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Abstract

A measurement of the cross section for the production of an isolated photon in association with
jets in proton-proton collisions at a center-of-mass energy

√
s = 7 TeV is presented. Photons are

reconstructed in the pseudorapidity range |ηγ | < 1.37 and with a transverse energy Eγ

T > 25 GeV. Jets
are reconstructed in the rapidity range |yjet| < 4.4 and with a transverse momentum pjetT > 20 GeV.
The differential cross section dσ/dEγ

T is measured, as a function of the photon transverse energy, for
three different rapidity ranges of the leading-pT jet: |yjet| < 1.2, 1.2 ≤ |yjet| < 2.8 and 2.8 ≤ |yjet| < 4.4.
For each rapidity configuration the same-sign (ηγyjet ≥ 0) and opposite-sign (ηγyjet < 0) cases are
studied separately. The results are based on an integrated luminosity of 37 pb−1, collected with the
ATLAS detector at the LHC. Next-to-leading order perturbative QCD calculations are found to be in
fair agreement with the data, except for Eγ

T < 45 GeV, where the theoretical predictions overestimate
the measured cross sections.
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A measurement of the cross section for the production of an isolated photon in association with
jets in proton-proton collisions at a center-of-mass energy

√
s = 7 TeV is presented. Photons are

reconstructed in the pseudorapidity range |ηγ | < 1.37 and with a transverse energy Eγ

T
> 25 GeV.

Jets are reconstructed in the rapidity range |yjet| < 4.4 and with a transverse momentum pjet
T

>
20 GeV. The differential cross section dσ/dEγ

T
is measured, as a function of the photon transverse

energy, for three different rapidity ranges of the leading-pT jet: |yjet| < 1.2, 1.2 ≤ |yjet| < 2.8 and
2.8 ≤ |yjet| < 4.4. For each rapidity configuration the same-sign (ηγyjet ≥ 0) and opposite-sign
(ηγyjet < 0) cases are studied separately. The results are based on an integrated luminosity of
37 pb−1, collected with the ATLAS detector at the LHC. Next-to-leading order perturbative QCD
calculations are found to be in fair agreement with the data, except for Eγ

T
<∼ 45 GeV, where the

theoretical predictions overestimate the measured cross sections.

PACS numbers: 13.85.Qk, 12.38.Qk

I. INTRODUCTION

At colliders, prompt photons are defined as photons
produced in the beam particle collisions and not origi-
nating from particle decays. They include both direct

photons, which originate from the hard process, and frag-

mentation photons, which arise from the fragmentation
of a colored high-pT parton [1, 2]. At the LHC, the pro-
duction of prompt photons in association with jets in
proton-proton collisions, pp → γ+ jet+X , represents an
important test of perturbative QCD predictions at large
hard-scattering scales (Q2) and over a wide range of the
parton momentum fraction (x). In addition the study of
the angular correlations between the photon and the jet
can be used to constrain the photon fragmentation func-
tions [3]. Since the dominant γ + jet production mecha-
nism in pp collisions at the LHC is through the qg → qγ
process, the measurement of the photon + jet cross sec-
tion at high rapidities and low transverse momenta can
also be exploited to constrain the gluon density func-
tion inside the proton [3–6] for values of the incoming
parton momentum fraction x down to ≈ O(10−3). For
the same reason, this final state can be used to obtain a
high purity sample of quark-originated jets [7] that can
be exploited to study detector performance with respect
to these jets. The same events can also be used to cal-
ibrate the jet energy scale by profiting from momentum
conservation in the transverse plane and the accurate en-
ergy measurement of the photon in the electromagnetic
calorimeter [8]. Finally, γ + jet events provide one of
the main backgrounds in searches of Higgs bosons decay-
ing to a photon pair [9]. An accurate knowledge of the
photon + jet rate and angular distribution can be useful
to understand the background level and shape in these

∗ Full author list given at the end of the article.

searches.

In this article a measurement of the production cross
section of an isolated prompt photon in association with
jets, in pp collisions at a center-of-mass energy

√
s =

7 TeV, is presented. Photons are reconstructed in the
pseudorapidity range of |ηγ | < 1.37 and in the transverse
energy range of Eγ

T > 25 GeV. The same isolation crite-
rion as used in our measurements of the inclusive isolated
prompt photon [10, 11] and diphoton production cross
sections [12] is used. It is based on the amount Eiso

T of
transverse energy deposited in the calorimeters inside a

cone of radius R =

√

(η − ηγ)
2
+ (φ− φγ)

2
= 0.4 cen-

tered around the photon direction (defined by ηγ , φγ)
[13]. The contribution from electromagnetic calorimeter
cells in the (∆η,∆φ) = (±0.0625,±0.0875) region around
the photon barycenter is not included in the sum. The
mean value of the small leakage of the photon energy
outside this region, evaluated as a function of the photon
transverse energy, is subtracted from the measured value
of Eiso

T . The typical size of this correction is a few per-
cent of the photon transverse energy. The measured value
of Eiso

T is further corrected by subtracting the estimated
contributions from the underlying event and additional
inelastic pp interactions. This correction is computed
on an event-by-event basis using the method suggested
in Ref. [14, 15]. After the isolation requirement is ap-
plied, the relative contribution to the total cross section
from fragmentation photons decreases, though it remains
non-negligible especially at low transverse energies, be-
low 35-40 GeV [2]. The isolation requirement signifi-
cantly reduces the main background, which consists of
QCD multijet events where one jet typically contains a
π0 or η meson which carries most of the jet energy and
is misidentified as a prompt photon because it decays
into a photon pair. Jets are reconstructed in the rapid-
ity range of |yjet| < 4.4 and transverse momentum range

of pjetT > 20 GeV. The minimum separation between the
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highest pT (leading) jet and the photon in the {η, φ} plane
is ∆R > 1.0. The leading jet is required to be in either
the central (|yjet| < 1.2), forward (1.2 ≤ |yjet| < 2.8) or
very forward (2.8 ≤ |yjet| < 4.4) rapidity interval.

The differential cross section dσ/dEγ
T is measured for

each of the three leading jet rapidity categories. Mea-
surements are performed separately for the two cases
where the photon pseudorapidity and the leading jet
rapidity have same-sign (ηγyjet ≥ 0) or opposite-sign
(ηγyjet < 0), and the results are compared to next-to-
leading order (NLO) perturbative QCD theoretical pre-
dictions. Separating the selected phase space into these
six different angular configurations allows the compari-
son between data and theoretical predictions in config-
urations where the relative contribution of the fragmen-
tation component to the total cross section is different,
and in different ranges of x, which in the leading-order

approximation is equal to x =
E

γ

T√
s

(

e±ηγ

+ e±yjet
)

. The

differential cross sections are measured up to Eγ
T = 400

GeV for the central and forward jet configurations, and
up to Eγ

T = 200 GeV for the very forward jet configura-
tions. These measurements cover the region x >∼ 0.001
and 625 GeV2 ≤ Q2 ≡ (Eγ

T)
2 ≤ 1.6 × 105 GeV2, thus

extending the kinematic reach of previous photon + jet
measurements at hadron [16–19] and electron-proton [20–
23] colliders.

II. THE ATLAS DETECTOR

The ATLAS experiment [24] is a multipurpose parti-
cle physics detector with a forward-backward symmetric
cylindrical geometry and nearly 4π coverage in solid an-
gle.

The inner tracking detector covers the pseudorapidity
range |η| < 2.5, and consists of a silicon pixel detector, a
silicon microstrip detector, and, for |η| < 2.0, a transition
radiation tracker. The inner detector is surrounded by a
thin superconducting solenoid providing a 2T magnetic
field.

The electromagnetic calorimeter is a lead-liquid argon
sampling calorimeter. It is divided into a barrel sec-
tion, covering the pseudorapidity region |η| < 1.475, and
two end-cap sections, covering the pseudorapidity regions
1.375 < |η| < 3.2. It consists of three longitudinal lay-
ers in most of the pseudorapidity range. The first layer,
with a thickness between 3 and 5 radiation lengths, is
segmented into high granularity strips in the η direction
(width between 0.003 and 0.006 depending on η, with the
exception of the regions 1.4 < |η| < 1.5 and |η| > 2.4),
sufficient to provide event-by-event discrimination be-
tween single-photon showers and two overlapping showers
coming from a π0 decay. The second layer of the electro-
magnetic calorimeter, which collects most of the energy
deposited in the calorimeter by the photon shower, has a
thickness around 17 radiation lengths and a cell granular-
ity of 0.025×0.025 in η×φ. A third layer, with thickness

varying between 4 and 15 radiation lengths, collects the
tails of the electromagnetic showers and provides an ad-
ditional point to reconstruct the shower barycenter. In
front of the calorimeter a thin presampler layer, covering
the pseudorapidity interval |η| < 1.8, is used to correct
for energy loss before the calorimeter. The electromag-
netic energy scale is measured using Z → ee events with
an uncertainty better than 1% [25]. The linearity has
been found to be close to 1%. At low |η| the stochastic

term is (9− 10)%/
√

E[GeV]. However, it worsens as the
amount of material in front of the calorimeter increases
at larger |η|. The constant term is measured to be about
1.2% in the barrel and 1.8% in the end-cap region up to
|η| < 2.47 which is relevant for this analysis.
A hadronic sampling calorimeter is located outside the

electromagnetic calorimeter. It is made of scintillating
tiles and steel in the barrel section (|η| < 1.7), with depth
around 7.4 interaction lengths, and of two end-caps of
copper and liquid argon, with depth around 9 interaction
lengths. Hadronic jets are reconstructed with an energy
scale uncertainty of the order of 2.5% in the central to
14% in the very forward regions [26].
The muon spectrometer surrounds the calorimeters. It

consists of three large air-core superconducting toroid
systems, stations of precision tracking chambers provid-
ing accurate muon tracking over |η| < 2.7, and detectors
for triggering over |η| < 2.4.
Events containing photon candidates are selected by a

three-level trigger system. The first level trigger (level-
1) is hardware based: using a trigger cell granularity
(0.1× 0.1 in η × φ) coarser than that of the electromag-
netic calorimeter, it searches for electromagnetic clus-
ters within a fixed window of size 0.2 × 0.2 and retains
only those whose total transverse energy in two adjacent
trigger cells is above a programmable threshold. The
algorithms of the second and third level triggers (col-
lectively referred to as the high-level trigger) are imple-
mented in software. The high-level trigger exploits the
full granularity and precision of the calorimeter to refine
the level-1 trigger selection, based on improved energy
resolution and detailed information on energy deposition
in the calorimeter cells.

