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Results are presented on the production of jets of particles in association with a Z/γ∗ boson,
in proton-proton collisions at

√
s = 7 TeV with the ATLAS detector. The analysis includes the

full 2010 data set, collected with a low rate of multiple proton-proton collisions in the accelerator,
corresponding to an integrated luminosity of 36 pb−1. Inclusive jet cross sections in Z/γ∗ events,
with Z/γ∗ decaying into electron or muon pairs, are measured for jets with transverse momentum
pT > 30 GeV and jet rapidity |y| < 4.4. The measurements are compared to next-to-leading-
order perturbative QCD calculations, and to predictions from different Monte Carlo generators
implementing leading-order matrix elements supplemented by parton showers.

PACS numbers: 12.38.Aw, 12.38Qk, 13.87.Ce, 14.70.Hp

I. INTRODUCTION

The study of the production of jets of particles in association with a Z/γ∗ boson in proton-proton collisions provides
a stringent test of perturbative quantum chromodynamics (pQCD). In addition, the proper understanding of these
processes in the Standard Model (SM) is a fundamental element of the LHC physics program, since they constitute
backgrounds in searches for new physics. These SM background contributions are estimated using next-to-leading
order (NLO) pQCD calculations, and Monte Carlo (MC) predictions that include leading-order (LO) matrix elements
supplemented by parton showers. The latter are affected by large scale uncertainties and need to be tuned and
validated using data. Measurements of Z/γ∗+jets production have been previously reported in proton-antiproton
collisions at

√
s = 1.96 TeV [1] and in proton-proton collisions at

√
s = 7 TeV [2].

This article presents measurements of jet production in events with a Z/γ∗ boson in the final state, using 36±1 pb−1

of data collected by the ATLAS experiment in 2010 at
√
s = 7 TeV. In this period, the accelerator operated with a

moderate instantaneous luminosity of up to 2.1×1032 cm−2s−1, and a long spacing of 150 ns between proton bunches,
leading to relatively low collision rates and low rates of multiple proton-proton interactions per bunch crossing (pileup)
and out-of-time pileup, which makes this data sample especially suitable for cross section measurements at low jet
transverse momentum pT [3].
Events are selected with a Z/γ∗ decaying into a pair of electrons (e+e−) or muons (µ+µ−), and the measurements

are corrected for detector effects. Inclusive jet differential cross sections are measured as functions of jet transverse
momentum, pT , and rapidity, |y|, and total cross sections as functions of jet multiplicity, Njet, in well-defined kinematic
regions for the leptons and jets in the final state. Differential cross sections are also measured as functions of pT and
|y| of the leading jet (highest pT ) and second leading jet in Z/γ∗ events with at least one and two jets in the final
state, respectively. For the latter, the cross section is measured as a function of the invariant mass and the angular
separation of the two leading jets. The data are compared to NLO pQCD predictions [4, 5], including non-perturbative
contributions, and to predictions from several MC programs.
The paper is organized as follows. The detector is described in the next Section. Section III discusses the event

selection, while Section IV provides details of the simulations used in the measurements and Sections V and VI
describe the reconstruction of jets and leptons, respectively. The estimation of background contributions is described
in Section VII. Selected uncorrected distributions are presented in Section VIII, and the procedure used to correct
the measurements for detector effects is explained in Section IX. The study of systematic uncertainties is discussed
in Section X. The NLO pQCD predictions are described in Section XI. The measured cross sections are presented
separately for the electron and muon channels in Section XII, where the combination of the electron and muon results
is also discussed. Finally, Section XIII provides a summary.

II. EXPERIMENTAL SETUP

The ATLAS detector [6] covers almost the whole solid angle around the collision point with layers of tracking
detectors, calorimeters and muon chambers. The ATLAS inner detector (ID) has full coverage in φ and covers the
pseudorapidity range |η| < 2.5. It consists of a silicon pixel detector, a silicon microstrip detector (SCT), and a straw
tube tracker (TRT) which also measures transition radiation for particle identification, all immersed in a 2 tesla axial
magnetic field produced by a solenoid.
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High-granularity liquid-argon (LAr) electromagnetic sampling calorimeters, with very good energy and position
resolution [7], cover the pseudorapidity range |η| < 3.2. The hadronic calorimetry in the range |η| < 1.7 is provided
by a scintillator-tile calorimeter, consisting of a large barrel and two smaller extended barrel cylinders, one on either
side of the central barrel. In the end caps (|η| > 1.5), LAr hadronic calorimeters match the outer |η| limits of the end
cap electromagnetic calorimeters. The LAr forward calorimeters provide both electromagnetic and hadronic energy
measurements, and extend the coverage to |η| < 4.9.
The muon spectrometer measures the deflection of muon tracks in the large superconducting air-core toroid magnets

in the pseudorapidity range |η| < 2.7, instrumented with separate trigger and high-precision tracking chambers. Over
most of the η-range, a precision measurement of the track coordinates in the principal bending direction of the magnetic
field is provided by monitored drift tubes. At large pseudorapidities, cathode strip chambers with higher granularity
are used in the innermost plane over 2.0 < |η| < 2.7. The muon trigger system, which covers the pseudorapidity range
|η| < 2.4, consists of resistive plate chambers in the barrel (|η| < 1.05) and thin gap chambers in the end cap regions
(1.05 < |η| < 2.4), with a small overlap in the |η| =1.05 region.

III. Z/γ∗ → ℓ+ℓ− SELECTION

The data samples considered in this paper were collected with tracking detectors, calorimeters, muon chambers,
and magnets fully operational, and correspond to a total integrated luminosity of 36 pb−1.
In the case of the Z/γ∗ → e+e− analysis, events are selected online using a trigger that requires the presence of at

least one identified electron candidate in the calorimeter with transverse energy above 15 GeV in the region |η| < 2.5.
The events are then selected to have two oppositely charged reconstructed electrons (medium quality electrons, as
described in Ref. [8]) with transverse energy Ee

T > 20 GeV, pseudorapidity in the range |ηe| < 2.47 (where the
transition region between calorimeter sections 1.37 < |ηe| < 1.52 is excluded), and a dilepton invariant mass in the
range 66 GeV< me+e− < 116 GeV, which optimizes the signal sensitivity.
The Z/γ∗ → µ+µ− sample is collected online using a trigger that requires the presence of at least one muon

candidate reconstructed in the muon spectrometer, consistent with having originated from the interaction region with
pT > 10 GeV or pT > 13 GeV, depending on the data period, and with the majority of the data taken with the higher
threshold, and |η| < 2.4. The muon candidates are associated with track segments reconstructed in the inner detectors
which, combined with the muon spectrometer information, define the final muon track. Combined muon tracks with
pµT > 20 GeV and |ηµ| < 2.4 are selected. A number of quality requirements are applied to the muon candidates [9]:
the associated inner detector track segment is required to have a minimum number of hits in the pixel, SCT and TRT
detectors; and the muon transverse and longitudinal impact parameters, d0 and z0, with respect to the reconstructed
primary vertex are required to be d0/σ(d0) < 3 and z0 < 10 mm in the r − φ and r − z planes, respectively, where
σ(d0) denotes the d0 resolution. The muons are required to be isolated: the scalar sum of the transverse momenta of
the tracks in an η − φ cone of radius 0.2 around the muon candidate is required to be less than 10% of the muon pT.
Events are selected with two oppositely charged muons and an invariant mass 66 GeV< mµ+µ− < 116 GeV.
In both analyses, events are required to have a reconstructed primary vertex of the interaction with at least

3 tracks associated to it, which suppresses beam-related background contributions and cosmic rays. The selected
dilepton samples contain a total of 9705 and 12582 events for the electron and muon channels, respectively.

IV. MONTE CARLO SIMULATION

Monte Carlo event samples are used to compute detector acceptance and reconstruction efficiencies, determine
background contributions, correct the measurements for detector effects, and estimate systematic uncertainties on the
final results.
Samples of simulated Z/γ∗(→ e+e−)+jets and Z/γ∗(→ µ+µ−)+jets events with a dilepton invariant mass above

40 GeV are generated using ALPGEN v2.13 [10] (including LO matrix elements for up to 2 → 5 parton scatters)
interfaced to HERWIG v6.510 [11] for parton shower and fragmentation into particles, and to JIMMY v4.31 [12]
to model underlying event (UE) contributions. Similar samples are generated using Sherpa 1.2.3 [13] with an UE
modeling according to Ref. [14]. For the ALPGEN samples CTEQ6L1 [15] parton density functions (PDFs) are
employed, while for Sherpa CTEQ6.6 [16] is used. The ALPGEN and Sherpa samples are normalized to the next-to-
next-to-leading order (NNLO) pQCD inclusive Drell-Yan prediction of 1.07±0.05 nb, as determined by the FEWZ [17]
program using the MSTW2008 PDFs. In addition, Z/γ∗+jets samples (qq̄ → Z/γ∗g and qg → Z/γ∗q processes with
p̂T > 10 GeV, where p̂T is the transverse momentum defined in the rest frame of the hard interaction) are produced
using PYTHIA v6.423 [18] and HERWIG plus JIMMY with MRST2007LO∗ [19] PDFs. For the ALPGEN and
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HERWIG plus JIMMY MC samples the AUET1 [20] tuned set of parameters is used to model the UE activity in the
final state. In the case of the PYTHIA samples, the AMBT1 [21] tune is employed.
Background samples from W+jets and Z/γ∗(→ τ+τ−)+jets final states, and diboson (WW , WZ, ZZ) processes

are generated using ALPGEN with CTEQ6L1 PDFs normalized to NNLO [17] and NLO [4] pQCD predictions,
respectively. TAUOLA v1.0.2 [22] is used for tau decays. Simulated top-quark production samples are generated
using MC@NLO [23] and CTEQ6.6 PDFs.
The MC samples are generated with minimum bias interactions from PYTHIA overlaid on top of the hard-scattering

event in order to account for the presence of the pileup experienced in the data. The number of minimum bias (MB)
interactions follows a Poisson distribution with a mean of two, which is appropriate for the 2010 data. The MC
generated samples are then passed through a full simulation [24] of the ATLAS detector and trigger system, based
on GEANT4 [25]. The simulated events are reconstructed and analyzed with the same analysis chain as for the
data, using the same trigger and event selection criteria, and re-weighted such that the distribution of the number of
primary vertices matches that of the data.
The multi-jets background contributions in the electron and muon channels are determined using data, as discussed

in Section VII.

