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The question of nu
lear response fun
tions in a homogeneous medium is examined. A general

method for 
al
ulating response fun
tions in the random phase approximation (RPA) with ex
hange

is presented. The method is appli
able for �nite-range nu
lear intera
tions. Examples are shown in

the 
ase of symmetri
 nu
lear matter des
ribed by a Gogny intera
tion. It is found that the 
onver-

gen
e of the results with respe
t to the multipole trun
ation is quite fast. Various approximation

s
hemes su
h as the Landau approximation, or the Landau approximation for the ex
hange terms

only, are dis
ussed in 
omparison with the exa
t results.
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I. INTRODUCTION

In�nite nu
lear matter as a homogeneous medium made of intera
ting nu
leons is not a system that 
an be ex-

perimentally studied in the laboratory, but it is nevertheless a very useful and broadly used 
on
ept be
ause of its

relative simpli
ity and its 
onne
tion with the inner part of atomi
 nu
lei. In the remote environment of our planet

Earth this idealized system 
an modelize some parts of the 
ompa
t stars. It is therefore important to have a mi
ro-

s
opi
 des
ription of nu
lear matter based on nu
leon-nu
leon intera
tions. There are basi
ally two main approa
hes,

either by starting from a bare two-body for
e and treating the many-body problem by Monte-Carlo methods [1, 2℄ or

Brue
kner-Hartree-Fo
kmethod [3, 4, 5℄, or using dire
tly an e�e
tive nu
leon-nu
leon intera
tion adjusted to des
ribe

the bulk properties of nu
lear matter and �nite nu
lei in a mean �eld approximation. In the latter approa
h there are

two types of intera
tions very widely used in a non-relativisti
 framework, namely the Skyrme-type for
es [6, 7℄ and

the Gogny-type for
es [8℄. In this work we 
on
entrate on the question of nu
lear response fun
tions using �nite-range

for
es like the Gogny for
e.

There are many physi
al issues that require the knowledge of the response fun
tion of the medium to an external

probe. Well-known examples are the ele
tron s
attering by nu
lei or the propagation of neutrinos in nu
lear matter.

In a mean �eld framework the response fun
tions must take into a

ount the e�e
ts of long-range 
orrelations by the

Random Phase Approximation (RPA) whi
h is the small amplitude limit of a time-dependent mean �eld approa
h.

For 
onta
t intera
tions of the Skyrme type the RPA response fun
tions have been often studied (see, e.g., Ref. [9℄).

On the other hand, RPA studies of nu
lear matter with Gogny for
es are more rare, and they usually involve some

limiting assumption su
h as the Landau limit, or the small momentum transfer limit [10℄.

It is worthwhile at this point to 
larify the terminology used in the literature. One often uses the short-hand name of

RPA for the ring approximation of RPA whi
h is obtained when the parti
le-hole (p-h) intera
tion is approximated by

its Landau-Migdal form. Here, the main purpose is to treat exa
tly the ex
hange 
ontributions of the p-h intera
tion

and therefore, we keep the name RPA for this situation unless otherwise spe
i�ed. This 
orresponds to what is 
alled

RPA with ex
hange (RPAE) in the ele
tron gas physi
s.

The method for solving the RPA equation with a �nite range for
e is simple in prin
iple. We show that, with

a small number of terms in the multipole expansions the 
onvergen
e is fast and the 
al
ulations are relatively

easy. We also 
ompare the exa
t RPA response fun
tions with various approximations, namely the Landau-Migdal

approximation made on the 
omplete p-h intera
tion or on the ex
hange part of it. The latter approximation keeps

the exa
t momentum transfer dependen
e of the dire
t intera
tion but it still has the simpli
ity of the Landau-Migdal

treatment and therefore, it 
an be useful for very extensive studies of parti
le propagation inside matter.

