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Abstract

Measurements are presented of the properties of high transverse momentum jets, produced in
proton-proton collisions at a center-of-mass energy of

√
s = 7 TeV. The data correspond to an inte-

grated luminosity of 35 pb−1 and were collected with the ATLAS detector in 2010. Jet mass, width,
eccentricity, planar flow and angularity are measured for jets reconstructed using the anti-kt algorithm
with distance parameters R = 0.6 and 1.0, with transverse momentum pT > 300 GeV and pseudo-
rapidity |η| < 2. The measurements are compared to the expectations of Monte Carlo generators
that match leading-logarithmic parton showers to leading-order, or next-to-leading-order, matrix ele-
ments. The generators describe the general features of the jets, although discrepancies are observed
in some distributions.
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ATLAS measurements of the properties of jets for boosted particle searches

The ATLAS Collaboration

Measurements are presented of the properties of high transverse momentum jets, produced in
proton-proton collisions at a center-of-mass energy of

√
s = 7 TeV. The data correspond to an

integrated luminosity of 35 pb−1 and were collected with the ATLAS detector in 2010. Jet mass,
width, eccentricity, planar flow and angularity are measured for jets reconstructed using the anti-kt
algorithm with distance parameters R = 0.6 and 1.0, with transverse momentum pT > 300 GeV
and pseudorapidity |η| < 2. The measurements are compared to the expectations of Monte Carlo
generators that match leading-logarithmic parton showers to leading-order, or next-to-leading-order,
matrix elements. The generators describe the general features of the jets, although discrepancies
are observed in some distributions.

PACS numbers: 12.38.-t, 13.30.Eg

I. INTRODUCTION

The high center-of-mass energy at the Large Hadron
Collider (LHC) combined with the coverage and gran-
ularity of the ATLAS calorimeter provide an excellent
environment to study hadronic jets. Measurements of
dijet cross sections [1, 2], jet shapes [3, 4], jet substruc-
ture [5] and angular correlations [6, 7] have already been
published using the data taken by the ATLAS and CMS
Collaborations in 2010.

Massive, hadronically decaying particles produced
with a significant boost (such as top quarks, Higgs
bosons, or new particles) will tend to have collimated
decays, such that their decay products are contained
within a single jet. The substructure of jets resulting
from such decays is expected to result in deviations in
the observables measured here for light-quarks and glu-
ons, thus providing discriminating power in heavy parti-
cle searches.

The observable jet properties presented here are mass,
width, eccentricity, planar flow and angularity. All of
these have been shown to be useful in Monte Carlo stud-
ies in the search for high transverse momentum (pT),
massive particles [8–14], and together they provide an
important set of probes of the substructure of jets.

Three of these (mass, planar flow and angularity) have
recently been measured by CDF [13] at the Tevatron.
Angularities are a family of infrared-safe quantities that
have characteristic distributions for two-body decays,
while planar flow discriminates between two-body and
many-body decays and, for large jet masses (above about
100 GeV), is largely independent of the jet mass. Eccen-
tricity is a complementary observable to planar flow, with
which it is highly anti-correlated. Jet width is a dimen-
sionless quantity related to the jet mass and is thus ex-
pected to retain much of the discriminatory power with-
out being as sensitive to the detector effects on energy
scale and resolution that can hinder a mass measurement.

Jet substructure measurements can be particularly
vulnerable to ‘pileup’, i.e. particles produced in mul-
tiple pp interactions that occur in addition to the pri-
mary interaction, within the sensitive time of the detec-

tor. These additional interactions result in diffuse, usu-
ally soft, energy deposits throughout the central region
of the detector – the region of interest for the study of
high pT jets. This additional energy deposition can be
characterized by the number of reconstructed primary
vertices (NPV) [15, 16], with events having a single good
vertex (NPV = 1) being considered free from the effects
of pileup. The 2010 ATLAS data set provides a unique
opportunity to study these effects; a significant fraction
of the 2010 data set comprises NPV = 1 events, mak-
ing this data set ideal for evaluating the effects of pileup
on jet substructure measurements. This data set has an
average NPV ' 2.2.

II. THE ATLAS DETECTOR

The ATLAS detector [17] at the LHC was designed to
study a wide range of physics. It covers almost the entire
solid angle around the collision point with layers of track-
ing detectors, calorimeters and muon chambers. Tracks
and vertices are reconstructed with the inner detector,
which consists of a silicon pixel detector, a silicon strip
detector and a transition radiation tracker, all immersed
in a 2 T axial magnetic field provided by a superconduct-
ing solenoid.

The ATLAS reference system is a Cartesian right-
handed co-ordinate system, with the nominal collision
point at the origin. The anti-clockwise beam direction
defines the positive z-axis, while the positive x-axis is
defined as pointing from the collision point to the cen-
ter of the LHC ring and the positive y-axis points up-
wards. The azimuthal angle φ is measured around the
beam axis, and the polar angle θ is the angle measured
with respect to the z-axis. The pseudorapidity is given
by η = − ln tan(θ/2). Transverse momentum is defined
relative to the beam axis.

For the measurements presented here, the high-
granularity calorimeter systems are of particular impor-
tance. The ATLAS calorimeter system provides fine-
grained measurements of shower energy depositions over
a large range in η.

Electromagnetic calorimetry in the range |η| < 4.9 is



2

provided by liquid-argon (LAr) sampling calorimeters.
This calorimeter system enables measurements of the
shower energy in up to four depth segments. For the jets
measured here, the transverse granularity ranges from
0.003×0.10 to 0.10×0.10 in ∆η×∆φ, depending on depth
segment and pseudorapidity.

Hadronic calorimetry in the range |η| < 1.7 is provided
by a steel/scintillator-tile sampling calorimeter. This sys-
tem enables measurements of the shower energy deposi-
tion in three depth segments at a transverse granular-
ity of typically 0.1×0.1. In the end-caps (|η| > 1.5),
LAr technology is used for the hadronic calorimeters that
match the outer η-limits of the end-cap electromagnetic
calorimeters. This system enables four measurements in
depth of the shower energy deposition at a transverse
granularity of either 0.1×0.1 (1.5 < |η| < 2.5) or 0.2×0.2
(2.5 < |η| < 3.2).

III. MONTE CARLO SIMULATION

The QCD predictions for the hadronic final state in
inelastic pp collisions are based on several Monte Carlo
generators with different tunes.