V. JET RECONSTRUCTION

Jets are defined using the anti-kt jet algorithm [26] with the distance parameter set to R = 0.4. Energy depositions
reconstructed as calorimeter clusters are the inputs to the jet algorithm in data and MC simulated events. The same
jet algorithm is applied to final state particles in the MC generated events to define jets at particle level [27]. The
jet kinematics in data and MC simulated events are corrected to account for the following effects: the presence of
additional proton-proton interactions per bunch crossing, leading to an additional energy offset of (500 ± 160) MeV
within the jet cone for each extra interaction [28]; the position of the primary vertex of the interaction; and the
measurement biases induced by calorimeter non-compensation, additional dead material, and out-of-cone effects. The
measured jet pT is corrected for detector effects back to the true jet energy [29] using an average correction, computed
as a function of the jet transverse momentum and pseudorapidity, and extracted from inclusive jet MC samples.
The measured jet pT is reconstructed with a resolution of about 10% at low pT which improves to 6% for pT about
200 GeV. The measured jet angular variables y and φ are reconstructed with no significant shift and a resolution
better than 0.05, which improves as the jet transverse momentum increases.
In this analysis, jets are selected with corrected pT > 30 GeV and |y| < 4.4 to ensure full containment in the

instrumented region. Events are required to have at least one jet well separated from the final state leptons from
the Z/γ∗ decay. Jets within a cone of radius 0.5 around any selected lepton are not considered. Additional quality
criteria are applied to ensure that jets are not produced by noisy calorimeter cells, and to avoid problematic detector
regions.
The final sample for Z/γ∗(→ e+e−)+jets contains 1514, 333, 62, and 15 events with at least one, two, three, and

four jets in the final state, respectively. Similarly, the Z/γ∗(→ µ+µ−)+jets sample contains 1885, 422, 93, and 20
events with at least one, two, three, and four jets in the final state, respectively.

VI. LEPTON RECONSTRUCTION

Samples of Z/γ∗ → e+e− and Z/γ∗ → µ+µ− events in data and MC simulation, together with the world average val-
ues for the Z boson mass and width, are used to determine the absolute scale and resolution of the energy/momentum
of the leptons, to validate calibration- and alignment-related constants in data, and to check the MC description [30].
In addition, the trigger and offline lepton reconstruction efficiencies are studied using control samples in data, and
the results are compared to the simulation. The differences observed between data and MC predictions define scale
factors which are applied in the analysis to the simulated samples before they are used to correct the measurements
for detector effects.
For the electron channel, the trigger and offline electron reconstruction and identification efficiencies for single

electrons are estimated using W → eν and Z/γ∗ → e+e− events in data and compared to MC predictions. In the
kinematic range for the electrons considered in the analysis (see Section III), the trigger and offline efficiencies per
electron are above 99% and 93%, respectively. The study indicates a good agreement between data and simulated
trigger efficiencies with a MC-to-data scale factor of 0.995± 0.005. The simulation tends to overestimate the offline
efficiencies. Scale factors in the range between 0.901± 0.045 and 0.999± 0.016, depending on ηe and Ee

T, for Ee
T >

20 GeV, are applied per lepton to the MC samples to account for this effect.
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In the muon analysis, the trigger and offline muon reconstruction efficiencies are also estimated using the data and
are compared to simulation. The measured average single muon trigger efficiency is about 85%, independent of pµT,
and varies from 80% for |ηµ| < 0.63 and 73% for 0.63 < |ηµ| < 1.05 to 94% for 1.05 < |ηµ| < 2.4, limited mainly by
the trigger chamber geometric acceptance. The measured average offline muon reconstruction efficiency is about 92%
and approximately independent of pµT. The MC simulation predicts efficiencies very similar to those in the data, but
tends to overestimate the average offline reconstruction efficiency by about 1%. This originates from the transition
region between the barrel part and the endcap wheels at |η| ∼ 1, where the simulation overestimates the offline
reconstruction efficiency by about 6%. The latter is attributed to the limited accuracy of the magnetic field map used
in this region which leads to a small mismeasurement of the stand-alone muon momentum and an overestimation in
the simulated efficiency. Scale factors are applied in the analysis that take this effect into account.

VII. BACKGROUND ESTIMATION

The background contribution to the electron and muon analyses from SM processes is estimated using MC simulated
samples, as discussed in Section IV, with the exception of the multi-jets background that is estimated using data.
The multi-jets background contribution in the Z/γ∗(→ e+e−)+jets analysis is estimated using a control data sample

with two electron candidates which pass a loose selection but fail to pass the medium identification requirements.
This sample is dominated by jets faking electrons in the final state and is employed to determine the shape of the
multi-jets background under each of the measured distributions. The normalization of the multi-jets background
events in the signal region is extracted from a fit to the measured inclusive dilepton invariant mass spectrum with
nominal lepton requirements, using as input the observed shape of the multi-jets contribution in data and the MC
predictions for the shape of the signal and the rest of the SM background processes. The multi-jets background
contribution to the measured inclusive jet multiplicity varies between 3.2 ± 0.5(stat.)+0.3

−0.2(syst.)% for Njet ≥ 1 and

4.5 ± 1.9(stat.)+0.4
−0.2(syst.)% for Njet ≥ 4. The quoted total systematic uncertainty includes: uncertainties related to

the details of the parameterization and the mass range used to fit the measured dilepton invariant mass spectrum;
uncertainties on the shape of the dilepton invariant mass distribution, as determined in the control sample; and
uncertainties on the shape of the simulated dilepton invariant mass distribution for the other SM processes.
In the Z/γ∗(→ µ+µ−)+jets case, the multi-jets background mainly originates from heavy-flavour jet production

processes, with muons from bottom and charm quark decays, as well as from the decay-in-flight of pions and kaons,
which are highly suppressed by the isolation requirement applied to the muon candidates. The isolation criterion
of the muon pair, defined as the isolation of the least-isolated muon candidate, is used together with the dimuon
invariant mass to estimate the remaining multi-jets background contribution. The MC simulation indicates that, for
multi-jet processes, the muon isolation is not correlated with the dimuon invariant mass, and so the ratio of isolated
to non-isolated muon pairs (as defined with an inverted isolation criterion) does not depend on the dimuon mass. The
multi-jets background with isolated muons with 66 GeV< mµ+µ− < 116 GeV is therefore extracted from data as the
ratio between the number of isolated and non-isolated dimuon candidates in the region 40 GeV< mµ+µ− < 60 GeV
multiplied by the number of non-isolated dimuon candidates in the range 66 GeV< mµ+µ− < 116 GeV. A small
contribution from top pair production processes is subtracted from the data according to MC predictions. The
multi-jets background contribution to the Z/γ∗(→ µ+µ−)+jets analysis is of the order of one per mille and therefore
negligible.
In the electron channel, the total background increases from 5% to 17% as the jet multiplicity increases and is

dominated by multi-jet processes, followed by contributions from tt̄ and diboson production at large jet multiplicities.
In the muon channel, the SM background contribution increases from 2% to 10% as the jet multiplicity increases,
dominated by tt̄ and diboson processes. Table I shows, for the electron and muon analyses separately, the observed
number of events for the different jet multiplicities in the final state compared to predictions for signal and background
processes.

VIII. UNCORRECTED DISTRIBUTIONS

The uncorrected Z/γ∗(→ e+e−)+jets and Z/γ∗(→ µ+µ−)+jets data are compared to the predictions for signal and
background contributions. For the signal, both ALPGEN and Sherpa predictions are considered. As an example, Fig. 1
shows, separately for the electron and muon channels, the measured dilepton invariant mass in events with at least
one jet in the final state, as well as the measured uncorrected inclusive jet multiplicity. Other observables considered
include: the uncorrected inclusive jet pT , y, and φ distributions; the corresponding pT , y, and φ distributions of
the leading, second-leading and third-leading jet in events with at least one, two and three jets in the final state,
respectively; the invariant mass of the two leading jets, mjj , and their rapidity difference, ∆yjj , their azimuthal
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Z/γ∗ → e+e− channel

≥ 1 jet ≥ 2 jets ≥ 3 jets ≥ 4 jets
Z/γ∗ → e+e− ALPGEN 1357 307 64.4 12.7

W → eν ALPGEN 4.3 1.0 0.31 0.11
Z/γ∗ → τ+τ− ALPGEN 0.9 0.25 0.03 0.005
WW,WZ,ZZ ALPGEN 9.6 4.8 1.7 0.45

tt̄ MC@NLO 11.7 9.2 4.3 1.3
multi-jets from data 49 12.6 2.2 0.7

SM prediction 1432 334 72.9 15.2
data (36 pb−1) 1514 333 62 15

Z/γ∗ → µ+µ− channel

≥ 1 jet ≥ 2 jets ≥ 3 jets ≥ 4 jets
Z/γ∗ → µ+µ− ALPGEN 1869 421 87.2 17.7

W → µν ALPGEN 0.3 0.06 0.04 0.04
Z/γ∗ → τ+τ− ALPGEN 0.68 0.11 0.03 <0.01
WW,WZ,ZZ ALPGEN 12.8 6.8 2.3 0.57

tt̄ MC@NLO 13.6 10.7 4.6 1.4
multi-jets from data 1 0.3 0.1 0.01

SM prediction 1898 439 94.2 19.8
data (36 pb−1) 1885 422 93 20

TABLE I: Number of events for the Z/γ∗ → e+e− and Z/γ∗ → µ+µ− analyses as a function of inclusive jet multiplicity. The
data are compared to the predictions for the signal (as determined by ALPGEN) and background processes (see Sections IV and
VII). No uncertainties are indicated. The statistical uncertainty on the total prediction is negligible, and the corresponding
systematic uncertainty varies between 10% and 23% with increasing Njet.

separation, ∆φjj , and the angular separation in y − φ space, ∆Rjj =
√

(∆yjj)2 + (∆φjj)2, in events with at least
two jets in the final state. In all cases, the data yields are described, within statistical uncertainties, by the MC
predictions for the signal plus the estimated SM background contributions.

IX. CORRECTION FOR DETECTOR EFFECTS

The jet measurements are corrected for detector effects back to the particle level using a bin-by-bin correction
procedure, based on MC simulated samples, that corrects for jet selection efficiency and resolution effects and also
accounts for the efficiency of the Z/γ∗ selection.
The corrected measurements refer to particle level jets identified using the anti-kt algorithm with R = 0.4, for jets

with pT > 30 GeV and |y| < 4.4. At particle level, the lepton kinematics in the MC generated samples include the
contributions from the photons radiated within a cone of radius 0.1 around the lepton direction. The measured cross
sections are defined in a limited kinematic range for the Z/γ∗ decay products.

• In the electron channel, the measured cross sections refer to the region: 66 GeV< me+e− < 116 GeV, Ee
T >

20 GeV, |ηe| < 1.37 or 1.52 < |ηe| < 2.47, and ∆R(jet− electron) > 0.5.

• Similarly, in the muon case the measurements are presented in the region: 66 GeV< mµ+µ− < 116 GeV,
pµT > 20 GeV, |ηµ| < 2.4, and ∆R(jet−muon) > 0.5.