The outline of the paper is as follows. In Se
. II we present the general method for 
al
ulating RPA response

fun
tions with dire
t and ex
hange p-h intera
tions. In Se
. III we dis
uss the 
onvergen
e of the multipole expansion

using the Gogny for
e D1S. In Se
. IV we 
ompare the exa
tly 
al
ulated RPA response fun
tions with approximations

of Landau-Migdal type. Con
luding remarks are in Se
. V.

http://arxiv.org/abs/nucl-th/0507053v1
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II. FORMALISM

A general two-body intera
tion in momentum representation depends at most on 4 momenta. Be
ause of momentum


onservation there are a
tually 3 independent momenta. For the parti
le-hole (p-h) 
ase we 
hoose these independent

variables to be the initial (�nal) momentum k1 (k2) of the hole and the external momentum transfer q. This

is illustrated by Fig. 1. We will denote by α = (S, T ) the spin and isospin p-h 
hannels with S=0 (1) for the

non spin-�ip (spin-�ip) 
hannel, and T=0 (1) the isos
alar (isove
tor) 
hannel. The matrix element of the general

antisymmetrized p-h intera
tion 
an be written as:

〈q + k1,k
−1
1 |V |q + k2,k

−1
2 〉 =

∑

(α)

V
(α)
ph (q,k1,k2)P

(α) , (1)

where the proje
tors are P (0,0) = 1/g, P (1,0) = (σ1 · σ2)/g, P (0,1) = (τ1 · τ2)/g and P (1,1) = (σ1 · σ2)(τ1 · τ2)/g (the

fa
tor g=4 is the spin-isospin degenera
y).

q+k1 k1

k2

k1k2= +

q+k2

q −

FIG. 1: Dire
t and Ex
hange parts of the ph intera
tion.

For a �nite range intera
tion whose spin-isospin dependen
e is des
ribed by the usual Wigner, Bartlett, Heisenberg

and Majorana terms, the 
omponents V
(α)
ph (q,k1,k2) are:

V
(α)
ph (q,k1,k2) = D(α)f(q) + E(α)h(k1 − k2) + R(α) . (2)

The dire
t terms D(α)f(q) depend only on the modulus q while the ex
hange terms E(α)h(k1−k2) depend on k1−k2.

The last term R(α)
a

ounts for rearrangement 
ontributions and it must be in
luded if the starting nu
leon-nu
leon

e�e
tive intera
tion has a density dependen
e [11℄.

As an example, let us 
onsider as the starting intera
tion V the e�e
tive Gogny for
e [8℄ whi
h is often used for

nu
lear matter and nu
lear stru
ture studies. It 
onsists of a sum of two Gaussians having di�erent ranges and spin-

isospin dependen
es supplemented by a 
onta
t term depending on the lo
al density. For su
h a for
e, the fun
tions

f(q) and h(k1 − k2) are:

f(q) = e−
1

4
q2µ2

h(k1 − k2) = e−
1

4
(k1−k2)2µ2

, (3)

where µ is the range parameter of the Gaussian form fa
tor. For a Gogny-type for
e, the dire
t and ex
hange


ontributions to Eq. (2) are obtained by summing over the two Gaussians. The expressions of D(α)
and E(α)

in terms

of the spin-isospin 
oe�
ients and the range of the Gaussian, as well as the rearrangement term R(α)
are shown in

Table 1.

(S, T ) (0,0) (0,1) (1,0) (1,1)

D(S,T ) π
√

πµ3(4W + 2B − 2H − M) π
√

πµ3(−2H − M) π
√

πµ3(2B − M) π
√

πµ3(−M)

E(S,T ) π
√

πµ3(−W − 2B + 2H + 4M) π
√

πµ3(−W − 2B) π
√

πµ3(−W + 2H) π
√

πµ3(−W )

R(S,T ) 3
2
(γ + 1)(γ + 2)t3ρ

γ
− (1 + 2x3)t3ρ

γ
− (1 − 2x3)t3ρ

γ
− t3ρ

γ

TABLE I: Dire
t, ex
hange and density-dependent 
omponents of the p-h intera
tion 
orresponding to a Gogny-type intera
tion.

W, B,H, M, µ, t3, γ are intera
tion parameters, ρ is the lo
al density.

