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Agraı̈ments

En primer lloc agraı̈r al meu director Pep Mulet la seua dedicació i ajuda
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Resum

Introducció

Els sistemes de lleis de conservació sorgeixen de forma natural en una

gran varietat d’aplicacions, com per exemple en modelar el flux de vent al

voltant d’un vehicle, el flux d’aigua al llarg d’un canal o la sedimentació

de partı́cules disperses a un fluid viscós.

Com que en general no és possible obtenir solucions exactes d’aquests

sistemes d’equacions, és necessari desenvolupar mètodes numèrics ca-

paços d’aproximar aquestes solucions. El que ens agradaria és que

aquests mètodes obtingueren els resultats de les simulacions el més avi-

at i amb la millor precisió possible, però la simulació numèrica de pro-

blemes fı́sics modelats per sistemes de lleis de conservació és una tasca

delicada, degut a la presència de discontinuı̈tats en les solucions. Si cal-

culem solucions discontı́nues de lleis de conservació emprant mètodes

estàndard desenvolupats sota la suposició de solucions suaus es poden

obtenir solucion errònies.

Aquest fet ha motivat el desenvolupament d’esquemes d’alt ordre per

a la captura de xocs o “High-Resolution Shock-Capturing” (HRSC) que

constitueixen l’estat de l’art quan parlem de simulacions numèriques

de problemes fı́sics. L’objectiu d’aquests mètodes és obtenir solucions

numèriques amb una alta resolució quan la solució és suau, mantenint

els perfils afilats de les discontinuı̈tats, evitant l’aparició i desenvolupa-

ment d’oscil·lacions prop d’elles.

Els esquemes HRSC robustos i precisos normalment tenen un alt cost

computacional, relacionat amb el fet de que incorporen tècniques molt

sofisticades per al càlcul de solucions. En situacions d’interés pràctic,

és important reduir aquest alt cost computacional, mantenint la precisió

de les solucions numèriques.
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En aquest treball hem desenvolupat diverses tècniques per a millorar

els resultats numèrics i l’eficiència dels esquemes WENO en diferències

finites incorporant algunes de les tècniques més avançades presents a

la literatura. Alguns punts importants que hem estudiat són: l’anàlisi

dels pesos proposats per als esquemes WENO, estudiant la relació de

cadascun dels paràmetres presents amb la pèrdua de precisió que apa-

reix prop de discontinuı̈tats i extrems, l’anàlisi de la partició de fluxos

(“flux-splitting”) de Lax-Friedrichs i estudi del comportament de les solu-

cions quan emprem altres particions de fluxos, el desenvolupament d’un

esquema adaptatiu ben balancejat “AMR Well-Balanced”, desenvolupat

per a preservar les solucions estacionàries d’aigua en repòs per a les

equacions d’aigües poc profundes (“Shallow water equations”).

La tesi està estructurada en 7 capı́tols. Al capı́tol 2 s’introdueixen

els conceptes més bàsics sobre dinàmica de fluids, explicant amb de-

teniment els sistemes d’equacions emprats als experiments numèrics

d’aquesta tesi: els models de sedimentació polidispersa, les equacions

d’Euler i les equacions d’aigües poc profundes. Al capı́tol 3 es revisen

alguns dels conceptes més importants sobre mètodes numèrics per a

la dinàmica de fluids, descrivint l’aproximació en diferències finites de

Shu-Osher [95] i el procediment de reconstrucció WENO [59, 78].

Al capı́tol 4 es presenten diferents pesos per al mètode WENO pro-

posats en [19, 54, 104] per a obtenir nous esquemes WENO amb major

resolució que l’esquema WENO clàssic [59, 78]. En particular, s’estudien

el pesos proposats per Yamaleev i Carpenter en [104] i es demostra que

amb aquests pesos el mètode WENO només obté precisió de primer ordre

prop de discontinuı̈tats. Intentant resoldre aquest problema de precisió,

es proposen nous pesos i algunes restriccions sobre els paràmetres pre-

sents a la definició dels pesos per a garantir ordre màxim de precisió

prop dels extrems.

Al capı́tol 5 emprem els models de sedimentació polidispersa per a

avaluar el rendiment dels esquemes WENO en diferències finites emprant

les diferents definicions dels pesos estudiades al capı́tol anterior i una

nova partició de fluxos anomenada HLL [52, 97] que empra menys visco-

sitat numèrica per tractar d’estabilitzar les reconstruccions “upwind”.

Al capı́tol 6, ens centrarem en les equacions que modelen el flux

d’aigües poc profundes i descriurem un esquema ben balancejat per a

la captura de xocs o “Well-balanced Shock-Capturing” (WBSC) que em-

prarem juntament amb la tècnica AMR (“Adaptive Mesh Refinement”),

recordant les parts més importants que la componen. En segon lloc,

descriurem les correccions necessàries per a obtenir un còdig WB-AMR

i per finalitzar mostrarem diversos experiments que mantenen la nostra
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discussió. Finalment, les conclusions del treball s’exposen al capı́tol 7.

Equacions per a la dinàmica de fluids

Els sistemes de lleis de conservació hiperbòlics són sistemes d’equaci-

ons diferencials en derivades parcials (EDPs) dependents del temps que

són d’especial interès en dinàmica de fluids degut a que la major part

dels models de moviment de fluids estan representats per equacions d’a-

quest tipus. En la pràctica, les lleis de conservació estan representades

per sistemes d’equacions en derivades parcials, que són equivalents a la

formulació integral original per a solucions suaus.

Les lleis de conservació es poden escriure com un sistema de EDPs

de la forma:

∂u

∂t
+

d∑

j=1

∂f j(u)

∂xj
= 0, x ∈ Rd, t ∈ R+, (1)

on u : Rd × R+ −→ Rm és la solució de la llei de conservació, d és el

nombre de dimensions espacials i f j : Rm −→ Rm són les funcions de

flux, j = 1, . . . , d.
Per a resoldre un problema de Cauchy, és a dir, per a trobar l’estat del

sistema per a un cert temps t = T a partir de l’estat a temps inicial t = 0,
són necessàries les condicions inicials u(x, 0) = u0(x), x ∈ Rd. També

són necessàries condicions de frontera quan considerem un domini fitat

en Rd.

El sistema d’equacions diferencials (1) es pot escriure en forma quasi-

lineal de la següent manera:

∂u

∂t
+

d∑

j=1

∂f j

∂u

∂u

∂xj
= 0, x ∈ Rd, t ∈ R+.

on les matrius Aj ≡ ∂fj

∂u s’anomenen matrius Jacobianes del sistema.

Direm que el sistema (1) és hiperbòlic si qualsevol combinació lineal de

les matrius Jacobianes Aj

d∑

j=1

αjAj , (αj ∈ R)

és diagonalitzable amb valors propis reals.

Una solució clàssica del sistema (1) és una funció suau u : Rd×R+ −→
Rm que verifica l’equació (1) punt a punt. Com hem dit abans, una



xiv

caracterı́stica fonamental dels sistemes del tipus (1) és que en general no

tenen solucions clàssiques més enllà d’un interval finit de temps, inclús

quan la condició inicial és una funció suau. Per a poder considerar

solucions no suaus, es pot definir una formulació dèbil que involucra

l’ús de menys derivades en u, requerint aixı́ menys suavitat.

Direm que una funció u(x, t) és una solució dèbil de (1), amb condició

inicial u(x, 0), si es compleix

∫

R+

∫

Rd


u(x, t)∂φ

∂t
(x, t) +

d∑

j=1

f j(u)
∂φ

∂xj


 dxdt = −

∫

Rd

φ(x, 0)u(x, 0)dx

per a tota funció φ ∈ C1
0 (Rd×R+), on C1

0 (Rd×R+) és l’espai de les funcions

contı́nuament diferenciables amb suport compacte en Rd × R+.

Les solucions dèbils proporcionen una generalització adequada del

concepte de solució clàssica per a sistemes de lleis de conservació hi-

perbòliques. És fàcil veure que les solucions fortes també ho són dèbils

i que les solucions dèbils contı́nuament diferenciables són també solu-

cions fortes.

La condició de Rankine-Hugoniot [58, 88] es pot deduir a partir de la

definició de solució dèbil [28, 55, 56]. Aquesta condició caracteritza les

solucions dèbils en termes del moviment de les discontinuı̈tats i dóna

informació sobre el comportament de les variables conservades a través

de les discontinuı̈tats.

Per a una llei de conservació qualsevol, les condicions de Rankine-

Hugoniot es poden escriure com

[f ] · n = s[u] · n, (2)

on f = (f1, . . . fd) és una matriu que conté els fluxos, u és la solució, s és

la velocitat de propagació de la discontinuı̈tat i n és el vector normal a la

discontinuı̈tat. La notació [·] indica el bot a través de la discontinuı̈tat en

una variable.

Estructura caracterı́stica

Cadascun del vectors columna rp de la matriu R defineix un camp vecto-

rial rp : Rm → Rm, u → rp(u), anomenat p-camp caracterı́stic. Direm que

un camp caracterı́stic definit pel vector propi rp és genuı̈nament no lineal

si

∇λp(u) · rp(u) 6= 0, ∀u,
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on ∇λp(u) = (∂λp/∂u1, . . . , ∂λp/∂um) és el gradient de λp(u). És important

notar que per a sistemes lineals, els valors propis λp són constants res-

pecte de u, aleshores ∂λp/∂ui = 0, ∀i = 1, . . . ,m. Per tant, els camps

genuı̈nament no lineals no poden aparèixer en sistemes lineals i són

exclusius dels sistemes no lineals.

Altre tipus de camp interessant són els camps linealment degenerats,

per als quals:

∇λp(u) · rp(u) = 0, ∀u.
Aquests camps són una generalització dels camps caracterı́stics d’un

sistema lineal amb coeficients constants, on ∇λp = 0.

Anem a estudiar breument a continuació la relació entre disconti-

nuı̈tats i camps caracterı́stics. Una discontinuı̈tat definida per x = s(t),
separant dos estats uL(t) i uR(t), direm que és un p-xoc, o una ona de xoc

associada al p-camp caracterı́stic rp(u), si

λp(uL) ≥ s′(t) ≥ λp(uR). (3)

Aquesta condició s’anomena Condició d’Entropia de Lax [66].

Una p-discontinuı̈tat de contacte és un cas especial de p-ona de xoc

on en (3) es compleixen les igualtats:

λp(uL) = s′(t) = λp(uR).

Les discontinuı̈tats de contacte són l’únic tipus de discontinuı̈tat asso-

ciada als camps linealment degenerats. Aquest és l’únic tipus de discon-

tinuı̈tat que pot aparèixer en la solució de sistemes lineals.

Les ones de rarefacció són un altre tipus d’ones que són tı́piques dels

camps genuı̈nament no lineals, caracteritzades per la condició:

λp(uL) < λp(uR).

Els camps genuı̈nament no lineals poden presentar tant xocs com

ones de rarefacció depenent, entre altres coses, del valor dels estats a la

dreta i a l’esquerra de la discontinuı̈tat.

Equacions model

Finalment, anem a presentar a continuació alguns dels models d’equaci-

ons i sistemes de lleis de conservació hiperbòliques que anem a emprar

en aquesta tesi, estudiant algunes de les seues propietats més impor-

tants descrites en aquesta secció.
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L’equació d’advecció és el model més simple de llei de conservació que

podem considerar. En una dimensió espacial es pot escriure com:

ut + aux = 0, (4)

on a ∈ R és una constant.

Si tenim una condició inicial u(x, 0) = u0(x), aleshores la solució del

problema de Cauchy corresponent és u(x, t) = u0(x− at). Aquesta solució

representa el transport d’una pertorbació inicial donada, descrita per u0,
a través del flux a velocitat constant a, sense canviar de forma, movent-

se cap a l’esquerra si a < 0 o cap a la dreta si a > 0. L’únic tipus de

discontinuı̈tat que es pot donar a les solucions d’aquesta equació és la

discontinuı̈tat de contacte.

Altra equació important, en aquest cas no lineal, és l’equació de Bur-

gers sense viscositat que queda definida per:

ut +

(
u2

2

)

x

= 0.

i que es pot escriure en forma quasi-lineal com

ut + uux = 0.

Aquesta equació és similar a l’equació d’advecció però amb la particula-

ritat de que la velocitat de propagació, donada per f ′(u) = u, no és cons-

tant, sinó que depèn de la mateixa solució. Malgrat la resemblança, el

comportament de la solució d’aquesta equació és completament diferent

del de l’equació d’advecció. Ones de xoc i rarefaccions poden aparèixer

de manera natural en la solució d’aquesta equació.

Els sistemes lineals representen una generalització a diverses varia-

bles de l’equació d’adveció (4). Un sistema lineal hiperbòlic és un cas

particular de l’EDP (1) en el que la funció flux f(u) depèn linealment de

u, i per tant es pot escriure com f(u) = Au, on A és una matriu Rm × Rm

amb coeficients constants. Per tant, el sistema es pot escriure com:

ut +Aux = 0. (5)

Sabem que si el sistema és hiperbòlic aleshores la matriu A és diagona-

litzable amb valors propis reals, i es pot expressar com A = RΛR−1, amb

Λ = diag(λ1, . . . , λm), λp ∈ R, i R = [r1, . . . , rm], rp ∈ Rm.

Emprant aquesta informació podem definir un canvi de base donat

per la matriu R de la següent forma: v = R−1u. Aplicant aquest canvi de

base a l’equació (5), aquesta es pot reescriure com

vt + Λvx = 0. (6)
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Aquest canvi de base produeix un nou sistema lineal que és diagonal

i que es pot desacoblar com m equacions d’advecció, la solució de les

quals és coneguda. Donada la condició inicial u(x, 0) = u0(x) per a (5), la

solució v del sistema d’equacions (6) ve donada per:

vp(x, t) = (v0)p(x− λpt),

on (v0)p és la component p-èssima de v0 = R−1u0. Aplicant el canvi de

base invers obtenim la solució general del sistema lineal (5):

u(x, t) =

m∑

p=1

vp(x− λpt, 0)rp.

Els sistemes de lleis de conservació no lineals es poden definir per

ut + f(u)x = 0,

on u : R × R −→ Rm i f : Rm −→ Rm, i es poden escriure en forma quasi-

lineal com

ut +A(u)ux = 0,

on f ′(u) = A(u) és la matriu Jacobiana m × m del sistema, les entrades

de la qual no són constants respecte de u.

Les equacions d’Euler són un sistema de lleis de conservació hiperbò-

liques no lineals que governa la dinàmica de fluids compressibles, com

gasos o lı́quids a altes pressions. Les equacions d’Euler en 1D es poden

escriure com: 


ρ
ρvx

E



t

+




ρvx

ρ(vx)2 + p
vx(E + p)



x

= 0.

on ρ és la densitat, vx és la velocitat, ρvx és el moment, E és l’energia i p
és la pressió, les quals satisfan la relació

E =
1

2
ρ||v||22 +

p

γ − 1
.

on γ és una constant que depèn del gas particular que estem conside-

rant.

La matriu Jacobiana d’aquest sistema d’equacions és diagonalitzable

amb valors propis

λ1 = vx − c λ2 = vx, λ3 = vx + c,
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on el paràmetre c, anomenat velocitat local del so, ve donat per a gasos

ideals politròpics per

c =

√
γp

ρ

A la solució d’aquest sistema podem trobar tant ones de xoc, com dis-

continuı̈tats de contacte o ones de rarefacció.

Els models de sedimentació polidispersa són altre exemple de siste-

mes de lleis de conservació no lineals.

Una suspensió polidispersa és una mescla composta per partı́cules

sòlides menudes que pertanyen a M espècies de partı́cules distintes

i que estan disperses en un fluid viscós. Considerarem que totes les

partı́cules tenen la mateixa densitat i que, si anomenem Di al diàmetre

de les partı́cules de l’espècie i, aquestes estan ordenades de manera que

D1 > D2 > · · · > DM . Aleshores, si φi denota el volum de concentració de

partı́cules i vi la velocitat de fase de cadascuna de les espècies i, l’equació

de continuı̈tat de cadascuna de les espècies es pot escriure com

∂tφi + ∂x(φivi) = 0, i = 1, . . . ,M,

on t és el temps i x és la profunditat a la qual es troben les partı́cules

en el fluid. Suposarem que les velocitats v1, . . . , vM venen donades com

a funcions del vector de concentracions locals Φ := Φ(x, t) := (φ1(x, t), . . . ,
φM (x, t))T (hipòtesi cinemàtica). Aleshores obtenim un sistema de lleis

de conservació no lineal, fortament acoblat, del tipus:

Φt + f(Φ)x = 0, fi(Φ) := φivi(Φ), i = 1, . . . ,M.

Un dels models de velocitat més utilitzats comunament per a la se-

dimentació polidispersa és el model de Masliyah-Lockett-Bassoon (MLB)

[79, 81]. En aquest model, per a partı́cules amb la mateixa densitat, les

velocitats v1(Φ), . . . , vM (Φ) venen donades per

vi(Φ) =
(̺s − ̺f)gD

2
1

18µf
(1− φ)V (φ)

(
d2i − (φ1d

2
1 + · · ·+ φMd2M )

)
,

on ̺s i ̺f són les densitats dels sòlids i del fluid respectivament, g és

l’acceleració de la gravetat, µf és la viscositat del fluid, di = Di/D1 són

els diàmetres normalitzats de les partı́cules i = 1 . . .M , i V és una funció

empı́rica que ha de satisfer V (0) = 1, V (φmax) = 0, V ′(φ) ≤ 0 per a φ ∈
[0, φmax].

En [18, 23, 36] es demostra que el model MLB és estrictament hi-

perbòlic sempre que φi > 0 ∀i = 1, . . . ,M , i φ :=
∑M

i=1 φi < φmax, on el
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paràmetre φmax ∈ (0, 1] és una constant donada de concentració màxima

de sòlid. L’anàlisi dut a terme en [23] proporciona fites per als valors

propis λi = λi(Φ) de la matriu Jacobiana f ′(Φ) que es troben entrellaçats

amb les velocitats v1, . . . , vM de la següent forma

M1(Φ) < λM (Φ) < vM (Φ) < λM−1(Φ) < vM−1(Φ) < · · · < λ1(Φ) < v1(Φ) (7)

on la fita inferior ve donada per

M1(Φ) = v1(0)
(
d2MV (Φ) +

(
(1− φ)V ′(φ)− 2V (φ)

)
(d21φ1 + · · ·+ d2MφM )

)
.

Aquesta propietat d’entrellaçat és important per als esquemes numè-

rics, ja que els valors propis poden ser calculats emprant un mètode per

a calcular arrels adequat. Les fites per als valors propis també són molt

importants per a la implementació numèrica com veurem més avant.