The ALPGEN samples for Z/γ∗+jets processes provide a satisfactory description of both lepton and jet distributions
in data and are employed to compute the correction factors. For each observable ξ the bin-by-bin correction factors
U(ξ) are defined as the ratio between the simulated distribution, after all selection criteria are applied, and the
corresponding distribution at the particle level defined in a limited fiducial kinematic region for the generated leptons
and jets, as detailed above.
Correction factors are considered for the following measurements: the inclusive jet multiplicity, pT and |y| distri-

butions; the pT and |y| distributions for the leading- and second-leading jets in events with at least one and two
jets, respectively; and the invariant mass and angular separation distributions in the inclusive dijet sample. Typical
correction factors are about 1.40 for the electron channel and about 1.15 for the muon channel (see below), where the
difference is mainly attributed to the identification of the Z boson candidate in the final state.
The measured differential cross sections are defined as functions of a given ξ:

dσ

dξ
=

1

L
1

∆ξ
(Ndata −Nbackg)× U(ξ) (1)
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where, for each bin in ξ, Ndata and Nbackg denote the number of entries (events or jets) observed in data and the
background prediction, respectively, ∆ξ is the bin width, U(ξ) is the correction factor, and L is the total integrated
luminosity. The bin widths were chosen to be commensurate with the resolution, with typical correct-bin purities
above 70%, and the cross section measurements are limited to bins in ξ that contain at least ten entries in the data.

A. Correction factors in the Z/γ∗ → e+e− channel

In the case of the inclusive jet multiplicity, the correction factors vary with the number of jets and are between 1.40
and 1.50. The correction factors for the inclusive jet pT distribution and the pT distribution for the leading jet vary
from 1.45 at pT around 30 GeV and 1.50 at pT about 60 GeV to 1.42 at very large pT . The corresponding factors for
the pT distribution of the second-leading jet increase from about 1.40 to 1.55 with increasing pT .
The correction factors for the inclusive |y| distribution and the |y| distribution of the leading jet vary from 1.40 for

central jets to about 1.60 for very forward jets. The correction factors for the |y| distribution of the second-leading
jets are about 1.45 and show a mild rapidity dependence.
The correction factors for the ∆y, ∆φ, and ∆R distributions between the two leading jets increase from 1.30 to 1.50

as the jet separation increases. Finally, the correction factor for the dijet invariant mass distribution varies between
1.40 and 1.55 as mjj increases from 60 GeV to 300 GeV. At very low mjj , the correction factors are about 0.90 and
reflect a large sensitivity to the pT thresholds applied in the analysis. Therefore, the cross section as a function of
mjj is only reported for mjj > 60 GeV.

B. Correction factors in the Z/γ∗ → µ+µ− channel

The correction factors for the inclusive jet multiplicity decrease from 1.15 to 1.08 with increasingNjet. The correction
factors for the different pT distributions increase from 1.10 to 1.20 as pT increases from 30 GeV to 50 GeV and present
a mild pT dependence for pT > 50 GeV. Similarly, the corresponding factors for the different jet |y| distributions vary
between 1.15 for central jets and 1.20 for forward jets.
The correction factors for the ∆y, ∆φ, and ∆R distributions, for the two leading jets in events with at least two

jets in the final state, vary between 1.10 and 1.20 as the jet separation increases. The correction factors for the mjj

distribution vary between 1.10 and 1.20 as mjj increases. As in the electron case, the cross section as a function of
mjj is limited to the region mjj > 60 GeV.

X. STUDY OF SYSTEMATIC UNCERTAINTIES

A detailed study of systematic uncertainties is carried out. In the following, a complete description is given for two
of the observables: the inclusive cross section as a function of Njet and the inclusive jet cross section as a function
of pT , in events with at least one jet in the final state (see Fig. 2). The same sources of systematic uncertainty are
considered for the rest of the observables.

• The measured jet energies are increased and decreased by factors between 3% and 10%, depending on pT and
η, to account for the absolute jet energy scale (JES) uncertainty, as determined in inclusive jet studies [29]. For
a given jet |η|, the jet energy uncertainty tends to decrease with increasing pT , while the uncertainties increase
with increasing |η|. An additional 0.1% to 1.5% uncertainty on the jet energy, depending on pT and |η|, is
considered for each additional reconstructed primary vertex in the event to account for the uncertainty on
the pileup offset subtraction, where the uncertainty decreases (increases) with increasing pT (|η|). Additional
uncertainties are included to account for the different quark- and gluon-jet relative population in multi-jets
and Z/γ∗+jets processes and the presence of close-by jets in the final state, leading to a different average
calorimeter response. These effects added in quadrature result in an uncertainty on the measured cross sections
that increases from 7% to 22% as Njet increases and from 8% to 12% as pT increases, and constitutes the
dominant source of systematic uncertainty for each of the measured distributions. The uncertainty on the jet
energy resolution (JER) [29] translates into a 1% uncertainty on the cross section as a function of Njet and into
a 1% to 3% uncertainty on the measured cross sections with increasing jet pT and |y|.

• The uncertainty on the estimated multi-jets background in the electron channel translates into an uncertainty
on the measured cross sections which rises from 0.6% to 2% as Njet and pT increase. In addition, the background
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contributions from top quark, W+jets, Z/γ∗(→ τ+τ−)+jets, and diboson production processes are varied by
+7
−9.6%, 5%, 5%, and 5%, respectively, to account for the uncertainty on the absolute normalization of the
different MC samples. This translates into a less than 1% uncertainty in the measured cross sections. In the
Z/γ∗(→ µ+µ−)+jets measurements, the impact from the background uncertainties is negligible.

• The correction factors are re-computed using Sherpa instead of ALPGEN to account for possible dependencies
on the parton shower, underlying event and fragmentation models, and the PDF sets used in the MC samples.
This introduces an uncertainty on the measured cross sections that increases from 0.4% to 4.5% with increasing
Njet and pT . In addition, a Bayesian iterative method [31] is used to unfold the data, which accounts for the
full migration matrix across bins for a given observable. The ALPGEN MC samples are used to construct the
input migration matrices for the different measured distributions and up to three iterations are considered, as
optimized separately for each observable using the simulation. The differences with respect to the nominal
bin-by-bin correction factors are less than 1% except at very large pT where they vary between 3% and 6%, and
are included as an additional source of systematic uncertainty. Altogether, this introduces an uncertainty on
the measured cross sections that increases from 0.7% to 7% with increasing Njet and pT .

• The uncertainty on the electron selection is taken into account. It includes uncertainties on the electron absolute
energy scale and energy resolution, the uncertainty on the electron identification efficiency, and the uncertainties
on the electron reconstruction scale factors applied to the MC simulation. This translates into a 4% uncertainty
in the measured Z/γ∗(→ e+e−)+jets cross sections, approximately independent of Njet, and jet pT and η.
The uncertainty on the measured cross sections due to the determination of the electron trigger efficiency is
negligible.

• The uncertainty on the muon reconstruction efficiency, the muon momentum scale, and the muon momentum
resolution translate into a conservative 2% uncertainty in the measured Z/γ∗(→ µ+µ−)+jets cross sections,
approximately independent of Njet, and jet pT and η. The uncertainty on the muon trigger efficiency introduces
a less than 1% uncertainty on the measured cross sections.

For each channel, the different sources of systematic uncertainty are added in quadrature to the statistical uncertainty
to obtain the total uncertainty. The total systematic uncertainty increases from 9% to 23% as Njet increases; and from
10% at low pT to 13% at very high pT . Finally, the additional 3.4% uncertainty on the total integrated luminosity [32]
is also taken into account.

XI. NEXT-TO-LEADING ORDER PQCD PREDICTIONS

NLO pQCD predictions for Z/γ∗(→ e+e−)+jets and Z/γ∗(→ µ+µ−)+jets production are computed using the
BlackHat program [5]. CTEQ6.6 PDFs [16] are employed and renormalization and factorization scales are set to
µ = HT/2, where HT is defined event-by-event as the scalar sum of the pT of all particles and partons in the final
state. The anti-kt algorithm with R = 0.4 is used to reconstruct jets at the parton level.
Systematic uncertainties on the predictions related to PDF uncertainties are computed using the Hessian method [33]

and are defined as 90% confidence level uncertainties. For the total cross sections, they increase from 2% to 5% with
increasing Njet. Additional changes in the PDFs due to the variation of the input value for αs(MZ) by ±0.002 around
its nominal value αs(MZ) = 0.118 introduce uncertainties on the measured cross sections that increase from 2% to
7% with increasing Njet. These are added in quadrature to the PDF uncertainties. Variations of the renormalization
and factorization scales by a factor of two (half) reduce (increase) the predicted cross sections by 4% to 14% as Njet

increases.
The theoretical predictions are corrected for QED radiation effects. The correction factors δQED are determined us-

ing ALPGEN MC samples with and without photon radiation in the final state, defined by the lepton four-momentum
and photons within a cone of radius 0.1 around the lepton direction. The correction factors are about 2% for the
electron and muon channels, and do not present a significant Njet dependence.
The theoretical predictions include parton-to-hadron correction factors δhad that approximately account for non-

perturbative contributions from the underlying event and fragmentation into particles. In each measurement, the
correction factor is estimated using HERWIG+JIMMY MC samples, as the ratio at the particle level between the
nominal distribution and the one obtained by turning off both the interactions between proton remnants and the
cluster fragmentation in the MC samples. The non-perturbative correction factors for the inclusive Njet and pT
distributions are about 0.99 and exhibit a moderate Njet and pT dependence. However, for very forward jets δhad is
about 0.9. The non-perturbative corrections are also computed using PYTHIA-AMBT1 MC samples with different
parton shower, fragmentation model, and UE settings. The uncertainty on δhad, defined as the difference between the
results obtained with HERWIG/JIMMY-AUET1 and PYTHIA-AMBT1, varies between 2% and 5%.
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XII. RESULTS

As mentioned in Section IX, the measured cross sections refer to particle level jets identified using the anti-kt
algorithm with R = 0.4, for jets with pT > 30 GeV and |y| < 4.4, and the results are defined in a limited kinematic
range for the Z/γ∗ decay products. The data are compared to the predictions from the different MC event generators
implementing Z/γ∗(→ e+e−)+jets and Z/γ∗(→ µ+µ−)+jets production, as discussed in Section IV, as well as to
NLO pQCD predictions, as discussed in Section XI. Tabulated values of the results are available in Tables II to XIII
and in the Durham HEP database [34].

A. Inclusive jet multiplicity

Figure 3 presents the measured cross sections as functions of the inclusive jet multiplicity (≥ Njet) for Z/γ
∗ → e+e−

and Z/γ∗ → µ+µ− interactions, in events with up to at least four jets in the final state. The data are well described
by the predictions from ALPGEN and Sherpa, and BlackHat NLO pQCD. ALPGEN and Sherpa predictions include
a 5% uncertainty from the NNLO pQCD normalization, as discussed in Section IV, and the systematic uncertainty on
the BlackHat NLO pQCD predictions is discussed in Section XI. In the case of PYTHIA, the LO pQCD (qq̄ → Z/γ∗g
and qg → Z/γ∗q processes) MC predictions are multiplied by a factor 1.19, as determined from data and extracted
from the average of electron and muon results in the ≥ 1 jet bin in Fig. 3. This brings the PYTHIA predictions
close to the data. However, for larger Njet, and despite the additional normalization applied, PYTHIA predictions
underestimate the measured cross sections.
The measured ratio of cross sections for Njet and Njet − 1 is shown in Fig. 4, compared to the different theoretical

predictions. This observable cancels part of the systematic uncertainty and constitutes an improved test of the SM.
The ratio is sensitive to the value of the strong coupling, and to the details of the implementation of higher-order
matrix elements and soft-gluon radiation contributions in the theoretical predictions. The data indicate that the
cross sections decrease by a factor of five with the requirement of each additional jet in the final state. The electron
and muon measurements are well described by ALPGEN and Sherpa, and the BlackHat NLO pQCD predictions.
PYTHIA predictions underestimate the measured ratios.