The Pythia 6.423 generator [18] with the ATLAS
Minimum Bias Tune 1 (AMBT1) [19] parameter set is
used as the primary generator for comparisons with the
data and for extracting corrections to the data for detec-
tor effects. The AMBT1 tune uses the MRST LO∗ [20]
parton distribution function (PDF) set with leading-
order (LO) perturbative QCD matrix elements for 2→2
processes and a leading-logarithmic, pT-ordered parton
shower followed by fragmentation into final-state parti-
cles using a string model [21] with Lund functions [22] for
light quarks and Bowler functions [23] for heavy quarks.
In addition to charged particle measurements from AT-
LAS minimum bias data [24, 25], the AMBT1 tune uses
data from LEP, SPS and the Tevatron.

An additional Pythia tune, Perugia2010 [26, 27], is
used for comparison with AMBT1. The Perugia2010
tune also uses data from LEP, SPS and the Tevatron
and additionally improves the description of jet shape
measurements in LEP data. The CTEQ5L [28] PDF set
is used. This tune of Pythia is used in the calculation
of the systematic uncertainties on the measurements and
for comparison with the data, along with the Herwig++
2.4.2 generator with its default settings [29].

The more recent Herwig++ 2.5.1 generator is in-
cluded for comparison with the final measurements at
particle level, as are the AUET2B tune [30, 31] of
Pythia 6.423, the PowHeg generator interfaced to this
same Pythia tune, and the Pythia 8.153 generator [32]
with tune 4C [27, 30]. The major difference between
Herwig++ versions 2.4.2 and 2.5.1 is the inclusion of
color-reconnections in the latter. The PowHeg genera-
tor, which implements next-to-leading-order (NLO) cal-
culations within a shower Monte Carlo context [33–36],
uses the CTEQ6M [28] PDF set.

Generated events are passed through the ATLAS
detector simulation program [37], which is based on
Geant4 [38]. The quark–gluon string model with an
additional precompound [39] is used for the fragmenta-
tion of nuclei, and the Bertini cascade model [40] is used
to describe the interactions of hadrons with the nuclear
medium.

Monte Carlo events are reconstructed and analyzed us-
ing the same event selection and simulated trigger as for
the data. The size and position of the collision beam spot
and the detailed description of detector conditions during
the data-taking runs are included in the simulation.

IV. EVENT SELECTION

Events containing pileup can be identified by the pres-
ence of more than one primary vertex in the event, herein
referred to as NPV > 1. Events recorded in the 2010 AT-
LAS data set contain an average NPV ' 2.2 and include
a significant fraction of NPV = 1 events (' 28%); these
may be used for testing the pileup correction methods.

After applying data-quality requirements, the data
sample corresponds to a total integrated luminosity of
35.0 ± 1.1 pb−1 [41, 42].

A. Trigger selection

Events must pass the ATLAS first-level trigger requir-
ing a jet (built from calorimeter towers with a granularity
of 0.1 × 0.1 in ∆η × ∆φ) with transverse energy ET ≥
95 GeV. The selection efficiency of this trigger has been
found to be close to 100% for events satisfying the offline
selection criteria implemented here, with a negligible de-
pendence on jet mass [5].

B. Primary vertex selection

All events are required to have at least one good pri-
mary vertex. This is defined as a vertex with at least
five tracks with pT > 150 MeV and both transverse and
longitudinal impact parameters consistent with the LHC
beamspot [15, 16]. The analysis presented here makes use
of the full 2010 data set. The requirement of NPV = 1
is applied only where derivation of pileup corrections is
not possible.

C. High pT jet selection

Jets are reconstructed from locally calibrated topolog-
ical clusters [43] using the anti-kt algorithm [44] with
distance parameters of R = 0.6 and 1.0. Jets satisfy-
ing pT > 300 GeV and |η| < 2 are selected for analysis.
Any event containing an R = 0.6 jet with pT > 30 GeV
that fails to satisfy the criteria [45] designed to safeguard
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against jets caused by transient detector effects and beam
backgrounds is excluded from this analysis.

In simulated data, jets are reconstructed from locally
calibrated topological clusters to derive corrections for
pileup and determine the systematic uncertainties and
detector correction factors. The corrected data distribu-
tions are then compared to Monte Carlo predictions at
particle level; in this case jets are reconstructed from sta-
ble particles as opposed to clusters. Particles are deemed
to be stable for the purpose of jet reconstruction if their
mean lifetimes are longer than 10 ps. Neutrinos and
muons are excluded, just as they are for the Monte Carlo-
based jet energy scale calibration that is applied to the
data. This exclusion has a negligible effect on the final
measurements.

The total numbers of jets in data satisfying the selec-
tion criteria detailed here are ∼122,000 R = 1.0 jets and
∼87,000 R = 0.6 jets; however, only the highest pT jet in
each event is selected for this analysis. The total num-
bers selected for analysis are ∼83,000 R = 1.0 jets and
∼62,000 R = 0.6 jets.

V. SUBSTRUCTURE OBSERVABLES AND
THEIR CORRELATIONS

A. Jet mass

The jet mass M is calculated from the energies and
momenta of its constituents (particles or clusters) as fol-
lows:

M2 =

(∑
i

Ei

)2

−

(∑
i

~pi

)2

, (1)

where Ei and ~pi are the energy and three-momentum of
the ith constituent. The sum is over all jet constituents in
this and all subsequent summations. The standard AT-
LAS reconstruction procedure is followed: clusters have
their masses set to zero, while Monte Carlo particles are
assigned their correct masses.

B. Jet width

The jet width W is defined as:

W =

∑
i ∆Ri piT∑

i p
i
T

, (2)

where ∆Ri =
√

(∆φi)2 + (∆ηi)2 is the radial distance

between the jet axis and the ith jet constituent and piT is
the constituent pT with respect to the beam axis.

C. Eccentricity

The jet eccentricity E is calculated using a principal
component analysis (PCA) [12]. The PCA method pro-
vides the vector which best describes the energy-weighted
geometrical distribution of the jet constituents in the
(η, φ) plane. The eccentricity is used to characterize the
deviation of the jet profile from a perfect circle in this
plane, and is defined as

E = 1− vmin

vmax
, (3)

where vmax (vmin) is the maximum (minimum) value of
variance of the jet constituents’ positions with respect
to the principal vector. The calculation consists of the
following steps:

1. For each jet the energy-weighted centers in η and
φ are calculated as:

φ̄jet =

∑
i ∆φi Ei∑
iEi

, η̄jet =

∑
i ∆ηi Ei∑
iEi

, (4)

where the energy and position in the (η, φ) plane of
the ith constituent with respect to the jet axis are
denoted by Ei, ∆ηi and ∆φi.

