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The question of nulear response funtions in a homogeneous medium is examined. A general

method for alulating response funtions in the random phase approximation (RPA) with exhange

is presented. The method is appliable for �nite-range nulear interations. Examples are shown in

the ase of symmetri nulear matter desribed by a Gogny interation. It is found that the onver-

gene of the results with respet to the multipole trunation is quite fast. Various approximation

shemes suh as the Landau approximation, or the Landau approximation for the exhange terms

only, are disussed in omparison with the exat results.
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I. INTRODUCTION

In�nite nulear matter as a homogeneous medium made of interating nuleons is not a system that an be ex-

perimentally studied in the laboratory, but it is nevertheless a very useful and broadly used onept beause of its

relative simpliity and its onnetion with the inner part of atomi nulei. In the remote environment of our planet

Earth this idealized system an modelize some parts of the ompat stars. It is therefore important to have a miro-

sopi desription of nulear matter based on nuleon-nuleon interations. There are basially two main approahes,

either by starting from a bare two-body fore and treating the many-body problem by Monte-Carlo methods [1, 2℄ or

Bruekner-Hartree-Fokmethod [3, 4, 5℄, or using diretly an e�etive nuleon-nuleon interation adjusted to desribe

the bulk properties of nulear matter and �nite nulei in a mean �eld approximation. In the latter approah there are

two types of interations very widely used in a non-relativisti framework, namely the Skyrme-type fores [6, 7℄ and

the Gogny-type fores [8℄. In this work we onentrate on the question of nulear response funtions using �nite-range

fores like the Gogny fore.

There are many physial issues that require the knowledge of the response funtion of the medium to an external

probe. Well-known examples are the eletron sattering by nulei or the propagation of neutrinos in nulear matter.

In a mean �eld framework the response funtions must take into aount the e�ets of long-range orrelations by the

Random Phase Approximation (RPA) whih is the small amplitude limit of a time-dependent mean �eld approah.

For ontat interations of the Skyrme type the RPA response funtions have been often studied (see, e.g., Ref. [9℄).

On the other hand, RPA studies of nulear matter with Gogny fores are more rare, and they usually involve some

limiting assumption suh as the Landau limit, or the small momentum transfer limit [10℄.

It is worthwhile at this point to larify the terminology used in the literature. One often uses the short-hand name of

RPA for the ring approximation of RPA whih is obtained when the partile-hole (p-h) interation is approximated by

its Landau-Migdal form. Here, the main purpose is to treat exatly the exhange ontributions of the p-h interation

and therefore, we keep the name RPA for this situation unless otherwise spei�ed. This orresponds to what is alled

RPA with exhange (RPAE) in the eletron gas physis.

The method for solving the RPA equation with a �nite range fore is simple in priniple. We show that, with

a small number of terms in the multipole expansions the onvergene is fast and the alulations are relatively

easy. We also ompare the exat RPA response funtions with various approximations, namely the Landau-Migdal

approximation made on the omplete p-h interation or on the exhange part of it. The latter approximation keeps

the exat momentum transfer dependene of the diret interation but it still has the simpliity of the Landau-Migdal

treatment and therefore, it an be useful for very extensive studies of partile propagation inside matter.

The outline of the paper is as follows. In Se. II we present the general method for alulating RPA response

funtions with diret and exhange p-h interations. In Se. III we disuss the onvergene of the multipole expansion

using the Gogny fore D1S. In Se. IV we ompare the exatly alulated RPA response funtions with approximations

of Landau-Migdal type. Conluding remarks are in Se. V.

http://arxiv.org/abs/nucl-th/0507053v1
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II. FORMALISM

A general two-body interation in momentum representation depends at most on 4 momenta. Beause of momentum

onservation there are atually 3 independent momenta. For the partile-hole (p-h) ase we hoose these independent

variables to be the initial (�nal) momentum k1 (k2) of the hole and the external momentum transfer q. This

is illustrated by Fig. 1. We will denote by α = (S, T ) the spin and isospin p-h hannels with S=0 (1) for the

non spin-�ip (spin-�ip) hannel, and T=0 (1) the isosalar (isovetor) hannel. The matrix element of the general

antisymmetrized p-h interation an be written as:

〈q + k1,k
−1
1 |V |q + k2,k

−1
2 〉 =

∑

(α)

V
(α)
ph (q,k1,k2)P

(α) , (1)

where the projetors are P (0,0) = 1/g, P (1,0) = (σ1 · σ2)/g, P (0,1) = (τ1 · τ2)/g and P (1,1) = (σ1 · σ2)(τ1 · τ2)/g (the

fator g=4 is the spin-isospin degeneray).

q+k1 k1

k2

k1k2= +

q+k2

q −

FIG. 1: Diret and Exhange parts of the ph interation.