B. dσ/dpT and dσ/d|y|

The inclusive jet differential cross section dσ/dpT as a function of pT is presented in Fig. 5, for both electron and
muon analyses, in events with at least one jet in the final state. The cross sections are divided by the corresponding
inclusive Z/γ∗ cross section times branching ratio σZ/γ∗

→ℓ+ℓ− (ℓ = e, µ), separately for Z/γ∗ → e+e− and Z/γ∗ →
µ+µ−, measured in the same kinematic region for the leptons and consistent with the results in Ref. [30], with the aim
of cancelling systematic uncertainties related to lepton identification and the luminosity. The measured differential
cross sections decrease by more than two orders of magnitude as pT increases between 30 GeV and 180 GeV. The data
are well described by ALPGEN and Sherpa, and the BlackHat NLO pQCD predictions. PYTHIA predictions include
the multiplicative factor 1.19 (as described above) and are then divided by the measured σZ/γ∗

→ℓ+ℓ− cross sections

in this analysis. This results in total normalization factors (×0.0028 pb−1) and (×0.0027 pb−1) for the electron and
muon channels, respectively. PYTHIA shows a slightly softer jet pT spectrum than the data. Similar conclusions are
extracted from Fig. 6, where the differential cross sections are presented as a function of the leading-jet pT .
Figure 7 shows the measured differential cross sections (1/σZ/γ∗

→ℓ+ℓ−)dσ/dpT , for electron and muon channels, as
a function of pT of the second leading jet for jets with 30 GeV < pT < 120 GeV, in events with at least two jets in the
final state. The measured cross sections decrease with increasing pT , and are again well described by ALPGEN and
Sherpa, and the BlackHat NLO pQCD predictions, while PYTHIA does not describe the data. This is expected since
PYTHIA only implements pQCD matrix elements for Z/γ∗+1 jet production, with the additional parton radiation
produced via parton shower.
Inclusive jet differential cross sections (1/σZ/γ∗

→ℓ+ℓ−)dσ/d|y| as a function of |y| for jets with pT > 30 GeV are
presented in Fig. 8, while Fig. 9 shows the jet measurements as a function of the rapidity of the leading jet. The
measured cross sections decrease with increasing |y| and are well described by ALPGEN and the BlackHat NLO
pQCD predictions. Sherpa provides a good description of the data in the region |y| < 3.5 but predicts a slightly
larger cross section than observed in data for very forward jets. PYTHIA provides a good description of the shape of
the measured cross sections in the region |y| < 2.5 but predicts a smaller cross section than the data in the forward
region. In Fig. 10, the measured differential cross sections are presented as functions of the |y| of the second leading
jet, for events with at least two jets in the final state. The data are described by the predictions from ALPGEN and
Sherpa, and BlackHat NLO pQCD, while again PYTHIA does not describe the data.
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C. dσ/dmjj

The measured differential cross sections (1/σZ/γ∗
→ℓ+ℓ−)dσ/dm

jj as a function of the invariant mass of the two

leading jets in the event for 60 GeV < mjj < 300 GeV are presented in Fig. 11 for both electron and muon channels.
The shape of the measured cross section at low mjj is affected by the jet pT threshold in the cross section definition.
For mjj > 100 GeV, the measured cross sections decrease with increasing mjj . The measurements are well described
by ALPGEN and Sherpa, and the BlackHat NLO pQCD predictions. PYTHIA approximately reproduces the shape
of the measured distribution but underestimates the measured cross sections.

D. dσ/d|∆yjj |, dσ/d|∆φjj |, and dσ/d∆Rjj

Inclusive dijet cross sections are also measured as a function of the spatial separation of the two leading jets in
the final state. Figure 12 shows the measured differential cross section as a function of the rapidity separation of the
jets (1/σZ/γ∗

→ℓ+ℓ−)dσ/d|∆yjj |, for both the electron and muon analysis, compared to the different predictions. The

measured differential cross sections as a function of the azimuthal separation between jets (1/σZ/γ∗
→ℓ+ℓ−)dσ/d|∆φjj |

are presented in Fig. 13, and Fig. 14 shows the measured differential cross sections (1/σZ/γ∗
→ℓ+ℓ−) dσ/d∆Rjj as

a function of the angular separation ∆Rjj between the two leading jets in the event. The measurements are well
described by ALPGEN and Sherpa, and the BlackHat NLO pQCD predictions, while PYTHIA underestimates the
measured cross sections. In particular, PYTHIA underestimates the data for large |∆φjj | values and for those
topologies corresponding to well-separated jets.

E. Combination of electron and muon results

The measured cross section distributions for the Z/γ∗(→ e+e−)+jets and Z/γ∗(→ µ+µ−)+jets analyses are com-
bined. In this case, the results are not normalized by the inclusive Z/γ∗ cross section after the combination, with the
aim to present also precise absolute jet cross section measurements.
As already discussed, the electron and muon measurements are performed in different fiducial regions for the

rapidity of the leptons in the final state. In addition, the QED radiation effects are different in both channels.
For each measured distribution, bin-by-bin correction factors, as extracted from ALPGEN Z/γ∗(→ e+e−)+jets and
Z/γ∗(→ µ+µ−)+jets MC samples, are used to extrapolate the measurements to the region pT > 20 GeV and |η| < 2.5
for the leptons, where the lepton kinematics are defined at the decay vertex of the Z boson. The increased acceptance
in the lepton rapidities translates into about a 14% and a 5% increase of the measured cross sections in the electron
and muon channels, respectively. As already mentioned in Section XI, the correction for QED effects increases the
cross sections by about 2%. The uncertainties on the acceptance corrections are at the per mille level, as determined
by using Sherpa instead of ALPGEN, and by considering different PDFs among the CTEQ6.6 and MSTW sets. A χ2

test is performed for each observable to quantify the agreement between the electron and muon results before they
are combined, where the statistical and uncorrelated uncertainties are taken into account. The statistical tests lead to
probabilities larger than 60% for the electron and muon measurements to be compatible with each other, consistent
with slightly conservative systematic uncertainties.
The electron and muon results are combined using the BLUE (Best Linear Unbiased Estimate) [35] method, which

considers the correlations between the systematic uncertainties in the two channels. The uncertainties related to the
trigger, the lepton reconstruction, and the multi-jets background estimation are considered uncorrelated between the
two channels, while the rest of the systematic uncertainties are treated as fully correlated. Figures 15 to 26 show the
combined results, and Tables II to XIII collect the final measurements for the electron and muon channels and their
combination, together with the multiplicative parton-to-hadron correction factors δhad applied to the BlackHat NLO
pQCD predictions (see Section XI). The measurements are well described by the BlackHat NLO pQCD predictions,
and by the predictions from ALPGEN and Sherpa. The corresponding χ2 tests relative to the different predictions,
performed separately in each channel and for each observable, lead to χ2 per degree of freedom values in the range
between 0.05 and 2.70. Further details of the combination and the χ2 tests are presented in the Appendix.

XIII. SUMMARY

In summary, results are reported for inclusive jet production in Z/γ∗ → e+e− and Z/γ∗ → µ+µ− events in
proton-proton collisions at

√
s = 7 TeV. The analysis considers the data collected by the ATLAS detector in 2010
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corresponding to a total integrated luminosity of about 36 pb−1. Jets are defined using the anti-kt algorithm with
R = 0.4 and the measurements are performed for jets in the region pT > 30 GeV and |y| < 4.4. Cross sections are
measured as a function of the inclusive jet multiplicity, and the transverse momentum and rapidity of the jets in the
final state. Measurements are also performed as a function of the dijet invariant mass and the angular separation
between the two leading jets in events with at least two jets in the final state. The measured cross sections are well
described by NLO pQCD predictions including non-perturbative corrections, as well as by predictions of LO matrix
elements of up to 2 → 5 parton scatters, supplemented by parton showers, as implemented in the ALPGEN and
Sherpa MC generators.
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FIG. 1: Uncorrected dilepton invariant mass in (top) Z/γ∗ → e+e− and (bottom) Z/γ∗ → µ+µ− events with at least one jet
in the final state, shown in a wider dilepton mass region than the one selected (left), and uncorrected inclusive jet multiplicity
(right), for jets with pT > 30 GeV and |y| < 4.4 (black dots), and in the mass range 66 GeV< mℓ+ℓ− < 116 GeV (ℓ = e, µ). Only
statistical uncertainties are shown. The data are compared to predictions for signal (ALPGEN and Sherpa, both normalized
to the FEWZ value for the total cross section) and background processes (filled histograms).
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FIG. 2: Relative systematic uncertainties from different sources in the (top) Z/γ∗(→ e+e−)+jets and (bottom) Z/γ∗(→
µ+µ−)+jets analyses for the measured cross section as a function of inclusive jet multiplicity, and the inclusive differential cross
sections as a function of pT , for events with at least one jet with pT > 30 GeV and |y| < 4.4 in the final state (see Section X).
The total systematic uncertainty is obtained by summing all contributions in quadrature.
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FIG. 3: Measured cross section σNjet
(black dots) for (left) Z/γ∗(→ e+e−)+jets and (right) Z/γ∗(→ µ+µ−)+jets production

as a function of the inclusive jet multiplicity, for events with at least one jet with pT > 30 GeV and |y| < 4.4 in the final state.
In this and subsequent figures 4 - 14 the error bars indicate the statistical uncertainty and the dashed areas the statistical and
systematic uncertainties added in quadrature. The measurements are compared to NLO pQCD predictions from BlackHat,
as well as the predictions from ALPGEN and Sherpa (both normalized to the FEWZ value for the total cross section), and
PYTHIA (normalized to the data as discussed in Section XII).
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FIG. 4: Measured ratio of cross sections (σNjet
/σNjet−1) (black dots) for (left) Z/γ∗(→ e+e−)+jets and (right) Z/γ∗(→

µ+µ−)+jets production as a function of the inclusive jet multiplicity, for events with at least one jet with pT > 30 GeV and
|y| < 4.4 in the final state.
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FIG. 5: Measured normalized inclusive jet cross section (1/σZ/γ∗
→ℓ+ℓ−)dσ/dpT (black dots) in (left) Z/γ∗(→ e+e−)+jets and

(right) Z/γ∗(→ µ+µ−)+jets production as a function of pT , in events with at least one jet with pT > 30 GeV and |y| < 4.4 in
the final state, and normalized by σZ/γ∗