Let us 
onsider for simpli
ity an in�nite nu
lear medium at zero temperature and unpolarized both in spin and

isospin spa
es. At mean �eld level this system is des
ribed as an ensemble of independent nu
leons moving in a self-


onsistent mean �eld generated by the starting e�e
tive intera
tion treated in the Hartree-Fo
k (HF) approximation.
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The momentum dependent HF mean �eld, or self-energy determines the single-parti
le spe
trum ǫ(k) and the Fermi

level ǫ(kF ).
To 
al
ulate the response of the medium to an external �eld it is 
onvenient to introdu
e the p-h Green's fun
tion,

or retarded p-h propagator G(q, ω,k1). From now on we 
hoose the z axis along the dire
tion of q. In the HF

approximation, the p-h Green's fun
tion is the free retarded p-h propagator [12℄:

G(0)(q, ω,k1) =
θ(kF − k1) − θ(kF − |q + k1|)
ω + ǫ(k1) − ǫ(|q + k1)| + iη

. (4)

It is 
ustomary to go beyond the HF mean �eld approximation and to take into a

ount the long-range type of


orrelations by resumming a 
lass of p-h diagrams. One thus obtains the well-known Random Phase Approximation

(RPA) [12℄ whose 
orrelated Green's fun
tion G(q, ω,k1) satis�es the Bethe-Salpeter equation:

G(q, ω,k1) = G(0)(q, ω,k1) + G(0)(q, ω,k1)

∫

d3k2

(2π)3
Vph(q,k1,k2)G(q, ω,k2) . (5)

Finally, the response fun
tion χ(q, ω) in the in�nite medium is related to the p-h Green's fun
tion by:

χ(q, ω) = g

∫

d3k1

(2π)3
G(q, ω,k1) , (6)

Equations (4- 6) should be understood for ea
h (S, T ) 
hannel. The Lindhard fun
tion χ(0)
is obtained when the free

p-h propagator G(0)
is used in Eq. (6).

If the p-h intera
tion Eq. (2) is treated in some approximation so as to simplify its k1 − k2 dependen
e, then

solving Eq. (5) 
an be made easier. For instan
e, negle
ting the ex
hange terms E(α)
, or treating them in Landau

approximation and keeping only l = 0 terms lead to the familiar ring approximation of RPA, and the response

fun
tion (6) 
an be expressed in terms of the Lindhard fun
tion χ(0)
. In the past there have been studies of nu
lear

matter response fun
tions with Gogny-type intera
tions under simplifying assumptions. For instan
e, RPA response

fun
tions in the long-wavelength limit, i.e., for vanishing momentum transfer q have been 
al
ulated in Ref. [10℄.

A
tually, that study was done in the Landau approximation whereas we are looking for a 
omplete RPA 
al
ulation

with �nite range intera
tions.

The method presented in this paper allows one to obtain RPA Green's fun
tions for all values of q and ω without

further approximation. This will be useful for studying pro
esses su
h as the propagation of parti
les inside nu
lear

matter. It is a 
umbersome task to solve dire
tly in the 3-dimensional momentum spa
e the Bethe-Salpeter equation

with the full p-h residual intera
tion. The general method of solution proposed here is to expand the Green's fun
tions

and the p-h intera
tion on a 
omplete basis of spheri
al harmoni
s and to transform Eq. (5) into a set of 
oupled

integral equations on the radial momentum (i.e., the momentum modulus) variable. The expansion of the unperturbed

p-h Green's fun
tion is simple be
ause it has no dependen
e on the angle φ of the ve
tor k1:

G(0)(q, ω,k1) =
∑

L

G
(0)
L (q, ω, k1)YL0(k̂1) . (7)

As for the residual intera
tion Eq. (2) it depends on the modulus |k1 − k2| and therefore, its expansion is:

Vph(q,k1,k2) =
∑

LM

VL(q, k1, k2)Y
∗
LM (k̂1)YLM (k̂2) . (8)

Be
ause of the stru
ture of the multipole expansion of Vph, the expansion of the RPA Green's fun
tion is similar to

that of G(0)
:

G(q, ω,k1) =
∑

L

GL(q, ω, k1)YL0(k̂1) . (9)

Indeed, by inserting ba
k this expansion of the propagator into Eq. (5), a 
onsistent result is obtained. Making use of

the multipole expansions (7-9) one 
an transform the Bethe-Salpeter equation into a set of 
oupled integral equations

for the multipole 
omponents of the RPA Green's fun
tion:

GL(q, ω, k1) = G
(0)
L (q, ω, k1) +

∑

L′

∫

k2
2dk2

(2π)3
FLL′(q, ω; k1, k2)GL′(q, ω, k2) , (10)
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where we have de�ned

FLL′(q, ω; k1, k2) =
(

∑

λ

[ (2L + 1)(2L′ + 1)

4π(2λ + 1)

]
1

2

(L0L′0|λ0)2G
(0)
λ (q, ω, k1)

)

VL′(q, k1, k2) , (11)

where (L1M1L2M2|L3M3) is a Clebsh-Gordan 
oe�
ient. The angular momenta L and L′
entering the above expres-

sions are unlimited in prin
iple. We will see in the next se
tion that in pra
ti
e the 
onvergen
e is very fast and very

few terms are ne
essary to obtain a good a

ura
y. Finally, the response fun
tion Eq. (6) 
an be expressed as:

χ(q, ω) =

√
4π

(2π)3
g

∫

GL=0(q, ω, k)k2dk , (12)

where only the L = 0 multipole of the RPA Green's fun
tion is required. However, one has to solve the full system of


oupled equations (10), sin
e the intera
tion 
ouples di�erent multipoles. In pra
ti
e, a 
omplete 
al
ulation implies

the 
hoi
e of a 
ut-o� value Lmax for the summations on angular momenta, and a grid of points in momentum spa
e

in order to transform the integrals into dis
rete sums. Then, Eq. (10) is solved by a matrix inversion. For the results

presented in the next se
tions we have 
hosen a grid with a 
onstant number of points. With 100 points, we have

obtained a good 
omparison of the free response fun
tion with its analyti
 form, the Lindhard fun
tion. The upper

limit is kmax = kF + q. Hen
e, for q = kF /10, ∆k=0.017 fm−1
and kmax=1.71 fm

−1
and for q = kF , ∆k=0.031 fm−1

and kmax=3.14 fm
−1
.

III. SYMMETRIC NUCLEAR MATTER RESULTS

The Gogny for
e D1S [8℄ has been 
hosen to dis
uss some results 
al
ulated in symmetri
 nu
lear matter. First, the

unperturbed p-h Green's fun
tion G(0)(q, ω,k) is 
al
ulated using the Hartree-Fo
k solution 
orresponding to D1S.

It is just the familiar Lindhard fun
tion and the multipoles G
(0)
L (q, ω, k) 
an be easily 
al
ulated numeri
ally. Then,

an important pra
ti
al issue is the sensitivity of the solution of Eq. (10) to the number of multipoles in
luded in the


al
ulation. To examine this point we have performed 
al
ulations with di�erent values of Lmax. In Figs. 2-3 the real

and imaginary parts of the RPA response fun
tion χ(0,0)(q, ω) are displayed for several values of Lmax and two values

of q, namely 27 MeV (≃ kF /10) and 270 MeV (≃ kF ).
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FIG. 2: Real and imaginary parts of the response fun
tion χ(0,0)
for q=27 MeV. Dotted: Lmax = 0. Dashed: Lmax = 1. Solid:

Lmax = 2 (
onverged).