For a �nite range interation whose spin-isospin dependene is desribed by the usual Wigner, Bartlett, Heisenberg

and Majorana terms, the omponents V
(α)
ph (q,k1,k2) are:

V
(α)
ph (q,k1,k2) = D(α)f(q) + E(α)h(k1 − k2) + R(α) . (2)

The diret terms D(α)f(q) depend only on the modulus q while the exhange terms E(α)h(k1−k2) depend on k1−k2.

The last term R(α)
aounts for rearrangement ontributions and it must be inluded if the starting nuleon-nuleon

e�etive interation has a density dependene [11℄.

As an example, let us onsider as the starting interation V the e�etive Gogny fore [8℄ whih is often used for

nulear matter and nulear struture studies. It onsists of a sum of two Gaussians having di�erent ranges and spin-

isospin dependenes supplemented by a ontat term depending on the loal density. For suh a fore, the funtions

f(q) and h(k1 − k2) are:

f(q) = e−
1

4
q2µ2

h(k1 − k2) = e−
1

4
(k1−k2)2µ2

, (3)

where µ is the range parameter of the Gaussian form fator. For a Gogny-type fore, the diret and exhange

ontributions to Eq. (2) are obtained by summing over the two Gaussians. The expressions of D(α)
and E(α)

in terms

of the spin-isospin oe�ients and the range of the Gaussian, as well as the rearrangement term R(α)
are shown in

Table 1.

(S, T ) (0,0) (0,1) (1,0) (1,1)

D(S,T ) π
√

πµ3(4W + 2B − 2H − M) π
√

πµ3(−2H − M) π
√

πµ3(2B − M) π
√

πµ3(−M)

E(S,T ) π
√

πµ3(−W − 2B + 2H + 4M) π
√

πµ3(−W − 2B) π
√

πµ3(−W + 2H) π
√

πµ3(−W )

R(S,T ) 3
2
(γ + 1)(γ + 2)t3ρ

γ
− (1 + 2x3)t3ρ

γ
− (1 − 2x3)t3ρ

γ
− t3ρ

γ

TABLE I: Diret, exhange and density-dependent omponents of the p-h interation orresponding to a Gogny-type interation.

W, B,H, M, µ, t3, γ are interation parameters, ρ is the loal density.

Let us onsider for simpliity an in�nite nulear medium at zero temperature and unpolarized both in spin and

isospin spaes. At mean �eld level this system is desribed as an ensemble of independent nuleons moving in a self-

onsistent mean �eld generated by the starting e�etive interation treated in the Hartree-Fok (HF) approximation.
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The momentum dependent HF mean �eld, or self-energy determines the single-partile spetrum ǫ(k) and the Fermi

level ǫ(kF ).
To alulate the response of the medium to an external �eld it is onvenient to introdue the p-h Green's funtion,

or retarded p-h propagator G(q, ω,k1). From now on we hoose the z axis along the diretion of q. In the HF

approximation, the p-h Green's funtion is the free retarded p-h propagator [12℄:

G(0)(q, ω,k1) =
θ(kF − k1) − θ(kF − |q + k1|)
ω + ǫ(k1) − ǫ(|q + k1)| + iη

. (4)

It is ustomary to go beyond the HF mean �eld approximation and to take into aount the long-range type of

orrelations by resumming a lass of p-h diagrams. One thus obtains the well-known Random Phase Approximation

(RPA) [12℄ whose orrelated Green's funtion G(q, ω,k1) satis�es the Bethe-Salpeter equation:

G(q, ω,k1) = G(0)(q, ω,k1) + G(0)(q, ω,k1)

∫

d3k2

(2π)3
Vph(q,k1,k2)G(q, ω,k2) . (5)

Finally, the response funtion χ(q, ω) in the in�nite medium is related to the p-h Green's funtion by:

χ(q, ω) = g

∫

d3k1

(2π)3
G(q, ω,k1) , (6)

Equations (4- 6) should be understood for eah (S, T ) hannel. The Lindhard funtion χ(0)
is obtained when the free

p-h propagator G(0)
is used in Eq. (6).