→e+e− and σZ/γ∗
→µ+µ− Drell-Yan cross sections, respectively.
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→ℓ+ℓ−)dσ/d|y| (black dots) in (left) Z/γ∗(→ e+e−)+jets and (right)
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FIG. 11: Measured normalized dijet cross section (1/σZ/γ∗
→ℓ+ℓ−)dσ/dmjj (black dots) in (left) Z/γ∗(→ e+e−)+jets and
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→e+e− and σZ/γ∗
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sections, respectively.
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FIG. 13: Measured normalized dijet cross section (1/σZ/γ∗
→ℓ+ℓ− )dσ/d|∆φjj | (black dots) in (left) Z/γ∗(→ e+e−)+jets and

(right) Z/γ∗(→ µ+µ−)+jets production as a function of the azimuthal separation of the two leading jets |∆φjj |, in events with
at least two jets with pT > 30 GeV and |y| < 4.4 in the final state, and normalized by σZ/γ∗

→e+e− and σZ/γ∗
→µ+µ− Drell-Yan

cross sections, respectively.
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→ℓ+ℓ−)dσ/d∆Rjj (black dots) in (left) Z/γ∗(→ e+e−)+jets and
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(black dots) in Z/γ∗(→ ℓ+ℓ−)+jets production as a function of the inclusive jet
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events with at least one jet with pT > 30 GeV and |y| < 4.4 in the final state.
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in events with at least one jet with pT > 30 GeV and |y| < 4.4 in the final state.
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jet |y|, in events with at least two jets with pT > 30 GeV and |y| < 4.4 in the final state.
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FIG. 24: Measured dijet cross section dσ/d|∆yjj | (black dots) in Z/γ∗(→ ℓ+ℓ−)+jets production as a function of the rapidity
separation of the two leading jets |∆yjj |, in events with at least two jets with pT > 30 GeV and |y| < 4.4 in the final state.
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FIG. 25: Measured dijet cross section dσ/d|∆φjj | (black dots) in Z/γ∗(→ ℓ+ℓ−)+jets production as a function of the azimuthal
separation of the two leading jets |∆φjj |, in events with at least two jets with pT > 30 GeV and |y| < 4.4 in the final state.
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FIG. 26: Measured dijet cross section dσ/d∆Rjj (black dots) in Z/γ∗(→ ℓ+ℓ−)+jets production as a function of the angular
separation (y − φ space) of the two leading jets ∆Rjj , in events with at least two jets with pT > 30 GeV and |y| < 4.4 in the
final state.



38

σNjet
[pb]

Njet Z/γ∗(→ e+e−) Z/γ∗(→ µ+µ−) Z/γ∗(→ ℓ+ℓ−) δhad ± (total unc.)
σ ± (stat.) ± (syst.) σ ± (stat.) ± (syst.) σ ± (total unc.) parton → hadron

≥ 1 jet 69± 2± 7 65± 2+6
−5 65+6

−5 0.99± 0.02

≥ 2 jets 14.3± 0.9± 1.9 13.9± 0.7+1.7
−1.6 14.0± 1.8 0.98± 0.03

≥ 3 jets 2.4± 0.4± 0.4 2.9± 0.3+0.5
−0.4 2.7± 0.5 0.98± 0.05

≥ 4 jets 0.6± 0.2± 0.1 0.6± 0.2± 0.1 0.6± 0.2 1.03± 0.05

TABLE II: Measured cross section σNjet
as a function of the inclusive jet multiplicity, for events with at least one jet with

pT > 30 GeV and |y| < 4.4 in the final state. In this and subsequent tables III - XIII the results are presented for the
Z/γ∗(→ e+e−) and Z/γ∗(→ µ+µ−) analyses separately, as extrapolated to the Born level in the common acceptance region
pT > 20 GeV and |η| < 2.5 for the lepton kinematics, and their combination. The multiplicative parton-to-hadron correction
factors δhad are applied to the NLO pQCD predictions.

σNjet
/σNjet−1

Njet Z/γ∗(→ e+e−) Z/γ∗(→ µ+µ−) Z/γ∗(→ ℓ+ℓ−) δhad ± (total unc.)
ratio ±(stat.) ± (syst.) ratio ±(stat.) ± (syst.) ratio ±(total unc.) parton → hadron

≥ 1 jet 0.139± 0.002± 0.011 0.135± 0.003+0.010
−0.009 0.135+0.011

−0.009 0.99± 0.03

≥ 2 jets 0.208 ± 0.007+0.008
−0.009 0.215± 0.010+0.008

−0.009 0.215+0.010
−0.011 0.99± 0.01

≥ 3 jets 0.17± 0.02± 0.01 0.21± 0.02± 0.01 0.20± 0.02 1.00± 0.02

≥ 4 jets 0.23± 0.04± 0.01 0.20± 0.05+0.01
−0.02 0.21± 0.03 1.05± 0.03

TABLE III: Measured cross section ratio σNjet
/σNjet−1 as a function of the inclusive jet multiplicity, for events with at least

one jet with pT > 30 GeV and |y| < 4.4 in the final state.

dσ/dpT [pb/GeV] (inclusive)

pT Z/γ∗(→ e+e−) Z/γ∗(→ µ+µ−) Z/γ∗(→ ℓ+ℓ−) δhad ± (total unc.)
[GeV] σ ± (stat.) ± (syst.) σ ± (stat.) ± (syst.) σ ± (total unc.) parton → hadron

30-40 3.2± 0.1+0.3
−0.4 2.9± 0.1+0.4

−0.2 3.0+0.4
−0.3 1.00± 0.04

40-50 1.9± 0.1± 0.2 1.9± 0.1± 0.2 1.9± 0.2 0.99± 0.02

50-70 0.89± 0.05+0.09
−0.08 0.81± 0.04± 0.06 0.83± 0.07 0.99± 0.02

70-90 0.42 ± 0.03± 0.04 0.42± 0.03± 0.03 0.42± 0.04 0.98± 0.01
90-120 0.17 ± 0.02± 0.02 0.18± 0.02± 0.01 0.17± 0.02 0.98± 0.01

120-150 0.073 ± 0.011 ± 0.008 0.055± 0.008+0.004
−0.005 0.061+0.009

−0.008 1.00± 0.02

150-180 0.037± 0.008+0.006
−0.005 0.040± 0.007+0.004

−0.005 0.039± 0.007 1.01± 0.05

TABLE IV: Measured inclusive jet differential cross section dσ/dpT as a function of pT , for events with at least one jet with
pT > 30 GeV and |y| < 4.4 in the final state.
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dσ/dpT [pb/GeV] (leading jet)

pT Z/γ∗(→ e+e−) Z/γ∗(→ µ+µ−) Z/γ∗(→ ℓ+ℓ−) δhad ± (total unc.)
[GeV] σ ± (stat.) ± (syst.) σ ± (stat.) ± (syst.) σ ± (total unc.) parton → hadron

30-40 2.4± 0.1+0.2
−0.3 2.2± 0.1+0.3

−0.2 2.3+0.3
−0.2 1.00± 0.03

40-50 1.5± 0.1± 0.2 1.5± 0.1+0.1
−0.2 1.5± 0.2 1.00± 0.03

50-70 0.74± 0.04+0.07
−0.06 0.65 ± 0.03± 0.05 0.67± 0.06 0.99± 0.02

70-90 0.36± 0.03+0.04
−0.03 0.35 ± 0.03± 0.03 0.35± 0.03 0.98± 0.02

90-120 0.15± 0.02± 0.02 0.15 ± 0.01± 0.01 0.15± 0.02 0.98± 0.01

120-150 0.068 ± 0.011+0.008
−0.007 0.051± 0.008± 0.004 0.056± 0.008 1.00± 0.02

150-180 0.034 ± 0.007+0.006
−0.005 0.031± 0.006± 0.004 0.032± 0.006 1.01± 0.05

TABLE V: Measured jet differential cross section dσ/dpT as a function of the leading-jet pT , for events with at least one jet
with pT > 30 GeV and |y| < 4.4 in the final state.

dσ/dpT [pb/GeV] (second-leading jet)

pT Z/γ∗(→ e+e−) Z/γ∗(→ µ+µ−) Z/γ∗(→ ℓ+ℓ−) δhad ± (total unc.)
[GeV] σ ± (stat.) ± (syst.) σ ± (stat.) ± (syst.) σ ± (total unc.) parton → hadron

30-40 0.66± 0.06+0.08
−0.10 0.55± 0.04+0.08

−0.06 0.58+0.09
−0.07 1.00 ± 0.04

40-50 0.29± 0.04+0.05
−0.04 0.33± 0.03+0.04

−0.05 0.31± 0.05 0.97 ± 0.02
50-70 0.14± 0.02 ± 0.02 0.13± 0.02± 0.01 0.14± 0.02 0.97 ± 0.01

70-90 0.053± 0.012+0.007
−0.006 0.062± 0.011± 0.006 0.058 ± 0.010 0.95 ± 0.02

90-120 0.020± 0.006± 0.002 0.024± 0.006± 0.002 0.022 ± 0.005 0.95 ± 0.06

TABLE VI: Measured jet differential cross section dσ/dpT as a function of the second-leading jet pT , for events with at least
two jets with pT > 30 GeV and |y| < 4.4 in the final state.

dσ/d|y| [pb] (inclusive)

|y| Z/γ∗(→ e+e−) Z/γ∗(→ µ+µ−) Z/γ∗(→ ℓ+ℓ−) δhad ± (total unc.)
σ ± (stat.) ± (syst.) σ ± (stat.) ± (syst.) σ ± (total unc.) parton → hadron

0.0-0.5 42 ± 2± 4 40 ± 2± 3 40± 3 1.00± 0.03

0.5-1.0 39± 2+3
−4 37 ± 2± 3 38± 3 1.00± 0.03

1.0-1.5 31 ± 2± 3 31± 1+3
−2 31± 3 1.00± 0.03

1.5-2.0 25 ± 2± 3 24 ± 1± 2 24+3
−2 0.99± 0.03

2.0-2.5 16± 1+1
−2 17 ± 1± 2 17± 2 0.99± 0.02

2.5-3.0 12 ± 1± 2 8.8± 0.8± 1.4 10± 2 0.97± 0.02

3.0-3.5 5.7± 0.8+1.3
−1.2 5.2± 0.6+1.1

−1.2 5.4± 1.3 0.95± 0.03

3.5-4.0 1.9± 0.5+0.7
−0.6 1.8± 0.4+0.6

−0.7 1.8± 0.7 0.91± 0.03

TABLE VII: Measured inclusive jet differential cross section dσ/d|y| as a function of |y|, for events with at least one jet with
pT > 30 GeV and |y| < 4.4 in the final state.

dσ/d|y| [pb] (leading jet)

|y| Z/γ∗(→ e+e−) Z/γ∗(→ µ+µ−) Z/γ∗(→ ℓ+ℓ−) δhad ± (total unc.)
σ ± (stat.) ± (syst.) σ ± (stat.) ± (syst.) σ ± (total unc.) parton → hadron