It 
an be seen that for small q the 
onvergen
e is rea
hed for Lmax=1 (the solid and dashed 
urves are indistin-

guishable in the �gure). In
reasing the value of q, one sees that there is still a small di�eren
e between Lmax=1 and

2. The 
onvergen
e is rea
hed in fa
t for Lmax=3.

A quantitative measure of the degree of 
onvergen
e 
an be provided by the expe
ted symmetries of the real and

imaginary parts of the response fun
tions. Indeed, the former should be symmetri
 and the latter anti-symmetri


with respe
t to ω=0. Let us introdu
e for this purpose the following symmetry parameters:

sr =

∫

ω≥0

dω |Reχ(ω) − Reχ(−ω)|
/

∫

ω≥0

dω |Reχ(ω) + Reχ(−ω)| ,

si =

∫

ω≥0

dω |Imχ(ω) + Imχ(−ω)|
/

∫

ω≥0

dω |Imχ(ω) − Imχ(−ω)| . (13)
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FIG. 3: Same as Fig.1 for q=270 MeV.

The results 
orresponding to the 
ases shown in Figs. (2-3) are indi
ated in Table II. Although the mentioned

symmetri
 behavior is seen in the �gures, the results of Table II allow one to 
on
lude more quantitatively that, in the

range of momentum transfer up to kF , the symmetry 
riteria are satis�ed within 1% using Lmax=3. In this 
ase, the

matri
es involved in the solution of Eq. (10) have relatively moderate sizes (less than 500x500) and the 
al
ulations

are rather fast. A similar numeri
al study for the response fun
tions in the 
hannels other than (S = 0, T = 0) has
been performed, leading to the same type of 
onvergen
e as a fun
tion of Lmax.

Lmax

q (MeV) 0 1 2 3 4 5

102sr 27 2.10 2.27 0.42 0.06 - -

270 14.7 14.0 3.75 0.94 0.56 0.52

102si 27 3.60 2.32 0.60 0.12 - -

270 14.0 13.0 3.38 0.85 0.36 0.35

TABLE II: Symmetry parameters 
orresponding to the 
ases shown in Figs. 2-3.

To understand this rapid 
onvergen
e, it is ne
essary to analyze in some detail the multipoles of the p-h intera
tion.

To this end, we plot the dimensionless multipoles

ṼL(q, k1, k2) ≡
2L + 1

4πg
N0VL(q, k1, k2) (14)

for a �xed value of q in the plane (k1/kF ,k2/kF ) of hole momenta. In this expression, N0 = gm∗kF /(2π2) is the

density of states, and the fa
tor multiplying VL �xes the s
ale: the value at q=0, k1 = k2 = kF gives the familiar

Landau dimensionless parameter. The fa
tor 4π 
omes from the use of spheri
al harmoni
s YL0 instead of Legendre

polynomials PL in the multipole expansions.
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FIG. 4: The dimensionless monopole Ṽ
(0,0)
0 (q, k1, k2) as a fun
tion of the momenta k1/kF and k2/kF at ρ = ρ0. The left panel

represents the 
ase q=0 and the right one q=270 MeV.
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The monopole L=0 
ase is plotted in Fig. 4 for q=0 (left panel) and q=270 MeV (right panel). The e�e
t of a �nite

transferred momentum q only a�e
ts the monopole 
omponent of the p-h intera
tion (see Eq. 2), and it produ
es an

overall translation of the intera
tions drawn in the �gure. For this spe
i�
 
hannel, it indu
es a repulsion.
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FIG. 5: The dimensionless multipoles Ṽ
(0,0)

L (q, k1, k2) as a fun
tion of the momenta k1/kF and k2/kF at ρ = ρ0. The left panel

represents the 
ase L=1 and the right one L=2.

The multipoles L=1 and L=2 are plotted in Fig. 5, in the left and right panels respe
tively. This series of �gures

for L=0,1,2 shows expli
itly that the multipole expansion of the p-h intera
tion is rapidly 
onverging after the �rst

few angular momenta.

Inside the (k1,k2) domain 
onsidered, the variations of the multipoles VL span the range of values (-2:1) for L=0,
(-1:0) for L=1, (-0.5:0) for L=2, (-0.3:0) for L=3 while beyond L=4, the multipoles are pra
ti
ally negligible. In


on
lusion, the full 
onvergen
e is a
hieved using Lmax=3.