If the p-h interation Eq. (2) is treated in some approximation so as to simplify its k1 − k2 dependene, then

solving Eq. (5) an be made easier. For instane, negleting the exhange terms E(α)
, or treating them in Landau

approximation and keeping only l = 0 terms lead to the familiar ring approximation of RPA, and the response

funtion (6) an be expressed in terms of the Lindhard funtion χ(0)
. In the past there have been studies of nulear

matter response funtions with Gogny-type interations under simplifying assumptions. For instane, RPA response

funtions in the long-wavelength limit, i.e., for vanishing momentum transfer q have been alulated in Ref. [10℄.

Atually, that study was done in the Landau approximation whereas we are looking for a omplete RPA alulation

with �nite range interations.

The method presented in this paper allows one to obtain RPA Green's funtions for all values of q and ω without

further approximation. This will be useful for studying proesses suh as the propagation of partiles inside nulear

matter. It is a umbersome task to solve diretly in the 3-dimensional momentum spae the Bethe-Salpeter equation

with the full p-h residual interation. The general method of solution proposed here is to expand the Green's funtions

and the p-h interation on a omplete basis of spherial harmonis and to transform Eq. (5) into a set of oupled

integral equations on the radial momentum (i.e., the momentum modulus) variable. The expansion of the unperturbed

p-h Green's funtion is simple beause it has no dependene on the angle φ of the vetor k1:

G(0)(q, ω,k1) =
∑

L

G
(0)
L (q, ω, k1)YL0(k̂1) . (7)

As for the residual interation Eq. (2) it depends on the modulus |k1 − k2| and therefore, its expansion is:

Vph(q,k1,k2) =
∑

LM

VL(q, k1, k2)Y
∗
LM (k̂1)YLM (k̂2) . (8)

Beause of the struture of the multipole expansion of Vph, the expansion of the RPA Green's funtion is similar to

that of G(0)
:

G(q, ω,k1) =
∑

L

GL(q, ω, k1)YL0(k̂1) . (9)

Indeed, by inserting bak this expansion of the propagator into Eq. (5), a onsistent result is obtained. Making use of

the multipole expansions (7-9) one an transform the Bethe-Salpeter equation into a set of oupled integral equations

for the multipole omponents of the RPA Green's funtion:

GL(q, ω, k1) = G
(0)
L (q, ω, k1) +

∑

L′

∫

k2
2dk2

(2π)3
FLL′(q, ω; k1, k2)GL′(q, ω, k2) , (10)
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where we have de�ned

FLL′(q, ω; k1, k2) =
(

∑

λ

[ (2L + 1)(2L′ + 1)

4π(2λ + 1)

]
1

2

(L0L′0|λ0)2G
(0)
λ (q, ω, k1)

)

VL′(q, k1, k2) , (11)

where (L1M1L2M2|L3M3) is a Clebsh-Gordan oe�ient. The angular momenta L and L′
entering the above expres-

sions are unlimited in priniple. We will see in the next setion that in pratie the onvergene is very fast and very

few terms are neessary to obtain a good auray. Finally, the response funtion Eq. (6) an be expressed as:

χ(q, ω) =

√
4π

(2π)3
g

∫

GL=0(q, ω, k)k2dk , (12)

where only the L = 0 multipole of the RPA Green's funtion is required. However, one has to solve the full system of

oupled equations (10), sine the interation ouples di�erent multipoles. In pratie, a omplete alulation implies

the hoie of a ut-o� value Lmax for the summations on angular momenta, and a grid of points in momentum spae

in order to transform the integrals into disrete sums. Then, Eq. (10) is solved by a matrix inversion. For the results

presented in the next setions we have hosen a grid with a onstant number of points. With 100 points, we have

obtained a good omparison of the free response funtion with its analyti form, the Lindhard funtion. The upper

limit is kmax = kF + q. Hene, for q = kF /10, ∆k=0.017 fm−1
and kmax=1.71 fm

−1
and for q = kF , ∆k=0.031 fm−1

and kmax=3.14 fm
−1
.