Finalment, les equacions d’aigües poc profundes modelen la propa-

gació d’alteracions en l’aigua i altres fluids incompressibles, sempre que

la profunditat del fluid siga menuda comparada amb la longitud d’ona

de l’alteració. Les equacions d’aigües poc profundes en dos dimensions

representen la conservació de la massa i del moment en un domini en

dos dimensions, i es poden escriure com:




h
qx

qy


+




qx

(qx)2

h + gh2

2
qxqy

h




x

+




qy
qxqy

h
(qy)2

h + gh2

2




y

=




0
−ghzx
−ghzy


 ,

on h és la profunditat de l’aigua, qx i qy són les dues components del

moment i z representa la topografia del fons. Els valors i vectors propis

d’aquest sistema es poden calcular explı́citament.

Mètodes numèrics per a la dinàmica de

fluids

Després de veure algunes de les caracterı́stiques principals dels sistemes

de lleis de conservació hiperbòlics, en aquesta secció anem a descriu-

re alguns dels conceptes i resultats bàsics relacionats amb els mètodes

numèrics per a aquests tipus de sistemes de lleis de conservació.

El primer pas per a resoldre numèricament EDPs és remplaçar el

problema continu, representat per les EDPs, per una discretització del
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mateix. Considerem un problema escalar de valors inicials en una di-

mensió: {
ut + f(u)x = 0, x ∈ I, t ∈ R+,
u(x, 0) = u0(x),

(8)

on u, f : R −→ R i I ⊂ R és un interval tancat de la recta real, que en

aquest cas, per simplificar la notació, considerarem I = [0, 1].
Per a discretitzar un interval de la recta real, definim una malla, o

xarxa, de la següent forma: considerem un nombre sencer positiu N i

definim un conjunt discret de punts {xj}0≤j<N complint que xj = (j +
1/2)∆x, amb ∆x = 1

N . A partir dels nodes xj podem definir les cel·les cj
com

cj =

[
xj−1 + xj

2
,
xj + xj+1

2

]
=
[
xj− 1

2
, xj+ 1

2

]
.

Una xarxa pot quedar definida, depenent del context, com el conjunt de

nodes {xj}0≤j<N o el conjunt de cel·les {cj}0≤j<N .

Els punts de la discretització temporal {tn}0≤n<M es poden definir de

la mateixa forma com tn = n∆t, amb ∆t = 1
M i M un nombre sencer

positiu.

Denotarem per Un = {Un
j }0≤j<N a les aproximacions de la solució

exacta u(xj , t
n) de (8) calculades puntualment als nodes xj.

Emprant les dades inicials u0(x), podem definir U0 com el vector d’a-

proximacions U0
j quan t = 0. Emprant un procediment d’evolució tempo-

ral podem construir les aproximacions Un+1 a partir de les aproximacions

en temps anteriors Un, Un−1, . . . , Un−r amb r ∈ N, r ≤ n. En el nostre cas,

només considerarem mètodes numèrics explı́cits d’un pas, on r = 0, que

construeixen Un+1 només a partir de Un i que anem a expressar de la

següent forma

Un+1 = H∆t(U
n),

on el subı́ndex ∆t indica que el mètode també depèn del pas de temps

∆t.

Convergència

L’objectiu dels mètodes numèrics és calcular aproximacions precises a la

solució exacta de l’equació (8), per tant, el que esperem és que el mètode

numèric siga convergent, és a dir, que la solució numèrica Un
j s’aproxime

a la solució exacta de l’equació diferencial unj = u
((
j + 1

2

)
∆x, n∆t

)
per a

qualsevol punt xj i temps tn fixes quan ∆x i ∆t tendeixen a zero, és a dir

quan refinem la malla. Per a mesurar si les aproximacions obtingudes

amb el mètode numèric s’aproximen o no a la solució exacta de l’EDP,
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emprarem normes. Aixı́, direm que un mètode és convergent, per a una

norma particular || · ||, si

lim
∆t→0,∆x→0

||Un
j − unj || = 0

per a qualsevol valor fixat de xj i tn.

Com que en general és quasi impossible demostrar si un mètode

numèric és convergent emprant la definició de convergència, normal-

ment emprarem els conceptes de consistència, estabilitat i el Teorema

de Lax per a demostrar la convergència d’un mètode numèric.

La consistència estudia el comportament d’un mètode numèric lo-

calment, és a dir, en un únic pas de temps. Si definim l’error local de

trucament, aquell que mesura l’error produı̈t quan apliquem un únic pas

de temps del mètode numèric, com

Ln
∆t =

1

∆t

(
H∆t(U

n)− un+1
)
,

aleshores tenim que un mètode és d’ordre p si L∆t(·, t) = O(∆tp). Si p ≥ 1,
el nostre mètode numèric és consistent.

D’altra banda, direm que un mètode és estable si quan fem xicotetes

pertorbacions en les condicions inicials u(x, 0), aquestes no s’amplifiquen

amb el pas del temps, és a dir, aquestes pertorbacions es mantenen me-

nudes en u(x, tn) quan n → ∞. El teorema de Lax [68], ens permet rela-

cionar aquests tres conceptes, ja que ens diu que donat un mètode d’un

pas lineal consistent per a un problema de Cauchy lineal ben posat, ales-

hores l’estabilitat és condició necessària i suficient per a la convergència.

Mètodes numèrics

Hi ha una gran varietat de mètodes en diferències que es poden emprar

per a calcular aproximacions a la solució de lleis de conservació. Molts

d’aquests mètodes es basen en la substitució de les derivades parcials

que apareixen en (8) per aproximacions en diferències finites apropiades.

Utilitzant diferents aproximacions en diferències finites es poden desen-

volupar un gran nombre de possibles esquemes en diferències finites,

cadascun dels quals tindrà diferents propietats en termes de precisió,

estabilitat o error.

Però aquests mètodes tenen un punt feble: si alguna singularitat apa-

reix en la solució u(x, t) aleshores les diferències finites no poden aproxi-

mar amb precisió les derivades parcials que apareixen a les EDPs. Quan

treballem amb solucions discontı́nues, pot aparèixer més d’una solució i
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el mètode pot no convergir a la correcta, és més, pot arribar a convergir a

una funció que no és solució dèbil de l’EDP. Alguns exemples d’aquests

problemes es poden trobar, per exemple, en [70].

Per a resoldre aquest inconvenient, i garantir que els mètodes numèrics

no convergeixen a funcions que no siguen solució dèbil de l’EDP, empra-

rem mètodes conservatius. Direm que un mètode numèric és conservatiu

si es pot escriure de la següent forma:

Un+1
j = Un

j −
∆t

∆x

(
f̂(Un

j−p+1, . . . , U
n
j+q)− f̂(Un

j−p, . . . , U
n
j+q−1)

)
,

on la funció f̂ : Rp+q+1 → R s’anomena flux numèric i p, q ∈ N, p, q ≥ 0.
El Teorema de Lax-Wendroff [69] garanteix que si un mètode conser-

vatiu convergeix a una funció u(x, t) quan la malla es refinada, aleshores

aquesta funció ha de ser necessàriament una solució dèbil de la llei de

conservació.

Els mètodes dels que hem parlat fins ara són mètodes que estan total-

ment discretizats tant en temps com en espai. Una altra forma d’obtenir

un mètode conservatiu és considerar el procés de discretització en dos

passos: primer es discretitza només en espai, obtenint un sistema d’e-

quacions diferencials ordinàries (EDOs) respecte del temps, anomenades

“equacions semi-discretes”. Si calculem l’aproximació espacial emprant

una reconstrucció conservativa dels fluxos numèrics, aleshores podem

escriure el sistema d’EDOs com:

dUj(t)

dt
+

f̂j+ 1
2
− f̂j− 1

2

∆x
= 0, ∀j,

on f̂j+ 1
2
= f̂(Uj−p+1(t), . . . , Uj+q(t)).

Per a resoldre aquest sistema d’EDOs s’ha d’emprar un resolvedor

d’equacions diferencials ordinàries adequat. En aquest treball utilitzem

un resolvedor Runge-Kutta TVD de tercer ordre, especialment desenvo-

lupat per Shu i Osher en [94] per a resoldre aquest tipus de sistemes

d’EDOs, i que té la forma:





U (1) = Un −∆tD(Un),

U (2) =
3

4
Un +

1

4
U (1) − 1

4
∆tD(U (1)),

Un+1 =
1

3
Un +

2

3
U (2) − 2

3
∆tD(U (2)).

on D(Un
j ) =

f̂j+ 1
2
(Un)− f̂j− 1

2
(Un)

∆x
, ∀j, n.
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Esquemes WENO en diferències finites

Per finalitzar aquesta secció anem a descriure breument els elements

constitutius del mètode numèric conservatiu d’alt ordre utilitzat per a

resoldre sistemes hiperbòlics de lleis de conservació en aquest treball,

compost per la formulació en diferències finites de Shu i Osher [94, 95],

l’esquema de reconstrucció WENO d’ordre cinc [59] i l’integrador Runge-

Kutta TVD de tercer ordre explicat prèviament.

Seguint la tècnica desenvolupada per Shu i Osher en [94, 95], podem

obtenir la propietat conservativa de la discretització espacial de l’equació

ut + F (u)x = 0

definint implı́citament la funció f com:

F (u(x)) =
1

h

∫ x+h
2

x−h
2

f(ξ)dξ,

de manera que la derivada espacial de (1) es pot obtenir exactament

mitjançant una fórmula en diferències finites als punts extrems de les

cel·les cj,

ut +
1

h

(
f

(
x+

h

2

)
− f

(
x− h

2

))
= 0.

Aleshores, si f̂ és una aproximació de f obtinguda emprant els valors

puntuals de la funció F en un stencil al voltant del punt xj+ 1
2

de manera

que f(xj+ 1
2
) = f̂(xj+ 1

2
) + d(xj+ 1

2
)hr +O(hr+1), per a una funció Lipschitz d,

podem discretitzar la derivada espacial (F (u))x(xj+ 1
2
) de la següent forma:

(F (u))x(xj+ 1
2
) =

f̂(xj+ 1
2
)− f̂(xj− 1

2
)

△x
+O(hr).

on les aproximacions f̂(xj± 1
2
) es calculen a partir de valors puntuals

coneguts de F sobre la malla i un esquema de reconstrucció R.

Un punt molt important quan calculem les reconstruccions és que

s’ha de tenir en compte l’“upwinding”, és a dir, la direcció de propagació

de la informació en la xarxa en la que estem treballant, que ve donada

pels signes dels valors propis de la matriu Jacobiana, de manera que

les aproximacions f̂n
j+ 1

2

es calculen emprant reconstruccions d’alt ordre

esbiaixades cap a l’esquerra R±(f̄j−s1, . . . , f̄j+s2 , x) si el valor propi co-

rresponent és major que 0 i reconstruccions esbiaixades cap a la dreta

R±(f̄j−s1+1, . . . , f̄j+s2+1, x) si el valor propi corresponent és menor que 0.
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Resumint, el càlcul dels fluxos numèrics emprant el procediment de

Shu-Osher es pot esquematitzar de la següent forma:

Algorisme 1. (Algorisme de Shu-Osher per a equacions escalars)

Definir βj+ 1
2
= maxu∈[Uj ,Uj+1] |f ′(u)|

Si f ′(u) 6= 0 ∀u ∈ [Uj , Uj+1]
si sign(f ′(u)) > 0

f̂j+ 1
2
= R+(fj−s1, . . . , fj+s2 , xj+ 1

2
)

sinó

f̂j+ 1
2
= R−(fj−s1+1, . . . , fj+s2+1, xj+ 1

2
)

fi

Sinó

f̂+
j+ 1

2

= R+(f+
j−s1

, . . . , f+
j+s2

, xj+ 1
2
)

f̂−
j+ 1

2

= R−(f−
j−s1+1, . . . , f

−
j+s2+1, xj+ 1

2
)

f̂j+ 1
2
= f̂+

j+ 1
2

+ f̂−
j+ 1

2

fi

on les funcions f± defineixen una partició de fluxos que verifica f++f− =
f i els valors propis λk satisfan ±λk ((f±(u))′) ≥ 0 (f± són fluxos upwind)

per a u ∈ [uj, uj+1].

L’esquema de reconstrucció que anem a emprar en aquesta tesi és

el mètode “Weighted essentially non-oscillatory” (WENO), introduı̈t per

Liu, Osher i Chan en [78] com una millora del mètode ENO (“Essentially

non-oscillatory”), desenvolupat per Harten et al. en [51], i posteriorment

millorat per Jiang i Shu en [59].

Si denotem per Sk, k = 0, . . . , r−1 als r stencils candidats del mètode

ENO

Sk = {xj+k−r+1, . . . , xj+k}, k = 0, . . . , r − 1.

i prk(x) a la reconstrucció polinòmica de f d’ordre r−1 definida en l’stencil

Sk, satisfent prk(xj+ 1
2
) = f(xj+ 1

2
)+O(hr), aleshores una reconstrucció WE-

NO de f esbiaixada cap a l’esquerra ve donada per la combinació convexa

q(xj+ 1
2
) =

r−1∑

k=0

wkp
r
k(xj+ 1

2
),

on

wk ≥ 0, k = 0, . . . , r − 1,

r−1∑

k=0

wk = 1.
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Els pesos wk k = 0, . . . , r − 1, s’han de definir amb l’objectiu d’obtenir

màxim ordre de precisió 2r− 1 quan la funció f siga suau, i ordre r, com

el mètode ENO, quan no ho siga. Liu, Osher i Chan en [78], van definir,

per a r = 2, els pesos complint aquestes propietats com:

wk =
αk∑r−1
i=0 αi

, αk =
Cr
k

(ε+ Ik)p
, k = 0, . . . , r − 1,

i Cr
k són els pesos òptims, Ik = Ik(h) és l’indicador de suavitat de la funció

f en el stencil Sk i ε és una constant positiva menuda, introduı̈da per a

evitar que s’anul·le el denominador, però que com veurem més avant, té

una gran influència en el càlcul d’aproximacions prop de punts crı́tics i

discontinuı̈tats.

Jiang i Shu van definir en [59] l’indicador de suavitat de la funció f
en el stencil Sk de la següent manera:

Ij,k =

r−1∑

l=1

∫ x
j+1

2

x
j− 1

2

h2l−1(p
(l)
j,k(x))

2dx, (9)

amb el qual obtenien mètodes WENO amb ordre òptim 2r−1 per a r = 2, 3.

Als experiments numèrics desenvolupats posteriorment emprarem el

mètode WENO de cinquè ordre, amb r = 3, que denotarem per WENO5,

i el mètode WENO d’ordre nou, per al qual r = 5 i que denotarem per

WENO9.

Disseny de pesos per a esquemes WENO

d’ordre màxim

L’esquema WENO que hem presentat en la secció anterior, amb els pesos

definits per Liu et al. en [78] i els indicadors de suavitat proposats per

Jiang i Shu en [59], està desenvolupat per a obtenir reconstruccions

d’ordre màxim 2r − 1 quan la funció f és suau, i reconstruccions d’ordre

r, com l’algorisme ENO, sempre que la funció no siga suau.

Però, com es mostra en [19, 54, 104], els pesos clàssics de l’esquema

WENO d’ordre cinc no obtenen màxim ordre de convergència prop dels

extrems suaus, on la primera derivada de la solució s’anul·la. Per a

resoldre aquesta pèrdua de precisió, en [54], Henrick et al. defineixen

un nou mètode WENO anomenat “mapped WENO”. En aquest treball els

autors es basen en els pesos de Jiang i Shu per a definir uns nous pesos
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que utilitzen els pesos de Jiang i Shu, w
(JS)
k , com a estimació inicial que

es mapetja a un valor més precı́s utilitzant les funcions

gk(w) =
w(wk + w2

k − 3wkw + w2)

w2
k + w(1− 2wk)

,

on wk ∈ (0, 1) per a k = 0, 1, 2. Per tant, αk = gk(w
(JS)
k ) és una approximació

més precisa dels pesos. Utilitzant aquestos pesos s’obté que el mètode

és d’ordre cinc inclús prop dels punts crı́tics on f ′ = 0.

Altra aproximació es pot trobar en [19] on els autors construeixen

nous pesos, emprant un nou indicador de suavitat de major ordre que

l’indicador de suavitat de Jiang i Shu, per a l’esquema WENO d’ordre

cinc, obtenint un nou esquema WENO amb menys dissipació i una re-

solució major que la dels esquemes WENO clàssics, però no aconseguei-

xen ordre de convergència màxim als punts crı́tics on les primeres tres

derivades s’anul·len a la vegada.

Yamaleev i Carpenter proposen en [104, 105] nous pesos que obte-

nen una convergència dels pesos més ràpida i millor resolució prop de

discontinuı̈tats fortes que els pesos proposats en [19], i estableixen al-

gunes restriccions sobre els paràmetres dels pesos que garanteixen que

l’esquema WENO tinga ordre màxim per a solucions suficientment suaus

amb un nombre arbitrari de derivades que s’anul·len.

Els pesos que proposen Yamaleev i Carpenter en [104, 105] es poden

escriure com:

wk =
αk∑r−1
i=0 αi

, αk = Ck

(
1 +

τ2r−1

Ik + ε

)
, k = 0, . . . , r − 1,

Ik és l’indicador de suavitat clàssic de Jiang i Shu, ε és un paràmetre

menut positiu que pot dependre de h i la funció τ2r−1 està definida per:

τ2r−1 = (V 〈xj−r+1, . . . , xj+r−1〉)2 ,

on V 〈xj−r+1, . . . , xj+r−1〉 és la diferencia no dividida definida en tots els

punts del stencil.

Yamaleev i Carpenter demostren que els esquemes WENO amb a-

quests pesos i paràmetre ε complint:

ε ≥ O
(
h3r−4

)
,

tenen ordre màxim siga quin siga el nombre de derivades nul·les de la

solució.
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En canvi, si analitzem amb més deteniment l’estructura d’aquests

pesos, es pot demostrar que prop de discontinuı̈tats, quan la funció f és

suau almenys en un dels stencils Sk, k = 0, . . . , r − 1, no obtenim l’ordre

de precisió màxim que esperàvem.

Si anomenem K = {k/f no és suau en Sk}, tenim que

αk = Ck

(
1 +

τ2r−1

Ik + ε

)
= Ck

(
1 +

O(1)
O(1) + ε

)
= O(1), si k ∈ K,

mentre que

αk = Ck

(
1 +

O(1)
O(h2) + ε

)
= O(h−2), si k /∈ K,

tenint en compte que com els nodes que defineixen τ2r−1 creuen una

discontinuı̈tat aleshores τ2r−1 = O(1) i, a més, Ik = O(1) si f no és suau

en l’stencil Sk, mentre que Ik = O(h2) si f és suau en Sk. Aleshores

obtenim que

wk =
αk∑r−1
i=0 αi

=
O(1)
O(h−2)

= O(h2) si k ∈ K,

mentre que

wk =
αk∑r−1
i=0 αi

=
O(h−2)

O(h−2)
= O(1) si k /∈ K.

