion limits are set for the
exact benchmark models as implemented in the BlackMax generator: using
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CTEQ66 rather than MRST2007 gives a more conservative limit. The cross
section for the signal point shown in Table 3 is 2.1 pb. The uncertainty on the
signal acceptance from the choice of PDF is estimated to be 3% by using the
44 error sets of the CTEQ66 PDF and is a small contribution to the overall
uncertainty.

The observed results are used to obtain exclusion contours in the plane of
MD and MTH. For a large number of points in the (MD,MTH) plane, the signal
acceptance is measured using kinematic properties obtained from the event gen-
erator (truth). This truth level acceptance is compared to the acceptance from
full detector simulation for a smaller set of points which are representative of
the model parameters probed in this analysis. To account for the difference in
acceptances, the truth level acceptance is scaled by a constant factor of 0.7±0.1
which is determined by comparing truth to fully simulated points. Therefore
the uncertainty on the signal prediction consists of the following components:
the uncertainty due to rescaling of truth acceptance, the uncertainty on the lu-
minosity of the data sample, the uncertainty on acceptance due to the PDF, the
experimental uncertainty on acceptance due to muon trigger and identification
efficiencies and a statistical uncertainty due to the finite Monte Carlo samples
(see Table 1).

Figure 3 shows the expected and observed exclusion contours for rotating
and non-rotating black holes for 2 and 6 extra dimensions. The non-smoothness
of the exclusion contours reflects the discrete nature of the Monte Carlo grid
in the (MD,MTH) plane and the finite Monte Carlo statistics at the generated
points. Lines of constant slope (MTH/MD) of 3, 4 and 5 are also shown in the
figure. The semi-classical approximations used for black hole production and
decay are expected to be valid only for large slopes. It can be seen that if this
ratio is greater than three, the limit on MTH is larger than half the centre-of-
mass energy.

In view of the rapidly falling PDF’s in this region, further significant im-
provements on these limits are not expected until the LHC energy is increased.
For example, moving from MTH = 4.7 TeV to MTH = 5 TeV changes the signal
cross section from 0.24 pb to 0.06 pb (for non-rotating black holes in models
with MD = 500 GeV and six extra dimensions). It is also worth noting that the
exclusion contours are dependent on the model considered, and this analysis is
not expected to be sensitive to black hole models with decays to low multiplicity
final states such as quantum black holes [41].

In summary, a search for extra dimensions in the same-sign dimuon final
state has been performed using 1.3 fb−1 of data recorded with the ATLAS
detector in 7 TeV proton-proton collisions at the LHC. No excess of events over
the Standard Model prediction is observed and exclusion contours are obtained
in the plane of the reduced Planck scale MD and the threshold MTH for black
hole production. A model independent limit of 0.018 pb on any new physics
contribution in the signal region with the described selection is set.
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Figure 3: 95% confidence level exclusion contours for non-rotating (left) and rotating (right)
black holes in models with two and six extra dimensions. The dashed lines show the expected
exclusion contour with the 1σ uncertainty shown as a band. The solid lines show the observed
exclusion contour. The regions below the contour are excluded by this analysis. The dotted
lines show lines of constant slope equal to 3, 4, and 5. Only slopes much larger than 1
correspond to physical models.
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L.J. Levinson171, M.S. Levitski128, A. Lewis118, G.H. Lewis108, A.M. Leyko20,
M. Leyton15, B. Li83, H. Li172, S. Li32b,p, X. Li87, Z. Liang39, Z. Liang118,q,
H. Liao33, B. Liberti133a, P. Lichard29, M. Lichtnecker98, K. Lie165,
W. Liebig13, R. Lifshitz152, J.N. Lilley17, C. Limbach20, A. Limosani86,
M. Limper63, S.C. Lin151,r, F. Linde105, J.T. Linnemann88, E. Lipeles120,
L. Lipinsky125, A. Lipniacka13, T.M. Liss165, D. Lissauer24, A. Lister49,
A.M. Litke137, C. Liu28, D. Liu151,s, H. Liu87, J.B. Liu87, M. Liu32b, S. Liu2,
Y. Liu32b, M. Livan119a,119b, S.S.A. Livermore118, A. Lleres55,
J. Llorente Merino80, S.L. Lloyd75, E. Lobodzinska41, P. Loch6,
W.S. Lockman137, T. Loddenkoetter20, F.K. Loebinger82, A. Loginov175,
C.W. Loh168, T. Lohse15, K. Lohwasser48, M. Lokajicek125, J. Loken 118,
V.P. Lombardo4, R.E. Long71, L. Lopes124a,b, D. Lopez Mateos57,
M. Losada162, P. Loscutoff14, F. Lo Sterzo132a,132b, M.J. Losty159a, X. Lou40,
A. Lounis115, K.F. Loureiro162, J. Love21, P.A. Love71, A.J. Lowe143,e,
F. Lu32a, H.J. Lubatti138, C. Luci132a,132b, A. Lucotte55, A. Ludwig43,
D. Ludwig41, I. Ludwig48, J. Ludwig48, F. Luehring61, G. Luijckx105,
D. Lumb48, L. Luminari132a, E. Lund117, B. Lund-Jensen147, B. Lundberg79,
J. Lundberg146a,146b, J. Lundquist35, M. Lungwitz81, G. Lutz99, D. Lynn24,
J. Lys14, E. Lytken79, H. Ma24, L.L. Ma172, J.A. Macana Goia93,
G. Maccarrone47, A. Macchiolo99, B. Maček74, J. Machado Miguens124a,
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R. Moles-Valls167, J. Molina-Perez29, J. Monk77, E. Monnier83,
S. Montesano89a,89b, F. Monticelli70, S. Monzani19a,19b, R.W. Moore2,
G.F. Moorhead86, C. Mora Herrera49, A. Moraes53, N. Morange136, J. Morel54,
G. Morello36a,36b, D. Moreno81, M. Moreno Llácer167, P. Morettini50a,
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Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
34 Nevis Laboratory, Columbia University, Irvington NY, United States of
America
35 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36 (a)INFN Gruppo Collegato di Cosenza; (b)Dipartimento di Fisica, Università
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Genova, Genova, Italy
51 (a)E.Andronikashvili Institute of Physics, Georgian Academy of Sciences,
Tbilisi; (b)High Energy Physics Institute, Tbilisi State University, Tbilisi,
Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen,
Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow,
United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph
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