III. COLLISION DATA AND SIMULATED

SAMPLES

A. Collision Data

The measurements presented here are based on pp col-
lision data collected at a center-of-mass energy

√
s = 7

TeV in 2010. Only events taken in stable beam condi-
tions are considered and the trigger system, the tracking
devices and the calorimeters are also required to be op-
erational. Events are recorded using two single-photon
triggers, with nominal transverse energy thresholds of 20
and 40 GeV. During the 2010 data-taking, no prescale
was applied to the 40 GeV threshold trigger and the cor-
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responding total integrated luminosity of the collected
sample amounts to

∫

Ldt = 37.1 pb−1 [27, 28]. In this
measurement, this threshold is used to collect events in
which the photon transverse energy, after reconstruction
and calibration, is greater than 45 GeV. During the same
data-taking period the average prescale of the 20 GeV
threshold trigger was 5.5, leading to a total integrated
luminosity of (6.7± 0.2) pb−1. This threshold is used in
this measurement to collect events in which the photon
transverse energy is lower than 45 GeV
The selection criteria applied by the trigger on shower-

shape variables computed from the energy profiles of
the showers in the calorimeters are looser than the pho-
ton identification criteria applied in this measurement.
Minimum-bias events, triggered by two sets of scintilla-
tion counters located at z = ±3.5 m from the collision
center, are used to estimate the single-photon trigger ef-
ficiencies for true prompt photons with pseudorapidity
|ηγ | < 2.37. The efficiencies are constant and consis-
tent with 100% within the uncertainty (Sec. VII) for
Eγ

T > 43 GeV and Eγ
T > 23 GeV for the 40 GeV and

20 GeV threshold triggers, respectively.
In order to reduce noncollision backgrounds, events are

required to have a reconstructed primary vertex with at
least three associated tracks and consistent with the aver-
age beam spot position. The inefficiency of this require-
ment is negligible in true photon + jet events passing the
acceptance criteria. The estimated contribution to the fi-
nal photon sample from noncollision backgrounds is less
than 0.1% and is therefore neglected [10, 11].
The total number of selected events in data after the

trigger, data quality and primary vertex requirements is
approximately six million.

B. Simulated events

To study the characteristics of signal and background
events, simulated samples are generated using PYTHIA

6.423 [29]. The event generator parameters, including
those of the underlying event model, are set according to
the ATLAS AMBT1 tune [30], and the detector response
is simulated using the GEANT4 program [31]. These sam-
ples are reconstructed with the same algorithms used for
data. More details on the event generation and simula-
tion infrastructure are provided in Ref. [32]. For the eval-
uation of systematic uncertainties related to the choice
of the event generator and parton shower model, alterna-
tive samples are generated with HERWIG 6.510 [33]. The
HERWIG event generation parameters are set according to
the AUET1 tune [34] and the underlying event is gener-
ated using JIMMY 4.31 [35] with multiple parton interac-
tions enabled.
The signal sample includes leading order γ + jet events

from both qg → qγ and qq̄ → gγ hard scattering and
from quark bremsstrahlung in QCD dijet events. The
background sample is generated by using all tree-level
2→2 QCD processes, removing γ + jet events from quark

bremsstrahlung.
The ratio between selected diphoton and inclusive pho-

ton + jet events is estimated to be 0.3% using PYTHIA

diphoton samples. Therefore, background from diphoton
events is neglected.

IV. PHOTON AND JET SELECTION

A. Photon selection

Photons are reconstructed starting from clusters in the
electromagnetic calorimeter with transverse energies ex-
ceeding 2.5 GeV, measured in projective towers of 3×5
cells in η × φ in the second layer of the calorimeter. An
attempt is made to match these clusters with tracks that
are reconstructed in the inner detector and extrapolated
to the calorimeter. Clusters without matching tracks
are classified as unconverted photon candidates. Clusters
with matched tracks are classified as electron candidates.
To recover photon conversions, clusters matched to pairs
of tracks originating from reconstructed conversion ver-
tices in the inner detector or to single tracks with no hit
in the innermost layer of the pixel detector are classified
as converted photon candidates. The final energy mea-
surement, for both converted and unconverted photons,
is made using only the calorimeter, with a cluster size
that depends on the photon classification. In the barrel,
a cluster corresponding to 3×5 (η×φ) cells in the second
layer is used for unconverted photons, while a cluster of
3×7 (η×φ) cells is used for converted photon candidates
to compensate for the opening between the conversion
products in the φ direction due to the magnetic field. In
the end-cap, where the cell size along θ is smaller than
in the barrel and the conversion tracks are closer in φ
because of the smaller inner radius of the calorimeter, a
cluster size of 5×5 is used for all candidates. A dedicated
energy calibration [36] is then applied separately for con-
verted and unconverted photon candidates to account for
upstream energy loss and both lateral and longitudinal
leakage. Both unconverted and converted photon can-
didates are considered for this measurement. Photons
reconstructed near regions of the calorimeter affected by
readout or high-voltage failures are not considered, elim-
inating around 5% of the selected candidates. Events
with at least one photon candidate with transverse en-
ergy Eγ

T > 25 GeV and pseudorapidity |ηγ | < 1.37 are se-
lected. Photons are selected using the same shower-shape
and isolation variables discussed in Refs. [10] and [37].
The selection criteria on the shower-shape variables are
independent of the photon candidate’s transverse energy,
but vary as a function of the photon reconstructed pseu-
dorapidity, to take into account variations in the total
thickness of the upstream material and in the calorimeter
geometry. They are optimized independently for uncon-
verted and converted photons to account for the differ-
ent developments of the showers in each case. Applying
these selection criteria suppresses backgrounds from jets
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misidentified as photons. The photon transverse isola-
tion energy Eiso

T is required to be lower than 3 GeV. Less
than 0.2% of events have more than one photon candi-
date passing the selection criteria. In such events the
leading-ET photon is retained.

B. Jet selection

Jets are reconstructed starting from three-dimensional
topological clusters built from calorimeter cells, using the
infrared- and collinear-safe anti-kt algorithm [38] with a
radius parameter R = 0.4. The jet four-momenta are
constructed from a sum over their constituents, treating
each as an (E, ~p) four-vector with zero mass. The jet
four-momenta are then recalibrated using a jet energy
scale correction as described in Ref. [26]. The calibration
procedure corrects for instrumental effects, such as in-
active material and noncompensation, as well as for the
additional energy due to multiple pp interactions within
the same bunch crossing (pile-up). Jets with calibrated
transverse momenta greater than 20 GeV are retained for
this measurement.

To reject jets reconstructed from calorimeter signals
not originating from a pp collision, the same jet quality
criteria used in Ref. [26] are applied here. These cuts
suppress fake jets from calorimeter noise, cosmic rays and
beam-related backgrounds.
Jets overlapping with the candidate photon, or with

an isolated electron produced from W or Z decay, are
not considered. For this reason, if the jet axis is within a
cone of radius 0.3 around the photon, the jet is discarded.
Similarly, if the jet axis is within a cone of radius 0.3
around any electron that passes the tight identification
criteria [25] and that has calorimeter isolation, Eiso

T , less
than 4 GeV, the jet is discarded.

The average jet multiplicity after the previous require-
ments is between 1.3 and 2.0, increasing with Eγ

T. In
events with multiple jet candidates, the leading-pT jet is
chosen. In order to retain the event, the leading jet is re-
quired to have rapidity |yjet| < 4.4. The leading jet axis
is also required not to lie within a cone of radius R = 1.0
around the photon direction.
The contamination in the selected sample from pile-up

jets is estimated to be negligible, which is consistent with
the low pile-up conditions of the 2010 data-taking, when,
on average, only two minimum-bias events per bunch
crossing are expected.

C. Distribution of photon transverse energy in

selected events

The number of events after photon and jet selections
is 213 003. 96 314 events have been collected with the 20
GeV trigger and have 25 GeV< Eγ

T ≤ 45 GeV, 116 689
events have been collected with the 40 GeV trigger and

have Eγ
T > 45 GeV. In 57% of the events the jet is cen-

tral (32%/25% are in the same/opposite-sign configura-
tion), in 37% of the events the jet is forward (24%/13%
are in the same/opposite-sign configuration), and in 6%
of the events the jet is very forward (4%/2% are in the
same/opposite-sign photon). The photon candidate is
reconstructed as unconverted in 68% of the events and
as converted in the remaining 32%. The transverse en-
ergy distribution of the photon candidates in the selected
sample is shown in Fig. 1.
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FIG. 1. Transverse energy distribution of photon candidates
in photon + jet events selected in the 2010 ATLAS data, be-
fore background subtraction. The distribution is normalized
by the integrated luminosity and the transverse energy bin
width. Events with Eγ

T
≤ 45 GeV have been collected with

the (prescaled) 20 GeV photon trigger. Events with Eγ

T
> 45

GeV have been collected with the (unprescaled) 40 GeV pho-
ton trigger.