Emprant que
∑r−1

k=0wk = 1, aleshores:

f(xj+ 1
2
)− q(xj+ 1

2
) = f(xj+ 1

2
)−

r−1∑

k=0

wkp
r
k(xj+ 1

2
)

=

r−1∑

k=0

wk

(
f(xj+ 1

2
)− prk(xj+ 1

2
)
)

=
∑

k/∈K
wk

(
f(xj+ 1

2
)− prk(xj+ 1

2
)
)
+
∑

k∈K
wk

(
f(xj+ 1

2
)− prk(xj+ 1

2
)
)

=
∑

k/∈K
O(1)O(hr) +

∑

k∈K
O(h2)O(1) = O(h2)

Per tant, l’ordre de precisió de les reconstruccions obtingudes amb el

mètode WENO5 i els pesos definits per Yamaleev i Carpenter descendeix

a 2 sempre que un stencil, però no tots ells, pot evitar la discontinuı̈tat.

Aquesta precisió és menor que l’ordre de precisió r corresponent a l’es-

quema ENO quan r > 2.
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Per a resoldre aquest problema de precisió, proposem uns nous pe-

sos, obtinguts modificant els pesos anteriors, amb els quals s’obté ordre

màxim de precisió quan la funció és suau i es milloren els resultats ob-

tinguts amb els pesos de Yamaleev i Carpenter, quan la funció no es

suau. Aquests pesos estan definits de la manera següent:

wk =
αk∑r−1
i=0 αi

, αk = Ck

(
1 +

(
τ2r−1

Ik + ε

)µ)
, µ =

⌈r
2

⌉
, k = 0, . . . , r − 1,

on Ik és l’indicador de suavitat clàssic de Jiang i Shu, ε és un paràmetre

positiu menut i la funció τ2r−1 és el quadrat de la diferència no dividida

definida en tot l’stencil de (2r − 1) punts.

Emprant el mateix raonament que en [3, Proposició 3], podem definir

algunes restriccions en l’ordre del paràmetre ε, menys restrictives que les

obtingudes per Yamaleev i Carpenter per als seus pesos, per a garantir

mètodes WENO d’ordre màxim.

Particions de flux esbiaixades per a

esquemes WENO en diferències finites

Un dels majors inconvenients dels esquemes HRSC és el seu alt cost

computacional, en gran part degut a que molts d’ells utilitzen la descom-

posició espectral de la matriu Jacobiana del sistema per a calcular les

aproximacions numèriques mitjançant projeccions locals a camps carac-

terı́stics. Les solucions numèriques que s’obtenen emprant la informació

caracterı́stica són normalment excel·lents en termes de resolució però

l’esforç computacional necessari per a obtenir-les sol ser molt alt, espe-

cialment per a aquells problemes en els quals la informació espectral de

la matriu Jacobiana no està disponible o és molt difı́cil d’obtenir.

En el cas que la descomposició espectral completa de la matriu Ja-

cobiana f ′(Φ) siga coneguda, és a dir, que coneguem els valors propis

λk(f
′(Φ)) de f ′(Φ) i els corresponents vectors propis normalitzats a la

dreta, rk(Φ), i a l’esquerra, lk(Φ), per a tot k = 1, . . . ,M , aleshores, podem

calcular el flux numèric f̂j+ 1
2

mitjançant un esquema upwind amb infor-

mació caracterı́stica, que denotarem per SPEC, de la manera següent:

f̂j+ 1
2
=

N∑

k=1

rk
(
R+

(
lk · f+

j−2, . . . , l
k · f+

j+2;xj+ 1
2

))

+

N∑

k=1

rk
(
R−

(
lk · f−

j−1, . . . , l
k · f−

j+3;xj+ 1
2

))
,

(10)
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on rk = rk(Φj+ 1
2
), lk = lk(Φj+ 1

2
), Φj+ 1

2
= 1

2

(
Φj + Φj+1

)
, f±

j := f±(xj), R±

són operadors reconstrucció upwind esbiaixats (reconstruccions WENO

d’ordre 5 en el nostre cas) i les funcions f± defineixen una partició de

fluxos que verifica que f+ + f− = f i ±λk ((f±(Φ))′) ≥ 0 (f± són fluxos

upwind) on Φ està definit en:

D =

{
{Φi/i = 1, . . . , N} per a particions de flux globals,

{Φi/i = j − 2, . . . , j + 3} per a particions de flux locals.

La partició de fluxos de Lax-Friedrichs està definida per f± = 1
2(f(Φ)±αΦ)

on el paràmetre de viscositat numèrica α està definit com una fita supe-

rior del màxim de totes les velocitats caracterı́stiques, en valor absolut,

de la solució per a cada pas de temps:

max{|λk(f
′(Φ))|/k = 1, . . . ,M,Φ ∈ D} ≤ α.

Per a intentar millorar l’eficiència d’aquests mètodes, s’han proposat

diverses alternatives per a calcular solucions numèriques sense emprar

informació caracterı́stica. L’ús d’esquemes WENO en diferències finites

per components es va introduir en [106]. Aquests esquemes es basen

en els esquemes en diferències finites de Shu i Osher [95], que obtenen

els fluxos numèrics en cada interfı́cie de la cel·la mitjançant reconstruc-

cions upwind esbiaixades de fluxos upwind dividits (aquells en els que

la matriu Jacobiana té valors propis de cert signe).

En els mètodes per components [106], el valor del vector de flux

numèric f̂j+ 1
2

es calcula fent lkl = rkl = δk,l en l’equació (10), de mane-

ra que el flux numèric queda:

f̂j+ 1
2
,k = R+

(
f+
j−2,k, . . . , f

+
j+2,k;xj+ 1

2

)
+R−

(
f−
j−1,k, . . . , f

−
j+3,k;xj+ 1

2

)
.

El comportament oscil·latori dels esquemes per components i la excessi-

va difusió de les solucions numèriques obtingudes emprant una partició

de fluxos Lax-Friedrichs global han sigut estudiades i reflectides en di-

versos treballs, com per exemple [24, 35].

Per tractar de millorar els problemes de difusió i alleujar el compor-

tament oscil·latori obtingut quan emprem una partició de fluxos de Lax-

Friedrichs, en aquest capı́tol es proposa l’ús d’una partició de fluxos

basada en la possibilitat de triar asimètricament les velocitats d’ona de

cadascun dels termes de la partició de fluxos i que utilitza menys vis-

cositat numèrica per tractar d’estabilitzar les reconstruccions upwind.

Aquesta partició de fluxos s’anomena HLL ja que va ser introduı̈da per



xxx

primera vegada, com a resolvedor de Riemann, per Harten, Lax i van Leer

en [52].

Si definim F±(Φ) = f(Φ) − α∓Φ, aleshores una condició suficient per

a que f = γF− + (1 − γ)F+ siga una partició de fluxos és que els valors

propis λk((F
+(Φ))′) i λk((F

−(Φ))′) tinguen el signe corresponent per a tot

Φ ∈ D i γ ∈ [0, 1].
Podem calcular λk((F

+(Φ))′) com

λk((F
+(Φ))′) = λk(f

′(Φ)− α−I) = λk(f
′(Φ))− α−

Aleshores,

λk((F
+(Φ))′) = λk(f

′(Φ))− α− ≥ 0⇔ λk(f
′(Φ)) ≥ α−

Anàlogament,

λk((F
−(Φ))′) = λk(f

′(Φ))− α+ ≤ 0⇔ λk(f
′(Φ)) ≤ α+

Per tant, λk((F
+(Φ))′) ≥ 0 i λk((F

−(Φ))′) ≤ 0 ∀k,Φ ∈ D si i només si

α− ≤ λk(f
′(Φ)) ≤ α+, ∀Φ ∈ D, ∀k = 1, . . . , n.

Com es pot veure, per a que la condició upwind sobre F± es complisca,

α+ i α− han de ser una estimació del màxim i mı́nim respectivament de

les velocitats caracterı́stiques en D.

Ara, si

f(Φ) = γF−(Φ) + (1− γ)F+(Φ)

s’ha de complir per a qualsevol Φ, aleshores

f(Φ) = γ(f(Φ)− α+Φ) + (1− γ)(f(Φ)− α−Φ)

= f(Φ) + (−α− + (α− − α+)γ)Φ

i per tant γ =
α−

α− − α+
. Finalment, 0 ≤ γ ≤ 1 si i només si α− ≤ 0 ≤ α+.

Resumint, podem definir la partició de fluxos HLL ([52, 97]) com:

f+ =





f α− ≥ 0,

0 α+ ≤ 0,

(1− γ)F+ α− ≤ 0 ≤ α+

f− =





0 α− ≥ 0,

f α+ ≤ 0,

γF− α− ≤ 0 ≤ α+

amb

α− ≤ λk(f
′(Φ)) ≤ α+, ∀Φ ∈ D, ∀k = 1, . . . ,M.
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max{λk(f
′(Φ))/k = 1, . . . ,M,Φ ∈ D} ≤ α+

α− ≤ min{λk(f
′(Φ))/k = 1, . . . ,M,Φ ∈ D}

Es pot comprovar que la viscositat numèrica emprada en la partició

de fluxos de Lax-Friedrichs és major que la que s’utilitza amb la partició

de fluxos HLL.

Continuant amb el nostre interés per tractar de millorar els resultats

obtinguts quan treballem amb mètodes en diferències finites, seguint el

treball desenvolupat per Levy et al. en [74, 75], proposem l’ús d’una

definició global dels indicadors de suavitat en la definició dels pesos de

l’esquema WENO. En [74, 75] es detecta que el càlcul dels indicadors de

suavitat del mètode WENO és un punt clau del comportament oscil·latori

de les solucions numèriques, i es proposa una definició global dels in-

dicadors de suavitat, vàlida per a totes les components del problema,

definits com una mitjana dels indicadors de suavitat de Jiang i Shu (9):

GIj,k =
1

M

M∑

q=1

1

||Φq||2




q−1∑

l=1

∫ x
j+1

2

x
j− 1

2

h2l−1(p
(l)
j,k,q(x))

2dx




on M és el nombre d’equacions, i pj,k,q i Ij,k,q són les reconstruccions po-

linòmiques i els indicadors de suavitat de Jiang i Shu, respectivament,

de les dades {fj+k−2,q, fj+k−1,q, fj+k,q}. El factor ||Φq||2 és un factor d’es-

cala, definit com la norma L2 de les mitjanes en cel·la de la component

r-èssima de Φ:

||Φq||2 =




N∑

j=1

|Φj,q|2h




1
2

.

Amb aquesta definició dels indicadors de suavitat el que s’intenta és

que prop de discontinuı̈tats les reconstruccions actuen uniformement en

totes les components.

Refinament de malles adaptatiu ben

balancejat per a fluxos d’aigües poc fondes

Les equacions que modelen el comportament de les aigües poc fondes

o “Shallow Water equations” (SWE) són un sistema de lleis de balanç

hiperbòliques no lineals àmpliament utilitzades i que han rebut una gran

atenció per part de la comunitat cientı́fica en els últims anys.
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Quan el fons és pla, les SWE esdevenen un sistema homogeni de lleis

de conservació. Les seues solucions poden desenvolupar discontinuı̈tats,

inclús quan el flux inicial és suau, el que fa necessari l’ús d’esquemes

HRSC. La presència d’un fons no pla fa que es tinguen que incloure

termes font en el sistema relacionats amb la geometria del fons.

És ben conegut que una discretització simple del terme font pot con-

duir a l’aparicició d’oscil·lacions numèriques que poden arribar a ar-

ruı̈nar la solució real que necessitem calcular. Aquest comportament

numèric apareix quan calculem solucions estacionàries, o quasi-estacio-

nàries, per a les quals el balanç entre els fluxos convectius i el terme font

associat al fons no es respecta pel mètode numèric. Els esquemes ben

balancejats o “Well-balanced” (WB) [17, 47] estan especı́ficament disse-

nyats per a mantenir aquest balanç, amb precisió màquina si és possible.

Els esquemes ben balancejats per a la captura de xocs o “Well-Balan-

ced Shock-Capturing schemes” (WBSC) constitueixen l’estat de l’art en

la simulació numèrica de fluxos d’aigües poc fondes. Aquests esquemes

normalment tenen un alt cost computacional relacionat amb el fet de que

incorporen upwinding mitjançant la informació caracterı́stica, procedi-

ments de reconstrucció d’alt ordre i un tractament numèric sofisticat del

terme font del fons. En situacions d’interés pràctic és altament necessari

combinar els esquemes WBSC amb una tècnica adaptativa que puga dis-

minuir l’alt temps computacional de les simulacions [15, 42, 57, 76, 62].

En aquest capı́tol analitzarem la tècnica AMR (“Adaptive Mesh Refi-

nement”) estructurada per blocs desenvolupada en [9] i l’esquema WBSC

emprat per aquesta tècnica, identificant les parts que són potencialment

responsables de la pèrdua de comportament WB. Els esquemes WBSC

preserven exactament la solució estacionària d’“aigua en repòs”, per a

la qual vx = vy = 0 i h + z = C (constant), on vx, vy són les components

corresponents de la velocitat, h l’altura del fluid i z la topografia del fons.

Però, l’aigua en repòs pot no ser exactament conservada si el mateix es-

quema s’utilitza en un marc multi-escala. L’objectiu d’aquest capı́tol és

abordar el problema del well-balancing quan un esquema WBSC s’utilit-

za com a resolvedor inclòs en una tècnica AMR estructurada a blocs.

L’esquema WBSC que anem a emprar en aquest treball és el desenvo-

lupat per Donat i Martı́nez-Gavara en [34, 80], que preserva exactament

l’estat estacionari d’aigua en repòs. Per a descriure aquest esquema

d’una manera més clara, anem a considerar les SWE en una dimensió:





ht + (hv)x = 0

(hv)t +

(
hv2 +

gh2

2

)

x

= −ghzx
, (11)
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amb v = vx. Si emprem la notació:

u =
[
h hv

]T
, f(u) =

[
hv hv2 + gh2

2

]T
, s(x, u) =

[
0 −ghzx

]T
,

el sistema (11) es pot escriure com:

ut + f(u)x = s(x, u)

que es pot reescriure de forma homogènia com:

ut + g[u]x = 0,

on el funcional g (que depèn de f i s) actua sobre u = u(x, t) de la següent

forma:

g[u](x, t) = f(u(x, t))−
∫ x

x0

s(r, u(r, t)) dr.

El punt x0 és un punt de referència en el domini computacional, per

exemple considerarem x0 = 0 quan el domini computacional siga [0, 1].
Emprant aquesta reformulació, en [34, 80] les autores proposen el

següent esquema aplicat a la solució exacta u(x, t):

un+1
i = uni −

∆t

∆x
(Gn

i+ 1
2
− Gn

i− 1
2
) (12)

on Gi+ 1
2

són fluxos numèrics hı́brids per a g[u].

En [34, 80] es demostra que la diferència dels fluxos Gn
i+ 1

2

−Gn
i− 1

2

en (12)

es pot reescriure com una suma de termes que contenen les quantitats

∆gn
i± 1

2

∆gn
i+ 1

2

:= gni+1 − gni = f(u(xi+1, tn))− f(u(xi, tn)) + bni,i+1,

on

bni,i+1 = −
∫ xi+1

xi

s(r, u(r, tn))dr. (13)

Per tant, per a obtenir un mètode numèric totalment discretitzat nece-

ssitem aproximar les integrals (13) mitjançant alguna regla d’integració

numèrica, que ens done una bona aproximació b̂ni,i+1 ≈ bni,i+1.

Per a les SWE, b̂ni,i+1 es pot definir de manera que s’obtinga la con-

servació exacta de la solució estacionaria d’aigua en repòs emprant una

definició apropiada de les integrals (13). Més detalls sobre aquest esque-

ma estan disponibles, per exemple, a [7, 34, 80].

Degut al caràcter hiperbòlic dels sistemes de lleis de balanç, els er-

rors numèrics que apareixen quan treballem amb xarxes uniformes no
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es troben uniformement distribuı̈ts. Errors més grans apareixen prop

de les discontinuı̈tats mentre que errors molt més menuts apareixen en

regions suaus, per tant, els esquemes adaptatius que incorporen refina-

ment només on errors grans apareixen, són apropiats i algunes vegades

absolutament necessaris per a simulacions multi-dimensionals o quan

necessitem obtenir alta precisió. En aquest treball anem a emprar l’es-

quema AMR proposat en [16] per a volums finits i posteriorment ampliat

per diversos autors [10, 14, 87].

Els algorismes AMR estructurats en blocs calculen l’evolució temporal

d’una representació multi-escala de la solució, que es basa en un siste-

ma jeràrquic de malles G0, . . . , GL. Per simplicitat en la notació anem

a considerar que el domini computacional és Ω = [0, 1]d. La malla més

grossa G0 és una malla uniforme, mentre que en nivells de resolució més

alts les cel·les computacionals s’obtenen mitjançant una subdivisió uni-

forme d’algunes de les cel·les de la malla del nivell de resolució més gros

immediatament anterior.

Suposem que la malla més grossa s’obté subdividint, en cada dimen-

sió, l’interval unitat en N0 intervals, de manera que la malla més grossa

ve donada per

c0j =

d∏

k=1

[jkh0, (jk + 1)h0], j ∈ G0 := {1, . . . , N0}d, h0 =
1

N0
.

Si cada nivell refinat s’obté biseccionant cadascuna de les cel·les del ni-

vell de resolució més gros immediatament anterior, aleshores les cel·les

del nivell refinat l venen donades per:

clj =
d∏

k=1

[jkhl, (jk + 1)hl], j ∈ Gl ⊆ {1, . . . , Nl}d, hl =
1

Nl
, Nl = 2lN0.

Per a un temps i un nivell de resolució donats, t i l respectivament,

tenim una solució numèrica multi-escala utl = (utl,j)j∈Gt
l
, on Gt

l és la malla

en el nivell de resolució l i temps t i utl,j és la dada associada a un punt

xlj ∈ clj (podria ser al centre o a l’extrem d’una cel·la) a temps t.
Els blocs constitutius més importants de l’algorisme AMR són la inte-

gració, l’adaptació i la projecció, que descriurem breument a continuació.

Una descripció més completa d’aquest algorisme es pot trobar en [10].

Integració

Per a avançar la solució multi-escala des de temps t fins a t+△t0, ∆t0 ha

de ser un pas de temps adequat per a la xarxa més grossa, de manera
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que la condició CFL per a la xarxa Gt
0 es satisfaci:

∆t0 =
Ch0

maxu∈U t |f ′(u)| , 0 < C ≤ 1,

on U t = (utl,j)j∈Gt
l
, l = 0, . . . , L. El pas de temps corresponent per a l’evolu-

ció dels patches en Gl ve donat per ∆tl = ∆tl−1/2 = ∆t0/2
l, el que implica

que la condició CFL equivalent es compleix automàticament per a a Gl,

però també que el pas temporal per a G0 correspon a 2l passos temporals

per a Gl. Les xarxes s’integren des de la més grossa fins a la més fina

d’una forma seqüencial, seguint l’ordre establert per la següent condició:

tl′ ≤ tl ≤ tl′ +∆tl, si l ≤ l′.
Sabem que en el nivell de resolució l, Gl està composta per un conjunt

de patches uniformes disjunts. Cadascun d’aquests patches en un ni-

vell de resolució determinat s’ha d’envoltar per un nombre suficientment

gran de cel·les fantasma (2 en el nostre codi), les quals s’han d’omplir

amb informació apropiada del flux, necessària per a l’aplicació de l’es-

quema numèric en cada patch.