III. SYMMETRIC NUCLEAR MATTER RESULTS

The Gogny fore D1S [8℄ has been hosen to disuss some results alulated in symmetri nulear matter. First, the

unperturbed p-h Green's funtion G(0)(q, ω,k) is alulated using the Hartree-Fok solution orresponding to D1S.

It is just the familiar Lindhard funtion and the multipoles G
(0)
L (q, ω, k) an be easily alulated numerially. Then,

an important pratial issue is the sensitivity of the solution of Eq. (10) to the number of multipoles inluded in the

alulation. To examine this point we have performed alulations with di�erent values of Lmax. In Figs. 2-3 the real

and imaginary parts of the RPA response funtion χ(0,0)(q, ω) are displayed for several values of Lmax and two values

of q, namely 27 MeV (≃ kF /10) and 270 MeV (≃ kF ).
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FIG. 2: Real and imaginary parts of the response funtion χ(0,0)
for q=27 MeV. Dotted: Lmax = 0. Dashed: Lmax = 1. Solid:

Lmax = 2 (onverged).

It an be seen that for small q the onvergene is reahed for Lmax=1 (the solid and dashed urves are indistin-

guishable in the �gure). Inreasing the value of q, one sees that there is still a small di�erene between Lmax=1 and

2. The onvergene is reahed in fat for Lmax=3.

A quantitative measure of the degree of onvergene an be provided by the expeted symmetries of the real and

imaginary parts of the response funtions. Indeed, the former should be symmetri and the latter anti-symmetri

with respet to ω=0. Let us introdue for this purpose the following symmetry parameters:

sr =

∫

ω≥0

dω |Reχ(ω) − Reχ(−ω)|
/

∫

ω≥0

dω |Reχ(ω) + Reχ(−ω)| ,

si =

∫

ω≥0

dω |Imχ(ω) + Imχ(−ω)|
/

∫

ω≥0

dω |Imχ(ω) − Imχ(−ω)| . (13)
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FIG. 3: Same as Fig.1 for q=270 MeV.

The results orresponding to the ases shown in Figs. (2-3) are indiated in Table II. Although the mentioned

symmetri behavior is seen in the �gures, the results of Table II allow one to onlude more quantitatively that, in the

range of momentum transfer up to kF , the symmetry riteria are satis�ed within 1% using Lmax=3. In this ase, the

matries involved in the solution of Eq. (10) have relatively moderate sizes (less than 500x500) and the alulations

are rather fast. A similar numerial study for the response funtions in the hannels other than (S = 0, T = 0) has
been performed, leading to the same type of onvergene as a funtion of Lmax.

Lmax

q (MeV) 0 1 2 3 4 5

102sr 27 2.10 2.27 0.42 0.06 - -

270 14.7 14.0 3.75 0.94 0.56 0.52

102si 27 3.60 2.32 0.60 0.12 - -

270 14.0 13.0 3.38 0.85 0.36 0.35

TABLE II: Symmetry parameters orresponding to the ases shown in Figs. 2-3.

To understand this rapid onvergene, it is neessary to analyze in some detail the multipoles of the p-h interation.

To this end, we plot the dimensionless multipoles

ṼL(q, k1, k2) ≡
2L + 1

4πg
N0VL(q, k1, k2) (14)

for a �xed value of q in the plane (k1/kF ,k2/kF ) of hole momenta. In this expression, N0 = gm∗kF /(2π2) is the

density of states, and the fator multiplying VL �xes the sale: the value at q=0, k1 = k2 = kF gives the familiar

Landau dimensionless parameter. The fator 4π omes from the use of spherial harmonis YL0 instead of Legendre

polynomials PL in the multipole expansions.
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FIG. 4: The dimensionless monopole Ṽ
(0,0)
0 (q, k1, k2) as a funtion of the momenta k1/kF and k2/kF at ρ = ρ0. The left panel

represents the ase q=0 and the right one q=270 MeV.
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The monopole L=0 ase is plotted in Fig. 4 for q=0 (left panel) and q=270 MeV (right panel). The e�et of a �nite

transferred momentum q only a�ets the monopole omponent of the p-h interation (see Eq. 2), and it produes an

overall translation of the interations drawn in the �gure. For this spei� hannel, it indues a repulsion.
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FIG. 5: The dimensionless multipoles Ṽ
(0,0)

L (q, k1, k2) as a funtion of the momenta k1/kF and k2/kF at ρ = ρ0. The left panel

represents the ase L=1 and the right one L=2.