V. BACKGROUND SUBTRACTION AND

SIGNAL YIELD ESTIMATION

A non-negligible residual contribution of background
is expected in the selected photon + jets sample, even
after the application of the tight identification and iso-
lation requirements. The dominant background is com-
posed of dijet events in which one jet is misidentified as
a prompt photon, with a tiny contribution from dipho-
ton and W/Z+jets events. In more than 95% of back-
ground dijet events, the misidentified jet contains a light
neutral meson that carries most of the jet energy and de-
cays to a collimated photon pair. The background yield
in the selected sample is estimated in situ using a two-
dimensional sideband technique as in Ref. [10] and then
subtracted from the observed yield. In the background
estimate, the photon is classified as:

• Isolated, if Eiso
T < 3 GeV;

• Nonisolated, if Eiso
T > 5 GeV;
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• Tight, if it passes the tight photon identification
criteria;

• Nontight, if it fails at least one of the tight require-
ments on four shower-shape variables computed
from the energy deposits in a few cells of the first
layer of the electromagnetic calorimeter, but passes
all the other tight identification criteria.

In the two-dimensional plane [10] formed by the photon
transverse isolation energy and the photon tight identifi-
cation variable, we define four regions:

• A: the signal region, containing tight, isolated pho-
ton candidates.

• B: the nonisolated background control region, con-
taining tight, nonisolated photon candidates.

• C: the nonidentified background control region,
containing isolated, nontight photon candidates.

• D: the background control region containing non-
isolated, nontight photon candidates.

The signal yield N sig
A in region A is estimated from

the number of events in the four regions, NK (K ∈
{A,B,C,D}), through the relation

N sig
A = NA − (NB − cBN

sig
A )

(NC − cCN
sig
A )

(ND − cDN sig
A )

, (1)

where cK ≡ N sig
K /N sig

A are signal leakage fractions that
can be extracted from simulated signal event samples.
Equation 1 leads to a second-order polynomial equa-
tion in N sig

A that has only one physical (N sig
A > 0) so-

lution. The only hypothesis underlying Eq. 1 is that the
isolation and identification variables are uncorrelated in
background events. This assumption has been verified
both in background simulated samples, and in data in
the background-dominated region of Eiso

T > 7 GeV. This
method was found to return signal yields consistent with
the generated ones using a cross section weighted combi-
nation of simulated signal and background samples.
The resulting signal purity and signal yield as a func-

tion of the photon candidate transverse energy for the
six photon and jet angular configurations are shown in
Fig. 2. The signal purity typically increases from be-
tween 50% and 70% at Eγ

T = 25 GeV to above 95% for
Eγ

T > 150 GeV. The effect of the non-negligible signal
leakage in the background control regions (cK 6= 0) in-
creases the measured purity by 5-6% at Eγ

T = 25 GeV
and ≈ 2% at Eγ

T > 150 GeV compared to the purity
estimated assuming negligible signal in the background
regions.

VI. SIGNAL EFFICIENCY AND CROSS

SECTION MEASUREMENT

The combined signal trigger, reconstruction, and se-
lection efficiency is evaluated from the simulated signal

samples described in Sec. III B, which include leading
order γ + jet events from both hard-scattering (hard
subprocesses qg → qγ and qq̄ → gγ) and from quark
bremsstrahlung in QCD dijet events. For each of the
six angular configurations, efficiency matrices (Λij) are
constructed, with the indices i and j corresponding to
reconstructed and true photon transverse energy inter-
vals, respectively. The efficiency matrices account both
for trigger, reconstruction, photon identification efficien-
cies and for migrations between different bins of the true
and reconstructed photon transverse energies due to res-
olution effects. The matrix elements are determined from
the ratios of two quantities. The denominators are de-
fined in the following way:

• The leading truth-level signal photon within the
acceptance (|ηγtrue| ≤ 1.37) is selected.

• Truth jets are reconstructed using the anti-kt algo-
rithm with a radius parameter R = 0.4 on all the
particles with proper lifetime longer than 10 ps,
including photons, and the leading truth jet is se-
lected among those with axis separated from the
photon direction by ∆R > 0.3. The leading pho-
ton and the leading jet are required to be separated
by ∆R > 1.0.

• To retain the event the true leading photon is re-
quired to have Eγ

T,true > 20 GeV and to have a

truth-particle-level isolation (computed from the
true four-momenta of the generated particles inside
a cone of radius 0.4 around the photon direction)
Eiso

T,true < 4 GeV. This truth-particle-level cut has
been determined on PYTHIA photon + jet samples
to match the efficiency of the experimental isola-
tion cut at 3 GeV (more details can be found in
Ref. [10]). In this case, the same underlying event
subtraction procedure used on data has been ap-
plied at the truth level. In addition, the leading
truth jet is required to have Ejet

T,true > 20 GeV

and |yjettrue| < 4.4. At the truth level the minimum
Eγ

T,true is set to 20 GeV to account for possible mi-
grations of photons with true transverse energy be-
low 25 GeV in the reconstructed transverse energy
intervals above 25 GeV.

The numerators are determined by applying the selection
criteria described in Sec. IV to the simulated signal sam-
ples. Since the simulation does not describe accurately
the electromagnetic shower profiles, a correction factor
for each simulated shape variable is applied to better
match the data. We require the reconstructed isolation
energy to be less than 3 GeV. As for the truth level,
photons are allowed to have a Eγ

T,reco > 20 GeV. The
reconstructed photon is required to match the truth pho-
ton within a cone of radius 0.4 while the reconstructed
jet is required to match the truth jet in a cone of radius
0.3. Events which pass the selection at the reconstruction
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FIG. 2. Estimated signal purity (left column) and signal yield normalized by bin width and integrated luminosity (right column)
in data as a function of the photon transverse energy, for the same-sign angular configurations (full circles) and the opposite-sign
angular configurations (open triangles). A small horizontal displacement has been added to the points corresponding to the
opposite-sign configurations, so that the error bars are clearly shown. The errors are statistical only. Top row: central jet.
Middle row: forward jet. Bottom row: very forward jet.

level but fail it at the truth level are properly accounted
for in the normalization.

The event selection efficiency typically rises from 50%
to 80% as a function of Eγ

T. An inefficiency of around

15% is due to the acceptance loss originating from a few
inoperative optical links in the calorimeter readout and
from the isolation requirement. An inefficiency decreas-
ing from 20-25% for Eγ

T = 25 GeV to almost zero at high
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Eγ
T originates from the shower-shape photon identifica-

tion selection.
The differential cross section as a function of the pho-

ton true transverse energy Etrue
T is computed in each bin

i of Etrue
T and for each angular configuration k as:

dσk
i

dEtrue
T

=
Nγ,true,isol,k

i
∫

Ldt ∆Etrue
T,i

, (2)

where Nγ,true,isol,k
i is the number of events containing

a true isolated photon and hadronic jets, in which the
true photon transverse energy is in bin i and the angular
configuration formed by the leading photon and jet is k.
This number is related to the observed number of events
passing the analysis cuts through the efficiency matrices
Λij :

Nγ,reco,isol,k
i =

∑

j

ΛijN
γ,true,isol,k
j (3)

The unfolding procedure allows the reconstruction of
the true number of events from the measured distribu-
tion, taking into account the measurement uncertainties
due to statistical fluctuations in the finite measured sam-
ple. The simplest unfolding method is the basic bin-by-

bin unfolding, which corrects the observed cross section
in bin i with the efficiency obtained from the ratio of
selected events to truth events having the photon with
reconstructed and true ET in bin i. A more sophisticated
method which properly accounts for migrations between
bins is based on the repeated (iterative) application of
Bayes’s theorem [39]. The differences in the measured
cross section for the two methods are a few percent for
events with a central or forward jet and slightly higher
for events with a very forward jet. Since the differences
are within the statistical errors of the methods, we used
the bin-by-bin method for these results.

VII. SYSTEMATIC UNCERTAINTIES

We have considered the following sources of system-
atic uncertainties in the cross section measurement (see
Appendix C for tables detailing the uncertainties in each
Eγ

T bin and each angular configuration):

• Simulation of the detector geometry. The presence
of material in front of the calorimeter affects the
photon conversion rate and the development of elec-
tromagnetic showers. Therefore the cross section
measurement uncertainty depends on the accuracy
of the detector simulation. The nominal simulation
may underestimate the actual amount of material
in front of the calorimeters. To quantify the effect
of more material on the cross section, the full anal-
ysis is repeated using a detector simulation with
a conservative estimate of additional material in

front of the calorimeter [25]. In this case the pho-
ton identification and reconstruction efficiencies are
lower than in the nominal case. The increase in
cross section is assigned as a positive systematic
uncertainty. In the central and forward jet config-
urations the systematic uncertainty varies from 5%
to 8% for photons with 25 GeV< Eγ

T ≤ 45 GeV and
from 1% to 5% for Eγ

T > 45 GeV. In the very for-
ward jet configurations the uncertainty is similarly
estimated to range from 10% to 23%.