Per a la integració des de temps t fins a t + ∆tl, les dades contin-

gudes a les cel·les fantasma s’obtenen mitjançant interpolació espacial

de (utl−1, Gl−1). D’altra banda, per a la integració des de temps t + ∆tl
a t + 2∆tl, la informació a la frontera s’obté aplicant primer interpola-

ció lineal en temps per a (utl−1, Gl−1), (u
t+∆tl−1

l−1 , Gl−1), i després l’operador

d’interpolació espacial usual.

Adaptació

Les xarxes corresponents a diversos nivells Gl, 1 ≤ l ≤ L han de ser

construı̈des tenint en compte les caracterı́stiques del fluid en el temps

concret en el que ens trobem. El principal objectiu en aquest procés

és assegurar que les discontinuı̈tats que estan inicialment cobertes per

una xarxa d’un determinat nivell de resolució, continuen cobertes en el

mateix nivell de resolució per a temps posteriors.

D’altra banda el procés de refinament ha de ser capaç de detectar

noves discontinuı̈tats generades només es formen. L’adaptació de cada

nivell de refinament es realitza descartant la xarxa actual i creant una

nova d’acord amb un criteri de refinament. El criteri de refinament es

basa en afegir un llindar als errors d’interpolació i als gradients discrets

(veure [8] per a una descripció amb més detall).

Una vegada es crea la nova xarxa, la solució en cadascuna de les

cel·les s’actualitza copiant dades ja existents o emprant interpolació es-
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pacial a partir de les dades d’una xarxa d’un nivell de resolució més gros

[10, 93].

Projecció i Interpolació

El traspàs d’informació entre les xarxes es duu a terme mitjançant dos

operadors: la interpolació, que s’utilitza per a generar noves dades en

un nivell de resolució donat (dades en les cel·les fantasma abans de la

integració i noves dades després del procés de refinament) i la projecció,

que s’utilitza per a obtenir consistència en les dades presents en distints

nivells de resolució.

Si treballem amb mitjanes en cel·la, podrı́em considerar que les dades

estan associades a punts xlj = (j + 1/2)hl. Com que (xl2j + xl2j+1)/2 = xl−1
j ,

aleshores ens trobem en el marc de multiresolució en mitjanes en cel·la
(veure [29, 50]). Dins d’aquest marc, per a cada funció u(x) de tipus

L1, la relació entre les seues mitjanes en cel·la en nivells de resolució

consecutius és (ul,2j +ul,2j+1)/2 = ul−1,j. Per tant, la definició canònica de

l’operador projecció en el marc de mitjanes en cel·la (1D) és la següent:

per a cada j tal que 2j ∈ Gl podem calcular

u
t+△tl−1

l−1,j ← [P (ut+2∆tl
l )]j =

ut+2∆tl
l,2j + ut+2∆tl

l,2j+1

2

D’altra banda si treballem amb valors puntuals, podrı́em considerar

les dades associades als punts xlj = jhl, per tant ens trobem en un marc

de valors puntuals [50], en el que xl2j = xl−1
j . Aixı́, en el marc de valors

puntuals en 1D, l’operador projecció s’obté només copiant:

u
t+△tl−1

l−1,j ← [P (ut+2△tl
l )]j = ut+2∆tl

l,2j ,

amb xl−1
j = xl2j.

Una vegada ja coneguts els blocs constitutius més importants de l’al-

gorisme AMR, el nostre objectiu és aconseguir que aquest preserve al-

menys una classe de solucions estacionàries. Basant-nos en la descrip-

ció que hem fet, sembla que siga necessari exigir que totes les compo-

nents de l’algorisme (l’esquema WBSC però també la interpolació i la

projecció) han de preservar els estats estacionaris seleccionats. Recor-

dem que en el pas adaptatiu es creen nous valors de la solució numèrica

interpolant a partir de nivells de resolució més baixos. Òbviament si

un estat estacionari, com és l’aigua en repòs, s’ha de mantenir, aquests

nous valors han de complir amb les condicions de l’aigua en repòs. A

més, també es produeixen nous valors numèrics mitjançant interpolació
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espacial i espacial-temporal a les cel·les fantasma, i aquests nous valors

produı̈ts també han de complir amb les condicions d’estat estacionari

que volem conservar.

A continuació examinarem les condicions necessàries que s’han d’im-

posar en els operadors de predicció i d’interpolació per a assegurar la

conservació de l’estat estacionari. Per simplicitat, realitzarem la descrip-

ció en 1D.

Suposem que l’esquema que estem emprant manté exactament al-

menys l’estat estacionari d’aigua en repòs, com l’esquema WBSC. Ales-

hores, per cada pas de temps de l’evolució temporal, tenim que, per a un

patch donat, si i, j ∈ Gl

htl,j + zl,j = htl,i + zl,i = C → ht+∆tl
l,j + zl,j = ht+∆tl

l,i + zl,i, (14)

on zl = (zl,j)j∈Gl
és una discretització apropiada del fons en el nivell de

resolució l-èssim.

Aleshores l’operador projecció respecta el well-balancing si i nomes si

[P (ht+2△tl
l )]j + zl−1,j = [P (ht+2△tl

l )]i + zl−1,i (15)

amb i, j ∈ Gl−1.

L’operador interpolació inclòs en l’algorisme AMR està construı̈t em-

prant tècniques interpolatòries polinòmiques a trossos. En general, sem-

pre s’utilitza en el context següent: siguen ul−1 les dades del nivell de re-

solució l− 1 conegudes, aleshores es construeix una funció polinòmica a

trossos per a generar noves dades mitjançant l’avaluació d’un polinomi,

especı́ficament construı̈t per a complir amb els requeriments del marc

multi-escala considerat, és a dir

I(ul−1, x
l
k) = pj(x

l
k)

on pj(x) és el tros polinòmic corresponent a la cel·la computacional j-
èssima, que és la cel·la del nivell l − 1 que conté a xlk.

Considerarem, per exemple, la interpolació espacial utilitzada per a

omplir les dades dels nous patches creats en el pas d’adaptació de l’es-

quema AMR, i suposem que hem utilitzat l’esquema WBSC que manté

exactament els estats estacionaris d’aigua en repòs per a determinar la

solució en temps t de manera que les dades disponibles en el nivell de

resolució l − 1 satisfan

hl−1,i + zl−1,i = hl−1,j + zl−1,j = C, ql−1,j = 0, i, j ∈ Gl−1,

i

hl,i + zl,i = hl,j + zl,j = C, ql,j = 0, i, j ∈ Gl.



xxxviii

Per a assegurar que les condicions d’aigua en repòs es satisfan per

a les dades generades mitjançant el procés d’interpolació, el que pro-

posem en aquest capı́tol és aplicar la tècnica interpolatòria a les dades

obtingudes de les variables d’equilibri per a l’estat estacionari d’aigua en

repòs,

V (x, [h, q]) = [h+ z(x), q].

Per tant, per a solucions d’aigua en repòs, Vl−1 = [hl−1 + zl−1, ql−1] =
[C, 0], emprant qualsevol tècnica interpolatòria polinòmica a trossos que

preserve constants tindrem que

I(Vl−1, x
l
j) = [C, 0].

Aleshores, la interpolació espacial s’implementa de la següent manera

ûtl,j = [htl,j, q
t
l,j] =

{
I(V t

l−1, x
l
j)− [zl,j , 0] si j ∈ Ĝt

l \Gt
l ,

utl,j si j ∈ Gt
l ,

on Ĝt
l és la xarxa adaptada resultant de Gt

l .

Per tant, per a preservar les solucions estacionàries d’aigua en repòs,

l’operador interpolació involucrat en la transferència de dades entre di-

versos nivells de resolució ha d’actuar sobre les variables d’equilibri per

a l’estat estacionari d’aigua en repòs: V = [h+ z, q].
Cal remarcar finalment que si els operadors interpolació i/o projecció

no compleixen amb aquests requeriments, l’algorisme AMR no preser-

varà solucions estacionàries en el mateix sentit que l’esquema WBSC.



Abstract

High-Resolution Shock-Capturing (HRSC) schemes constitute the state

of the art for computing accurate numerical approximations to the so-

lution of many hyperbolic systems of conservation laws, especially in

computational fluid dynamics.

A drawback of these schemes is that most of them use the spectral

decomposition of the Jacobian matrix of the system to compute the nu-

merical approximations by local projections to characteristic fields. The

numerical solutions obtained are often excellent in terms of resolution,

but the computational effort needed may be too high for some problems,

especially those for which the spectral information of the flux Jacobian

matrix is not available or is quite difficult to obtain.

In order to reduce the computational cost, we can use component-

wise finite-difference WENO schemes, based on Shu-Osher’s finite-difference

schemes, which compute the numerical fluxes at each cell interface by

upwind-biased reconstructions of split upwind fluxes, avoiding the use

of the characteristic information, but, unfortunately, they tend to yield

results that are too diffusive and oscillatory.

In an attempt to improve the results obtained when using a component-

wise finite-difference WENO scheme, in this work we analyze different

strategies as using different split upwind fluxes, the use of a high-order

reconstruction method with a control of the oscillations or the use of

adaptivity, in order to speed up computing times. We make extensive

testing to compare the performance of several schemes and support our

discussion.
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1
Introduction

1.1

Motivation

Systems of conservation laws naturally arise in many applications, in-

cluding aerodynamics, for example in modeling the flow of air around

a vehicle, meteorology and weather prediction, or modeling the flow of

the water over a channel or the sedimentation of small solid particles

dispersed in a viscous fluid.

As it is not generally possible to derive exact solutions to these sys-

tems of equations, hence there is a need to devise and study numerical

methods to compute approximated solutions. We wish to obtain the re-

sults from the simulations as fast as possible and with the highest possi-

ble accuracy, but the numerical simulation of physical problems modeled

by systems of conservation laws is a delicate issue, due to the presence

of discontinuities in the solution. These discontinuities are developed

even when the initial flow is smooth. If we compute discontinuous solu-
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tions to conservation laws using standard methods developed under the

assumption of smooth solutions, we typically obtain numerical results

that are not accurate enough.

So, we require the use of shock-capturing schemes, developed to pro-

duce sharp approximations to discontinuous solutions automatically,

without explicit tracking or using jump conditions, in order to ensure

a proper handling of discontinuities in numerical simulations.

1.1.1

High-resolution shock-capturing schemes

Low-order methods are faster and easier to implement, but provide less

accurate solutions than high-resolution methods, that compute more ac-

curate numerical approximations, are at least second-order accurate on

smooth solutions and yet give well-resolved non-oscillatory discontinu-

ities, but with a higher computational cost per computational cell.

High-Resolution Shock-Capturing (HRSC) schemes are the state of

the art for numerical simulations of physical problems. The aim of those

methods is to obtain high-order resolution, typically second, third or

even higher order, wherever the solution is smooth, while maintaining

sharp profiles of the discontinuities and avoiding the formation of spuri-

ous oscillations near them.

Since the drawback of a high-order reconstruction is the oscillations it

might create, several methods were suggested to combine the upwinding

framework, in which the discretization of the equations on a mesh is

performed according to the direction of propagation of information on

that mesh, with a mechanism to prevent the creation and evolution of

such spurious numerical oscillations. Therefore, most of these schemes

emerge from a combination of upwinding and high-order interpolation.

Robust and accurate HRSC schemes often have a high computational

cost, which is related to their incorporating upwinding through char-

acteristic information required at each cell boundary in the computa-

tional domain, high-order reconstruction procedures and, in the par-

ticular case of the shallow water equations, a sophisticated numerical

treatment of the bathymetry source term, as we will see in chapter 6.

In situations of practical interest, it is highly desirable to reduce this

high computational cost, while maintaining the accuracy of the numer-

ical solutions. Different ways to achieve it are for example, avoiding the

use of the characteristic information of the system, using a component-

wise approach of these schemes, or combining the scheme with an adap-
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tive technique.

To solve partial differential equations (PDEs) we replace the continu-

ous problem represented by the PDEs by a finite set of discrete values.

These are obtained by first discretizing the domain of the PDEs into a

finite set of points or volumes via a mesh or grid. Typically the compu-

tational domain is divided into cells, and the continuous equations are

replaced by a discrete approximation at each cell.

The discretization of the computational domain itself imposes a limit

in the flow features that can be resolved. The numerical solution within

a cell is often interpreted as an approximation to the average or point-

value of the true solution in that cell, which means that no method can

resolve phenomena whose scale is smaller than the mesh size.

The difference between numerical methods can be interpreted in terms

of their relative ability to get the information of the solution contained in

a single computational cell. High-order methods give better results than

low-order methods asymptotically because they are able to better resolve

the flow in a single cell, but to properly resolve small scale features it is

a necessary condition for the grid size to be smaller than the scale of the

phenomena to be solved.

To summarize, the optimal method would be a high-order method ap-

plied on a very fine computational grid, but the computational require-

ments of such a method would be, by far, out of reach with today’s tech-

nology in a reasonable time, both in storage and computational power

requirements.

1.1.2

Adaptive Mesh Refinement

Accurate approximations of the exact solution of the equations can be ob-

tained wherever the solution has enough smoothness using a relatively

coarse mesh and low-order methods. Most of the difficulties associated

with the numerical solution of hyperbolic conservation laws come from

the lack of smoothness of the solution in some regions of the computa-

tional domain. Fine grids are particularly helpful only in these parts of

the solution which have non-smooth structure or where the solution is

rapidly changing. This idea led researchers to develop a variety of tech-

niques in order to reduce the computational cost of the overall algorithm,

mainly based on the use of non-uniform grids. These algorithms use a

grid with cells of variable size, trying to use cells of smaller size in some

regions of interest, maintaining cells of bigger size in other regions where
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the solution is smooth. These grids are often difficult to manipulate in

more than one space dimension, because the solution at a cell depends

on the solution at some neighborhood around it. The use of cells of mixed

size makes difficult the computation of the solution at the next time step

because of the variable number of neighbors with non-uniform sizes and

relative locations.

Adaptive Mesh Refinement (AMR) [13, 14, 16, 87] adds a new feature:

temporal refinement. The goal of the AMR technique is to perform as

few cell updates as possible, instead of reducing the number of cells, ex-

ploiting that cells of different sizes can be advanced in time with different

time steps by splitting the cells into different grids with uniform grid size,

that are integrated according to their corresponding time steps.

The main idea of the algorithm that we use in this work, developed by

A. Baeza in [6], is to use a hierarchical set of Cartesian, uniform meshes

that occupy different resolution levels. At the coarsest level there is a

set of coarse mesh patches covering the whole domain. Mesh patches at

some resolution level are obtained by the sub-division of groups of im-

mediately coarser cells according to a suitable refinement criterion. By

repeating this sub-division procedure one can cover the regions of inter-

est with mesh patches so that the non-smooth structure of the solution

can be resolved with the desired resolution. The grids at different resolu-

tion levels coexist, and some mesh connectivity information is needed to

connect the solutions at different resolution levels. Provided the connec-

tivity information, each mesh patch can be viewed in isolation and can

be integrated independently. The presence of discontinuities at a small

part of the domain does not restrict the time step than can be used at

the coarse grid. Note that, on the other hand, there is some redundancy

in the solution, since grids that correspond to different resolutions can

refer to the same spatial location.

1.2

Previous work

Weighted essentially non-oscillatory (WENO) finite-difference schemes

have become one of the most popular methods to approximate the so-

lutions of hyperbolic equations, so, a lot of development has been done

on them. These schemes have as a basic ingredient: the WENO recon-

structions, i.e, “cell-average interpolators”, with a high order of accuracy

and a control of the oscillations.
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These schemes were developed by Liu, Osher and Chan in [78] as

an improvement of ENO (essentially non-oscillatory) schemes, originally

introduced and developed in [51, 53]. The only difference between these

schemes and the standard cell-average version of ENO is the definition

of the reconstruction procedure which produces a high-order accurate

global approximation to the solution from its given cell-averages.

In [59], Jiang and Shu improved the high-order WENO finite-difference

schemes by defining a new way of measuring the smoothness of the nu-

merical solution, which results in a fifth-order WENO scheme for five-

points stencils, instead of the fourth-order scheme obtained with the

original smoothness measurement by Liu et al [78].

There are a lot of works that analyze the main parts of WENO schemes,

as the definition of the weights, the smoothness indicators or the role of

the parameter ε in the loss of accuracy near discontinuities and extrema

(see, e. g, [3, 11, 19, 39, 43, 54, 74, 104]).

The other basic ingredient of WENO finite-difference schemes is the

use of the upwinding when computing the numerical flux function. The

sophisticated design of the numerical flux function, that incorporates up-

winding through characteristic information that needs to be computed at

each cell boundary in the computational domain, tends to be fairly ex-

pensive. To speed up computing times, different strategies have been

proposed as Adaptive Mesh Refinement (AMR) [6, 9, 10, 13, 86] or avoid-

ing the use of characteristic information when computing the numerical

fluxes [52, 61, 74, 83, 106].

In the case of the numerical simulation of shallow water flows it has

been studied that to accurately represent discontinuous behavior, known

to occur due to the non-linear hyperbolic nature of the shallow water

system, and, at the same time, numerically maintain stationary solutions

it is necessary the use of well-balanced shock-capturing (WBSC) schemes

[17, 34, 47, 48, 73, 80].

1.3

Scope of the work

In this work we develop some techniques to improve the accuracy of the

numerical results obtained with finite-difference WENO schemes, but

also the efficiency of those schemes. Some points of interest investigated

in this work are:
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• We derive new weights for the WENO scheme and get some con-

straints on some parameters present in their definition to guarantee

maximal order for sufficiently smooth solutions with an arbitrary

number of vanishing derivatives. Although the computational times

do not diminish with the use of these new weights, the numerical

solutions turn to be less oscillatory and slightly more accurate than

those obtained using Yamaleev and Carpenter’s weights [104, 105]

and also Jiang and Shu’s weights [59].

• We introduce an alternative flux-splitting to the usual Lax-Friedrichs

flux-splitting. The use of this flux-splitting leads to more accurate

numerical solutions, especially near discontinuities, where the use

of this flux-splitting reduces the dissipation of the numerical solu-

tions.