2. The PCA is performed to determine the vector
~x1 in (η, φ) space that passes through the energy-
weighted center of the face of the jet and results
in a minimum in the variance of the constituents’
positions. The angle θ of this vector with respect
to the jet center (η̄jet, φ̄jet) is given by:

tan 2θ =
2×

∑
iEi∆φi∆ηi∑

iEi(∆φ
2
i −∆η2i )

(5)

and the angle of the orthogonal vector ~x2 is θ− π
2 .

3. The energy-weighted variances v1 and v2 with re-
spect to ~x1 and ~x2 are calculated as:

v1 =
1

N

∑
i

Ei ( cos θ∆ηi − sin θ∆φi )2,

v2 =
1

N

∑
i

Ei ( sin θ∆ηi + cos θ∆φi )2, (6)

where N is the number of constituents.

4. Finally, the largest value of the variance is assigned
to vmax and the smallest to vmin. The jet eccentric-
ity ranges from zero for perfectly circular jets to one
for jets that appear pencil-like in the (η, φ) plane.
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Eccentricity is measured for jets in the mass range
M > 100 GeV; this is the mass region of interest for
the search for a Higgs boson or other massive, hadron-
ically decaying particles predicted in various extensions
to the Standard Model.

D. Planar flow

A variable complementary to the eccentricity is planar
flow P [10, 46, 47]. The planar flow measures the degree
to which the jet’s energy is evenly spread over the plane
across the face of the jet (high planar flow) versus spread
linearly across the face of the jet (small planar flow).

To calculate planar flow, one first constructs a two-
dimensional matrix IklE :

IklE =
1

M

∑
i

1

Ei
pi,kpi,l. (7)

Here, M is the jet mass, Ei is the energy of the ith

constituent of the jet and pi,k and pi,l are the k and l
components of its transverse momentum calculated with
respect to the jet axis. The planar flow is:

P = 4× det(IE)

Tr(IE)2
. (8)

Vanishing or low planar flow corresponds to a linear
energy deposition, as in the case of a two-pronged de-
cay, while completely isotropic energy distributions are
characterized by unit planar flow [10]. Jets with many-
body kinematics are expected to have a planar flow dis-
tribution that peaks towards unity. In general, QCD jets
have a rising P distribution that peaks at P = 1; the
hadronization process has contributions from many soft
gluons and is largely isotropic. However, jets with high
pT and high mass are well-described by a single hard
gluon emission. Consequently, these jets have a planar
flow distribution that peaks at a low value [13]. The
planar flow distributions are measured in the context of
boosted, massive particle searches by applying a mass
cut, 130 < M < 210 GeV, consistent with the window in
which one would expect to observe a boosted top quark
decay collimated within a single jet. The contribution
from top quark decays in this subset of the data is neg-
ligible – here we measure the properties of light-quark
and gluon jets that constitute a substantial fraction of
the background in boosted top quark measurements.

E. Angularity

Angularities (τa) are a family of observables that are
sensitive to the degree of symmetry in the energy flow
inside a jet. The general formula for angularity [10] is

given by:

τa =
1

M

∑
i

Eisin
aθi[1− cosθi]

1−a, (9)

Here a is a parameter that can be chosen to emphasize
radiation near the edges (a < 0) or core (a > 0) of the
jet, M is the jet mass, Ei is the energy of the ith jet
constituent and θi is its angle with respect to the jet
axis. In the limit of small-angle radiation (θi � 1), τa is
approximated by:

τa '
2(a−1)

M

∑
i

Eiθ
(2−a)
i . (10)

Angularities are infrared-safe for a ≤ 2 [13]. In the
analysis presented here, Eq. 9 with a value of a = −2 is
used. The τ−2 observable can be used as a discriminator
for distinguishing QCD jets from boosted particle decays
by virtue of the broader tail expected in the QCD distri-
bution [10]. At a given high mass, the angularity of jets
with two-body kinematics should peak around a mini-
mum value τpeaka ' ( M

2pT
)1−a, which corresponds to the

two hard constituents being in a symmetric pT configu-
ration around the jet axis. An estimate for the maximum
of the distribution can also be calculated in the limit of
small angle radiation, τmax

a ' ( 2
R )a( M

2pT
) [13], which cor-

responds to a hard constituent close to the jet axis and
a soft constituent on the jet edge.

The measurement of τ−2 is aimed primarily at testing
QCD, which makes predictions for the shape of the τ−2
distribution in jets where the small angle approximation
is valid. For this reason, this measurement is made only
for anti-kt jets with R = 0.6.

Here, τ−2 is measured for jets in the mass range 100
< M < 130 GeV. This mass region is chosen to have
minimal contributions from hadronically decaying W or
Z bosons or boosted top quarks (Pythia predictions es-
timate a relative fraction below 0.2%).

F. Correlations between the observables

The levels of correlation between the variables pre-
sented here provide information that is valuable in de-
ciding which variables may potentially be used together
in a search for boosted particles. Here the correlation
factors between pairs of variables are calculated as their
covariance divided by the product of their standard de-
viations:

ρ =
cov(x, y)

σxσy
. (11)

Summaries of the correlations between all of the ob-
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servables studied here are shown in Fig. 1 for R =1.0
jets in Pythia at particle level. The coefficients are
shown both with and without a jet mass cut of M >
100 GeV – the individual mass constraints for each ob-
servable are dropped here to allow the correlations be-
tween them to be calculated. Jets subjected to a mass
cut are also restricted to |η| < 0.7. This additional re-
striction on η is applied wherever a mass cut is made
on the observables presented here; this has a negligible
effect on the shapes of the distributions while allowing
direct comparisons with other measurements of the same
quantities [13].

The strongest correlations observed are those between
jet mass and width (85%) and between planar flow and
eccentricity (–80%). The correlation between mass and
width reduces considerably when jets are required to
be in the kinematic region M > 100 GeV. This trend
is followed by almost all observables. The planar flow
and eccentricity, however, are even more strongly anti-
correlated in high mass jets (–90%). The correlation
between mass and pT is weak (12–16%). Angularity is
largely uncorrelated with all of the other observables.