0.0-0.5 34 ± 2± 3 33 ± 2± 2 33+3
−2 1.00± 0.03

0.5-1.0 31 ± 2± 3 29 ± 1± 2 30± 2 1.00± 0.03
1.0-1.5 26 ± 2± 2 25 ± 1± 2 25± 2 1.00± 0.03

1.5-2.0 19 ± 1± 2 18± 1+2
−1 19± 2 1.00± 0.03

2.0-2.5 13 ± 1± 2 13± 1+2
−1 13± 2 0.99± 0.02

2.5-3.0 10 ± 1± 2 7± 1± 1 8± 1 0.97± 0.01

3.0-3.5 4.1± 0.7+0.9
−0.8 4.0± 0.6+0.8

−0.9 4.1± 1.0 0.94± 0.01

3.5-4.0 1.2± 0.4+0.5
−0.4 0.9± 0.3± 0.3 1.0± 0.4 0.92± 0.02

TABLE VIII: Measured jet differential cross section dσ/d|y| as a function of the leading-jet |y|, for events with at least one jet
with pT > 30 GeV and |y| < 4.4 in the final state.
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dσ/d|y| [pb] (second-leading jet)

|y| Z/γ∗(→ e+e−) Z/γ∗(→ µ+µ−) Z/γ∗(→ ℓ+ℓ−) δhad ± (total unc.)
σ ± (stat.) ± (syst.) σ ± (stat.) ± (syst.) σ ± (total unc.) parton → hadron

0.0-0.5 7.0± 0.8± 0.8 6.2± 0.7± 0.6 6.5+0.9
−0.8 1.00± 0.03

0.5-1.0 6.7± 0.8± 0.8 6.0± 0.7± 0.6 6.3+0.9
−0.8 0.99± 0.03

1.0-1.5 4.8± 0.7± 0.6 5.0± 0.6+0.6
−0.5 5.0± 0.7 1.00± 0.03

1.5-2.0 4.6± 0.7± 0.6 3.8± 0.5± 0.4 4.1± 0.6 0.98± 0.02

2.0-2.5 2.2± 0.5+0.3
−0.4 3.3± 0.5+0.5

−0.4 2.8± 0.5 0.98± 0.03

2.5-3.0 1.3± 0.4± 0.2 1.9± 0.4+0.4
−0.3 1.6± 0.4 0.97± 0.05

3.0-3.5 1.2± 0.4± 0.3 0.8± 0.2± 0.2 0.9± 0.3 0.97± 0.05

TABLE IX: Measured jet differential cross section dσ/d|y| as a function of the second-leading jet |y|, for events with at least
two jets with pT > 30 GeV and |y| < 4.4 in the final state.

dσ/dmjj [pb/GeV]

mjj Z/γ∗(→ e+e−) Z/γ∗(→ µ+µ−) Z/γ∗(→ ℓ+ℓ−) δhad ± (total unc.)
[GeV] σ ± (stat.) ± (syst.) σ ± (stat.) ± (syst.) σ ± (total unc.) parton → hadron
60-90 0.06± 0.01± 0.01 0.06± 0.01± 0.01 0.06± 0.01 1.03± 0.04

90-120 0.11± 0.01± 0.01 0.10± 0.01± 0.01 0.10+0.02
−0.01 1.01± 0.04

120-150 0.06± 0.01± 0.01 0.07± 0.01± 0.01 0.07± 0.01 1.01± 0.03

150-180 0.057 ± 0.010 ± 0.008 0.043± 0.007+0.005
−0.004 0.047± 0.008 1.00± 0.04

180-210 0.042 ± 0.009+0.005
−0.006 0.036± 0.007± 0.004 0.038± 0.007 1.00± 0.02

210-240 0.025 ± 0.007+0.004
−0.003 0.021± 0.005+0.002

−0.003 0.023± 0.005 0.98± 0.04

240-270 0.018 ± 0.006+0.002
−0.003 0.017± 0.005± 0.002 0.017± 0.004 0.94± 0.06

270-300 0.015 ± 0.005 ± 0.003 0.017± 0.005± 0.002 0.016± 0.004 0.95± 0.05

TABLE X: Measured differential cross section dσ/dmjj as a function of the dijet invariant mass, for events with at least two
jets with pT > 30 GeV and |y| < 4.4 in the final state.

dσ/d|∆yjj | [pb]
|∆yjj | Z/γ∗(→ e+e−) Z/γ∗(→ µ+µ−) Z/γ∗(→ ℓ+ℓ−) δhad ± (total unc.)

σ ± (stat.) ± (syst.) σ ± (stat.) ± (syst.) σ ± (total unc.) parton → hadron

0.0-0.5 5.3± 0.7± 0.6 5.6± 0.6± 0.6 5.5+0.8
−0.7 0.98± 0.04

0.5-1.0 6.1± 0.8± 0.7 6.6± 0.7± 0.7 6.4+0.9
−0.8 1.02± 0.04

1.0-1.5 5.1± 0.7± 0.6 5.0± 0.6+0.6
−0.5 5.1± 0.7 1.01± 0.05

1.5-2.0 4.5± 0.7± 0.6 3.6± 0.5± 0.4 3.9± 0.6 1.00± 0.03

2.0-2.5 2.7± 0.5± 0.4 3.0± 0.5+0.4
−0.3 2.9± 0.5 0.99± 0.04

2.5-3.0 1.8± 0.4± 0.3 1.6± 0.3± 0.2 1.7± 0.4 0.96± 0.02
3.0-3.5 1.6± 0.4± 0.3 1.0± 0.3± 0.2 1.2± 0.3 0.95± 0.03

TABLE XI: Measured differential cross section dσ/d|∆yjj | as a function of the dijet rapidity separation, for events with at
least two jets with pT > 30 GeV and |y| < 4.4 in the final state.

dσ/d|∆φjj | [pb]
|∆φjj | [rad.] Z/γ∗(→ e+e−) Z/γ∗(→ µ+µ−) Z/γ∗(→ ℓ+ℓ−) δhad ± (total unc.)

σ ± (stat.) ± (syst.) σ ± (stat.) ± (syst.) σ ± (total unc.) parton → hadron
0− π/8 1.8± 0.5± 0.3 1.7± 0.4± 0.3 1.7± 0.4 0.94± 0.04

π/8− π/4 2.7± 0.6+0.5
−0.4 2.9± 0.5+0.4

−0.3 2.8+0.6
−0.5 0.98± 0.05

π/4− 3π/8 2.0± 0.5± 0.3 2.5± 0.5± 0.3 2.3± 0.5 1.01± 0.07

3π/8 − π/2 2.5± 0.6± 0.4 3.2± 0.5± 0.4 2.9+0.6
−0.5 0.97± 0.03

π/2− 5π/8 4.0± 0.7+0.5
−0.6 3.8± 0.6± 0.5 3.9± 0.7 0.97± 0.02

5π/8− 3π/4 4.4± 0.8± 0.6 4.6± 0.7± 0.6 4.5+0.8
−0.7 0.98± 0.04

3π/4− 7π/8 7.9± 1.0± 0.9 6.8± 0.8± 0.7 7.0± 1.0 0.98± 0.03

7π/8 − π 11.4± 1.2± 1.4 10.0± 1.0+1.1
−1.0 10.4+1.4

−1.3 1.00± 0.08

TABLE XII: Measured differential cross section dσ/d|∆φjj | as a function of the dijet azimuthal separation, for events with at
least two jets with pT > 30 GeV and |y| < 4.4 in the final state.
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dσ/d|∆Rjj | [pb]
∆Rjj Z/γ∗(→ e+e−) Z/γ∗(→ µ+µ−) Z/γ∗(→ ℓ+ℓ−) δhad ± (total unc.)

σ ± (stat.) ± (syst.) σ ± (stat.) ± (syst.) σ ± (total unc.) parton → hadron
0.4-0.8 1.8± 0.5± 0.3 1.6± 0.4± 0.3 1.7± 0.4 0.91± 0.02
0.8-1.2 1.5± 0.4± 0.2 1.9± 0.4± 0.2 1.7± 0.4 1.04± 0.09
1.2-1.6 1.8± 0.5± 0.3 2.2± 0.4± 0.3 2.1± 0.4 0.99± 0.03
1.6-2.0 2.2± 0.5± 0.3 2.7± 0.5± 0.3 2.5± 0.5 1.02± 0.07

2.0-2.4 3.4± 0.7+0.5
−0.4 3.5± 0.6± 0.4 3.5± 0.6 1.02± 0.07

2.4-2.8 5.7± 0.9± 0.7 5.4± 0.7± 0.6 5.6± 0.8 0.99± 0.02

2.8-3.2 7.8± 1.0± 0.9 8.5± 0.9+0.9
−0.8 8.2+1.1

−1.0 1.01± 0.02

3.2-3.6 5.5± 0.8± 0.7 4.7± 0.7± 0.5 5.0+0.8
−0.7 0.99± 0.03

3.6-4.0 2.5± 0.6± 0.4 1.2± 0.3± 0.2 1.5± 0.3 0.96± 0.03
4.0-4.4 1.5± 0.4± 0.3 1.5± 0.4± 0.2 1.5± 0.4 0.97± 0.05

TABLE XIII: Measured differential cross section dσ/d|∆Rjj | as a function of the dijet angular separation (y − φ space), for
events with at least two jets with pT > 30 GeV and |y| < 4.4 in the final state.
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Appendix - Combined Results

The results for the electron and muon channels are extrapolated to a common acceptance region pT > 20 GeV and
|η| < 2.5 for the kinematics of the leptons, defined at the decay vertex of the Z boson before QED radiation. For each
bin in a given observable ξ, the measured cross section σfiducial

ξ in each channel is corrected according to

σextrapolated
ξ = σfiducial

ξ × δQED ×A, (2)

where δQED corrects for QED radiation effects back to the Born level and A extrapolates the result to the new
lepton acceptance region. Tables XIV to XVII present the correction factors applied to the measured cross sections,
separately for the electron and muon analyses.
The results are then combined using the BLUE [35] method that takes into account the correlations between

systematic uncertainties in the two channels. The method assumes Gaussian χ2 distributions and is not directly
able to treat the asymmetric systematic uncertainties present in the measured cross sections. Therefore, a modified
asymmetric iterative BLUE method is employed.
Three separate BLUE combinations are computed, using as an input the upper, the lower, and the average of the

upper and lower uncertainties in the electron and muon channels, leading to three different results here denoted as
σup
ξ ±∆σup

ξ , σlow
ξ ±∆σlow

ξ , and σave
ξ ±∆σave

ξ , respectively. The central value for the combined cross section σξ, and

its upper and lower uncertainties, ∆+σξ and ∆−σξ respectively, are given by the expressions

σξ = σave
ξ , (3)

∆+σξ = 2×R×∆σave
ξ , and (4)

∆−σξ = 2× (1−R)×∆σave
ξ , (5)

with

R =
∆σup

ξ

∆σup
ξ +∆σlow

ξ

. (6)