• We combine the block structured AMR technique developed in [9]

with a well-balanced scheme introduced in [34, 80] to develop a

combined AMR-WBSC scheme. We show that in order for the com-

bined AMR-WBSC scheme to maintain its well-balanced character

it is necessary to implement well-balanced interpolatory techniques

in the transfer operators involved in the multi-level structure. It

is shown that the new AMR-WBSC scheme is more efficient than

usual WBSC schemes and that it preserves the “water at rest” sta-

tionary solutions as the underlying WBSC in [34, 80] does.

1.4

Organization of the text

The text is organized as follows: In chapter 2 we recall the basic con-

cepts and ideas of fluid dynamics, focusing on the model equations

used in this work: polydisperse sedimentation models, Euler equations

and shallow water equations. In chapter 3 we introduce the basics of

numerical methods for fluid dynamics and describe Shu-Osher’s finite-

difference approach and the weighted essentially non-oscillatory (WENO)

reconstruction procedure.

In chapter 4 we review the WENO reconstruction techniques obtained

using the new weights proposed in [19, 54, 104] to define new WENO

methods with better resolution than the classical WENO method [59, 78].

We analyze the weights developed by Yamaleev and Carpenter in [104],

showing that WENO schemes with these weights achieve only first-order
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accuracy near discontinuities. In section 4.3 we propose new weights to

solve those accuracy problems and we get some constraints on the pa-

rameter ε to guarantee that the new WENO scheme has maximal order

for sufficiently smooth solutions with an arbitrary number of vanishing

derivatives. Furthermore, in section 4.4, we present numerical experi-

ments that support our theoretical results. This chapter is based on “F.

Aràndiga, M.C. Martı́ and P. Mulet”, Weights design for maximal order

WENO schemes, to appear in Journal of Scientific Computing.

In chapter 5 we perform a brief exposition on characteristic based and

component-wise finite-difference WENO schemes, introducing the HLL

flux-splitting and a global definition of the indicators of smoothness as

an instrument to alleviate the oscillations and the excessive diffusion ob-

tained by the numerical solutions computed with component-wise finite-

difference WENO schemes. In section 5.4 we perform some numerical

experiments on standard tests of polydisperse sedimentation to illus-

trate and compare the performance of several finite difference WENO

schemes. This chapter is based on “P. Mulet and M.C. Martı́”, Some

techniques for improving the resolution of finite difference component-wise

WENO schemes for polydisperse sedimentation models, Applied Numerical

Mathematics, 78: 1-13, 2014.

Chapter 6 is organized as follows: first of all we briefly recall the

underlying WBSC scheme used by the block structured AMR technique

and the main ingredients of this technique, identifying those which are

potentially responsible of the WB loss. Later on, we describe the neces-

sary corrections to obtain a WB-AMR code and we show several numer-

ical experiments that support our discussion. This chapter is based on

“R. Donat, M.C. Martı́, A. Martı́nez-Gavara and P. Mulet”, Well-Balanced

Adaptive Mesh Refinement for shallow water flows, J. Comput. Phys.,

254: 937-953, 2014.

Finally some conclusions and future research lines to be followed

from this work are pointed out in chapter 7.
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2
Fluid dynamics

equations

In this chapter we review some basic facts about hyperbolic conservation

laws, focusing on fluid dynamics equations. We will review the basic

properties of some model equations used in the numerical experiments

and their solutions, with the goal of getting information that has to be

taken into account when building numerical schemes for their solution.

There are many sources of information about hyperbolic conservation

laws and fluid mechanics as the book of Landau and Lifshitz [63] or the

work of Lax [67], or more recent works, such as the books of Batchelor

[12], Chorin and Marsden [28] and Dafermos [31].
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2.1

Hyperbolic conservation laws

Hyperbolic systems of conservation laws are time-dependent systems of

partial differential equations of special interest in fluid dynamics since

the most important models of fluid motion are represented by equations

of this type. In physics, a conservation law is obtained when postulating

that a particular measurable property, as mass, linear momentum or

energy, of an isolated physical system does not change as the system

evolves in time (see [45]).

In practice conservation laws are represented by systems of partial

differential equations, that are equivalent to the original integral formu-

lation for smooth solutions.

The numerical simulation of physical problems modeled by systems of

conservation laws is considerably delicate, due to the presence of discon-

tinuities in the solution. This is one of the main reasons why particular

numerical methods for hyperbolic conservation laws have to be devel-

oped. In the last years, an enormous amount of literature on numerical

methods especially designed for hyperbolic conservation laws has been

produced, see e.g. [2, 72, 98].

Conservation laws are systems of partial differential equations that

can be written as:

∂u

∂t
+

d∑

j=1

∂f j(u)

∂xj
= 0, x ∈ Rd, t ∈ R+, (2.1)

where u = (u1, . . . , um)T : Rd × R+ −→ Rm is the vector of conserved vari-

ables and f j : Rm −→ Rm are the flux functions, j = 1, . . . , d.

The particular case m = 1, often referred as scalar conservation law,

is one of the systems most used in this work due to their simplicity. In

1D, when d = 1, this conservation law can be written as

ut + f(u)x = 0, x ∈ R, t ∈ R+,

with the conserved variable u defined in u : R × R+ −→ R and the flux

function satisfying f : R −→ R.

Equation (2.1) is provided with initial conditions

u(x, 0) = u0(x), x ∈ Rd,
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in order to solve a Cauchy problem, i.e., to find the state of the system

after a certain time t = T , given the state at time t = 0. Boundary con-

ditions have to be also specified when considering a bounded domain in

Rd.

Conservation laws regularly come from an integral relationship rep-

resenting the conservation of a certain quantity, represented by u. Con-

servation means that the amount of mass contained in a given volume

can only change due to the mass flux crossing the interfaces of the given

volume. In one space dimension it is written as:

∫ xR

xL

(u(x, t2)− u(x, t1))dx =

∫ t2

t1

f(u(xL, t))dt −
∫ t2

t1

f(u(xR, t))dt, (2.2)

where the control volume in the x− t plane is V = [xL, xR]× [t1, t2] ⊆ R×R.

The integral form is more general than the differential form (2.1). In

fact, the integral form implies the differential form, but the reciprocal is

only true for smooth functions. In practice the solution u, in general, is

not smooth and only the integral form is valid in this case. As we will see

in section 2.2, a mixed formulation, where the differential form is used

wherever u is smooth, and additional conditions are given for the zones

where discontinuities appear, can be used.

System (2.1) can be written in quasi-linear form as:

∂u

∂t
+

d∑

j=1

(f j)′(u)
∂u

∂xj
= 0, x ∈ Rd, t ∈ R+.

The matrices

(f j)′(u) ≡ Aj

are called the Jacobian matrices of the system. System (2.1) is said to be

hyperbolic if any linear combination of the Jacobian matrices Aj

d∑

j=1

αjAj , (αj ∈ R)

has real eigenvalues and a complete set of eigenvectors. The system is

said to be strictly hyperbolic if all the eigenvalues of the Jacobian matrix

are distinct.

For any u the Jacobian matrices can be diagonalized as:

Aj = RjΛjR
−1
j ,
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where Λj is a diagonal matrix whose entries are the eigenvalues of the

Jacobian matrix Aj,

Λj = diag(λj
1, . . . , λ

j
m) =




λj
1 . . . 0
0 . . . 0
...

...
...

0 . . . λj
m


 , (2.3)

and Rj is the matrix whose column vectors are the corresponding right

eigenvectors of Aj,

Rj = [rj1|, · · · , |rjm] (2.4)

satisfying Ajr
j
i = λjr

j
i ∀i = 1, . . . ,m.

Hyperbolicity is a requirement for well-posedness. The solution of

simple hyperbolic linear problems (e.g. Riemann problems) is consti-

tuted by m simple waves moving independently (see section 2.3.2). For

the existence of such solutions it is necessary for the system to be hy-

perbolic (see [72] for an easy proof). For non-linear systems the above

argument can be applied at least locally, so hyperbolicity is also neces-

sary for non-linear systems. For a non-linear system in Rd the necessity

of hyperbolicity can be seen when considering an initial value problem

for the system written in quasi-linear form, and considering an initial

data that varies only in a direction given by α = (α1, . . . , αd) ∈ Rd:





∂u

∂t
+

d∑

j=1

Aj(u)
∂u

∂xj
= 0,

u(x, 0) = u0(α · x), α = (α1, . . . , αd) ∈ Rd.

(2.5)

2.2

Properties of hyperbolic conservation laws

In this section we study some important qualitative properties of hyper-

bolic systems of conservation laws as the development of discontinuous

solutions, even if smooth initial data is provided, the concept of weak

solution or the spectral structure of such systems, that helps in the de-

velopment of numerical methods to approximate its solution.
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2.2.1

Characteristics

In section 2.2.3 we will show how to exploit the possibility of diagonal-

izing the Jacobian matrix in a more general context. In this section we

only aim to show that hyperbolic equations can develop discontinuities

in their solutions by means of simple examples, and how these discon-

tinuities can be treated using the spectral information contained in the

Jacobian matrices.

Consider a Cauchy problem for a one-dimensional hyperbolic scalar

equation of the form
{

ut + f(u)x = 0, x ∈ R, t ∈ R+,
u(x, 0) = u0(x),

or in quasi-linear form:
{

ut + f ′(u)ux = 0, x ∈ R, t ∈ R+,
u(x, 0) = u0(x).

(2.6)

If x(t) is a parameterized curve in the x−t plane satisfying the ordinary

differential equation

x′(t) = f ′(u(x(t), t)), (2.7)

it is easy to see that for such a curve there holds

d

dt
u(x(t), t) = ut + uxx

′(t) = ut + f ′(u)ux = 0,

i.e., the solution u is constant along the curve x(t) as time varies and,

by (2.7), so is x′(t). Such a curve is called a characteristic curve of the

equation (2.6). The characteristic curves are hence given by x(t) = f ′(u)t+
C. For scalar equations, the characteristics are straight lines in the x− t
space, with slopes given by f ′(u). Roughly speaking, characteristics are

the curves in the x− t space that carry information.

The value of a smooth solution at a given point can be obtained from

the initial data by tracing back a characteristic that passes through the

point until time t = 0. But, since characteristic curves can intersect in

x − t space, at a point where two different characteristics intersect the

solution would take two different values, so there would appear a shock

wave, a jump discontinuity that propagates in time.

If no characteristics departing from t = 0 pass through a given point,

then the solution at that point cannot be defined by means of charac-

teristics and some information, that was not present in the initial data,
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has to be incorporated to build a suitable solution. In gas dynamics,

this situation corresponds to the formation of an expansion wave, where

the gas is being rarefied, and is therefore commonly called a rarefaction

wave.

For linear equations the slope of the characteristics is constant, and

thus they are parallel. In this case, the formation of a shock or rarefac-

tion wave is not possible. Contact discontinuities are typical of linear

equations with jump discontinuities in the initial data and are charac-

terized by the propagation of the data with constant speed.

The three kind of phenomena described above (shocks, rarefactions,

and contacts) represent, in a simplified form, the main typical features

of the solution of hyperbolic systems of conservation laws. In section

2.2.3 we will extend more formally all these basic and intuitive ideas to

hyperbolic non-linear systems.

2.2.2

Weak solutions and Rankine-Hugoniot conditions

A classical solution of (2.6) is a smooth function u : R × R+ −→ R that

satisfies the equation (2.6) point-wise. As pointed out in the previous

section, an essential feature of this problem is that there do not exist, in

general, classical solutions of (2.6) beyond some finite time interval, even

when the initial condition u0 is a very smooth function.

In order to be able to consider non-smooth solutions, we could relax

the classical concept of solution using the integral form of the equation,

more general than the differential form which is obtained from the in-

tegral form by means of smoothness assumptions that do not hold in

general, to obtain a weak formulation that involves fewer derivatives on

u, hence requiring less smoothness.

Definition 1. A function u(x, t) is a weak solution of (2.1) with given initial

data u(x, 0) if

∫

R+

∫

Rd


u(x, t)∂φ

∂t
(x, t) +

d∑

j=1

f j(u)
∂φ

∂xj


 dxdt = −

∫

Rd

φ(x, 0)u(x, 0)dx

is satisfied for all φ ∈ C1
0 (Rd × R+), where C1

0 (Rd × R+) is the space of

continuously differentiable functions with compact support in Rd × R+.

Weak solutions provide an adequate generalization of the concept of

classical solution for hyperbolic conservation laws. It is easy to see that
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strong solutions are also weak solutions, and continuously differentiable

weak solutions are strong solutions.

The Rankine-Hugoniot condition [58, 88], whose derivation can be

found for example in [28, 55, 56], follows from the definition of weak

solution. This condition characterizes weak solutions in terms of the

discontinuity movement, and gives information about the behavior of

the conserved variables across discontinuities.

For a general conservation law the Rankine-Hugoniot condition reads:

[f ] · n = s[u] · n, (2.8)

where f = (f1, . . . fd) is a matrix containing the fluxes, u is the solution,

s is the speed of propagation of the discontinuity and n is the vector

normal to the discontinuity. The notation [·] indicates the jump on a

variable across the discontinuity. For scalar problems this gives simply:

f(uL)− f(uL) = s(uL − uR)

where uL and uR are states at the left and the right side of the disconti-

nuity respectively.

At discontinuities, weak solutions have to satisfy the Rankine-Hugoniot

condition. It can be shown that a function u(x, t) is a weak solution of

(2.1) if and only if equation (2.1) holds wherever u is smooth at (x, t) and

the Rankine-Hugoniot condition is satisfied if u is not smooth in (x, t),
see e.g. [28].

However, weak solutions are often not unique (see e.g. [70]), and

there are entropy conditions proposed to single out a unique weak solu-

tion, known as entropy solution: Lax’s E-condition [65], defined in (2.11)

below, Oleinik’s generalization [85], Wendroff’s condition [101] or Liu’s

condition [77].

2.2.3

Characteristic structure

As we have seen in section 2.2.1, characteristics play an essential role in

the theory of first-order nonlinear PDE. The propagation of information

along characteristics is particular to hyperbolic systems and it is used as

a design mechanism for numerical methods and as a way to understand

the behavior of the solutions. In this section we extend the ideas pre-

sented in section 2.2.1 for scalar equations to hyperbolic systems. More

complete studies can be found in [31].
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For simplicity we will restrict the study to one-dimensional problems,

ut + f(u)x = 0. (2.9)

We know that if the system (2.9) is hyperbolic, we can decompose the

Jacobian matrix as f ′(u) = RΛR−1, with Λ and R as in (2.3) and (2.4)

respectively. Let us describe now admissible types of discontinuities,

depending on the properties of the characteristic structure of f ′(u), in

the flow solution and their properties.

For a constant-coefficient linear system of conservation laws the char-

acteristic information is sufficient to completely solve the system. How-

ever, non-linear systems cannot be solved by the same method but, with

an analogous analysis we can obtain qualitative information about the

solution structure that allows to tackle the numerical solution of the

system in a more convenient way.

Each column vector rp of R defines a vector field rp : Rm → Rm, u →
rp(u), called p-th characteristic field.

Definition 2. Given a hyperbolic system of conservation laws ut+f(u)x =
0, with {λp(u)}mp=1 the eigenvalues of the Jacobian matrix f ′(u), we say that

a curve x = x(t) is a characteristic curve of the system if it is a solution of

the ordinary differential equation:

dx

dt
= λp(u(x, t))

for some p, 1 ≤ p ≤ m.

Note that only strictly hyperbolic systems have m different character-

istic curves.

If we interpret characteristic curves in the x − t plane, we can see

that, for linear systems for which the eigenvalues {λp}mp=1 do not depend

on u, they are straight lines and the solution of the system is constant

along them. For non-linear systems characteristics are no longer straight

lines, nor the solution is constant along them but we can suppose that,

for small times, the behavior of the non-linear system can be imitated by

that of a linear system, coming from some suitable linearization.

We present next some types of characteristic fields of interest. The

first type are genuinely non-linear fields. A characteristic field defined by

an eigenvector rp(u) is called genuinely non-linear if

∇λp(u) · rp(u) 6= 0, ∀u,
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where ∇λp(u) = (∂λp/∂u1, . . . , ∂λp/∂um) is the gradient of λp(u). Note that

for linear systems the eigenvalues λp are constant with respect to u,

hence ∂λp/∂ui = 0, ∀i = 1, . . . ,m, so genuinely non-linear fields cannot

appear in linear systems and are particular of non-linear systems.

Another interesting type of characteristic fields are linearly degenerate

fields, for which

∇λp(u) · rp(u) = 0, ∀u. (2.10)

In linearly degenerate fields λ(u) remains therefore constant along inte-

gral curves of rp(u) as u varies, due to (2.10). These fields are a general-

ization of the characteristic fields of a constant-coefficient linear system,

where ∇λp = 0.
Roughly speaking, the behavior of the solution with respect to a lin-

early degenerate field is similar to that of a linear system, whereas a

genuinely non-linear field implies types of discontinuous solutions that

can never appear in a linear system. So, in certain cases, the presence

or not of an specific type of discontinuity can be determined from the

characteristic structure of the Jacobian matrix, more precisely, from the

particular types of characteristic fields.

Let us study here briefly the relationship between discontinuities and

characteristic fields.

A discontinuity defined by x = s(t), separating two states uL(t) and

uR(t), is said to be a p-shock, or a shock wave associated to the p-th
characteristic field if

λp(uL) ≥ s′(t) ≥ λp(uR). (2.11)

Condition (2.11) is called Lax’s E-condition [66]. It is a particular case of

the entropy conditions mentioned in Section 2.2.2.

A p-contact discontinuity is an special case of a p-shock wave, where

(2.11) holds with equalities, i.e.

λp(uL) = s′(t) = λp(uR). (2.12)

In gas dynamics, a contact discontinuity represents the separation of

two zones with different density, but in pressure equilibrium, whereas

shock waves represent a discontinuity arising from an abrupt pressure

change, resulting in a compression of the medium.

Rarefaction waves are a kind of waves that are typical of genuinely

non-linear fields. A rarefaction wave does not involve discontinuities in

the conserved variables and in gas dynamics represents the situation in

which the fluid is expanding and there is a zone where the fluid is being

rarefied. Rarefactions are characterized by the condition

λp(uL) < λp(uR).
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Analyzing the relationships between the different types of waves in-

troduced above and the different kinds of characteristic fields, we can see

that: in linearly degenerate fields corresponding to single eigenvalues, if

two states uL and uR lie in the same integral curve and compose a jump

discontinuity, then by (2.10) these two states propagate with the same

velocity, i. e. λp(uL) = λp(uR) holds, forcing (2.12) to hold. Therefore

discontinuities associated to these fields can only be contact discontinu-

ities. These are the only type of discontinuities that can appear in the

solution of linear systems. On the other hand genuinely non-linear fields

can host both shocks and rarefaction waves, depending on the left and

right states and the kind of monotonicity of the variation of λp(u).

2.3

Model equations

In this section we introduce the main model equations used in this mem-

oir and we recall some of their main features. The model equations that

we consider are: the advection equation, Burgers’ equation, linear hy-

perbolic systems and the Euler equations, in one and two dimensions,

the polydisperse sedimentation models and the shallow water equations,

as a model of non-linear systems of conservation laws. All these models

will be used for the validation of our results.