VI. CORRECTIONS FOR PILEUP AND
DETECTOR EFFECTS

The contribution from pileup is measured using the
complementary cone method first introduced by the CDF
experiment [13, 48]. A complementary cone is drawn at
a right-angle in azimuth to the jet (φcomp = φjet ± π

2 ,
ηcomp = ηjet) and the energy deposits in this cone are
added into the jet such that the effect on each of the jet
properties can be quantified. The shift in each observable
after this addition is attributed to pileup and the under-
lying event (UE), the latter being the diffuse radiation
present in all events and partially coherent with the hard
scatter. The effects of these two sources are separated by
comparing events with NPV = 1 (UE only) to those with
NPV > 1 (UE and pileup): the difference between the
average shift for single-vertex and multiple-vertex events
is attributed to the contribution from pileup only.

The presence of additional energy in events with
NPV > 1 affects the substructure observables in differ-
ent ways; the effect of pileup on the shape of the τ−2
distribution is negligible (below 1%) in this data set,
and so no corrections are applied. The other observables
under study have their distributions noticeably distorted
by the presence of pileup. The pT-dependent corrections
for this effect are applied to the mass, width and eccen-
tricity distributions, whilst the planar flow distribution of
high mass jets is measured only in events with NPV = 1.
There are a small number of jets (∼ 100 anti-kt R = 0.6
jets) in the high mass range (M > 130 GeV), making it
too difficult to derive robust pileup corrections for planar
flow (which is limited to this mass range in this analysis)
in this data set.

FIG. 1. The correlation coefficients between pairs of vari-
ables calculated in Pythia at particle level for R = 1.0 jets
with no mass constraint (top) and with a mass constraint of
M > 100 GeV (bottom).

A. Pileup corrections for R = 0.6 jets

The mass shift due to the UE and pileup in NPV = 1
and NPV > 1 events is shown in Fig. 2 for R = 0.6 jets
in the range 300 < pT < 400 GeV. The shift follows the
expected behavior, given by:

∆M = p0M +
p1M
M

, (12)

where piM and their associated uncertainties are deter-
mined from the data. ∆M is the increase in the jet mass
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FIG. 2. The size of the mass shift in anti-kt R = 0.6 jets with
300 < pT < 400 GeV in jets with pileup and UE (NPV > 1,
average NPV ' 2.2) and with UE alone (NPV = 1). The

curves are fits of the form ∆M = p0M +
p1M
M

. The difference
between the curves gives the contribution to the jet mass from
pileup only. The 1σ uncertainties on the fits are shown in the
error bands.

due to the addition of the energy deposits in the comple-
mentary cone to the jet. Corrections to the jet mass are
limited to the region M > 30 GeV, as the

p1M
M param-

eterization uses a leading-order approximation [48] and
is only valid for ∆M � M . This has a negligible effect
on the final measurements in the range M > 20 GeV, as
illustrated for R = 1.0 jets in Fig. 3; low mass, high pT
jets tend to have a small contribution from pileup.

The corresponding parameterizations for the shifts in
width ∆W and eccentricity ∆E are:

∆W = p0W + p1WW,

∆E = p0E + p1EE + p2EE2. (13)

The pileup corrections for width and eccentricity are ap-
plied to jets across the full mass range.

B. Pileup corrections for R = 1.0 jets

The complementary cone technique cannot be applied
directly to R = 1.0 jets due to the high probability of
overlap between the complementary cone and the jet;
scaling factors are therefore applied to the corrections
measured for R = 0.6 jets.

The scaling behaviour is determined experimentally by
comparing the pileup-dependence in R = 0.6 and R = 0.4
jets. For each observable, the shifts for R = 0.4 jets are
fit to a functional form. The shifts for R = 0.6 jets are
then fit to a scaled version of this function, where all pa-
rameters are fixed at their R = 0.4 values and the scaling
is the only free parameter of the fit. The measured R-
dependence is then validated with a comparison between
R = 1.0 jets in NPV > 1 and NPV = 1 events.

The predicted (observed) behaviors for the scaling of
the shifts in mass and width are:

∆M : piM ∼ R4 (R3.5), (14)

∆W : p0W ∼ R3 (R2.5), p1W ∼ R2 (R1). (15)

The phenomenological predictions [49] for scaling are
used, and the discrepancies between predictions and ob-
servations are considered systematic uncertainties in this
procedure.

There is no phenomenological prediction for the scal-
ing of ∆E with pileup, therefore the nominal value of the
scaling of the shift in this variable is measured in data.
The measurements find the scaling of the parameteriza-
tion to be a function of mass:

∆E(M < 40 GeV) : piE ∼ R2,

∆E(M ≥ 40 GeV) : piE ∼ R3. (16)

The measured scaling is varied between R2 and R3 across
the mass range in order to determine a conservative es-
timate of the systematic uncertainty introduced by this
procedure.

The performance of the pileup correction procedure
in the case of mass, width and eccentricity is shown in
Fig. 3. The observable most sensitive to pileup is the jet
mass; the mean R = 1.0 jet mass is shifted upwards by ∼
7 GeV in events with NPV > 1, and there is a significant
change in the shape of the mass distribution. In the
case of jet width and eccentricity, the effect of pileup is a
small (∼ 5%) shift towards wider, less eccentric jets. This
supports the expected behavior: width is less sensitive to
pileup than mass, making it a promising alternative to
mass as a criterion for selecting jets of interest in boosted
particle searches in the high pileup conditions of later
LHC operations. For all observables the discrepancies
between the pileup-corrected distributions and those for
events withNPV = 1 are small, and agreement is obtained
within the systematic uncertainties on the corrections.

C. Corrections for detector effects

After correcting the distributions for pileup, each dis-
tribution is corrected to particle level, using bin-by-bin
corrections for detector effects. The bin migrations due
to detector effects are determined and controlled by in-
creasing the bin sizes until all bins have a purity and effi-
ciency above 50% according to Monte Carlo predictions,
where purity and efficiency are defined as:

pi =
Apart+det
i

Adet
i

, ei =
Apart+det
i

Apart
i

. (17)
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FIG. 3. The mass, width and eccentricity distributions be-
fore and after the pileup corrections. The (red) squares in-
dicate the uncorrected data in the full data set, the (black)
circles indicate the subset of this data with NPV = 1 and
the (blue) triangles indicate the full data set after pileup cor-
rections. The mean value of each distribution is indicated
in the legend with the corresponding statistical uncertainty.
The lower region of each figure shows the measured ratio of
NPV > 1 to NPV = 1 events.