• Photon simulation. In order to take into ac-
count the uncertainty on the event generation and
the parton shower model, four additional sam-
ples are used: PYTHIA or HERWIG samples con-
taining only hard-scattering photons and PYTHIA

or HERWIG samples containing only photons from
quark bremsstrahlung. The analysis is repeated
using these samples, and the largest positive and
negative deviations from the nominal cross section
are taken as systematic uncertainties. The devia-
tions are mainly positive, varying from 4% to 16%
depending on Eγ

T or the angular configuration.

• Jet and photon energy scale and resolution uncer-
tainties. The cross section uncertainty is deter-
mined by varying the electromagnetic and the jet
energy scales and resolutions within their uncer-
tainties [25, 26]. The effect on the cross section is
found to be negligible, with the exception of the
effect of the jet energy scale uncertainty, which af-
fects mainly the first Eγ

T bin due to the efficiency

of the 20 GeV threshold on pjetT . For the angular
configurations including one central or one forward
jet this effect is 3% to 7%, for the configurations
containing one very forward jet it is 9% to 20%.

• Uncertainty on the background correlation in the
two-dimensional sidebands method. The isolation
and identification variables are assumed to be in-
dependent for fake photon candidates. This as-
sumption was verified using both data and sim-
ulated background samples and was found to be
valid within a 10% uncertainty for configurations
including a central or a forward jet and within a
25% uncertainty for configurations including a very
forward jet. The cross section is recomputed ac-
counting for these possible correlations in the back-
ground subtraction [10], and the difference with the
nominal result is taken as a systematic uncertainty.
This procedure gives a systematic uncertainty on
the cross section of 3% and 6% in the first Eγ

T bin
for these groups of configurations respectively. This
uncertainty decreases rapidly with increasing Eγ

T,
being proportional to 1 − P , where P is the signal
purity.

• Background control regions definition in the two-
dimensional sidebands method. The measurement
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is repeated using a different set of background iden-
tification or isolation criteria in the purity calcula-
tion, and the difference between the new cross sec-
tion and the nominal result is taken as a systematic
uncertainty. For background identification, three
or five shower-shape variables are reversed instead
of four as in the nominal case (more details can be
found in Ref. [10]). The deviations on the cross sec-
tion range from 5% in the central jet configurations
to 12% in the forward jet configurations, all de-
creasing with increasing Eγ

T. Varying the isolation
cut by ±1 GeV results in less than 1% difference in
the cross section.

• Data-driven correction to the photon efficiency.
The simulated photon shapes in the calorimeter
have been corrected in order to improve the agree-
ment with the data. The systematic uncertainty re-
lated to the correction procedure is computed using
different simulated photon samples and a different
simulation of the ATLAS detector and is estimated
to be of the order of 1% to 4% in the first Eγ

T bin
and lower than 1% elsewhere [11].

• Uncertainty on the trigger efficiency. The trigger
efficiency in the simulation is consistent with the
one measured in data, using a bootstrap method,
within the total uncertainty of the in situ measure-
ment (0.6% uncertainty for Eγ

T ≤ 45 GeV and 0.4%
for Eγ

T > 45 GeV). These uncertainties are added
to the total systematic uncertainty on the cross sec-
tion.

• Uncertainty on the jet reconstruction efficiency.
The simulation is found to reproduce data jet re-
construction efficiencies to better than 2% [40]. A
2% systematic uncertainty to the cross section is
assigned.

• Uncertainty on the simulated jet multiplicity. The
LO generators used to estimate the signal efficien-
cies do not reproduce precisely the jet multiplicity
observed in data, and the signal efficiency could
depend on the multiplicity. Reweighting the simu-
lation in order to reproduce the jet multiplicity ob-
served in data changes the cross section by less than
1%, which is taken as a systematic uncertainty.

• Uncertainty on the integrated luminosity. It has
been determined to be 3.4% [27, 28].

• Isolated electron background. Possible back-
grounds may arise from W+jets where the W de-
cays into an electron misidentified as photon, and
W+γ where theW decays into an electron misiden-
tified as a jet. Additional backgrounds may orig-
inate from Z → ee where an electron may be
misidentified as a photon, and combined with the
jet arising from the misidentification of the other
electron or with a jet from the rest of the event

(in Z+jets). Using simulated samples of these
processes, scaled to their cross sections measured
in [41–43], the total isolated electron background is
estimated to be less than 1.5% of the signal yield
measured in data in each photon Eγ

T bin. There-

fore an asymmetric systematic uncertainty (+0.0
−1.5)%

on the measured cross section is assigned.

The sources of systematic uncertainty discussed above
are considered as uncorrelated and thus the total sys-
tematic uncertainty (listed in the tables in Appendix B)
is estimated by summing in quadrature all the contribu-
tions.

VIII. THEORETICAL PREDICTIONS

The expected production cross section of an isolated
photon in association with jets as a function of the photon
transverse energy Eγ

T is estimated using JETPHOX 1.3 [1].
JETPHOX is a parton-level Monte Carlo generator which
implements a full NLO QCD calculation of both the di-
rect and fragmentation contributions to the cross section.
A parton-level isolation cut, requiring a total transverse
energy below 4 GeV from the partons produced with the
photon inside a cone of radius ∆R = 0.4 in η×φ around
the photon direction, is used for this computation. The
NLO photon fragmentation function [44] and the CT10

parton density functions [45] are used. The nominal
renormalization (µR), factorization (µF ) and fragmenta-
tion (µf ) scales are set to the photon transverse energy
Eγ

T. Jets of partons are reconstructed by using an anti-
kT algorithm with a radius parameter R = 0.4. The
same transverse momentum and rapidity criteria applied
in the measurement to the reconstructed objects are used
in the JETPHOX generation for the photon and the leading-
pT jet. As for data, the event is kept if the two objects
are separated by ∆R > 1.0 in {η, φ}. With this setup
the fragmentation contribution to the total cross section
decreases as a function of Eγ

T, from 10% to 1.5% for the
same-sign, central jet configuration while it varies from
22% to 2.5% in the same-sign, very forward jet configu-
ration. In the opposite-sign configurations the fragmen-
tation contribution is 20% to 50% (depending on Eγ

T and
the jet rapidity) higher than in the corresponding same-
sign configurations.
The JETPHOX cross section does not include underly-

ing event, pile-up or hadronization effects. While the
ambient-energy density correction of the photon isola-
tion removes the effects from underlying event and pile-
up on the photon side, potential differences between the
JETPHOX theoretical cross section and the measured one
may arise from the application of the jet selection, in par-
ticular the transverse momentum threshold of 20 GeV.
This cut is applied at parton-level in JETPHOX while it is
applied to particle jets in the measured cross section and
in the fully simulated PYTHIA and HERWIG samples.
One effect of hadronization is to spread energy outside
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of the jet area, so the jet pT will tend to be lower than
that of the originating parton(s); on the other hand, the
underlying event adds extra particles to the jet candidate
and results in the increase of the jet pT. To estimate
these effects we use the simulated signal PYTHIA sam-
ples to evaluate the ratios of truth-level cross sections
with and without hadronization and underlying event,
and subsequently we multiply each bin of the JETPHOX

cross sections by these ratios. These correction factors
are smaller than 1 (around 0.9-0.95) at low Eγ

T, indicat-
ing that the impact of hadronization on the jet pT is
more important than the extra energy added from the
underlying event and pile-up. The correction factors are
consistent with one at high Eγ

T. This finding is in agree-
ment with the expectations, since the photon and the jet
transverse momenta are correlated and for large Eγ

T the
pT > 20 GeV cut becomes fully efficient both at parton-
and particle-level.
The systematic uncertainties on the QCD cross sec-

tions computed with JETPHOX are estimated in the fol-
lowing way:

• The scale uncertainty is evaluated by fixing any two
scales to the nominal value and varying the third
between 0.5 and 2.0 times the nominal value. In
addition the effect of the coherent scale variations
where all three scales are varied together is also
taken into account. The envelope of the values
obtained with the different scale configurations is
taken as a systematic uncertainty. This leads to a
change of the predicted cross section between 15%
at low Eγ

T and 10% at high Eγ
T.

• The uncertainty on the cross section from the PDF
uncertainty has been obtained by varying the PDFs
within the 68% confidence level intervals. The cor-
responding uncertainty on the cross section varies
between 5% and 2% as Eγ

T increases. Using a differ-
ent set of PDFs, such as MSTW 2008 [46] or NNPDF
2.1 [47], the computed cross sections vary always
within the total systematic uncertainty on the pre-
dicted cross section.

• The uncertainty on the correspondence between
parton-level and particle-level isolation cut has
been evaluated by varying the cut between 3 and
5 GeV. This variation changes the predicted cross
section by a few percent for the central configu-
ration but becomes more important for the for-
ward and very forward configurations, where the
fragmentation contribution to the cross section is
larger.

• The uncertainty on the hadronization and under-
lying event corrections is estimated as the maxi-
mum spread of the correction factors obtained from
PYTHIA using both the nominal and the Perugia
2010 tunes [48] and with HERWIG++ 2.5.1 with the
UE7000-2 tune [49].

The expected cross sections with their full statistic
and systematic uncertainties for all angular configura-
tions under study are summarized in Appendix A.