2.3.1

Scalar hyperbolic equations

First of all, we consider the advection equation and Burgers’ equation,

which represent two of the most studied examples of hyperbolic scalar

equations. Many of the difficulties encountered with systems of equa-

tions are already encountered in those scalar equations.

Advection equation

The advection equation is the simplest model of a conservation law. In

one space dimension it is written as:

ut + aux = 0, (2.13)

where a ∈ R is a constant.
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The advection equation governs the motion of a (conserved) quantity,

with density u, in a fluid as it is advected with constant velocity a. Ad-

vection with space or time-dependent velocities will not be considered

here.

If an initial condition u(x, 0) = u0(x) is given, the solution of the corre-

sponding Cauchy problem is u(x, t) = u0(x− at). This solution represents

the transport of a given perturbation described by u0 through the flow

at constant speed a, without changing shape, moving towards the left if

a < 0 and to the right if a > 0. Note that even if u0 is not continuous

u(x, t) = u0(x − at) is still a weak solution of (2.13), and such a situation

is a simple case of a contact discontinuity propagating with constant

velocity.

For the advection equation, the characteristic curves are curves in

the x− t plane satisfying the ordinary differential equation

{
x′(t) = a
x(0) = x0.

which solutions are the straight lines x − at = x0. If we differentiate

u(x, t) along one of these curves we confirm that u is constant along these

characteristics, as we expected.

Inviscid Burgers’ equation

In [25], Burgers studied the equation

ut +

(
u2

2

)

x

= ǫuxx

which includes a viscous term ǫuxx, with ǫ > 0. This is one of the simplest

models that include the non-linear and viscous effects of fluid dynamics.

The inviscid Burgers’ equation is defined by dropping this viscous

term ǫuxx:

ut +

(
u2

2

)

x

= 0,

and it can be written in quasi-linear form as

ut + uux = 0.

This equation is similar to the advection equation but with the particu-

larity that the speed of propagation, given by f ′(u) = u, is no longer con-

stant, but depends on the solution itself. Despite of this resemblance,
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the behavior of the solution of this equation is completely different from

the advection equation. Here u is not simply advected as time evolves,

but can also be compressed or rarefied. Shocks and rarefaction waves

typically appear in the solution of this equation.

2.3.2

Linear hyperbolic systems

Linear systems represent a generalization to several variables of the scalar

advection equation (2.13). In this section we will study the main prop-

erties of linear hyperbolic systems, focusing on how we can compute the

solution of a linear hyperbolic system through a change of variable using

our knowledge of the solution of the scalar advection equation.

A linear hyperbolic system is a particular case of the PDE (2.1) where

the flux function f(u) depends linearly on u, hence it can be written as

f(u) = Au, where A is an Rm × Rm constant-coefficient matrix. Then, for

this case, the equation can be written as

ut +Aux = 0. (2.14)

As we have said in section 2.1, if the system is hyperbolic, the matrix

A has m real eigenvalues λ1, . . . , λm and m linearly independent (right)

eigenvectors r1, . . . , rm. This is equivalent to saying that the matrix A
is diagonalizable with real eigenvalues, i.e., it can be expressed as A =
RΛR−1, where Λ = diag(λ1, . . . , λm), with λp ∈ R and R = [r1, . . . , rm], rp ∈
Rm.

Using all these information, we can introduce a change of basis given

by the matrix R. The variables u, when expressed in the basis given by

R, are called the characteristic variables, as stated in the next definition.

Definition 3. Given a hyperbolic linear system, with matrix A = RΛR−1,

the characteristic variables v = [v1, . . . , vm]T of the system are defined by

v = R−1u.

If we apply this change of basis to the equation (2.14), we can rewrite

it as:
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R−1(ut + Aux) = 0

R−1ut + R−1Aux = 0

R−1ut + R−1(RΛR−1)ux = 0

R−1ut + ΛR−1ux = 0

(R−1u)t + Λ(R−1u)x = 0

vt + Λvx = 0 (2.15)




v1
v2
...

vm



t

+




λ1 0 . . . . . . 0
0 λ2 0 . . . 0
...

. . .
...

...
. . . 0

0 . . . 0 0 λm



·




v1
v2
...

vm



x

= 0 (2.16)

The equation (2.15) is called the characteristic form of the linear sys-

tem (2.14).

This change of basis produces a new linear system that is diagonal,

and can hence be solved as m (decoupled) advection equations, whose

solution is known, see section 2.3.1. Each row in (2.16) reads as

∂vp
∂t

+ λp
∂vp
∂x

= 0,

which is nothing but an advection equation with constant velocity λp.

Given initial data u(x, 0) = u0(x) for (2.14), the solution v of (2.15) is given

by

vp(x, t) = (v0)p(x− λpt),

where (v0)p is the p-th component of v0 = R−1u0. By applying the inverse

change of basis to the solution of the diagonal system one obtains the

general solution of the linear system (2.14) as:

u = Rw,

or in expanded form:

u(x, t) =

m∑

p=1

vp(x− λpt, 0)rp.
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2.3.3

Non-linear hyperbolic systems

Non-linear hyperbolic systems of conservation laws are defined as

ut + f(u)x = 0,

where u : R × R −→ Rm and f : Rm −→ Rm and that can be written in

quasi-linear form as

ut +A(u)ux = 0,

where f ′(u) = A(u) is the m × m Jacobian matrix of the system whose

entries are not constant with respect to u.

Within this section we introduce the model equations that will be used

as test problems and reference models throughout the text: the one and

two dimensional Euler equations, the polydisperse sedimentation models

and the shallow water equations.

Euler equations

The Euler equations are a system of non-linear hyperbolic conservation

laws that govern the dynamics of a compressible fluids, such as gases

or liquids at high pressures, for which the effects of body forces, viscous

stresses and heat flux are neglected.

The two-dimensional Euler equations can be written as:

ut + f(u)x + g(u)y = 0, (2.17)

with

u =




ρ
ρvx

ρvy

E


 , f(u) =




ρvx

ρ(vx)2 + p
ρvxvy

vx(E + p)


 , g(u) =




ρvy

ρvyvx

ρ(vy)2 + p
vy(E + p)


 ,

where ρ denotes the mass density, vx and vy are the Cartesian com-

ponents of the velocity vector v, ρvx and ρvy are the Cartesian compo-

nents of the momentum, E is energy and p is pressure. Physically, these

conserved variables result naturally from the application of the funda-

mental laws of conservation of mass, linear momentum and energy in

the fluid as it evolves, and represent a simplified model for the Navier-

Stokes equations, which are the most complete model used up to now

for the simulation of fluid dynamics.
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Discarding the first two terms in the left hand side of (2.17) and can-

celing out the third row of u and f(u), we obtain the one dimensional

version of the Euler equations:




ρ
ρvx

E



t

+




ρvx

ρ(vx)2 + p
vx(E + p)



x

= 0. (2.18)

The Euler equations are insufficient to completely describe the phys-

ical processes involved. There are more unknowns than equations and

thus, to close the system, we need to specify an additional relation join-

ing all these variables. This relation is called Equation Of State (EOS),

and depends on the type of fluid under consideration.

Total energy can be decomposed into kinetic energy plus internal en-

ergy as follows:

E =
1

2
ρ||v||22 + ρe, (2.19)

where e denotes the specific internal energy. Kinetic energy is due to

the advection of the flow, whereas internal energy is the result of other

forms of energy. We assume that internal energy is a known function of

pressure and density, e = e(p, ρ), expressed as

e =
p

ρ(γ − 1)
, (2.20)

which is the equation of state for polytropic ideal gases that we are going

to use in this work. The constant γ > 1 depends on the particular gas

under consideration.

Substituting (2.20) into (2.19) gives

E =
1

2
ρ||v||22 +

p

γ − 1
. (2.21)

The one-dimensional version of the Euler equations has a diagonaliz-

able Jacobian matrix that can be written as:

f ′(u) =




0 1 0
1
2(γ − 3)(vx)2 (3− γ)vx γ − 1

1

2
(γ − 2)(vx)3 − c2vx

γ − 1

3− 2γ

2
(vx)2 +

c2

γ − 1
γvx


 ,

with eigenvalues

λ1 = vx − c λ2 = vx, λ3 = vx + c,
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and computable matrices of right and left eigenvectors. The parameter c
is called the sound velocity of the gas and, for ideal polytropic gases, can

be written as

c =

√
γp

ρ

In 2D, the eigenstructure of the Jacobian of the fluxes can be similarly

obtained in closed form.

Polydisperse sedimentation models

One dimensional multispecies kinematic flow models have received a

great deal of attention in recent years because, even in the simplest 1D

setting, they are of use in engineering applications such as traffic flow

modeling or the controlled sedimentation of polydisperse suspensions of

small particles.

Polydisperse suspensions are mixtures composed of small solid par-

ticles belonging to M different species, that vary in size or density, and

which are dispersed in a viscous fluid. We will only consider particles

of the same density, so each species can be seen as a size class. If Di

denotes the diameter of the i-th species, we assume the species to be

ordered so that D1 > D2 > · · · > DM . We use φi to denote the volume frac-

tion of particle species i and vi for the phase velocity of species i. Then

the continuity equations of the M species are

∂tφi + ∂x(φivi) = 0, i = 1, . . . ,M,

where t is time and x is depth. The velocities v1, . . . , vM are assumed to be

given functions of the vector Φ := Φ(x, t) := (φ1(x, t), . . . , φM (x, t))T of local

concentrations (kinematic assumption). This yields non-linear, strongly

coupled systems of conservation laws of the type

Φt + f(Φ)x = 0, fi(Φ) := φivi(Φ), i = 1, . . . ,M. (2.22)

We seek solutions Φ = Φ(x, t) such that φi ≥ 0 ∀i = 1, . . . ,M, and φ :=∑M
i=1 φi ≤ φmax, where the parameter φmax ∈ (0, 1] stands for a given

maximum solids concentration. For the typical application of batch

settling of a suspension in a column of height L, (2.22) is defined for

(x, t) ∈ (0, L) × (0, T ) and zero-flux boundary conditions

f |x=0 = f |x=L = 0

are prescribed.



2. Fluid dynamics equations 25

Several choices of vi (“models”) or equivalently, of the fluxes fi, as

functions of Φ, and depending on the vector of normalized particle sizes

d := (d1, . . . , dM )T , where di := Di/D1 for i = 1, . . . ,M , have been pro-

posed in the literature. One of the most commonly used velocity models

for polydisperse sedimentation is the Masliyah-Lockett-Bassoon (MLB)

model [79, 81]. This model arises from the continuity and linear mo-

mentum balance equations for the solid species and the fluid through

suitable constitutive assumptions and simplifications (cf. [18]). In this

model, for particles that have the same density, the velocities v1(Φ), . . . ,
vM (Φ) are given by

vi(Φ) =
(̺s − ̺f)gD

2
1

18µf
(1− φ)V (φ)

(
d2i − (φ1d

2
1 + · · ·+ φMd2M )

)
,

where ̺s and ̺f are the solid and fluid densities, g is the acceleration of

gravity, µf is the fluid viscosity and V is an empirical hindered settling

function assumed to satisfy

V (0) = 1, V (φmax) = 0, V ′(φ) ≤ 0 for φ ∈ [0, φmax].

A standard choice for V (φ) is given by Richardson-Zaki’s hindered set-

tling function [90]:

V (φ) =

{
(1− φ)nRZ−2 0 < φ < φmax

0 otherwise,

with nRZ > 2.
It can be seen in [18, 23, 36] that the MLB model is strictly hyperbolic

whenever φi > 0, ∀i = 1, . . . ,M, and φ < φmax. In contrast to the devel-

opment carried out in [18, 107], the analysis developed in [23, 36] does

not involve the direct computation of the eigenpolynomial of the Jacobian

matrix, but it obtains quite directly a rational function that characterizes

the eigenvalues of the Jacobian matrix. The key structural property of

this model, which led to these results, consists in that the fluxes fi do

not depend on each of the M components of Φ in an individual way, but

only on a small number m << M (m = 2 for the MLB model) of scalar

functions of Φ. Therefore, the Jacobian f ′(Φ) of the flux vector of (2.22)

is a rank-m perturbation of a diagonal matrix and the eigenvalues of a

rank-m perturbation of a diagonal matrix can be characterized as the

roots of the so-called secular equation [1]. The analysis is based on a

rational function, R(λ), that satisfies

det(f ′(Φ)− λI) = R(λ)
N∏

i=1

(vi − λ)
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for a fixed vector Φ, under appropriate circumstances. For (2.22), R(λ) is

of the form

R(λ) =

N∑

i=1

γi
vi − λ

,

and its coefficients γi, i = 1, . . . ,M , can be calculated with acceptable

effort for moderate values of m. The key result is that if these coefficients

are of the same sign, then the existence of M different eigenvalues of

f ′(Φ) is ensured.

The analysis of [23] also provides sharp bounds of the eigenvalues of

f ′(Φ). The eigenvalues λi = λi(Φ) of the Jacobian f ′(Φ) can be localized

since they interlace with v1, . . . , vM as

M1(Φ) < λM (Φ) < vM (Φ) < λM−1(Φ) < vM−1(Φ) < · · · < λ1(Φ) < v1(Φ)
(2.23)

where the lower bound is given by

M1(Φ) = v1(0)
(
d2MV (Φ) +

(
(1− φ)V ′(φ)− 2V (φ)

)
(d21φ1 + · · ·+ d2MφM )

)
.

The right and left eigenvectors of f ′(Φ), denoted by x = (x1, . . . , xM )T and

y = (y1, . . . , yM )T , respectively, that correspond to a root λ of the secular

equation are

xi =
1

vi − λ

[
bi,1

M∑

k=1

ak,1bk,2
vk − λ

− bi,2

(
1 +

M∑

k=1

ak,1bk,1
vk − λ

)]
, i = 1, . . . ,M

yi =
1

vi − λ

[
ai,1

M∑

k=1

bk,1ak,2
vk − λ

− ai,2

(
1 +

M∑

k=1

bk,1ak,1
vk − λ

)]
, i = 1, . . . ,M

where

bi,1 = φid
2
i V

′(φ), bi,2 = −φi,
ai,1 = 1, ai,2 = V ′(φ)

(
d21φ1 + . . . + d2MφM

)
+ d2iV (φ).

The interlacing property is important for numerical schemes, since the

actual eigenvalues may be computed conveniently by a root finder. The

bounds for the eigenvalues, i.e, the characteristic speeds of the system,

are also important for numerical purposes as we will see later on in this

thesis.

This information eventually permits us to numerically calculate the

eigenvalues and corresponding eigenvectors of f ′(Φ) with acceptable ef-

fort. The full spectral decomposition of f ′(Φ), which can be numerically
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computed at each cell interface thanks to the analysis in [23], can be

used in order to obtain characteristic-based WENO schemes, for which,

the WENO reconstruction procedure is applied to the local characteristic

variables and fluxes at each cell-interface.

Shallow water equations

The shallow water equations model the propagation of disturbances in

water and other incompressible fluids. The underlying assumption is

that the depth of the fluid is small compared to the wave length of the

disturbance. The equations are derived from the principles of conserva-

tion of mass and conservation of momentum. The independent variables

are time, t, and two space coordinates, x and y. The dependent variables

are the fluid height or depth, h, and the two-dimensional fluid velocity

field, v = (vx, vy). With the proper choice of units, the conserved quan-

tities are mass, which is proportional to h, and momentum, which is

proportional to q = (qx, qy) := (hvx, hvy). The force acting on the fluid is

gravity, represented by the gravitational constant g.

Figure 2.1: Flow with free surface under gravity, for a fixed section y.

The two-dimensional shallow water equations represent mass and

momentum conservation in two-dimensional domains. They are derived

by depth averaging the Navier-Stokes equations, neglecting diffusion of
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momentum by viscous and turbulent effects and not including wind ef-

fects or Coriolis force terms. Ignoring also friction losses, the source term

is only due to the geometry of the bottom topography or bathymetry, and

the resulting system of equations becomes

ut + f1(u)x + f2(u)y = s(x, u)

or using coordinates,




h
qx

qy


+




qx

(qx)2

h + gh2

2
qxqy

h




x

+




qy
qxqy

h
(qy)2

h + gh2

2




y

=




0
−ghzx
−ghzy


 , (2.24)

where z denotes the bottom topography. This is a two-dimensional hy-

perbolic system of conservation laws with source terms. The correspond-

ing eigenvalues (characteristic velocities) of the Jacobian matrices of the

flux components f1 and f2 are:

λ
(1)
1 = vx − c λ

(1)
2 = vx λ

(1)
3 = vx + c

λ
(2)
1 = vy − c λ

(2)
2 = vy λ

(2)
3 = vy + c

where c =
√
gh is the sound velocity.
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Numerical methods for

fluid dynamics

After recalling the main features of hyperbolic systems of conservation

laws in chapter 2, pointing out that such equations are in general im-

possible to solve analytically, except in some trivial cases, like the linear

advection equation presented in section 2.3.1, in this section we are go-

ing to revise the basic concepts and results related to numerical methods

for hyperbolic systems of conservation laws, paying special attention to

those that will be employed later on in this thesis.

Numerical methods aim to obtain a discrete approximation of the

exact solution, which is often sufficient for practical applications. For

simplicity, we will center our description in one-dimensional scalar equa-

tions, with some notions on the application to one-dimensional systems.

We refer the reader to the basic textbooks of LeVeque [70, 72] and Toro

[98] for a more detailed description of numerical solution of hyperbolic

PDEs.
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3.1

Discretization

The first step to numerically solve partial differential equations is to re-

place the continuous problem, represented by the PDE’s, by a discrete

representation of it. First of all we discretize the x− t plane by choosing

a mesh (or grid) composed by a finite set of points or volumes defined be-

low. Then the PDE is discretized on this grid, and the resulting discrete,

finite-dimensional problem, is solved. We use a point-value discretization

if we regard these discrete values as point values defined at grid points.

On the other hand, we use a cell-average discretization if those discrete

values represent the average value over cells.

Consider a scalar Cauchy problem in one space dimension,

{
ut + f(u)x = 0, x ∈ R, , t ∈ R+,
u(x, 0) = u0(x),

(3.1)

where u, f : R −→ R.

To define a mesh, we consider a discrete subset of points (nodes)

{xj}j∈Z, xj ∈ R ∀j and assume that the grid is uniform, i.e., xj − xj−1 =
∆x > 0, ∀j ∈ Z. This constant is called mesh size and we abbreviate it as

h = ∆x. From the points {xj} we define the cells cj by:

cj =

[
xj−1 + xj

2
,
xj + xj+1

2

]
=
[
xj− 1

2
, xj+ 1

2

]
.

It is clear that each cell is a subinterval whose center is xj. For conve-

nience, we will use discrete grids indexed as:

xj =

(
j +

1

2

)
∆x.