The multipoles L=1 and L=2 are plotted in Fig. 5, in the left and right panels respetively. This series of �gures

for L=0,1,2 shows expliitly that the multipole expansion of the p-h interation is rapidly onverging after the �rst

few angular momenta.

Inside the (k1,k2) domain onsidered, the variations of the multipoles VL span the range of values (-2:1) for L=0,
(-1:0) for L=1, (-0.5:0) for L=2, (-0.3:0) for L=3 while beyond L=4, the multipoles are pratially negligible. In

onlusion, the full onvergene is ahieved using Lmax=3.

IV. LANDAU APPROXIMATIONS

One the onvergene of the method has been proved, it is useful to analyze some approximations employed to

obtain the response funtion. The Landau-Migdal approximation [13℄ is often used in the literature beause it

simpli�es greatly the alulation of RPA response funtions. This approximation was used in Ref. [10℄ for the Gogny

interation D1, based on the solution of the kineti equations. We should mention that no analysis of onvergene

was made. The approximation onsists in assuming that the interating partile and hole are on the Fermi surfae

and that the interation takes plae only in the limit q = 0. That is to say that eah multipole of the p-h interation

is replaed by the onstant VL(0, kF , kF ). The validity of this assumption an be heked by inspeting Figs. 4-5. For

the onsidered interation and (S, T ) hannel, the �rst Landau dimensionless parameters are F0=-0.38, F1=-0.91 and

F2=-0.33. It an be seen in these �gures that the orresponding multipoles of the p-h interation are far from taking

a onstant value. It is well known that the validity of the approximation is limited to very small values of q, beause
in this ase the physially relevant values of k1 and k2 remain around the Fermi momentum. However, it is worth

keeping in mind that in what onerns the response funtion the di�erenes between the true and the approximated

p-h interations are smeared out by the kineti onstraints of the phase spae.

The q=0 hypothesis an be easily relaxed. Indeed, Eq. (2) shows that only the exhange of the p-h interation

depends on k1 and k2. Thus, we ould keep unhanged the diret term D(α)f(q) of the interation Eq. (6) with its

full q-dependene and make the Landau approximation on the exhange term E(α)h(k1 − k2) only. We denote this

hoie as the Landau Approximation For Exhange Term (LAFET). One may hope that this proedure will improve

the usual Landau approximation by treating approximately the exhange term only. The simpliity of the Landau

approximation is preserved, the only hange being that the monopole ontribution aquires a q-dependene oming

from the diret term.

The general method presented in Se. II an be easily applied to both approximations. In the appendix A, it

is shown that if the p-h interation is independent of the hole momenta k1 and k2, the system of oupled integral

equations Eq. (10) for the multipoles GL(q, ω, k) an be transformed into a set of algebrai equations for their integrals

∫

dkk2GL(q, ω, k).
We represent on Figs. 6-7 a omparison of the struture funtion

S(S,T )(q, ω) = − 1

π
Imχ(S,T )(q, ω) (15)
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FIG. 6: Struture funtion S(S,T )(q, ω) for q=27 MeV and Lmax = 3. Solid thin urve: HF. Dotted: Landau. Dashed: LAFET.