IX. COMPARISON BETWEEN DATA AND

THEORY

The measured Eγ
T-differential cross sections in the six

photon-jet angular configurations under study are shown,
with the theoretical cross sections overlaid, in Fig. 3. The
ratio between data and theory is also plotted, showing
the relative deviation of the measured cross section from
the predicted cross section across the full Eγ

T range on
a linear scale. The error bars represent the combination
of statistical and systematic uncertainties, but are dom-
inated by systematic uncertainties in all regions. The
numerical results are presented in Appendix B.
The NLO pQCD predictions provided by JETPHOX are

in fair agreement with the measured cross sections con-
sidering the given experimental and theoretical system-
atic uncertainties. As already observed in previous mea-
surements of the inclusive prompt photon cross section
at the LHC [10, 11, 50], the data are consistently lower
than the theoretical prediction in the Eγ

T < 45 GeV re-
gion, possibly suggesting an inaccuracy at low Eγ

T of the
NLO predictions and the need to perform the theoretical
calculations at a higher order in perturbation theory.

X. CONCLUSION

A measurement of the production cross section of an
isolated prompt photon in association with jets in pp col-
lisions at a center-of-mass energy

√
s = 7 TeV is pre-

sented. The measurement uses an integrated luminos-
ity of 37 pb−1 and covers the region x >∼ 0.001 and
625 GeV2 ≤ Q2 ≤ 1.6 × 105 GeV2, thus extending into
kinematic regions previously unexplored with this final
state at either hadron or electron-proton colliders. The
differential cross section dσ/dEγ

T, as a function of the
photon transverse energy, has been determined for iso-
lated photons in the pseudorapidity range |ηγ | < 1.37
and transverse energy Eγ

T > 25 GeV, after integration

over the jet transverse momenta for pjetT > 20 GeV. A
minimum separation of ∆R > 1.0 in the {η, φ} plane is
required between the leading jet and the photon. The
cross sections are presented separately for the three jet
rapidity intervals |yjet| < 1.2, 1.2 ≤ |yjet| < 2.8 and
2.8 ≤ |yjet| < 4.4, distinguishing between the same-sign
(ηγyjet ≥ 0) and opposite-sign (ηγyjet < 0) configura-
tions. This subdivision allows the comparison between
data and NLO perturbative QCD predictions in config-
urations where the relative contribution of the fragmen-
tation component to the cross section and the explored
ranges of the incoming parton momentum fraction x are
different. The NLO pQCD cross sections provided by
JETPHOX are in fair agreement with the measured ones
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FIG. 3. Top graphs: experimental (black dots) and theoretical (blue line) photon + jet production cross sections, for the
three same-sign (left column) and the three opposite-sign (right column) angular configurations. The black error bars represent
the total experimental uncertainty. The blue bands show the total uncertainties on the theoretical predictions obtained with
JETPHOX. Bottom graphs: ratio between the measured and the predicted cross sections. The blue bands show the theoretical
uncertainties while the error bars show the experimental uncertainties on the ratio. First row: |yjet| < 1.2. Second row:
1.2 ≤ |yjet| < 2.8. Third row: 2.8 ≤ |yjet| < 4.4.
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considering the typical (10% to 30%) experimental and
theoretical systematic uncertainties. In the Eγ

T < 45 GeV
region, the NLO QCD calculation consistently overesti-
mates the measured cross section, as observed in previous
determinations of the inclusive prompt photon produc-
tion cross section.
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Appendix A: Theoretical photon + jet cross section

Tables I-VI show the theoretical photon + jet differential cross sections, in the six photon-jet angular configurations
under study, computed as described in Sec. VIII.

TABLE I. NLO pQCD cross section prediction for the production of an isolated photon in the pseudorapidity range 0.00 ≤
|ηγ | < 1.37 in association with a jet in the rapidity range |yjet| < 1.2 and pjetT > 20 GeV (ηγyjet ≥ 0). The NLO pQCD cross
section has been computed with JETPHOX 1.3 using CT10 PDFs. Details on the calculation of the uncertainties are discussed
in Sec. VIII. In the last column the nonperturbative correction factor that must multiply the JETPHOX cross section is shown,
with its uncertainty.

Eγ

T
min Eγ

T
max dσ

dE
γ

T

stat scale PDF isolation correction

uncertainty uncertainty uncertainty uncertainty factor

[GeV] [GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV]

25 30 550 ±6 +41
−41

+28
−36

+9
−0 0.927±0.036

30 35 331 ±3 +51
−19

+16
−20

+2
−0 0.951±0.034

35 45 156 ±1 +14
−13

+7
−8

+0
−2 0.983±0.026

45 55 60.4 ±0.4 +6.6
−3.4

+2.7
−2.7

+0.6
−0.0 0.992±0.020

55 70 24.2 ±0.2 +2.1
−1.6

+1.0
−0.9

+0.0
−0.3 1.002±0.025

70 85 9.26 ±0.06 +0.92
−0.85

+0.34
−0.34

+0.00
−0.14 0.995±0.026

85 100 4.21 ±0.03 +0.37
−0.34

+0.14
−0.14

+0.01
−0.04 1.001±0.022

100 125 1.76 ±0.01 +0.16
−0.13

+0.05
−0.06

+0.00
−0.01 0.996±0.017

125 150 0.699 ±0.004 +0.061
−0.056

+0.019
−0.020

+0.005
−0.007 0.992±0.018

150 200 0.236 ±0.001 +0.024
−0.018

+0.006
−0.007

+0.001
−0.003 0.997±0.016

200 400 0.0266 ±0.0001 +0.0026
−0.0023

+0.0008
−0.0008

+0.0000
−0.0002 0.988±0.026

TABLE II. NLO pQCD cross section prediction for the production of an isolated photon in the pseudorapidity range 0.00 ≤
|ηγ | < 1.37 in association with a jet in the rapidity range |yjet| < 1.2 and pjet

T
> 20 GeV (ηγyjet < 0). The NLO pQCD cross

section has been computed with JETPHOX 1.3 using CT10 PDFs. Details on the calculation of the uncertainties are discussed
in Sec. VIII. In the last column the nonperturbative correction factor that must multiply the JETPHOX cross section is shown,
with its uncertainty.

Eγ

T
min Eγ

T
max dσ

dE
γ

T

stat scale PDF isolation correction

uncertainty uncertainty uncertainty uncertainty factor

[GeV] [GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV]

25 30 420 ±5 +49
−40

+21
−29

+8
−0 0.925±0.041

30 35 261 ±2 +27
−40

+11
−21

+0
−7 0.943±0.049

35 45 118 ±1 +17
−16

+6
−6

+2
−0 0.980±0.032

45 55 47.0 ±0.3 +4.3
−6.6

+2.6
−1.9

+0.0
−0.7 0.979±0.029

55 70 17.2 ±0.1 +2.8
−1.6

+0.8
−0.7

+0.0
−0.5 0.982±0.025

70 85 6.72 ±0.05 +0.62
−0.74

+0.28
−0.26

+0.03
−0.02 0.995±0.018

85 100 2.93 ±0.02 +0.34
−0.25

+0.11
−0.11

+0.03
−0.00 0.981±0.031

100 125 1.24 ±0.01 +0.14
−0.12

+0.04
−0.04

+0.01
−0.02 0.989±0.025

125 150 0.469 ±0.003 +0.053
−0.039

+0.015
−0.016

+0.005
−0.007 0.992±0.027

150 200 0.159 ±0.001 +0.020
−0.015

+0.005
−0.005

+0.001
−0.001 0.984±0.019

200 400 0.0169 ±0.0001 +0.0017
−0.0015

+0.0007
−0.0007

+0.0003
−0.0000 0.991±0.026
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TABLE III. NLO pQCD cross section prediction for the production of an isolated photon in the pseudorapidity range 0.00 ≤
|ηγ | < 1.37 in association with a jet in the rapidity range 1.2 ≤ |yjet| < 2.8 and pjet

T
> 20 GeV (ηγyjet ≥ 0). The NLO

pQCD cross section has been computed with JETPHOX 1.3 using CT10 PDFs. Details on the calculation of the uncertainties are
discussed in Sec. VIII. In the last column the nonperturbative correction factor that must multiply the JETPHOX cross section
is shown, with its uncertainty.

Eγ

T
min Eγ

T
max dσ

dE
γ

T

stat scale PDF isolation correction

uncertainty uncertainty uncertainty uncertainty factor

[GeV] [GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV]

25 30 434 ±5 +49
−35

+18
−23

+3
−10 0.925±0.054

30 35 258 ±2 +34
−30

+9
−12

+0
−5 0.955±0.034

35 45 120 ±1 +17
−14

+4
−5

+0
−4 0.988±0.021

45 55 42.4 ±0.3 +6.5
−3.7

+1.1
−1.5

+0.9
−0.0 0.993±0.023

55 70 16.7 ±0.1 +1.8
−2.0

+0.4
−0.5

+0.5
−0.0 0.997±0.025

70 85 6.02 ±0.05 +0.68
−0.55

+0.12
−0.17

+0.05
−0.00 0.994±0.015

85 100 2.66 ±0.02 +0.30
−0.24

+0.05
−0.07

+0.02
−0.01 0.989±0.020

100 125 1.09 ±0.01 +0.11
−0.10

+0.02
−0.03

+0.01
−0.01 0.997±0.020

125 150 0.401 ±0.003 +0.051
−0.035

+0.007
−0.009

+0.002
−0.004 0.998±0.020

150 200 0.125 ±0.001 +0.010
−0.011

+0.003
−0.003

+0.000
−0.002 0.994±0.023

200 400 0.0118 ±0.0001 +0.0011
−0.0012

+0.0003
−0.0003

+0.0000
−0.0001 0.993±0.017

TABLE IV. NLO pQCD cross section prediction for the production of an isolated photon in the pseudorapidity range 0.00 ≤
|ηγ | < 1.37 in association with a jet in the rapidity range 1.2 ≤ |yjet| < 2.8 and pjetT > 20 GeV (ηγyjet < 0). The NLO
pQCD cross section has been computed with JETPHOX 1.3 using CT10 PDFs. Details on the calculation of the uncertainties are
discussed in Sec. VIII. In the last column the nonperturbative correction factor that must multiply the JETPHOX cross section
is shown, with its uncertainty.