Here Apart+det
i is the number of detector-level jets (re-

constructed from locally calibrated clusters) in bin i that
have a particle-level jet (reconstructed from stable Monte
Carlo particles), matched within ∆R < 0.2 and falling in

the same bin. Apart
i is the total number of particle-level

jets in bin i and Adet
i is the total number of detector-level

jets in bin i.

The particle-level value for an observable in bin i is
found by multiplying its measured value by the relevant
correction factor Ci:

Ci =
Apart
i

Adet
i

. (18)

The size of the corrections varies quite significantly be-
tween observables and between bins, being around 20%
for mass, (5–10% around the peak, 20% elsewhere) and
width (30% in the peak for R = 0.6 jets, 1–5% else-
where). The corrections for eccentricity are below 10%
in the peak, increasing to 40% in the most sparsely pop-
ulated bin. The detector corrections for angularity and
planar flow are smaller, generally around 0–5%.

VII. SYSTEMATIC UNCERTAINTIES

The experimental systematic uncertainties can be di-
vided into three categories: how well-modeled the ob-
servables are in Monte Carlo simulations (Sec. VII A), the
modeling of the detector material and cluster reconstruc-
tion (Sec. VII B) and the pileup corrections (Sec. VII C).
These are evaluated by determining the difference in the
factors obtained after the application of systematic vari-
ations to the samples used in the correction for detector
effects. The dominant sources of uncertainty, described
in detail below, arise from varying the cluster energy scale
(CES) and from the differences found when the calcula-
tion of detector corrections is done using the Herwig++
Monte Carlo sample in place of Pythia AMBT1. These
dominant effects are shown in Fig. 4 for R = 0.6 jets and
Fig. 5 for R = 1.0 jets.

A. Uncertainties on the Monte Carlo model

The distributions are corrected to particle level us-
ing the correction factors Ci determined with a spe-
cific Monte Carlo generator, inclusive of parton shower,
hadronization and UE model, which in this case is
Pythia with the AMBT1 tune. To determine the uncer-
tainty introduced on the final measurement by choosing
this particular model to calculate the detector correction
factors, the differences in these Ci are found when the
Pythia AMBT1 tune is replaced with the Perugia2010
tune, and with Herwig++ (2.4.2).

A primary source of the uncertainty on the mass mea-
surements is due to the observed differences in the detec-
tor correction factors between Herwig++ and Pythia,
with uncertainties ranging between 10–20% as shown in
Fig. 4 and Fig. 5.
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FIG. 4. The dominant sources of systematic uncertainty on the measurements are those resulting in large variations in the
detector correction factors C. These correction factors are found bin-by-bin using R = 0.6 jets in a Pythia AMBT1 sample
with upward and downward variations of the cluster energy scale (first and second columns), and by using Herwig++ (third
column) and Pythia Perugia2010 (fourth column) in place of Pythia AMBT1. The differences ∆C found when comparing
the correction factors obtained with the baseline Pythia AMBT1 sample are shown here for each of the properties measured
in R = 0.6 jets. The shaded bands indicate the statistical uncertainties.

B. Uncertainties on the detector material
description and cluster reconstruction

Performance studies [50] have shown that there is ex-
cellent agreement between the measured positions of clus-
ters and tracks in data, indicating no systematic mis-
alignment between the calorimeter and inner detector.
The Monte Carlo modeling of the position of clusters with
respect to tracks is also good, indicating that the detec-

tor simulation models the calorimeter position resolution
adequately; however, there remains a small discrepancy
between data and Monte Carlo in the mean and RMS of
the track-cluster separation. This source of uncertainty is
taken into account by (Gaussian) smearing the positions
of simulated clusters in η and φ by 5 mrad. This smearing
is done independently in η and φ, and the impact on the
measurement of the correction factors for each observ-
able, bin-by-bin, is quantified by taking the difference,
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FIG. 5. The dominant sources of systematic uncertainty on the measurements are those resulting in large variations in the
detector correction factors C. These correction factors are found bin-by-bin using R = 1.0 jets in a Pythia AMBT1 sample
with upward and downward variations of the cluster energy scale (first and second columns), and by using Herwig++ (third
column) and Pythia Perugia2010 (fourth column) in place of Pythia AMBT1. The differences ∆C found when comparing
the correction factors obtained with the baseline Pythia AMBT1 sample are shown here for each of the properties measured
in R = 1.0 jets. The shaded bands indicate the statistical uncertainties.

∆Ci, between the correction factors obtained before and
after the position smearing. Smearing the positions in
η and φ results in small ∆Ci for mass and shapes alike,
introducing uncertainties that do not exceed 5% in any
bin.

The variation on the CES follows the procedure used
by previous studies [3] according to:

pclus,new = pclus ×
(

1± 0.05×
(

1 +
1.5

pT/GeV

))
(19)

where pclus is each component of the cluster’s four-
momentum and pT is the cluster pT in GeV. The CES is
varied up and down independently for each momentum
component of each cluster, and the correction factors are
recalculated in each case as before. The CES is a large
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source of systematic uncertainty in the measurement of
mass (of order 20% across the mass range) and width
(of order 10% beyond the first two bins). The effects
of varying the CES are in general smaller for the eccen-
tricity, planar flow and angularity measurements, all of
which are made on high mass jets only. The effects of
varying the CES on all observables are shown with the
label Eclus in Fig. 4 for R = 0.6 jets and Fig. 5 for R =
1.0 jets.

The uncertainty introduced as a result of losing energy
due to dead material in the detector is taken into account
by discarding a fraction of low energy (E < 2.5 GeV)
clusters, following the technique and utilizing the obser-
vations of a previous study of the single hadron response
at
√
s = 900 GeV [51]. Clusters are not included in jet

reconstruction if they satisfy:

r ≤ P(E0)× e−2E , (20)

where r is a random number r ∈ (0, 1], P(E0) is the mea-
sured uncertainty (28%) on the probability that a particle
does not leave a cluster in the calorimeter, and E is the
cluster energy in GeV. The impact on the measurement
of each observable is quantified by comparing the correc-
tion factors before and after this dropping of low energy
clusters. The impact of this variation is small, resulting
in a contribution to the systematic uncertainty less than
a few percent in all measurements.