Solid thik line: onverged.
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FIG. 7: Struture funtion S(S,T )(q, ω) for q=270 MeV and Lmax = 3. Solid thin urve: HF. Dotted: Landau. Dashed:

LAFET. Solid thik line: onverged.

extrated from a onverged solution (solid thik urve) with Landau (dotted) and LAFET (dashed) approximations

for q = kF /10 and q = kF . The HF solution (solid thin urve) is also displayed as a referene. All the urves shown

orrespond to Lmax=3, to guarantee the onvergene of the solution as shown in Se. III. As expeted, the Landau

approximation is a good one for small transferred momentum q and all (S, T ) hannels. However, for the highest

transferred momentum onsidered in this paper, the validity of the Landau approximation and LAFET response

funtions is very (S, T ) dependent. As a rule, LAFET indues a response loser to the exat one. Hene, LAFET

ould be onsidered as a very simple extension of the Landau approximation whih allows one to evaluate proesses

whih involve �nite transferred momenta.

There are situations where it is neessary to alulate aurately response funtions of a nulear medium to an

external probe, as we already mentioned in the introdution. When the transferred momenta are not small ompared

to the Fermi momentum, one must perform the full alulations with the method presented in Se. II. Alternatively,

it is possible to use the LAFET method, whih is very simple and e�ient if extensive alulations are needed, and

improves the Landau approximation.

V. CONCLUSION

The main purpose of this work is to present a general method for obtaining nulear response funtions in an in�nite

medium within a Hartree-Fok-RPA framework. Starting with �nite range e�etive interations like the Gogny
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interation, approximate methods using the Landau approximation are available in the literature, but surprisingly

not muh beyond this approximation an be found. The method proposed here simply onsists in expanding the Bethe-

Salpeter equation onto a spherial harmonis basis and therefore, the alulations an be arried out in priniple up

to any degree of auray if one inludes a su�ient number of partial waves. In pratie, the ase study that we

have disussed in this work shows that the onvergene is very fast and that the number of multipoles needed is very

small. This result holds not only for small values of momentum transfer but even at values in the range of the Fermi

momentum. The fast onvergene is related to the properties of the e�etive p-h interation.

This general method of solving the Bethe-Salpeter equation suggests also an approximation sheme beyond the

standard Landau approximation, the LAFET sheme where the full q-dependene is kept in the diret p-h interation

and the Landau approximation is done only on the exhange p-h interation. The standard Landau approximation and

LAFET are ompared with the exat response funtions and it is shown that the LAFET results show an improved

agreement with the exat results. This approximation an be useful for extensive alulations when the numerial

e�ort required by exat alulations beomes heavy.
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APPENDIX A: LANDAU APPROXIMATIONS

Let us show that if the p-h interation is independent of the hole momenta k1 and k2, the system of oupled integral

equations Eq. (10) for the multipoles GL(q, ω, k) an be transformed into a set of algebrai equations for the following

quantities

RL(q, ω) = g

√
4π

(2π)3

∫

dkk2GL(q, ω, k) . (A1)

The fators before the integral are hosen suh that the response funtion is given by RL=0.

Let us onsider the multipoles of the p-h interation, Eq. (8), in the partiular ase where the hole momenta k1

and k2 lie on the Fermi surfae. For this spei� interation, the funtions FLL′
entering Eq. (11) no longer depend

on k2. Sine all the momentum dependene is now ontained in the p-h propagators, GL and G
(0)
L , integrating over

k1 the system Eq. (10) an be transformed into the set of equations:

RL(q, ω) = R
(0)
L (q, ω) +

∑

LL′

ALL′(q, ω)RL′(q, ω) , (A2)

where R
(0)
L is de�ned as in Eq. (A1) for the free propagator and

ALL′(q, ω) =
ṼL′(q, kF , kF )

N0

∑

λ

[ (2L + 1)

(2L′ + 1)(2λ + 1)

]
1

2

(L0L′0|λ0)2R
(0)
λ (q, ω) . (A3)

It is worth noting that the Landau parameters are given by fL ≡ ṼL(q = 0, kF , kF )/N0.

As an example, we give here the response funtion in the Landau approximation with Lmax=2:

χ =
χ(0)

1 − Wχ(0)
, (A4)

where

W = f0 −
1

2
f2 + ν2 f1 + (27

8 ν2 + 3
10F1)f2

(

1 + 1
3F1

) (

1 + 1
8 [−9ν2 + 12

5 ]F2

)
(A5)

plays the role of the indued p-h interation. In this expression, we have de�ned ν = ωm∗/(qkF ), and Fi = fiN0 are

the dimensionless Landau parameters.
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