Eγ

T
min Eγ

T
max dσ

dE
γ

T

stat scale PDF isolation correction

uncertainty uncertainty uncertainty uncertainty factor

[GeV] [GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV]

25 30 260 ±3 +33
−44

+13
−12

+0
−17 0.935±0.075

30 35 141 ±1 +24
−23

+7
−6

+0
−4 0.909±0.055

35 45 60 ±1 +12
−9

+3
−2

+1
−0 0.975±0.034

45 55 22.3 ±0.2 +3.8
−4.0

+0.8
−0.8

+0.0
−1.0 0.962±0.051

55 70 8.1 ±0.1 +1.5
−1.1

+0.3
−0.3

+0.0
−0.3 0.961±0.047

70 85 2.81 ±0.02 +0.40
−0.45

+0.09
−0.09

+0.06
−0.07 0.985±0.024

85 100 1.14 ±0.01 +0.24
−0.18

+0.04
−0.04

+0.00
−0.02 0.998±0.035

100 125 0.456 ±0.004 +0.078
−0.069

+0.016
−0.016

+0.002
−0.012 0.974±0.036

125 150 0.157 ±0.002 +0.040
−0.019

+0.006
−0.006

+0.002
−0.000 0.979±0.040

150 200 0.0481 ±0.0005 +0.0086
−0.0076

+0.0022
−0.0022

+0.0010
−0.0000 0.979±0.031

200 400 0.00422 ±0.00005 +0.00099
−0.00054

+0.00024
−0.00024

+0.00002
−0.00005 0.966±0.028
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TABLE V. NLO pQCD cross section prediction for the production of an isolated photon in the pseudorapidity range 0.00 ≤
|ηγ | < 1.37 in association with a jet in the rapidity range 2.8 ≤ |yjet| < 4.4 and pjet

T
> 20 GeV (ηγyjet ≥ 0). The NLO

pQCD cross section has been computed with JETPHOX 1.3 using CT10 PDFs. Details on the calculation of the uncertainties are
discussed in Sec. VIII. In the last column the nonperturbative correction factor that must multiply the JETPHOX cross section
is shown, with its uncertainty.

Eγ

T
min Eγ

T
max dσ

dE
γ

T

stat scale PDF isolation correction

uncertainty uncertainty uncertainty uncertainty factor

[GeV] [GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV]

25 30 91 ±2 +18
−5

+2
−3

+10
−0 0.904±0.062

30 35 47 ±1 +12
−4

+1
−2

+5
−0 0.919±0.071

35 45 19.8 ±0.3 +4.1
−1.3

+0.4
−0.7

+1.4
−0.0 0.959±0.035

45 55 6.14 ±0.11 +2.31
−0.82

+0.18
−0.23

+0.59
−0.00 0.950±0.068

55 70 1.97 ±0.04 +0.38
−0.22

+0.07
−0.09

+0.09
−0.04 0.960±0.066

70 85 0.556 ±0.013 +0.147
−0.051

+0.026
−0.024

+0.009
−0.002 0.975±0.067

85 100 0.204 ±0.005 +0.049
−0.022

+0.012
−0.009

+0.010
−0.003 0.973±0.079

100 125 0.064 ±0.002 +0.008
−0.011

+0.004
−0.003

+0.003
−0.000 0.973±0.056

125 150 0.0146 ±0.0005 +0.0019
−0.0017

+0.0014
−0.0008

+0.0012
−0.0004 0.979±0.068

150 200 0.0027 ±0.0001 +0.0007
−0.0005

+0.0004
−0.0002

+0.0004
−0.0000 1.004±0.056

TABLE VI. NLO pQCD cross section prediction for the production of an isolated photon in the pseudorapidity range 0.00 ≤
|ηγ | < 1.37 in association with a jet in the rapidity range 2.8 ≤ |yjet| < 4.4 and pjet

T
> 20 GeV (ηγyjet < 0). The NLO

pQCD cross section has been computed with JETPHOX 1.3 using CT10 PDFs. Details on the calculation of the uncertainties are
discussed in Sec. VIII. In the last column the nonperturbative correction factor that must multiply the JETPHOX cross section
is shown, with its uncertainty.

Eγ

T min Eγ

T max dσ

dE
γ

T

stat scale PDF isolation correction

uncertainty uncertainty uncertainty uncertainty factor

[GeV] [GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV]

25 30 53 ±1 +17
−8

+1
−1

+0
−1 0.84±0.26

30 35 27 ±0 +7
−5

+1
−1

+1
−0 0.81±0.21

35 45 10.4 ±0.2 +3.5
−1.2

+0.3
−0.3

+0.5
−0.0 0.92±0.09

45 55 3.37 ±0.05 +0.88
−0.69

+0.12
−0.12

+0.23
−0.00 0.88±0.08

55 70 1.00 ±0.02 +0.30
−0.21

+0.04
−0.04

+0.10
−0.00 0.93±0.15

70 85 0.287 ±0.005 +0.094
−0.058

+0.017
−0.014

+0.005
−0.002 0.95±0.06

85 100 0.091 ±0.002 +0.035
−0.010

+0.007
−0.005

+0.004
−0.000 0.97±0.10

100 125 0.028 ±0.001 +0.010
−0.006

+0.003
−0.002

+0.000
−0.001 0.94±0.12

125 150 0.0067 ±0.0002 +0.0030
−0.0016

+0.0008
−0.0005

+0.0000
−0.0000 1.00±0.11

150 200 0.0014 ±0.0001 +0.0004
−0.0004

+0.0002
−0.0001

+0.0000
−0.0001 0.92±0.21
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Appendix B: Measured photon + jet cross section

Tables VII-XII show the measured photon + jet differential cross sections, in the six photon-jet angular configura-
tions under study, and the comparison to the theoretical predictions.

TABLE VII. Measured cross section as a function of the photon transverse energy, Eγ

T
, for |ηγ | ≤ 1.37, |yjet| < 1.2 and ηγyjet ≥ 0.

The last two columns show the cross section predicted by JETPHOX and multiplied by the corresponding nonperturbative
correction factor, and its uncertainty.

Measured cross section Predicted cross section

Eγ

T
min Eγ

T
max dσ

dE
γ

T

stat syst total exp. uncertainty dσ

dE
γ

T

total theory uncertainty

[GeV] [GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV]

25 30 394 ±8 +74
−30

+74
−31 510 +51

−55

30 35 258 ±6 +49
−23

+50
−23 315 +52

−29

35 45 137 ±3 +27
−13

+27
−13 153 +16

−16

45 55 60.9 ±0.7 +7.0
−5.2

+7.1
−5.2 59.9 +7.2

−4.5

55 70 24.8 ±0.3 +3.0
−2.3

+3.0
−2.4 24.3 +2.5

−2.0

70 85 9.51 ±0.20 +1.22
−0.98

+1.24
−1.00 9.21 +1.01

−0.95

85 100 4.40 ±0.15 +0.55
−0.48

+0.57
−0.50 4.21 +0.41

−0.39

100 125 1.77 ±0.07 +0.23
−0.20

+0.24
−0.22 1.76 +0.17

−0.15

125 150 0.698 ±0.038 +0.096
−0.085

+0.103
−0.093 0.693 +0.065

−0.061

150 200 0.226 ±0.017 +0.032
−0.029

+0.036
−0.034 0.236 +0.025

−0.020

200 400 0.0283 ±0.0028 +0.0041
−0.0038

+0.0050
−0.0048 0.0263 +0.0027

−0.0025

TABLE VIII. Measured cross section as a function of the photon transverse energy, Eγ

T, for |ηγ | ≤ 1.37, |yj | < 1.2 and ηγyjet < 0.
The last two columns show the cross section predicted by JETPHOX and multiplied by the corresponding nonperturbative
correction factor, and its uncertainty.

Measured cross section Predicted cross section

Eγ

T min Eγ

T max dσ

dE
γ

T

stat syst total exp. uncertainty dσ

dE
γ

T

total theory uncertainty

[GeV] [GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV]

25 30 324 ±7 +64
−29

+65
−30 389 +53

−49

30 35 201 ±5 +41
−20

+41
−20 246 +30

−45

35 45 112 ±3 +23
−12

+23
−12 116 +18

−17

45 55 45.5 ±0.5 +5.6
−3.9

+5.6
−3.9 46.0 +5.1

−6.9

55 70 18.3 ±0.3 +2.4
−1.7

+2.4
−1.8 16.9 +2.9

−1.8

70 85 7.18 ±0.18 +0.97
−0.74

+0.99
−0.76 6.68 +0.69

−0.79

85 100 3.26 ±0.14 +0.38
−0.36

+0.40
−0.38 2.87 +0.36

−0.28

100 125 1.36 ±0.05 +0.17
−0.16

+0.17
−0.17 1.22 +0.15

−0.13

125 150 0.503 ±0.037 +0.065
−0.062

+0.075
−0.072 0.466 +0.056

−0.044

150 200 0.156 ±0.014 +0.023
−0.020

+0.027
−0.025 0.156 +0.021

−0.016

200 400 0.0182 ±0.0022 +0.0028
−0.0025

+0.0035
−0.0033 0.0167 +0.0019

−0.0017
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TABLE IX. Measured cross section as a function of the photon transverse energy, Eγ

T
, for |ηγ | ≤ 1.37, 1.2 ≤ |yjet| < 2.8

and ηγyjet ≥ 0. The last two columns show the cross section predicted by JETPHOX and multiplied by the corresponding
nonperturbative correction factor, and its uncertainty.