IV. LANDAU APPROXIMATIONS

On
e the 
onvergen
e of the method has been proved, it is useful to analyze some approximations employed to

obtain the response fun
tion. The Landau-Migdal approximation [13℄ is often used in the literature be
ause it

simpli�es greatly the 
al
ulation of RPA response fun
tions. This approximation was used in Ref. [10℄ for the Gogny

intera
tion D1, based on the solution of the kineti
 equations. We should mention that no analysis of 
onvergen
e

was made. The approximation 
onsists in assuming that the intera
ting parti
le and hole are on the Fermi surfa
e

and that the intera
tion takes pla
e only in the limit q = 0. That is to say that ea
h multipole of the p-h intera
tion

is repla
ed by the 
onstant VL(0, kF , kF ). The validity of this assumption 
an be 
he
ked by inspe
ting Figs. 4-5. For

the 
onsidered intera
tion and (S, T ) 
hannel, the �rst Landau dimensionless parameters are F0=-0.38, F1=-0.91 and

F2=-0.33. It 
an be seen in these �gures that the 
orresponding multipoles of the p-h intera
tion are far from taking

a 
onstant value. It is well known that the validity of the approximation is limited to very small values of q, be
ause
in this 
ase the physi
ally relevant values of k1 and k2 remain around the Fermi momentum. However, it is worth

keeping in mind that in what 
on
erns the response fun
tion the di�eren
es between the true and the approximated

p-h intera
tions are smeared out by the kineti
 
onstraints of the phase spa
e.

The q=0 hypothesis 
an be easily relaxed. Indeed, Eq. (2) shows that only the ex
hange of the p-h intera
tion

depends on k1 and k2. Thus, we 
ould keep un
hanged the dire
t term D(α)f(q) of the intera
tion Eq. (6) with its

full q-dependen
e and make the Landau approximation on the ex
hange term E(α)h(k1 − k2) only. We denote this


hoi
e as the Landau Approximation For Ex
hange Term (LAFET). One may hope that this pro
edure will improve

the usual Landau approximation by treating approximately the ex
hange term only. The simpli
ity of the Landau

approximation is preserved, the only 
hange being that the monopole 
ontribution a
quires a q-dependen
e 
oming

from the dire
t term.

The general method presented in Se
. II 
an be easily applied to both approximations. In the appendix A, it

is shown that if the p-h intera
tion is independent of the hole momenta k1 and k2, the system of 
oupled integral

equations Eq. (10) for the multipoles GL(q, ω, k) 
an be transformed into a set of algebrai
 equations for their integrals

∫

dkk2GL(q, ω, k).
We represent on Figs. 6-7 a 
omparison of the stru
ture fun
tion

S(S,T )(q, ω) = − 1

π
Imχ(S,T )(q, ω) (15)
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FIG. 6: Stru
ture fun
tion S(S,T )(q, ω) for q=27 MeV and Lmax = 3. Solid thin 
urve: HF. Dotted: Landau. Dashed: LAFET.

Solid thi
k line: 
onverged.
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FIG. 7: Stru
ture fun
tion S(S,T )(q, ω) for q=270 MeV and Lmax = 3. Solid thin 
urve: HF. Dotted: Landau. Dashed:

LAFET. Solid thi
k line: 
onverged.

extra
ted from a 
onverged solution (solid thi
k 
urve) with Landau (dotted) and LAFET (dashed) approximations

for q = kF /10 and q = kF . The HF solution (solid thin 
urve) is also displayed as a referen
e. All the 
urves shown


orrespond to Lmax=3, to guarantee the 
onvergen
e of the solution as shown in Se
. III. As expe
ted, the Landau

approximation is a good one for small transferred momentum q and all (S, T ) 
hannels. However, for the highest

transferred momentum 
onsidered in this paper, the validity of the Landau approximation and LAFET response

fun
tions is very (S, T ) dependent. As a rule, LAFET indu
es a response 
loser to the exa
t one. Hen
e, LAFET


ould be 
onsidered as a very simple extension of the Landau approximation whi
h allows one to evaluate pro
esses

whi
h involve �nite transferred momenta.