The BLUE method provides uncertainties on the combined measurement that include both statistical and systematic
uncertainties.
Finally, χ2 tests to the data points in each measured cross section before and after extrapolation are performed

with respect to the NLO pQCD, ALPGEN, and Sherpa predictions, according to

χ2 =

bins
∑

j=1

[dj − tj(s̄)]
2

[δdj ]2 + [δtj(s̄)]2
+

7
∑

i=1

[si]
2 , (7)

where dj is the measured data point j, tj(s̄) is the corresponding prediction, and s̄ denotes the vector of standard
deviations, si, for the different independent sources of systematic uncertainty in data and theory, which are considered
fully correlated across bins. For each measurement considered, the sums above run over the total number of data
points and seven independent sources of systematic uncertainty, and the correlations among systematic uncertainties
are taken into account in tj(s̄). The average of the upper and lower uncertainties in data and theory are employed,
and the χ2 is minimized with respect to s̄. The results of the χ2 tests are tabulated in Tables XVIII to XX.
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σNjet

Njet δQED (e-channel) A (e-channel) δQED (µ-channel) A (µ-channel)
≥ 1 jet 1.024 ± 0.001 1.143 ± 0.003 1.024 ± 0.001 1.046 ± 0.003
≥ 2 jets 1.021 ± 0.001 1.144 ± 0.002 1.022 ± 0.001 1.045 ± 0.002
≥ 3 jets 1.021 ± 0.002 1.144 ± 0.003 1.021 ± 0.002 1.045 ± 0.002
≥ 4 jets 1.016 ± 0.003 1.151 ± 0.007 1.021 ± 0.002 1.048 ± 0.005

σNjet
/σNjet−1

Njet δQED (e-channel) A (e-channel) δQED (µ-channel) A (µ-channel)
≥ 1 jet 1.005 ± 0.003 1.001 ± 0.003 1.005 ± 0.003 0.994 ± 0.001
≥ 2 jets 0.997 ± 0.001 1.001 ± 0.003 0.998 ± 0.002 0.999 ± 0.001
≥ 3 jets 1.000 ± 0.001 1.001 ± 0.003 0.999 ± 0.001 1.001 ± 0.002
≥ 4 jets 0.996 ± 0.004 1.006 ± 0.006 1.001 ± 0.002 1.003 ± 0.003

dσ/dpT (inclusive)

pT [GeV] δQED (e-channel) A (e-channel) δQED (µ-channel) A (µ-channel)
30-40 1.029 ± 0.001 1.142 ± 0.001 1.029 ± 0.001 1.048 ± 0.003
40-50 1.023 ± 0.003 1.144 ± 0.002 1.022 ± 0.005 1.048 ± 0.004
50-70 1.019 ± 0.001 1.143 ± 0.006 1.021 ± 0.001 1.046 ± 0.003
70-90 1.019 ± 0.003 1.145 ± 0.005 1.019 ± 0.003 1.043 ± 0.003
90-120 1.019 ± 0.003 1.143 ± 0.002 1.020 ± 0.003 1.040 ± 0.002
120-150 1.017 ± 0.004 1.144 ± 0.008 1.020 ± 0.004 1.040 ± 0.005
150-180 1.016 ± 0.002 1.142 ± 0.011 1.017 ± 0.004 1.036 ± 0.006

dσ/d|y| (inclusive)

|y| δQED (e-channel) A (e-channel) δQED (µ-channel) A (µ-channel)
0.0-0.5 1.024 ± 0.003 1.135 ± 0.002 1.024 ± 0.002 1.035 ± 0.001
0.5-1.0 1.024 ± 0.001 1.139 ± 0.003 1.024 ± 0.001 1.039 ± 0.002
1.0-1.5 1.024 ± 0.001 1.140 ± 0.005 1.024 ± 0.002 1.047 ± 0.005
1.5-2.0 1.024 ± 0.002 1.148 ± 0.005 1.024 ± 0.001 1.056 ± 0.006
2.0-2.5 1.022 ± 0.001 1.160 ± 0.011 1.022 ± 0.001 1.059 ± 0.005
2.5-3.0 1.020 ± 0.001 1.158 ± 0.003 1.020 ± 0.001 1.067 ± 0.010
3.0-3.5 1.019 ± 0.001 1.152 ± 0.004 1.020 ± 0.006 1.068 ± 0.011
3.5-4.0 1.025 ± 0.007 1.163 ± 0.017 1.016 ± 0.002 1.065 ± 0.008

TABLE XIV: Multiplicative correction factors, applied to the data in the electron and muon channels, that extrapolate the
measured cross sections to the common acceptance region pT > 20 GeV and |η| < 2.5 for the lepton kinematics, defined at the
decay vertex of the Z boson before QED radiation.
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dσ/dpT (leading jet)

pT [GeV] δQED (e-channel) A (e-channel) δQED (µ-channel) A (µ-channel)
30-40 1.031 ± 0.001 1.142 ± 0.001 1.031 ± 0.002 1.049 ± 0.003
40-50 1.023 ± 0.005 1.143 ± 0.004 1.022 ± 0.006 1.048 ± 0.004
50-70 1.020 ± 0.001 1.143 ± 0.005 1.021 ± 0.001 1.046 ± 0.004
70-90 1.020 ± 0.004 1.146 ± 0.006 1.019 ± 0.003 1.043 ± 0.003
90-120 1.019 ± 0.003 1.142 ± 0.003 1.020 ± 0.003 1.040 ± 0.002
120-150 1.017 ± 0.004 1.144 ± 0.010 1.020 ± 0.004 1.038 ± 0.003
150-180 1.016 ± 0.002 1.141 ± 0.014 1.016 ± 0.004 1.036 ± 0.008

dσ/d|y| (leading jet)

|y| δQED (e-channel) A (e-channel) δQED (µ-channel) A (µ-channel)
0.0-0.5 1.024 ± 0.003 1.133 ± 0.004 1.025 ± 0.002 1.034 ± 0.001
0.5-1.0 1.025 ± 0.001 1.137 ± 0.003 1.024 ± 0.001 1.037 ± 0.002
1.0-1.5 1.025 ± 0.001 1.141 ± 0.005 1.025 ± 0.003 1.047 ± 0.005
1.5-2.0 1.025 ± 0.002 1.150 ± 0.005 1.024 ± 0.001 1.057 ± 0.006
2.0-2.5 1.023 ± 0.001 1.161 ± 0.010 1.022 ± 0.001 1.063 ± 0.006
2.5-3.0 1.020 ± 0.001 1.164 ± 0.006 1.020 ± 0.002 1.073 ± 0.010
3.0-3.5 1.019 ± 0.002 1.159 ± 0.006 1.021 ± 0.009 1.076 ± 0.015
3.5-4.0 1.025 ± 0.008 1.170 ± 0.016 1.017 ± 0.002 1.074 ± 0.012

dσ/dpT (second-leading jet)

pT [GeV] δQED (e-channel) A (e-channel) δQED (µ-channel) A (µ-channel)
30-40 1.023 ± 0.001 1.141 ± 0.002 1.024 ± 0.001 1.045 ± 0.002
40-50 1.022 ± 0.003 1.147 ± 0.003 1.021 ± 0.003 1.046 ± 0.002
50-70 1.018 ± 0.001 1.146 ± 0.008 1.020 ± 0.001 1.043 ± 0.001
70-90 1.015 ± 0.002 1.142 ± 0.009 1.019 ± 0.005 1.045 ± 0.005
90-120 1.024 ± 0.009 1.148 ± 0.008 1.021 ± 0.008 1.040 ± 0.003

dσ/d|y| (second-leading jet)

|y| δQED (e-channel) A (e-channel) δQED (µ-channel) A (µ-channel)
0.0-0.5 1.021 ± 0.002 1.142 ± 0.003 1.020 ± 0.002 1.038 ± 0.002
0.5-1.0 1.021 ± 0.002 1.148 ± 0.004 1.023 ± 0.002 1.042 ± 0.002
1.0-1.5 1.021 ± 0.002 1.137 ± 0.005 1.024 ± 0.002 1.047 ± 0.003
1.5-2.0 1.021 ± 0.002 1.142 ± 0.004 1.023 ± 0.002 1.053 ± 0.003
2.0-2.5 1.021 ± 0.007 1.155 ± 0.008 1.021 ± 0.002 1.048 ± 0.004
2.5-3.0 1.022 ± 0.003 1.140 ± 0.008 1.019 ± 0.004 1.048 ± 0.011
3.0-3.5 1.018 ± 0.004 1.143 ± 0.007 1.017 ± 0.005 1.051 ± 0.011

TABLE XV: Multiplicative correction factors, applied to the data in the electron and muon channels, that extrapolate the
measured cross sections to the common acceptance region pT > 20 GeV and |η| < 2.5 for the lepton kinematics, defined at the
decay vertex of the Z boson before QED radiation.

dσ/dmjj

mjj [GeV] δQED (e-channel) A (e-channel) δQED (µ-channel) A (µ-channel)
60-90 1.025± 0.004 1.148± 0.006 1.025± 0.005 1.044± 0.004
90-120 1.023± 0.002 1.141± 0.005 1.025± 0.002 1.046± 0.004
120-150 1.022± 0.002 1.138± 0.004 1.022± 0.002 1.047± 0.006
150-180 1.016± 0.002 1.146± 0.006 1.021± 0.002 1.043± 0.008
180-210 1.017± 0.003 1.149± 0.007 1.019± 0.004 1.042± 0.002
210-240 1.016± 0.002 1.141± 0.010 1.020± 0.004 1.049± 0.006
240-270 1.022± 0.006 1.140± 0.013 1.022± 0.007 1.045± 0.009
270-300 1.026± 0.015 1.154± 0.016 1.018± 0.005 1.041± 0.009

dσ/d|∆yjj |
|∆yjj | δQED (e-channel) A (e-channel) δQED (µ-channel) A (µ-channel)
0.0-0.5 1.021± 0.001 1.146± 0.004 1.023± 0.001 1.041± 0.001
0.5-1.0 1.021± 0.004 1.148± 0.009 1.024± 0.003 1.042± 0.004
1.0-1.5 1.022± 0.002 1.141± 0.004 1.021± 0.003 1.046± 0.004
1.5-2.0 1.022± 0.001 1.141± 0.004 1.022± 0.004 1.044± 0.002
2.0-2.5 1.021± 0.004 1.132± 0.010 1.022± 0.002 1.045± 0.004
2.5-3.0 1.017± 0.003 1.147± 0.008 1.017± 0.002 1.050± 0.003
3.0-3.5 1.019± 0.002 1.145± 0.009 1.023± 0.008 1.052± 0.007

TABLE XVI: Multiplicative correction factors, applied to the data in the electron and muon channels, that extrapolate the
measured cross sections to the common acceptance region pT > 20 GeV and |η| < 2.5 for the lepton kinematics, defined at the
decay vertex of the Z boson before QED radiation.
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dσ/d|∆φjj |
|∆φjj | [rad.] δQED (e-channel) A (e-channel) δQED (µ-channel) A (µ-channel)