C. Uncertainties on the pileup corrections

There is a statistical uncertainty on the fit f(x, pT,M)
describing the pileup correction ∆x for observable x in
R = 0.6 jets. Dedicated studies have shown that the
parameterizations of the pileup corrections in data and
in Pythia AMBT1 Monte Carlo with simulated pileup
agree, within the statistical uncertainties, for jets across
the pT range considered. The statistical uncertainties
on these fits are accounted for by implementing +1σ
and −1σ variations independently, as shown for mass in
Fig. 2. The correction factors are recalculated, and in
each case the difference is taken as a contribution to the
systematic uncertainty on the measurement. This is a
small contribution to the overall systematic uncertainty
on the measurements, contributing at most a few percent
in bins that are statistically limited, and is a negligible
(< 1%) effect elsewhere.

For R = 1.0 jets, the correction factors are scaled using
the phenomenological predictions described in Sec. VI B.
These scaling factors are also calculated in data and in
Pythia AMBT1 Monte Carlo with simulated pileup;
good agreement is observed, indicating that the effect of
pileup on jets is well-modeled. In the case of mass and
width, where there is a phenomenological prediction for
the scaling, this prediction is used for the determination
of the nominal scaling factors and the variation is taken

from the scaling factors found in data. In the case of ec-
centricity there is no phenomenological prediction for the
scaling of the pileup corrections with R, so the behavior
observed in data is used. The R-scaling of the pileup cor-
rections for eccentricity is dependent on jet mass, so the
variations found in data across the mass range are taken
as the systematic variations.

The uncertainties introduced by the pileup corrections
contribute a small amount (in general 1–2%) to the total
systematic uncertainties on the mass, width and eccen-
tricity.

The sources of systematic uncertainty described above
are added in quadrature with the statistical uncertainty
in each bin and symmetrized where appropriate (the con-
tributions from the cluster energy scale and parameteri-
zation of the pileup corrections are determined separately
for upward and downward fluctuations, and so are not
symmetrized).

VIII. RESULTS

The distributions of jet characteristics presented in
this section are corrected for detector effects and are
compared to Monte Carlo predictions at the particle
level. In the case of mass and τ−2, comparison is also
made between data and the eikonal approximation [46]
of NLO QCD. The results shown here are available in
HepData [52, 53] and the analysis and data are avail-
able as a Rivet [54, 55] routine.

A. Jet mass

The jet mass distributions are shown in Fig. 6 for jets
satisfying pT > 300 GeV and |η| < 2, corrected to the
particle level, and the corresponding numerical values are
given in Table I and Table II.

In the case of R = 1.0 jets, the data are compared to
the calculations for jet masses derived at NLO QCD in
the eikonal approximation:

J ' αS
4Cc

πM
log

(
1

z
tan

(
R

2

)√
4− z2

)
, (21)

where J is the value of the jet mass distribution at M , αS

is the strong coupling constant, z = M/pT, c represents
the flavor of the parton which initiated the jet and Cc = 4

3
(3) for quarks (gluons). The strong coupling constant is
calculated using the Pythia prediction of the average
jet pT ' 365 GeV and has the value of αS = 0.0994.
Theoretical uncertainties for such predictions are sizable
(more than 30%) [46] in the region above the mass peak.
The lower mass region M . 90 GeV is strongly affected
by non-perturbative physics and as such cannot be pre-
dicted by such calculations. The size and shape of the
high-mass tail is in rough agreement with the analytical
eikonal approximation for NLO QCD for jet masses above
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90 GeV, with most of the data points lying between the
predictions for quark-initiated and gluon-initiated jets.
QCD LO calculations predict that the jets in this sample
should be roughly 50% quark-initiated, with this fraction
increasing as a function of the jet pT cut [56].

Also included in Fig. 6 are a number of Pythia, Her-
wig++ and PowHeg predictions for the jet mass dis-
tributions. Unlike the analytical calculation discussed
above, the Monte Carlo predictions are meaningful down
to the low mass region due to the inclusion of soft radi-
ation and hadronization. The Pythia calculation de-
scribes the data well. The Herwig++ 2.4.2 predic-
tion indicates a significant shift to a higher jet mass
that is inconsistent with the data and the other Monte
Carlo predictions, while the more recent Herwig++
2.5.1 generator is in much better agreement with the
data. PowHeg+Pythia is in good agreement with data
within systematic uncertainties across the whole mass
range.

B. Width

The jet width distributions are shown in Fig. 7 for anti-
kt jets reconstructed with distance parameters of R = 0.6
and 1.0, and the corresponding numerical values are given
in Table III and Table IV. There is significant variation
between the different Monte Carlo predictions in the first
bin, beyond which there is good agreement between the
distribution measured in data and all the predictions.

C. Eccentricity

The eccentricity distributions for high mass (M >
100 GeV) anti-kt jets reconstructed with distance param-
eters of R = 0.6 and R = 1.0 are shown in Fig. 8, and the
corresponding numerical values are given in Table V and
Table VI. The Monte Carlo predictions generally describe
the data, while some small discrepancies can be observed
between the various predictions and between predictions
and data.

D. Planar flow

The planar flow distributions are shown only for events
known to be uncontaminated by pileup, corresponding to
events with NPV = 1. These distributions are shown in
Fig. 9 for jets reconstructed with the anti-kt algorithm
with R = 1.0 for the mass range 130 < M < 210 GeV,
and the corresponding numerical values are given in Ta-
ble VII. The Herwig++ 2.4.2 generator predicts jets
with a more planar, isotropic energy distribution than is
observed in data, while version 2.5.1 provides a very accu-
rate description of the planar flow. The various Pythia
and PowHeg Monte Carlo predictions also describe the
data well, within uncertainties.

Bin [GeV] 1
N
dN
dM ± stat. ± sys. (×10−4)[ 1

GeV ]

20 – 40 212 ± 2 ± 34

40 – 60 152 ± 1 ± 16

60 – 80 65 ± 1 +
−

10
11

80 – 110 24 ± 1 ± 4

110 – 140 5.0 ± 0.2 +
−

0.8
1.2

TABLE I. Measured values of the anti-kt R = 0.6 jet mass
distribution given with their statistical and systematic uncer-
tainties.

E. Angularity

The τ−2 distribution for anti-kt R = 0.6 jets in the
mass region 100 < M < 130 GeV is presented in Fig. 10,
and the corresponding numerical values are given in Ta-
ble VIII. The QCD predictions for the peak position and
the maximum value of τ−2 [13], calculated using the av-
erages 〈M〉 = 111 GeV and 〈pT〉 = 434 GeV of the jets
in this kinematic region, are also shown on the distri-
butions. Good agreement is observed between the data
and the Monte Carlo simulation for the shape of the τ−2
distribution.