There are situations where it is ne
essary to 
al
ulate a

urately response fun
tions of a nu
lear medium to an

external probe, as we already mentioned in the introdu
tion. When the transferred momenta are not small 
ompared

to the Fermi momentum, one must perform the full 
al
ulations with the method presented in Se
. II. Alternatively,

it is possible to use the LAFET method, whi
h is very simple and e�
ient if extensive 
al
ulations are needed, and

improves the Landau approximation.

V. CONCLUSION

The main purpose of this work is to present a general method for obtaining nu
lear response fun
tions in an in�nite

medium within a Hartree-Fo
k-RPA framework. Starting with �nite range e�e
tive intera
tions like the Gogny
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intera
tion, approximate methods using the Landau approximation are available in the literature, but surprisingly

not mu
h beyond this approximation 
an be found. The method proposed here simply 
onsists in expanding the Bethe-

Salpeter equation onto a spheri
al harmoni
s basis and therefore, the 
al
ulations 
an be 
arried out in prin
iple up

to any degree of a

ura
y if one in
ludes a su�
ient number of partial waves. In pra
ti
e, the 
ase study that we

have dis
ussed in this work shows that the 
onvergen
e is very fast and that the number of multipoles needed is very

small. This result holds not only for small values of momentum transfer but even at values in the range of the Fermi

momentum. The fast 
onvergen
e is related to the properties of the e�e
tive p-h intera
tion.

This general method of solving the Bethe-Salpeter equation suggests also an approximation s
heme beyond the

standard Landau approximation, the LAFET s
heme where the full q-dependen
e is kept in the dire
t p-h intera
tion

and the Landau approximation is done only on the ex
hange p-h intera
tion. The standard Landau approximation and

LAFET are 
ompared with the exa
t response fun
tions and it is shown that the LAFET results show an improved

agreement with the exa
t results. This approximation 
an be useful for extensive 
al
ulations when the numeri
al

e�ort required by exa
t 
al
ulations be
omes heavy.
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APPENDIX A: LANDAU APPROXIMATIONS

Let us show that if the p-h intera
tion is independent of the hole momenta k1 and k2, the system of 
oupled integral

equations Eq. (10) for the multipoles GL(q, ω, k) 
an be transformed into a set of algebrai
 equations for the following

quantities

RL(q, ω) = g

√
4π

(2π)3

∫

dkk2GL(q, ω, k) . (A1)

The fa
tors before the integral are 
hosen su
h that the response fun
tion is given by RL=0.

Let us 
onsider the multipoles of the p-h intera
tion, Eq. (8), in the parti
ular 
ase where the hole momenta k1

and k2 lie on the Fermi surfa
e. For this spe
i�
 intera
tion, the fun
tions FLL′
entering Eq. (11) no longer depend

on k2. Sin
e all the momentum dependen
e is now 
ontained in the p-h propagators, GL and G
(0)
L , integrating over

k1 the system Eq. (10) 
an be transformed into the set of equations:

RL(q, ω) = R
(0)
L (q, ω) +

∑

LL′

ALL′(q, ω)RL′(q, ω) , (A2)

where R
(0)
L is de�ned as in Eq. (A1) for the free propagator and

ALL′(q, ω) =
ṼL′(q, kF , kF )

N0

∑

λ

[ (2L + 1)

(2L′ + 1)(2λ + 1)

]
1

2

(L0L′0|λ0)2R
(0)
λ (q, ω) . (A3)

It is worth noting that the Landau parameters are given by fL ≡ ṼL(q = 0, kF , kF )/N0.

As an example, we give here the response fun
tion in the Landau approximation with Lmax=2:

χ =
χ(0)

1 − Wχ(0)
, (A4)

where

W = f0 −
1

2
f2 + ν2 f1 + (27

8 ν2 + 3
10F1)f2

(

1 + 1
3F1

) (

1 + 1
8 [−9ν2 + 12

5 ]F2

)
(A5)

plays the role of the indu
ed p-h intera
tion. In this expression, we have de�ned ν = ωm∗/(qkF ), and Fi = fiN0 are

the dimensionless Landau parameters.
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