Measured cross section Predicted cross section

Eγ

T
min Eγ

T
max dσ

dE
γ

T

stat syst total exp. uncertainty dσ

dE
γ

T

total theory uncertainty

[GeV] [GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV]

25 30 316 ±7 +54
−30

+55
−31 401 +53

−46

30 35 210 ±6 +37
−22

+37
−23 247 +34

−32

35 45 105 ±2 +19
−12

+19
−12 119 +17

−16

45 55 43.6 ±0.6 +5.0
−3.7

+5.1
−3.8 42.1 +6.7

−4.2

55 70 17.5 ±0.3 +2.1
−1.7

+2.2
−1.7 16.6 +2.0

−2.1

70 85 6.39 ±0.17 +0.82
−0.66

+0.84
−0.68 5.99 +0.70

−0.58

85 100 2.71 ±0.10 +0.35
−0.29

+0.36
−0.31 2.63 +0.30

−0.25

100 125 1.27 ±0.05 +0.17
−0.15

+0.18
−0.16 1.08 +0.12

−0.10

125 150 0.441 ±0.028 +0.062
−0.054

+0.068
−0.061 0.400 +0.052

−0.037

150 200 0.102 ±0.012 +0.015
−0.013

+0.019
−0.018 0.125 +0.010

−0.012

200 400 0.0090 ±0.0017 +0.0013
−0.0012

+0.0022
−0.0021 0.0117 +0.0011

−0.0012

TABLE X. Measured cross section as a function of the photon transverse energy, Eγ

T
, for |ηγ | ≤ 1.37, 1.2 ≤ |yjet| < 2.8

and ηγyjet < 0. The last two columns show the cross section predicted by JETPHOX and multiplied by the corresponding
nonperturbative correction factor, and its uncertainty.

Measured cross section Predicted cross section

Eγ

T min Eγ

T max dσ

dE
γ

T

stat syst total exp. uncertainty dσ

dE
γ

T

total theory uncertainty

[GeV] [GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV]

25 30 188 ±6 +35
−27

+36
−27 243 +38

−49

30 35 115 ±4 +22
−17

+23
−18 128 +24

−23

35 45 58 ±2 +11
−9

+12
−9 58 +12

−9

45 55 24.1 ±0.5 +3.1
−2.1

+3.1
−2.2 21.5 +3.9

−4.2

55 70 8.8 ±0.2 +1.2
−0.9

+1.2
−0.9 7.8 +1.5

−1.2

70 85 3.32 ±0.11 +0.46
−0.35

+0.48
−0.37 2.76 +0.41

−0.46

85 100 1.49 ±0.09 +0.16
−0.16

+0.19
−0.18 1.14 +0.25

−0.19

100 125 0.54 ±0.04 +0.06
−0.06

+0.07
−0.07 0.44 +0.08

−0.07

125 150 0.175 ±0.022 +0.022
−0.022

+0.031
−0.031 0.154 +0.040

−0.021

150 200 0.055 ±0.008 +0.007
−0.008

+0.011
−0.011 0.047 +0.009

−0.008

200 400 0.0041 ±0.0010 +0.0006
−0.0006

+0.0011
−0.0012 0.0041 +0.0010

−0.0006
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TABLE XI. Measured cross section as a function of the photon transverse energy, Eγ

T
, for |ηγ | ≤ 1.37, 2.8 ≤ |yjet| < 4.4

and ηγyjet ≥ 0. The last two columns show the cross section predicted by JETPHOX and multiplied by the corresponding
nonperturbative correction factor, and its uncertainty.

Measured cross section Predicted cross section

Eγ

T
min Eγ

T
max dσ

dE
γ

T

stat syst total exp. uncertainty dσ

dE
γ

T

total theory uncertainty

[GeV] [GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV]

25 30 66 ±4 +18
−9

+19
−10 82 +20

−8

30 35 46 ±3 +13
−7

+13
−8 43 +12

−5

35 45 20 ±1 +6
−3

+6
−3 19 +4

−2

45 55 8.1 ±0.3 +1.4
−0.8

+1.4
−0.8 5.8 +2.3

−0.9

55 70 2.4 ±0.1 +0.4
−0.2

+0.4
−0.3 1.9 +0.4

−0.3

70 85 0.86 ±0.06 +0.15
−0.10

+0.17
−0.11 0.54 +0.15

−0.07

85 100 0.24 ±0.03 +0.03
−0.03

+0.04
−0.04 0.20 +0.05

−0.03

100 125 0.07 ±0.01 +0.01
−0.01

+0.02
−0.02 0.06 +0.01

−0.01

125 150 0.014 ±0.007 +0.002
−0.002

+0.007
−0.007 0.014 +0.003

−0.002

150 200 0.0028 ±0.0019 +0.0004
−0.0004

+0.0019
−0.0020 0.0027 +0.0009

−0.0006

TABLE XII. Measured cross section as a function of the photon transverse energy, Eγ

T
, for |ηγ | ≤ 1.37, 2.8 ≤ |yjet| < 4.4

and ηγyjet < 0. The last two columns show the cross section predicted by JETPHOX and multiplied by the corresponding
nonperturbative correction factor, and its uncertainty.

Measured cross section Predicted cross section

Eγ

T
min Eγ

T
max dσ

dE
γ

T

stat syst total exp. uncertainty dσ

dE
γ

T

total theory uncertainty

[GeV] [GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV] [pb/GeV]

25 30 31 ±4 +12
−4

+13
−6 44 +19

−14

30 35 21 ±2 +8
−3

+9
−4 22 +8

−6

35 45 12 ±1 +5
−2

+5
−2 10 +3

−1

45 55 3.5 ±0.2 +1.1
−0.6

+1.1
−0.6 3.0 +0.8

−0.7

55 70 1.5 ±0.1 +0.5
−0.2

+0.5
−0.3 0.9 +0.3

−0.2

70 85 0.38 ±0.04 +0.11
−0.06

+0.12
−0.08 0.27 +0.09

−0.06

85 100 0.12 ±0.02 +0.01
−0.01

+0.03
−0.03 0.09 +0.04

−0.01

100 125 0.036 ±0.011 +0.002
−0.002

+0.011
−0.011 0.027 +0.010

−0.007

125 150 0.015 ±0.007 +0.002
−0.002

+0.007
−0.007 0.007 +0.003

−0.002

150 200 0.0023 ±0.0019 +0.0003
−0.0003

+0.0019
−0.0019 0.0013 +0.0005

−0.0005
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Appendix C: Experimental systematic uncertainties

Tables XIII-XXII show the experimental systematic uncertainties on the measured photon + jet differential cross
sections, in each Eγ

T bin and photon-jet angular configuration under study, for the various sources of sytematic
uncertainties considered in Sec. VII.

TABLE XIII. Relative systematic uncertainty (%) introduced by the detector simulation. The Eγ

T
limits for the very forward

jet configurations are given in parentheses.

Eγ

T
range |yjet| < 1.2 |yjet| < 1.2 1.2 ≤ |yjet| < 2.8 1.2 ≤ |yjet| < 2.8 2.8 ≤ |yjet| < 4.4 2.8 ≤ |yjet| < 4.4

[GeV] ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0

25-45 +8.4
−0.0

+7.0
−0.0

+5.6
−0.0

+5.8
−0.0

+10.7
−0.0

+22.6
−0.0

45-400(200) +0.9
−0.0

+1.8
−0.0

+4.7
−0.0

+1.6
−0.0

+10.7
−0.0

+22.6
−0.0

TABLE XIV. Relative systematic uncertainty (%) introduced by the prompt photon simulation. The Eγ

T
limits for the very

forward jet configurations are given in parentheses.

Eγ

T
range |yjet| < 1.2 |yjet| < 1.2 1.2 ≤ |yjet| < 2.8 1.2 ≤ |yjet| < 2.8 2.8 ≤ |yjet| < 4.4 2.8 ≤ |yjet| < 4.4

[GeV] ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0

25-45 +13.8
−4.0

+15.5
−5.7

+10.8
−5.2

+9.2
−11.3

+2.1
−5.0

+14.3
−4.5

45-85 +7.6
−2.1

+8.3
−1.7

+5.8
−1.5

+8.2
−2.3

+8.0
−3.4

+15.5
−10.8

85-150(200) +6.2
−0.6

+3.6
−1.3

+5.0
−0.8

+0.7
−0.4

+1.1
−2.5

+10.2
−7.9

150-400 +5.1
−0.4

+6.9
−0.9

+3.6
−0.7

+2.4
−5.4 n/a n/a

TABLE XV. Relative systematic uncertainty (%) introduced by the electromagnetic energy scale uncertainty. The Eγ

T
limits

for the very forward jet configurations are given in parentheses.