The comparison between data and the analytic QCD
prediction is limited by the intrinsic resolution of the data
distribution; however, there is good agreement between
theory and data within these limitations. The position

of the peak of the distribution, τpeak−2 , indicates that the
majority of jets in this data set can be described by a
two-body substructure in a symmetric pT configuration
with respect to the jet axis. No jets are observed above
the small-angle kinematic limit, τmax

−2 .

Bin [GeV] 1
N
dN
dM ± stat. ± sys. (×10−4)[ 1

GeV ]

20 – 55 69 ± 1 +
−

23
24

55 – 90 122 ± 1 +
−

17
18

90 – 125 56 ± 1 ± 13

125 – 160 22.6 ± 0.4 +
−

3.2
3.4

160 – 200 9.0 ± 0.2 +
−

2.4
2.3

200 – 240 4.3 ± 0.2 +
−

2.1
1.8

TABLE II. Measured values of the anti-kt R = 1.0 jet mass
distribution given with their statistical and systematic uncer-
tainties.

IX. CONCLUSIONS

The properties of high pT (> 300 GeV) jets recon-
structed with the anti-kt jet algorithm have been stud-
ied in pp collisions at a center-of-mass energy of 7 TeV.
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FIG. 6. The jet mass distributions for leading pT, anti-kt R = 0.6 (left) and R = 1.0 (right) jets in the full 2010 data set,
corrected for pileup and corrected to particle level. The data are compared to various tunes of Pythia 6 and Pythia 8 (top),
Herwig++ 2.4.2 and 2.5.1 (center) and Pythia AUET2B with and without PowHeg (bottom). The eikonal approximation
of NLO QCD for quark and gluon jets is also included for the R = 1.0 case (right, bottom). The shaded bands indicate the
sum of statistical and systematic uncertainties.



13

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

14

d
 Wd
 N

  
N1

0

2

4

6

8

10

12

14
1Data 2010, L=35 pb

PYTHIA6 AMBT1

PYTHIA6 PERUGIA

PYTHIA8 4C

ATLAS

| < 2η|

 > 300 GeV
T

p

 jets, R = 0.6
t

Antik

0 0.05 0.1 0.15 0.2 0.25 0.3

0.8

0.9

1

1.1

1.2

1.3

Width
0 0.05 0.1 0.15 0.2 0.25 0.3

0.8

0.9

1

1.1

1.2

1.3

Width
0 0.05 0.1 0.15 0.2 0.25 0.3

0.8

0.9

1

1.1

1.2

1.3

M
C

/D
a
ta

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6

7

8

d
 Wd
 N

  
N1

0

2

4

6

8
1Data 2010, L=35 pb

PYTHIA6 AMBT1

PYTHIA6 PERUGIA

PYTHIA8 4C

ATLAS

| < 2η|

 > 300 GeV
T

p

 jets, R = 1.0
t

Antik

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.6

0.8

1

1.2

1.4

1.6

Width
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.6

0.8

1

1.2

1.4

1.6

Width
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.6

0.8

1

1.2

1.4

1.6

M
C

/D
a
ta

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

14

d
 Wd
 N

  
N1

0

2

4

6

8

10

12

14

1Data 2010, L=35 pb

HERWIG++ 2.4.2

HERWIG++ 2.5.1

ATLAS

| < 2η|

 > 300 GeV
T

p

 jets, R = 0.6
t

Antik

0 0.05 0.1 0.15 0.2 0.25 0.3

0.8

0.9

1

1.1

1.2

1.3

Width
0 0.05 0.1 0.15 0.2 0.25 0.3

0.8

0.9

1

1.1

1.2

1.3

Width
0 0.05 0.1 0.15 0.2 0.25 0.3

0.8

0.9

1

1.1

1.2

1.3

M
C

/D
a
ta

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6

7

8

d
 Wd
 N

  
N1

0

2

4

6

8
1Data 2010, L=35 pb

HERWIG++ 2.4.2

HERWIG++ 2.5.1

ATLAS

| < 2η|

 > 300 GeV
T

p

 jets, R = 1.0
t

Antik

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.6

0.8

1

1.2

1.4

1.6

Width
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.6

0.8

1

1.2

1.4

1.6

Width
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.6

0.8

1

1.2

1.4

1.6

M
C

/D
a
ta

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

14

d
 Wd
 N

  
N1

0

2

4

6

8

10

12

14
1Data 2010, L=35 pb

POWHEG + PYTHIA6 AUET2b

PYTHIA6 AUET2b

ATLAS

| < 2η|

 > 300 GeV
T

p

 jets, R = 0.6
t

Antik

0 0.05 0.1 0.15 0.2 0.25 0.3

0.8

0.9

1

1.1

1.2

1.3

Width
0 0.05 0.1 0.15 0.2 0.25 0.3

0.8

0.9

1

1.1

1.2

1.3

Width
0 0.05 0.1 0.15 0.2 0.25 0.3

0.8

0.9

1

1.1

1.2

1.3

M
C

/D
a
ta

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6

7

8d
 Wd
 N

  
N1

0

2

4

6

8 1Data 2010, L=35 pb

POWHEG + PYTHIA6 AUET2b

PYTHIA6 AUET2b

ATLAS

| < 2η|

 > 300 GeV
T

p

 jets, R = 1.0
t

Antik

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.6

0.8

1

1.2

1.4

1.6

Width
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.6

0.8

1

1.2

1.4

1.6

Width
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.6

0.8

1

1.2

1.4

1.6

M
C

/D
a
ta

FIG. 7. The jet width distributions for leading pT, anti-kt R = 0.6 (left) and R = 1.0 (right) jets in the full 2010 data set,
corrected for pileup and corrected to particle level.
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FIG. 8. The jet eccentricity distributions for high mass (M > 100 GeV), leading pT, anti-kt R = 0.6 (left) and R = 1.0 (right)
jets in the full 2010 data set, corrected for pileup and corrected to particle level.
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FIG. 9. The jet planar flow distributions for high mass (130 <
M < 210 GeV), leading pT, anti-kt R = 1.0 jets in NPV = 1
events, corrected to particle level.
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FIG. 10. The angularity τ−2 distributions for leading pT,
anti-kt R = 0.6 jets in the mass range 100 < M < 130 GeV,
in the full 2010 data set, corrected to particle level. The
peak and maximum positions predicted by the small angle
approximation of Eq. 10 are indicated.
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Bin 1
N
dN
dW ± stat. ± sys. (×10−1)

0 – 0.025 61.1 ± 1.2 +
−

8.2
8.5

0.025 – 0.05 106 ± 1 +
−

12
11

0.05 – 0.1 55.3 ± 0.4 +
−

10
9

0.1 – 0.15 26.4 ± 0.3 +
−

4
3

0.15 – 0.2 14.0 ± 0.3 ± 2

0.2 – 0.25 7.7 ± 0.2 +
−

1.3
1.2

0.25 – 0.3 4.0 ± 0.2 +
−

0.9
0.7

TABLE III. Measured values of the anti-kt R = 0.6 jet width
distribution given with their statistical and systematic uncer-
tainties.