We will use non-integer indexes to indicate points that do not correspond

to nodes. For example the point xj+ 1
2

represents the point (j + 1)∆x.

A grid is defined, depending on the context, to be either the set of cells

{cj}j∈Z or the set of nodes {xj}j∈Z.

We discretize the time variable by defining points in time {tn}n∈N, with

tn < tn+1, ∀n ∈ N. If tn+1 − tn is constant with respect to n, we denote it

by ∆t and call it the time increment.

We will denote by Un = {Un
j }j∈Z the computed approximation to the

exact solution u(xj , t
n) of (3.1).
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In real problems, the domain of definition of the equations is re-

stricted to a bounded subset of R and a finite time interval, so the grid

has to be restricted to a finite number of nodes or cells. If we consider

the interval I = [0, 1] and a fixed time T > 0, then we can take pos-

itive numbers N and M and define a set of nodes {xj}0≤j<N given by

xj = (j + 1/2)∆x, with ∆x = 1
N . The points in time {tn}0≤n<M can be

defined by tn = n∆t, with ∆t = 1
M .

We can extend all this explanation to the two-dimensional case. Let

us consider a scalar conservation law in 2D with the form:

{
ut(x, y, t) + f(u(x, y, t))x + g(u(x, y, t))y = 0, (x, y) ∈ R× R, t×R+,
u(x, y, 0) = u0(x),

and two sets of ordered points, {xi}i∈Z and {yj}j∈Z, satisfying xi < xi+1

for all i ∈ Z and yj < yj+1 for all j ∈ Z. Moreover, we assume as before

that ∆x = xi+1 − xi and ∆y = yj+1 − yj are constant with respect to i
and j respectively. Using the same convention as in the 1D case for the

indices, we have that

xi =

(
i+

1

2

)
∆x, yj =

(
j +

1

2

)
∆y.

The Cartesian product of {xi} and {yj} defines nodes in 2D by

(xi, yj) =

((
i+

1

2

)
∆x,

(
j +

1

2

)
∆y

)
,

and we can define cells ci,j by

ci,j =
[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
,

so that each node (xi, yj) is the center of the cell ci,j.

In practice, the discretization is performed on a bounded subset of

R×R (a rectangle) and, as in the 1D case, we can take positive numbers

Nx and Ny and define

xi =
(
i+ 1

2

)
∆x, 0 ≤ i < Nx,

yj =
(
j + 1

2

)
∆y, 0 ≤ j < Ny,

with ∆x =
1

Nx
and ∆y =

1

Ny
.
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3.2

Convergence

From the initial data u0(x), we can define data U0, which is the vector

of approximations U0
j at time t = 0. Using a time-marching procedure

we can construct the approximation U1 from U0, then U2 from U1 (and

possibly also U0) and so on. In general, we can construct Un+1 from

Un, Un−1, . . . , Un−r with r ∈ N, r ≤ n. In this section, we will restrict

to one-step explicit time-marching numerical methods, which construct

Un+1 only from Un and that can be expressed as

Un+1 = H∆t(U
n).

Note that the value Un+1
j at a particular point j typically depends on a

small number of values from the vector Un (stencil).

Convergence is a condition on the numerical solution that states

that the numerical solution Un
j should approach the exact solution unj =

u(xj , t
n) = u

((
j + 1

2

)
∆x, n∆t

)
of the differential equation at any point xj

and time tn when ∆x and ∆t tend to zero, i.e when the mesh is refined,

xj and tn being fixed. To measure how well the approximations obtained

using a numerical method approximate the exact solution of the PDE, we

use norms.

We say that a method is convergent in some particular norm || · || if

lim
∆t→0,∆x→0

||Un
j − unj || = 0

for any fixed value of xj and tn.

Note that the concept of convergence is strongly dependent on the

norm. It could happen that some numerical methods converge in one

norm but not in another. Often used norms are the discrete Lp norms

||u||p =


∆x

∑

j∈Z
|uj |p




1
p

,

and the discrete L∞ norm

||u||∞ = max
j∈Z
|uj|.

In this work we will use L1, L2 and L∞ norms.
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It is generally hard to show that a given numerical method is con-

vergent in a given norm using the definition of convergence. The way in

which one usually studies convergence is through the concepts of con-

sistency and stability, making use of the Lax equivalence theorem.

Consistency studies how a numerical scheme behaves locally, i.e. in

a single time step. To prove consistency we are going to define first the

local truncation error, which is the error produced by a single application

of the numerical method.

Given a one-step numerical method Un+1 = H∆t(U
n) we can define the

local truncation error as:

Ln
∆t =

1

∆t

(
un+1 −H∆t(u

n)
)
.

where un = (u(xj , tn))j are the values of the exact solution of the PDE on

the grid at t = tn.

We say that the order of the method is p if

L∆t(·, t) = O(∆tp).

If p ≥ 1 then the method is said to be consistent.

While consistency is a condition on the numerical scheme, stability

states a condition on the numerical solution. The stability condition

can be formulated by the requirement that any component of the initial

solution u(x, 0) should not be amplified without bound, at fixed values of

tn, in particular for n→∞, with n∆t fixed.

A necessary condition for stability is the Courant-Friedrichs-Lewy

(CFL) condition, stated by Courant, Friedrichs and Lewy in [30]. In

their work, the authors recognized that a necessary stability condition

for any numerical method is that the domain of dependence of the finite-

difference method should include the domain of dependence of the PDE,

at least in the limit as the grid is refined.

The numerical domain of dependence for a particular method, Dk(x, t),
is the set of points x for which the initial data u0(x) could possibly affect

the numerical solution at (x, t), while the domain of dependence of the

point (x, t), D(x, t), is similarly defined as the set of points corresponding

to time t = 0 that completely determine the solution of problem (3.1) at

(x, t). So, the CFL condition simply states that the numerical method

has to be able to take into account the information coming from any

point that is actually influencing the solution at the next time step and

that it must be used in such a way that the information has a chance to

propagate at the correct physical speeds.
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The concepts of stability, consistency and convergence are related by

the Equivalence Theorem of Lax [68], a proof of which can be found in

[91].

Theorem 1. For a consistent one step linear scheme for a Cauchy problem

of a well-posed linear PDE, stability is a necessary and sufficient condition

to convergence.

More general results relating consistency, stability and convergence

can be found in [68] as well.

3.3

Numerical methods

3.3.1

Elementary methods

There are a huge variety of time-marching difference methods that can

be used to compute approximations to the solution of conservation laws.

Most of them are based on the substitution of the partial derivatives

present in equation (2.1) by suitable finite-difference approximations.

This is probably the simplest method to apply, but it requires the mesh

to be set up in a structured way.

Let us consider, for simplicity, the scalar advection equation in one

space dimension

ut + aux = 0, x ∈ R, , t ∈ R+, a ∈ R. (3.2)

For example, if we substitute the time derivative ut in (3.2) by a first-

order forward-in-time approximation and the spatial derivative ux by a

second-order central approximation, with the notation introduced in sec-

tion 3.1, we obtain an explicit method that can be written in the form:

Un+1
j − Un

j

∆t
+ a

Un
j+1 − Un

j−1

2∆x
= 0,

or

Un+1
j = Un

j − a
∆t

2∆x

(
Un
j+1 − Un

j−1

)

This is an explicit scheme, since the discretized equation contains only

one unknown at level n+ 1.
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As the time derivative has been substituted by a first-order approx-

imation and the space derivative has been approximated by a second-

order finite-difference approximation, consequently, the method is glob-

ally first order accurate.

First-order methods give poor accuracy in smooth regions of the flow

and suffer from diffusion: shocks tend to be heavily smeared and poorly

resolved on the mesh.

Using different finite-difference approximations we can devise a un-

limited number of possible finite-difference schemes. These schemes will

have different properties, in terms of accuracy, stability or error prop-

erties. For instance, the classical methods of Lax and Wendroff [64],

based on Taylor series expansion, or Beam and Warming [100], which is

a one-sided version of Lax-Wendroff scheme, are second (or higher) order

accurate elementary methods in both time and space. In general, these

methods are not efficient when the solution is not smooth. They typ-

ically show spurious oscillations near the discontinuities which do not

decrease as the grid size does. In most cases, it is due to the lack of

numerical dissipation in the solution.

3.3.2

Conservative methods

If some singularity is present in the flow solution u(x, t), then finite-

differences can not approximate accurately the partial derivatives present

in the PDEs. The methods described in section 3.3.1 are based on the

assumption that finite-differences can approximate accurately the par-

tial derivatives but this is only true in the points where the flow solution

u(x, t) is smooth with respect to (x, t).
When we deal with discontinuous solutions, as mentioned in section

2.2, there may be more than one weak solution and the method may not

converge to the right one or it may converge to a function that is not a

weak solution of the PDE. Some examples of these facts can be found

e.g. in [70]. There exists a simple requirement that we can impose on

the numerical methods to guarantee that they do not converge to non-

solutions. Conservative methods ensure that convergence can only be

achieved to weak solutions.

Definition 4. A numerical method is said to be conservative if it can be

written in the form

Un+1
j = Un

j −
∆t

∆x

(
f̂(Un

j−p+1, . . . , U
n
j+q)− f̂(Un

j−p, . . . , U
n
j+q−1)

)
, (3.3)
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where the function f̂ : Rp+q+1 → R is called the numerical flux function and

p, q ∈ N, p, q ≥ 0.

The purpose of conservative methods is to reproduce at a discrete

level the conservation of the physical variables in the continuous equa-

tions. In fact (3.3) can be seen as a discrete version of the integral form

(2.2) of the PDE.

An essential requirement on the numerical flux is the consistency

condition:

Definition 5. We say that the numerical flux function of a conservative

numerical method is consistent with the conservation law if the numerical

flux function f̂ reduces to the exact flux f for the case of constant flow, i.e,

f̂(U, . . . , U) = f(U).

The consistency condition is necessary to ensure that a discrete form

of conservation, analogous to the conservation law, is provided by con-

servative methods.

In general, some smoothness is required in the way in which f̂ ap-

proaches a certain value f(U), then we suppose that the flux function

is locally Lipschitz continuous in each variable, i.e., if x is a point in

a normed space M then there exists a constant K and a neighborhood

N(x) of x such that ||f(y)− f(x)|| ≤ K||y − x||, ∀y ∈ N(x),
The main result about conservative methods is the Lax-Wendroff the-

orem, that proves that if they converge to some function u(x, t) as the grid

is refined, then this function will be a weak solution of the conservation

law:

Theorem 2. (Lax-Wendroff, [69]) Consider a sequence of grids indexed by

k = 1, 2, . . . with grid sizes (∆xk,∆tk), satisfying

lim
k→+∞

∆xk = 0,

lim
k→+∞

∆tk = 0.

Let {Uk(x, t)} denote the numerical solution obtained by a conservative nu-

merical method, consistent with (2.1), on the k-th grid. If Uk(x, t) converges

to a function u(x, t) as k →∞, then u is a weak solution of the conservation

law.

The original definition of convergence stated in the theorem can be

found in the work of Lax and Wendroff [69], but it has been relaxed and

extended to more general grids, see e.g. [38, 60].
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3.3.3

High-resolution conservative methods

The term “high-resolution” is applied to methods whose objective is to

achieve high-order resolution, typically second or even higher order in

smooth parts of the solution, while giving well-resolved non-oscillatory

approximations near discontinuities.

Godunov’s method [44] is a first order accurate method based on the

computation of Cauchy problems located in each cell interface, assuming

that the solution is constant at each side of the interface and taking the

cell-average values of the numerical solution corresponding to the cells

at the left and right of the interface as initial data.

In Godunov’s method, for a given time step tn we find, for each j, the

exact solution at time tn+1 of (3.1) with initial data given by the Riemann

problem

u(x, tn) =

{
Un
j if xj− 1

2
< x ≤ xj+ 1

2

Un
j+1 if xj+ 1

2
< x ≤ xj+ 3

2

Solutions of Riemann problems corresponding to adjacent cell inter-

faces will not interact for short enough time, due to the finite speed of

propagation of information along characteristics. Once these Riemann

problems are solved, the solution is averaged on each cell to raise a new

Riemann problem for the next time step.

The idea of solving Riemann problems forward in time is at the basis

of modern high-resolution shock-capturing methods. A common practice

to construct numerical methods with order of accuracy higher than one

and suitable for non-linear systems is using piecewise constant initial

data obtained by a high-order reconstruction at the cell interfaces (see

[99]).

From the numerical solution at a given time step one reconstructs, by

a certain interpolation or approximation procedure, two values UL
j+ 1

2

and

UR
j+ 1

2

at each interface. Then the Riemann problem with initial data

u(x, tn) =

{
UL
j+ 1

2

if xj− 1
2
< x ≤ xj+ 1

2
,

UR
j+ 1

2

if xj+ 1
2
< x ≤ xj+ 3

2
,

is solved.

To achieve higher order some techniques have been developed as the

essentially non-oscillatory (ENO) methods, introduced by Harten, En-

gquist, Osher and Chakravarthy in [51] and the weighted essentially
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non-oscillatory (WENO) methods [59, 78], explained in more detail in

section 3.4.2.

3.3.4

Semi-discrete formulation

The methods previously presented have all been fully discrete methods,

discretized in both space and time. Let us now consider the discretiza-

tion process in two stages: we first discretize only in space, leaving the

problem continuous in time. This leads to a system of ordinary differ-

ential equations in time, called “semi-discrete equations”, that can be

written as
dUj(t)

dt
+D(U(t))j = 0, ∀j, (3.4)

where D(U(t))j is some approximation of the spatial derivative f(u)x(xj, t).
This approach of reducing a PDE to a system of ODEs is known as the

“method of lines”.

If we compute the spatial approximation using a conservative recon-

struction of the numerical fluxes, we can rewrite the ODE system (3.4)

as:

dUj(t)

dt
+

f̂j+ 1
2
− f̂j− 1

2

∆x
= 0, ∀j, (3.5)

where f̂j+ 1
2
= f̂(Uj−p+1(t), . . . , Uj+q(t)).

After that, we solve the system of ordinary differential equations (3.5)

using an ODE solver. The ODE solver that is used in the computations

performed in this thesis is a TVD Runge-Kutta method developed by Shu

and Osher in [94]. This solver belongs to a class of ODE solvers especially

designed to solve this kind of ODE systems. The general formulation of

these methods is as follows:





U (0) = Un,

U (i) =
i∑

k=0

(
αikU

(k) − βik∆tD(U (k))
)
, 1 ≤ i ≤ r̄,

Un+1 = U (r̄),

where r̄ depends on the order of accuracy of the particular Runge-Kutta

scheme and αik, βik are coefficients that also depend on the method (for



3. Numerical methods for fluid dynamics 39

more details see [94, 95]). Specifically, in this work we use the third-

order version: 



U (1) = Un −∆tD(Un),

U (2) =
3

4
Un +

1

4
U (1) − 1

4
∆tD(U (1)),

Un+1 =
1

3
Un +

2

3
U (2) − 2

3
∆tD(U (2)).

(3.6)

If we use this TVD Runge-Kutta method as a ODE solver together with

spatial operators that lead to ODE’s of the form (3.5), then we obtain

conservative schemes that can be expressed in the conservative form

(3.3). For example, if we expand (3.6) for each node xj, supposing that

D(Un)j =
f̂
j+1

2
(Un)−f̂

j− 1
2
(Un)

∆x , then we can write

Un+1
j = Un

j −
∆t

∆x

[(
1

6
f̂j+ 1

2
(Un) +

1

6
f̂j+ 1

2
(U (1)) +

2

3
f̂j+ 1

2
(U (2))

)

−
(
1

6
f̂j− 1

2
(Un) +

1

6
f̂j− 1

2
(U (1)) +

2

3
f̂j− 1

2
(U (2))

)]
,

(3.7)

Since U (1) and U (2) are obtained from Un we can write (3.7) in terms

of a numerical flux function

f̂RK3(Un) =
1

6
f̂(Un) +

1

6
f̂(U (1)) +

2

3
f̂(U (2)),

which is consistent, as

Un+1
j = Un

j −∆t
(
f̂RK3
j+ 1

2
(Un)− f̂RK3

j− 1
2
(Un)

)
.

3.4

Finite-difference WENO schemes

3.4.1

Shu-Osher’s finite-difference conservative schemes

In order to obtain high-order finite-difference conservative schemes to

solve hyperbolic systems of conservation laws, we use Shu and Osher’s

technique [95]. The basic idea that makes possible Shu-Osher’s ap-

proach is stated in the following lemma:
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Lemma 1. If the functions G, f satisfy

G(x) =
1

∆x

∫ x+∆x
2

x−∆x
2

f(ξ)dξ,

then

G(x)x =
f
(
x+ ∆x

2

)
− f

(
x− ∆x

2

)

∆x
.

Applying this result to G(x) = F (u(x, t)), for a fixed t, the conservative

property of the spatial discretization is obtained by implicitly defining the

function f as:

F (u(x, t)) =
1

h

∫ x+h
2

x−h
2

f(ξ, t)dξ,

so that the spatial derivative in

ut + F (u)x = 0

(we warn the reader for this slight change of notation) is exactly obtained

by a conservative finite-difference formula at the cell boundaries,

ut(x, t) +
1

h

(
f

(
x+

h

2
, t

)
− f

(
x− h

2
, t

))
= 0.

Dropping the dependence on t for the presentation of the spatial semi-

discretization, we notice that highly accurate approximations to f
(
x± h

2

)

are computed using known grid values of F (which are cell-averages of f )

and a reconstruction procedure R. If f̂ is an approximation to f obtained

from point values of F in an stencil around xj+ 1
2

such that f(xj+ 1
2
) =

f̂(xj+ 1
2
) + d(xj+ 1

2
)hr + O(hr+1), for a Lipschitz function d, then we can

discretize

(F (u))x(xj+ 1
2
) =

f̂(xj+ 1
2
)− f̂(xj− 1

2
)

△x
+O(hr).

We denote as R(fj−s1 , . . . , fj+s2, x) the generic local reconstruction pro-

cedure for f(x) from its cell-averages {f̄j−s1 , . . . , f̄j+s2} defined on the in-

terval [xj−s1− 1
2
, xj+s2+

1
2
], where s1 and s2 are non-negative integers. The

most important properties that has to satisfy this local reconstruction

procedure are:

• Preservation of the cell-averages:

1

∆x

∫ x
k+1

2

x
k− 1

2

R(f̄j−s1, . . . , f̄j+s2, x)dx = f̄k, k = j − s1, . . . , j + s2.
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• Accuracy:

R(f̄j−s1 , . . . , f̄j+s2 , x) = f(x) +O(∆xr), x ∈ [xj−s1− 1
2
, xj+s2+

1
2
].

wherever f is smooth, for some r > 0.