Eγ

T
range |yjet| < 1.2 |yjet| < 1.2 1.2 ≤ |yjet| < 2.8 1.2 ≤ |yjet| < 2.8 2.8 ≤ |yjet| < 4.4 2.8 ≤ |yjet| < 4.4

[GeV] ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0

25-45 +1.1
−0.6

+1.0
−0.6

+1.2
−0.4

+1.1
−0.5

+1.4
−0.7

+1.4
−1.0

45-85 +2.2
−0.7

+2.7
−0.9

+2.0
−0.9

+3.1
−0.9

+3.7
−1.1

+3.7
−0.1

85-150(200) +2.4
−0.6

+2.3
−1.1

+2.8
−1.0

+2.7
−1.4

+4.7
−2.7

+3.6
−1.5

150-400 +2.9
−1.4

+2.5
−1.4

+2.8
−0.9

+3.7
−0.9 n/a n/a

TABLE XVI. Relative systematic uncertainty (%) introduced by the jet energy scale uncertainty. The Eγ

T limits for the very
forward jet configurations are given in parentheses.

Eγ

T range |yjet| < 1.2 |yjet| < 1.2 1.2 ≤ |yjet| < 2.8 1.2 ≤ |yjet| < 2.8 2.8 ≤ |yjet| < 4.4 2.8 ≤ |yjet| < 4.4

[GeV] ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0

25-45 +4.0
−3.6

+4.2
−3.8

+6.8
−5.4

+6.6
−5.9

+18.4
−9.4

+21.4
−9.6

45-85 +0.2
−0.3

+0.3
−0.2

+0.9
−0.9

+1.5
−0.5

+5.2
−2.5

+7.6
−7.2

85-150(200) +0.1
−0.1

+0.3
−0.3

+0.1
−0.0

+0.0
−0.1

+1.2
−1.5

+1.7
−0.0

150-400 +0.0
−0.0

+0.0
−0.0

+0.0
−0.1

+0.1
−0.1 n/a n/a
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TABLE XVII. Relative systematic uncertainty (%) introduced by the electromagnetic energy resolution uncertainty. The
Eγ

T
limits for the very forward jet configurations are given in parentheses.

Eγ

T
range |yjet| < 1.2 |yjet| < 1.2 1.2 ≤ |yjet| < 2.8 1.2 ≤ |yjet| < 2.8 2.8 ≤ |yjet| < 4.4 2.8 ≤ |yjet| < 4.4

[GeV] ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0

25-45 +0.1
−0.1

+0.1
−0.0

+0.0
−0.1

+0.3
−0.0

+0.0
−0.0

+0.4
−0.1

45-85 +0.3
−0.2

+0.0
−0.2

+0.1
−0.2

+0.0
−0.6

+0.8
−0.7

+0.0
−0.8

85-150(200) +0.0
−0.1

+0.3
−0.1

+0.3
−0.0

+0.1
−0.0

+0.1
−1.2

+0.6
−0.1

150-400 +0.1
−0.0

+0.1
−0.0

+0.1
−0.1

+0.0
−0.4 n/a n/a

TABLE XVIII. Relative systematic uncertainty (%) introduced by the jet energy resolution uncertainty. The Eγ

T limits for the
very forward jet configurations are given in parentheses.

Eγ

T range |yjet| < 1.2 |yjet| < 1.2 1.2 ≤ |yjet| < 2.8 1.2 ≤ |yjet| < 2.8 2.8 ≤ |yjet| < 4.4 2.8 ≤ |yjet| < 4.4

[GeV] ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0

25-45 +0.1
−0.0

+0.0
−0.0

+0.3
−0.0

+0.2
−0.0

+0.0
−0.2

+0.6
−0.0

45-85 +0.0
−0.1

+0.1
−0.0

+0.0
−0.3

+0.7
−0.0

+0.7
−0.0

+0.0
−0.7

85-150(200) +0.0
−0.0

+0.1
−0.0

+0.1
−0.0

+0.0
−0.5

+0.1
−0.0

+1.5
−0.0

150-400 +0.0
−0.0

+0.0
−0.0

+0.0
−0.0

+0.2
−0.0 n/a n/a

TABLE XIX. Relative systematic uncertainty (%) introduced by the background correlation. The Eγ

T
limits for the very forward

jet configurations are given in parentheses.

Eγ

T
range |yjet| < 1.2 |yjet| < 1.2 1.2 ≤ |yjet| < 2.8 1.2 ≤ |yjet| < 2.8 2.8 ≤ |yjet| < 4.4 2.8 ≤ |yjet| < 4.4

[GeV] ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0

25-45 ±1.6 ±1.9 ±2.0 ±2.8 ±5.4 ±6.3

45-85 ±0.7 ±0.6 ±0.7 ±1.1 ±1.6 ±3.4

85-150(200) ±0.3 ±0.4 ±0.2 ±0.5 ±0.2 ±0.8

150-400 ±0.1 ±0.2 ±0.8 ±0.6 n/a n/a

TABLE XX. Relative systematic uncertainty (%) introduced by the tightness control region in the purity extraction method.
The Eγ

T
limits for the very forward jet configurations are given in parentheses.

Eγ

T
range |yjet| < 1.2 |yjet| < 1.2 1.2 ≤ |yjet| < 2.8 1.2 ≤ |yjet| < 2.8 2.8 ≤ |yjet| < 4.4 2.8 ≤ |yjet| < 4.4

[GeV] ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0

25-45 ±4.9 ±5.5 ±6.0 ±8.0 ±10.6 ±12.2

45-85 ±1.3 ±2.0 ±2.1 ±3.0 ±2.4 ±3.3

85-150(200) ±0.2 ±0.2 ±0.6 ±0.0 ±2.5 ±2.4

150-400 ±0.9 ±0.5 ±1.2 ±1.4 n/a n/a

TABLE XXI. Relative systematic uncertainty (%) introduced by the isolation control region in the purity extraction method.
The Eγ

T
limits for the very forward jet configurations are given in parentheses.

Eγ

T
range |yjet| < 1.2 |yjet| < 1.2 1.2 ≤ |yjet| < 2.8 1.2 ≤ |yjet| < 2.8 2.8 ≤ |yjet| < 4.4 2.8 ≤ |yjet| < 4.4

[GeV] ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0

25-45 ±0.3 ±0.3 ±0.3 ±0.7 ±0.8 ±0.4

45-85 ±0.3 ±0.3 ±0.4 ±0.3 ±0.7 ±0.3

85-150(200) ±0.1 ±0.1 ±0.2 ±0.1 ±0.3 ±0.2

150-400 ±0.1 ±0.3 ±0.4 ±0.1 n/a n/a
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TABLE XXII. Relative systematic uncertainty (%) introduced by the shower shape corrections uncertainty. The Eγ

T limits for
the very forward jet configurations are given in parentheses.

Eγ

T range |yjet| < 1.2 |yjet| < 1.2 1.2 ≤ |yjet| < 2.8 1.2 ≤ |yjet| < 2.8 2.8 ≤ |yjet| < 4.4 2.8 ≤ |yjet| < 4.4

[GeV] ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0 ηγyjet ≥ 0 ηγyjet < 0

25-45 +2.9
−0.8

+2.6
−0.7

+3.5
−0.9

+3.9
−0.9

+3.3
−1.0

+2.5
−0.9

45-85 +1.0
−0.3

+1.3
−0.4

+1.1
−0.3

+1.4
−0.4

+1.4
−0.5

+0.0
−2.0

85-150(200) +0.2
−0.1

+0.0
−0.1

+0.3
−0.0

+0.0
−0.3

+0.0
−1.3

+0.8
−0.0

150-400 +0.2
−0.1

+0.2
−0.0

+0.2
−0.1

+0.3
−0.0 n/a n/a
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G. Gonzalez Parra11, M.L. Gonzalez Silva26, S. Gonzalez-Sevilla49, J.J. Goodson147, L. Goossens29,
P.A. Gorbounov94, H.A. Gordon24, I. Gorelov102, G. Gorfine173, B. Gorini29, E. Gorini71a,71b, A. Gorǐsek73,
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B.P. Kerševan73, S. Kersten173, K. Kessoku154, J. Keung157, F. Khalil-zada10, H. Khandanyan164, A. Khanov111,
D. Kharchenko64, A. Khodinov95, A.G. Kholodenko127, A. Khomich58a, T.J. Khoo27, G. Khoriauli20,
A. Khoroshilov173, N. Khovanskiy64, V. Khovanskiy94, E. Khramov64, J. Khubua51b, H. Kim145a,145b, M.S. Kim2,
S.H. Kim159, N. Kimura169, O. Kind15, B.T. King72, M. King66, R.S.B. King117, J. Kirk128, L.E. Kirsch22,
A.E. Kiryunin98, T. Kishimoto66, D. Kisielewska37, T. Kittelmann122, A.M. Kiver127, E. Kladiva143b,
J. Klaiber-Lodewigs42, M. Klein72, U. Klein72, K. Kleinknecht80, M. Klemetti84, A. Klier170, P. Klimek145a,145b,
A. Klimentov24, R. Klingenberg42, J.A. Klinger81, E.B. Klinkby35, T. Klioutchnikova29, P.F. Klok103, S. Klous104,
E.-E. Kluge58a, T. Kluge72, P. Kluit104, S. Kluth98, N.S. Knecht157, E. Kneringer61, J. Knobloch29,
E.B.F.G. Knoops82, A. Knue54, B.R. Ko44, T. Kobayashi154, M. Kobel43, M. Kocian142, P. Kodys125, K. Köneke29,
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