Bin 1
N
dN
dW ± stat. ± sys. (×10−1)

0 – 0.025 12.1 ± 0.5 +
−

4.8
5.0

0.025 – 0.05 55.3 ± 0.8 ± 15.0

0.05 – 0.1 50.8 ± 0.4 +
−

8.2
7.5

0.1 – 0.15 33.6 ± 0.3 +
−

4.9
4.5

0.15 – 0.2 21.8 ± 0.3 +
−

3.3
3.0

0.2 – 0.25 15.1 ± 0.2 +
−

2.1
1.9

0.25 – 0.3 10.4 ± 0.2 +
−

2.4
2.2

0.3 – 0.35 7.3 ± 0.2 +
−

2.2
2.1

0.35 – 0.4 5.9 ± 0.2 +
−

1.6
1.4

TABLE IV. Measured values of the anti-kt R = 1.0 jet width
distribution given with their statistical and systematic uncer-
tainties.

There is good agreement between data and Pythia for
all observables, and the PowHeg+Pythia prediction
describes the mass distribution well for jets with M >
20 GeV. Herwig++ 2.4.2 predicts jets with a slightly
more isotropic energy flow and higher mass than observed
in data, while Herwig++ 2.5.1 predictions are in good
agreement with the data. The angularity measurement
of high mass jets agrees with the small-angle QCD ap-
proximations.
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Bin 1
N
dN
dP ± stat. ± sys. (×10−1)

0 – 0.2 5.1 ± 0.7 ± 1.4

0.2 – 0.4 13.6 ± 0.9 +
−

2.7
3.0

0.4 – 0.6 13.8 ± 0.9 +
−

2.9
2.7

0.6 – 0.8 9.5 ± 0.8 +
−

1.2
0.9

0.8 – 1.0 8.1 ± 0.7 +
−

1.5
1.7

TABLE VII. Measured values of the planar flow distribu-
tion for anti-kt R = 1.0 jets in NPV=1 events with 130 <
M < 210 GeV, given with their statistical and systematic
uncertainties.

Bin 1
N

dN
dτ−2

± stat. ± sys.

0 – 0.002 75 ± 10 +
−

38
46

0.002 – 0.004 223 ± 15 +
−

27
28

0.004 – 0.006 158 ± 13 +
−

44
33

0.006 – 0.008 40 ± 6 ± 33

0.008 – 0.010 9 ± 5 +
−

26
9

TABLE VIII. Measured values of the angularity τ−2 distribu-
tion for anti-kt R = 0.6 jets with 100 < M < 130 GeV, given
with their statistical and systematic uncertainties.
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Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn,
Germany
21 Department of Physics, Boston University, Boston
MA, United States of America
22 Department of Physics, Brandeis University,
Waltham MA, United States of America
23 (a)Universidade Federal do Rio De Janeiro
COPPE/EE/IF, Rio de Janeiro; (b)Federal University of
Juiz de Fora (UFJF), Juiz de Fora; (c)Federal
University of Sao Joao del Rei (UFSJ), Sao Joao del
Rei; (d)Instituto de Fisica, Universidade de Sao Paulo,
Sao Paulo, Brazil
24 Physics Department, Brookhaven National

Laboratory, Upton NY, United States of America
25 (a)National Institute of Physics and Nuclear
Engineering, Bucharest; (b)University Politehnica
Bucharest, Bucharest; (c)West University in Timisoara,
Timisoara, Romania
26 Departamento de F́ısica, Universidad de Buenos
Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge,
Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa
ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago,
Chicago IL, United States of America
31 (a)Departamento de F́ısica, Pontificia Universidad
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CNRS/IN2P3, Paris, France
79 Fysiska institutionen, Lunds universitet, Lund,
Sweden
80 Departamento de Fisica Teorica C-15, Universidad
Autonoma de Madrid, Madrid, Spain
81 Institut für Physik, Universität Mainz, Mainz,
Germany
82 School of Physics and Astronomy, University of
Manchester, Manchester, United Kingdom
83 CPPM, Aix-Marseille Université and CNRS/IN2P3,
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Instituto de Microelectrónica de Barcelona (IMB-CNM),
University of Valencia and CSIC, Valencia, Spain
168 Department of Physics, University of British
Columbia, Vancouver BC, Canada
169 Department of Physics and Astronomy, University
of Victoria, Victoria BC, Canada
170 Department of Physics, University of Warwick,
Coventry, United Kingdom
171 Waseda University, Tokyo, Japan
172 Department of Particle Physics, The Weizmann
Institute of Science, Rehovot, Israel
173 Department of Physics, University of Wisconsin,
Madison WI, United States of America
174 Fakultät für Physik und Astronomie,
Julius-Maximilians-Universität, Würzburg, Germany
175 Fachbereich C Physik, Bergische Universität
Wuppertal, Wuppertal, Germany
176 Department of Physics, Yale University, New Haven

CT, United States of America
177 Yerevan Physics Institute, Yerevan, Armenia
178 Domaine scientifique de la Doua, Centre de Calcul
CNRS/IN2P3, Villeurbanne Cedex, France
a Also at Laboratorio de Instrumentacao e Fisica
Experimental de Particulas - LIP, Lisboa, Portugal
b Also at Faculdade de Ciencias and CFNUL,
Universidade de Lisboa, Lisboa, Portugal
c Also at Particle Physics Department, Rutherford
Appleton Laboratory, Didcot, United Kingdom
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics, California State
University, Fresno CA, United States of America
f Also at Novosibirsk State University, Novosibirsk,
Russia
g Also at Fermilab, Batavia IL, United States of
America
h Also at Department of Physics, University of
Coimbra, Coimbra, Portugal
i Also at Department of Physics, UASLP, San Luis
Potosi, Mexico
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