0− π/8 1.020± 0.006 1.138 ± 0.007 1.018± 0.004 1.034 ± 0.002
π/8− π/4 1.020± 0.004 1.146 ± 0.007 1.022± 0.007 1.038 ± 0.004
π/4− 3π/8 1.017± 0.002 1.144 ± 0.005 1.021± 0.002 1.037 ± 0.004
3π/8− π/2 1.021± 0.002 1.137 ± 0.005 1.021± 0.002 1.040 ± 0.002
π/2− 5π/8 1.021± 0.004 1.149 ± 0.014 1.021± 0.001 1.043 ± 0.003
5π/8− 3π/4 1.022± 0.002 1.140 ± 0.003 1.026± 0.002 1.048 ± 0.009
3π/4− 7π/8 1.022± 0.002 1.148 ± 0.004 1.024± 0.002 1.047 ± 0.003
7π/8− π 1.022± 0.001 1.143 ± 0.002 1.021± 0.002 1.050 ± 0.003

dσ/d|∆Rjj |
∆Rjj δQED (e-channel) A (e-channel) δQED (µ-channel) A (µ-channel)
0.4-0.8 1.018± 0.006 1.142 ± 0.006 1.017± 0.005 1.041 ± 0.011
0.8-1.2 1.016± 0.006 1.145 ± 0.012 1.021± 0.006 1.029 ± 0.007
1.2-1.6 1.021± 0.003 1.147 ± 0.016 1.019± 0.003 1.038 ± 0.004
1.6-2.0 1.022± 0.005 1.142 ± 0.004 1.025± 0.003 1.037 ± 0.004
2.0-2.4 1.022± 0.002 1.147 ± 0.004 1.024± 0.003 1.043 ± 0.005
2.4-2.8 1.023± 0.001 1.144 ± 0.003 1.025± 0.001 1.044 ± 0.002
2.8-3.2 1.022± 0.003 1.139 ± 0.005 1.023± 0.001 1.046 ± 0.003
3.2-3.6 1.019± 0.001 1.144 ± 0.011 1.020± 0.003 1.048 ± 0.002
3.6-4.0 1.020± 0.004 1.140 ± 0.013 1.020± 0.003 1.051 ± 0.006
4.0-4.4 1.020± 0.003 1.147 ± 0.009 1.021± 0.003 1.056 ± 0.007

TABLE XVII: Multiplicative correction factors, applied to the data in the electron and muon channels, that extrapolate the
measured cross sections to the common acceptance region pT > 20 GeV and |η| < 2.5 for the lepton kinematics, defined at the
decay vertex of the Z boson before QED radiation.
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χ2 results (w.r.t. NLO pQCD predictions)

e-channel
measurement degrees of freedom χ2/d.o.f χ2/d.o.f

(d.o.f) (fiducial) (extrapolated)
σNjet

4 1.43 1.43

σNjet
/σNjet−1 4 1.54 1.59

dσ/dpT (inclusive) 7 0.17 0.18
dσ/d|y| (inclusive) 8 0.79 0.74
dσ/dpT (leading jet) 7 0.28 0.29
dσ/d|y| (leading jet) 8 1.19 1.16
dσ/dpT (second-leading jet) 5 0.05 0.06
dσ/d|y| (second-leading jet) 7 0.79 0.85
dσ/dmjj 8 0.98 0.98
dσ/d|∆yjj | 7 0.32 0.34
dσ/d|∆φjj | 8 0.43 0.44
dσ/d∆Rjj 10 0.14 0.16

µ-channel
measurement degrees of freedom χ2/d.o.f χ2/d.o.f

(d.o.f) (fiducial) (extrapolated)
σNjet

4 0.09 0.11

σNjet
/σNjet−1 4 0.07 0.08

dσ/dpT (inclusive) 7 1.78 1.77
dσ/d|y| (inclusive) 8 0.43 0.41
dσ/dpT (leading jet) 7 1.17 1.13
dσ/d|y| (leading jet) 8 0.46 0.46
dσ/dpT (second-leading jet) 5 1.20 1.23
dσ/d|y| (second-leading jet) 7 0.32 0.32
dσ/dmjj 8 0.61 0.61
dσ/d|∆yjj | 7 0.96 0.96
dσ/d|∆φjj | 8 0.54 0.55
dσ/d∆Rjj 10 1.54 1.55

TABLE XVIII: Results of χ2 tests to the electron and muon data with respect to the NLO pQCD predictions. The results
are tabulated for the original cross section measurements and after extrapolating to the Born level in a common region for the
lepton kinematics.
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χ2 results (w.r.t. ALPGEN predictions)

e-channel
measurement degrees of freedom χ2/d.o.f χ2/d.o.f

(d.o.f) (fiducial) (extrapolated)
σNjet

4 0.99 0.99

σNjet
/σNjet−1 4 1.55 1.55

dσ/dpT (inclusive) 7 0.13 0.13
dσ/d|y| (inclusive) 8 0.97 0.97
dσ/dpT (leading jet) 7 0.17 0.17
dσ/d|y| (leading jet) 8 1.33 1.33
dσ/dpT (second-leading jet) 5 0.07 0.07
dσ/d|y| (second-leading jet) 7 0.63 0.63
dσ/dmjj 8 0.87 0.87
dσ/d|∆yjj | 7 0.42 0.42
dσ/d|∆φjj | 8 0.44 0.44
dσ/d∆Rjj 10 0.25 0.25

µ-channel
measurement degrees of freedom χ2/d.o.f χ2/d.o.f

(d.o.f) (fiducial) (extrapolated)
σNjet

4 0.08 0.08

σNjet
/σNjet−1 4 0.11 0.11

dσ/dpT (inclusive) 7 1.87 1.87
dσ/d|y| (inclusive) 8 0.71 0.71
dσ/dpT (leading jet) 7 1.29 1.29
dσ/d|y| (leading jet) 8 0.60 0.60
dσ/dpT (second-leading jet) 5 0.89 0.89
dσ/d|y| (second-leading jet) 7 0.50 0.50
dσ/dmjj 8 0.58 0.58
dσ/d|∆yjj | 7 0.90 0.90
dσ/d|∆φjj | 8 0.43 0.43
dσ/d∆Rjj 10 1.59 1.59

TABLE XIX: Results of χ2 tests to the electron and muon data with respect to the ALPGEN predictions. The results are
tabulated for the original cross section measurements and after extrapolating to the Born level in a common region for the
lepton kinematics.
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χ2 results (w.r.t. Sherpa predictions)

e-channel
measurement degrees of freedom χ2/d.o.f χ2/d.o.f

(d.o.f) (fiducial) (extrapolated)
σNjet

4 0.65 0.68

σNjet
/σNjet−1 4 1.51 1.50

dσ/dpT (inclusive) 7 0.29 0.29
dσ/d|y| (inclusive) 8 1.19 1.13
dσ/dpT (leading jet) 7 0.30 0.30
dσ/d|y| (leading jet) 8 1.85 1.82
dσ/dpT (second-leading jet) 5 0.27 0.29
dσ/d|y| (second-leading jet) 7 1.24 1.22
dσ/dmjj 8 1.25 1.22
dσ/d|∆yjj | 7 0.80 0.80
dσ/d|∆φjj | 8 0.59 0.60
dσ/d∆Rjj 10 0.36 0.36

µ-channel
measurement degrees of freedom χ2/d.o.f χ2/d.o.f

(d.o.f) (fiducial) (extrapolated)
σNjet

4 0.37 0.38

σNjet
/σNjet−1 4 0.31 0.32

dσ/dpT (inclusive) 7 2.10 2.08
dσ/d|y| (inclusive) 8 0.73 0.74
dσ/dpT (leading jet) 7 1.24 1.21
dσ/d|y| (leading jet) 8 1.02 1.06
dσ/dpT (second-leading jet) 5 1.40 1.40
dσ/d|y| (second-leading jet) 7 0.62 0.62
dσ/dmjj 8 1.01 1.02
dσ/d|∆yjj | 7 1.86 1.85
dσ/d|∆φjj | 8 1.02 1.03
dσ/d∆Rjj 10 2.70 2.70

TABLE XX: Results of χ2 tests to the electron and muon data with respect to the Sherpa predictions. The results are
tabulated for the original cross section measurements and after extrapolating to the Born level in a common region for the
lepton kinematics.
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Hoz167, M.L. Gonzalez Silva26, S. Gonzalez-Sevilla49, J.J. Goodson148, L. Goossens29, P.A. Gorbounov95,
H.A. Gordon24, I. Gorelov103, G. Gorfine174, B. Gorini29, E. Gorini72a,72b, A. Gorǐsek74, E. Gornicki38,
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S. Mohapatra148, W. Mohr48, S. Mohrdieck-Möck99, A.M. Moisseev128,∗, R. Moles-Valls167, J. Molina-Perez29,
J. Monk77, E. Monnier83, S. Montesano89a,89b, F. Monticelli70, S. Monzani19a,19b, R.W. Moore2, G.F. Moorhead86,
C. Mora Herrera49, A. Moraes53, N. Morange136, J. Morel54, G. Morello36a,36b, D. Moreno81, M. Moreno Llácer167,
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A. Ruiz-Martinez64, E. Rulikowska-Zarebska37, V. Rumiantsev91,∗, L. Rumyantsev65, K. Runge48, O. Runolfsson20,
Z. Rurikova48, N.A. Rusakovich65, D.R. Rust61, J.P. Rutherfoord6, C. Ruwiedel14, P. Ruzicka125, Y.F. Ryabov121,
V. Ryadovikov128, P. Ryan88, M. Rybar126, G. Rybkin115, N.C. Ryder118, S. Rzaeva10, A.F. Saavedra150,
I. Sadeh153, H.F-W. Sadrozinski137, R. Sadykov65, F. Safai Tehrani132a,132b, H. Sakamoto155, G. Salamanna75,
A. Salamon133a, M. Saleem111, D. Salihagic99, A. Salnikov143, J. Salt167, B.M. Salvachua Ferrando5,
D. Salvatore36a,36b, F. Salvatore149, A. Salvucci104, A. Salzburger29, D. Sampsonidis154, B.H. Samset117,
A. Sanchez102a,102b, H. Sandaker13, H.G. Sander81, M.P. Sanders98, M. Sandhoff174, T. Sandoval27, C. Sandoval 162,
R. Sandstroem99, S. Sandvoss174, D.P.C. Sankey129, A. Sansoni47, C. Santamarina Rios85, C. Santoni33,
R. Santonico133a,133b, H. Santos124a, J.G. Saraiva124a,b, T. Sarangi172, E. Sarkisyan-Grinbaum7, F. Sarri122a,122b,
G. Sartisohn174, O. Sasaki66, T. Sasaki66, N. Sasao68, I. Satsounkevitch90, G. Sauvage4, E. Sauvan4, J.B. Sauvan115,
P. Savard158,e, V. Savinov123, D.O. Savu29, P. Savva 9, L. Sawyer24,m, D.H. Saxon53, L.P. Says33, C. Sbarra19a,
A. Sbrizzi19a,19b, O. Scallon93, D.A. Scannicchio163, J. Schaarschmidt115, P. Schacht99, U. Schäfer81, S. Schaepe20,
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