• The total variation of R(f̄j−s1 , . . . , f̄j+s2, x) is essentially bounded by

the total variation of f(x), i.e., for some p > 0:

TV (R(f̄j−s1 , . . . , f̄j+s2, x)) ≤ C · TV (f(x)) +O(∆xp).

where the total variation of a differentiable function h(x) in an in-

terval I is defined as

TV (ϕ) =

∫

I
|ϕ′(x)|dx.

When computing reconstructions, another essential point is the use

of an upwinding framework, in which the discretization of the equations

on a mesh is performed according to the direction of propagation of in-

formation on that mesh, i.e we have into account the side from which

information (wind) flows, given by the signs of the eigenvalues of the Ja-

cobian matrix. For instance, for scalar equations, the direction of prop-

agation of the solution is locally given by the sign of f ′(u) and we use

the value of f ′(u) to perform reconstructions biased towards the correct

direction: if f ′(u) > 0, the upwind side is the left side whereas if f ′(u) < 0,
the upwind side is the right side.

The approximations f̂n
j+ 1

2

are obtained by high-order upwind-biased

reconstructionsR±(f̄j−s1 , . . . , f̄j+s2 , x), i.e., cell-average interpolators whose

stencils have more points at the upwind side of the points where they are

evaluated. In this work, we obtain f̂ by the WENO reconstruction method

which will be explained in the next section.

Summarizing, the computation of the numerical fluxes with Shu-

Osher’s procedure is performed as follows:
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Algorithm 1. (Shu-Osher’s algorithm for scalar equations)

Define βj+ 1
2
= maxu∈[Uj ,Uj+1] |f ′(u)|

if f ′(u) 6= 0 ∀u ∈ [Uj , Uj+1]
if sign(f ′(u)) > 0

f̂j+ 1
2
= R+(fj−s1, . . . , fj+s2 , xj+ 1

2
)

else

f̂j+ 1
2
= R−(fj−s1+1, . . . , fj+s2+1, xj+ 1

2
)

end
else

f̂+
j+ 1

2

= R+(f+
j−s1

, . . . , f+
j+s2

, xj+ 1
2
)

f̂−
j+ 1

2

= R−(f−
j−s1+1, . . . , f

−
j+s2+1, xj+ 1

2
)

f̂j+ 1
2
= f̂+

j+ 1
2

+ f̂−
j+ 1

2

.

end

where the functions f± define a flux-splitting that satisfies f+ + f− = f
and the eigenvalues λk satisfy ±λk ((f±(u))′) ≥ 0 (f± are upwind fluxes)

for u ∈ [uj , uj+1]. In their work, Shu and Osher [94] use a local Lax-

Friedrichs (LLF) flux-splitting version of the ENO algorithms.

The generalization of this algorithm to systems of equations uses local

characteristic decompositions of the flux Jacobians and projections of

the state variables and fluxes onto characteristic fields.

3.4.2

WENO reconstruction method

Essentially Non Oscillatory (ENO) schemes were introduced by Harten

et al. in [51]. For these schemes, a given cell interface reconstruction

is obtained by selecting one of the different polynomial reconstructions

of a given degree that can be constructed using stencils that contain

one of the cells that define the given interface. The chosen stencil was

selected according to the smoothness of the numerical solution on it, in

such a way that the obtained reconstructions are r-th order accurate

when considering r stencils (consecutive indexes) of length r containing

the target cell, with the condition that at least one of the stencils does

not contain a singularity. During the stencil selection procedure the ENO

method considers r possible stencils, which altogether contain 2r−1 cells.

The selection procedure is computationally expensive, since it involves a
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lot of conditional branches. ENO schemes are potentially inefficient since

a large amount of information is simply discarded.

Weighted Essentially Non Oscillatory (WENO) reconstructions, intro-

duced by Liu, Osher and Chan in [78], are based on the idea of increasing

the order of accuracy of the method (at least in smooth regions) by con-

sidering a reconstruction given by a convex combination of the different

polynomial reconstruction candidates of the ENO method, with spatially

varying weights designed to increase the accuracy of the individual re-

constructions corresponding to the different stencils. In [78], the r-th
order of accuracy of the ENO method obtained with stencils of r points

was raised to r + 1 in smooth regions, whilst retaining the r-th order

near discontinuities. The weight assigned to the polynomial reconstruc-

tion associated to a given stencil depends on an smoothness indicator,

for which they used a suitably weighted sum of squares of (undivided)

differences of the data corresponding to that stencil.

A new smoothness indicator was proposed by Jiang and Shu in [59]

to achieve fifth-order reconstructions from third-order ENO reconstruc-

tions, i.e. an order of 2r − 1 when r = 3. These smoothness indicators

are used by Balsara and Shu in [11], resp. by Gerolymos et al. [43],

to obtain (2r − 1)-th order accurate reconstructions from the basic r-th
order ENO reconstructions by using symbolic calculus for each 4 ≤ r ≤ 6
and 7 ≤ r ≤ 9 respectively.

We describe next the ENO and WENO reconstruction schemes used

in this work.

In the ENO algorithm [51], if we assume a left bias, an approximation

to the value f
(
h
2

)
is computed using the values f̄l at stencils of r nodes

(r ≥ 2) that contain the node xj. There are r stencils of r nodes that

contain xj, given by

Sk = {xj+k−r+1, . . . , xj+k}, k = 0, . . . , r − 1.

From them, r different polynomial reconstructions of degree at most r−1,
denoted by prk(x), can be constructed, each of them satisfying

prk(xj+ 1
2
) = f(xj+ 1

2
) +O(hr)

if f is smooth in the corresponding stencil.

Among all the possible reconstructions the ENO algorithm selects

one, using divided differences as smoothness indicators, choosing the

stencil which produces the smallest divided differences, in an attempt

for producing less oscillatory interpolants, see [4, 51] for further details.

When using stencils of r nodes, ENO reconstructions provide an order
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of accuracy of r, except in those subintervals containing singularities.

The polynomial reconstruction prk(xj+ 1
2
) would be the approximation of

the numerical flux computed by the ENO algorithm if the stencil Sk had

been chosen in the stencil selection procedure.

Weighted ENO reconstructions appeared in [78] as an improvement

upon ENO reconstructions. In [78], Liu et al. state that there is no need

of selecting just one of the possible stencils, and that a combination of

them can give better results in smooth regions. In the most favorable

case, where f is smooth in all stencils, a (2r − 1)-th order reconstruction

p2r−1
r−1 (xj+ 1

2
) = f(xj+ 1

2
) +O

(
h2r−1

)

can be computed using the stencil Sj+r−1 = {xj−r+1, . . . , xj+r−1}, instead

of the r-th order reconstruction provided by the ENO algorithm, regard-

less of the stencil selected.

If we consider the r candidate stencils of the ENO algorithm, Sk and

the (r − 1)-th degree polynomial reconstructions prk(x), defined on each

stencil Sk, satisfying prk(xj+ 1
2
) = f(xj+ 1

2
) + O(hr) , then a (left-biased)

WENO reconstruction of f is given by the convex combination:

q(xj+ 1
2
) =

r−1∑

k=0

wkp
r
k(xj+ 1

2
), (3.8)

where:

wk ≥ 0, k = 0, . . . , r − 1,

r−1∑

k=0

wk = 1.

and the corresponding (left-biased) reconstruction evaluation operator is

given by:

R(f̄j−r+1, . . . , f̄j+r−1) =

r−1∑

k=0

ωj,kp
r
j,k(xj+ 1

2
).

The weights should be selected with the goal of achieving the maximal

order of accuracy 2r−1 wherever f is smooth, and r−th order, as the ENO

algorithm, elsewhere.

As in the original WENO approach [78], we first note that for r ≥ 2,
coefficients Cr

k, called optimal weights, can be computed such that:

p2r−1
r−1 (xj+ 1

2
) =

r−1∑

k=0

Cr
kp

r
k(xj+ 1

2
),
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where,

Cr
k ≥ 0 ∀k,

r−1∑

k=0

Cr
k = 1.

In [3], Aràndiga et al. give different explicit formulae for the polynomial

reconstructions and the optimal weights.

Notice that to accomplish the requirements on the non-linear weights

wk one can define them satisfying the condition:

wk = Ck +O(hm), k = 0, . . . , r, (3.9)

with m ≤ r − 1. Then, there holds (see [3], [78]) that

f(xj+ 1
2
)− q(xj+ 1

2
) = O(hr+m), (3.10)

and, if m = r − 1 in (3.9), then the approximation (3.10) has maximal

order 2r − 1.
Another requirement for the weights is that the ones corresponding

to polynomials constructed using stencils where the function has a sin-

gularity should be very small, so that the WENO reconstruction does

not take those polynomials into account and, as required, yields an ap-

proximation of an order not worse than that of the ENO interpolators.

Besides, the weights should be smooth functions of the cell-averages of

the reconstructed function and efficiently computable.

Weights satisfying these conditions are defined in [78] as follows:

wk =
αk∑r−1
i=0 αi

, αk =
Cr
k

(ε+ Ik)p
, k = 0, . . . , r − 1, (3.11)

where p ∈ N, Cr
k are the optimal weights, Ik = Ik(h) is an smoothness

indicator of the function f on the stencil Sk and ε is an small positive

number, possibly dependent on h, introduced to avoid null denomina-

tors, but, as we will see later on in this thesis, it has a strong influence

in the overall performance of the approximations at critical points and

at discontinuities. The weights thus defined satisfy
∑

k ωk = 1 indepen-

dently of the smoothness indicator choice.

In the original WENO paper [78] the authors used an smoothness

indicator based on the undivided differences of the function f . With

this indicator, an increase of one order of accuracy was obtained upon

the ENO reconstruction. Jiang and Shu defined in [59] the following

smoothness indicator:

Ik =

r−1∑

l=1

∫ x
j+1

2

x
j− 1

2

h2l−1(p
(l)
k (x))2dx, (3.12)
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with which they obtained WENO schemes with optimal order 2r − 1 for

r = 2, 3. The term h2l−1 was introduced to remove h-dependent factors in

the derivatives of the polynomial reconstructions pk(x).
We denote by JS-WENO the WENO schemes obtained with weights

(3.11) and Jiang and Shu’s smoothness indicators (3.12).

In [3], the authors give an explicit formulae for the optimal weights

Cr
k:

Cr
k =

(r−1
k

)(r
k

)
(2r−1

r

) ,

and for the polynomials prk(x):

prk(xj+ 1
2
) =

r∑

l=1

f̄j+k−r+la
r
k,l,

ark,l =





−
(
r

k

)−1 k∑

s=k+l−r

(−1)s
s

(
r

k − s

)
, k + l − r > 0,

−
(
r

k

)−1 r−k∑

s=r−k−l+1

(−1)s
s

(
r

k + s

)
, k + l − r ≤ 0,

for k = 0, . . . , r − 1.
The optimal weights for r = 2, 3, 4, 5 obtained using this explicit for-

mulae, are displayed in Table 3.1.

r k = 0 k = 1 k = 2 k = 3 k = 4

2 1/3 2/3

3 1/10 6/10 3/10

4 1/35 12/35 18/35 4/35

5 1/126 20/126 60/126 40/126 5/126

Table 3.1: Optimal weights for r = 2, 3, 4, 5.

In [3], Aràndiga et al. prove that the order of accuracy of the scheme

is 2r−1 when using stencils of length 2r−1 contained in smooth regions,

regardless of neighboring extrema, whereas this order is at least r when

at least one of the substencils involved in the weighted average does not

cross a discontinuity. They also show that for achieving the maximal

order 2r − 1 at any smooth region with the original weights proposed

by Liu, Osher and Chan in [78] (given by (3.11)), the choice of ε being

proportional to h2 is optimal.



4
Weights design for

maximal-order WENO
schemes

4.1

Motivation

As mentioned before, weighted essentially non-oscillatory (WENO) tech-

nique, proposed by Liu, Osher and Chan in [78] and improved by Jiang

and Shu in [59], uses a convex combination of the different polynomial

reconstruction candidates of the ENO method, instead of selecting one of

them. A weight, which depends on the smoothness of the function on the

corresponding stencil, is assigned to each polynomial reconstruction, so

that polynomials corresponding to singularity-crossing stencils should

have a negligible contribution to the convex combination. Jiang and Shu
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[59] presented an smoothness measurement of the reconstructed func-

tion which is more efficient than that proposed by Liu et al. Using the

indicator of smoothness introduced by Liu et al. in [78], an r−th order

ENO scheme can be converted into an (r + 1)−th order WENO scheme,

whereas Jiang and Shu’s smoothness indicators provide the maximal

order, 2r − 1, which can be attained with 2r − 1 data.

But, as has been shown in [19, 54, 104], the classical weight func-

tions for the fifth-order WENO scheme fail to provide the maximal order

of convergence near smooth extrema, where the first derivative of the so-

lution becomes zero. Recently, new approaches have been proposed to

solve this problem. In [54] a simple modification of the original scheme is

found to be sufficient to give maximal-order convergence even near criti-

cal points. In [19] new weights are built for the fifth-order WENO scheme,

providing new WENO schemes with less dissipation and higher resolu-

tion than classical WENO schemes. In [104], Yamaleev and Carpenter

propose new weights to provide faster error convergence than those pre-

sented in [19], and find some constraints on the weights parameters

to guarantee that the WENO scheme has maximal order for sufficiently

smooth solutions with an arbitrary number of vanishing derivatives.

In this chapter we analyze the structure of the new weights proposed

in [104] and we prove that near discontinuities the scheme drops to first

order, instead of achieving the same order as the classical ENO scheme

does. We also study the role of the parameter ε appearing in the def-

inition of the weights to avoid null denominators and its relationship

with the loss of accuracy near discontinuities and extrema of the recon-

structed functions and we also find some constraints on this parameter

in order to guarantee maximal order of accuracy in smooth regions, even

at extrema. Finally, we solve these accuracy problems by deriving new

weights from those developed in [104] and getting some constraints on

the parameter ε to guarantee that the new WENO scheme has maximal

order for sufficient smooth solutions with an arbitrary number of vanish-

ing derivatives. Furthermore, we present some numerical experiments

that support our theoretical results.

4.2

Maximal-order WENO schemes

In [54], it was detected that the classical fifth-order WENO scheme (ob-

tained with r = 3), called JS-WENO5, achieves only third order of accu-
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racy at critical points of smooth solutions. In [3] Aràndiga et al. prove

that if some requirements on the smoothness indicators are stated, then

we obtain the desired accuracy features for the WENO interpolation.

They prove that when the function to be reconstructed is smooth at all

the stencils (we say that a function is smooth at an stencil when it is so

at some interval containing it) and some requirements on the smooth-

ness indicators are met, then the JS-WENO scheme has maximal order

2r − 1, regardless of neighboring extrema. But, if the function is smooth

at one, but not all, of the stencils, then order r is achieved, as ENO

reconstructions have.

In order to solve this loss of accuracy at extrema, Henrick et al. define

a new WENO method called mapped WENO in [54]. In their work, instead

of formulating a new indicator of smoothness to obtain fifth-order accu-

rate schemes near critical points, they define new weights using Jiang

and Shu’s weights, denoted as w
(JS)
k , as an initial guess which is mapped

to a more accurate value by using the functions

gk(w) =
w(wk + w2

k − 3wkw + w2)

w2
k + w(1− 2wk)

,

where wk ∈ (0, 1) for k = 0, 1, 2. Then, a more accurate approximation of

the weights is given by αk = gk(w
(JS)
k ). By using these mapped weights,

they obtain that the method is fifth-order accurate even near critical

points where f ′ = 0.
Another attempt to get maximal order of accuracy for the WENO5

scheme can be found in [19], where Borges et al. devise a new smooth-

ness indicator of higher order than Jiang and Shu’s smoothness indi-

cator and build new non-oscillatory weights, providing a new WENO

scheme for r = 3, called WENO-Z, with less dissipation and higher res-

olution than the classical WENO5. The novel idea is to use the whole

5-points stencil to devise a new smoothness indicator of higher order

than the classical smoothness indicators Ik. They define τ5 as the ab-

solute difference between I0 and I2 at xi, namely τ5 = |I0 − I2|, and then

define the new smoothness indicators IZk as

IZk =
Ik + ε

Ik + τ5 + ε
, k = 0, 1, 2.

and the new WENO weights wZ
k as

wZ
k =

αZ
k∑2

l=0 α
Z
l

, αZ
k = Ck

(
1 +

τ5
Ik + ε

)
, k = 0, 1, 2.
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All IZk are smaller than unity and they are all close to 1 at smooth parts of

the solution. In fact, they are the normalization of the classical smooth-

ness indicators Ik by the higher order information contained in τ5.
Although these new weight functions recover the fifth order of conver-

gence of the WENO scheme near smooth extrema, the problem persists

if the first- and second-order derivatives vanish simultaneously. An at-

tempt to resolve this loss of accuracy is presented by Borges et al. in

[19], where the authors propose to modify the definition of αZ
k as

αZ
k = Ck

(
1 +

(
τ5

Ik + ε

)2
)
, k = 0, 1, 2.

This proposed modification provides only a partial remedy for the prob-

lem; the same degeneration in the order of convergence occurs if at least

the first three derivatives become equal to zero.

To fully resolve this problem, Yamaleev and Carpenter proposed in

[104, 105] new weights providing faster weight convergence and better

resolution near strong discontinuities. They presented these weights in

an Energy Stable context that is out of the scope of the present work.

The schemes with these weights will be called YC-WENO henceforth. The

proposed weights are:

wk =
αk∑r−1
i=0 αi

, (4.1)

where

αk = Ck

(
1 +

τ2r−1

Ik + ε

)
, k = 0, . . . , r − 1, (4.2)

Ik is the classical Jiang and Shu’s smoothness indicator (3.12), ε is a

small positive parameter that can depend on h and the quantity τ2r−1 is

defined by:

τ2r−1 = (V 〈xj−r+1, . . . , xj+r−1〉)2 , (4.3)

where V 〈xj−r+1, . . . , xj+r−1〉 is the undivided difference defined on the en-

tire (2r− 1)-point stencil. For example, the expressions of τ5 and τ9, used

in WENO5 and WENO9 schemes respectively, are given by

τ5 = (fj−2 − 4fj−1 + 6fj − 4fj+1 + fj+2)
2 (4.4)

τ9 = (fj−4 − 8fj−3 + 28fj−2 − 56fj−1 + 70fj − 56fj+1 + 28fj+2 − 8fj+3 + fj+4)
2

Note that these weights are similar to those proposed by Borges et

al. in [19] for the fifth-order WENO scheme. The key difference between
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Yamaleev and Carpenter’s weights and those developed in [19] is the

choice of the quantity τ in (4.2).

The fifth WENO scheme with the weights given by Eqs. (4.1)-(4.4) are

design-order accurate for smooth solutions, including points at which

the first and second-order derivatives of the solution vanish simultane-

ously. However, if all derivatives up to the third order are equal to zero

and no constraint is imposed on the parameter ε, then the fifth-order

WENO scheme locally become only third-order accurate.

Yamaleev and Carpenter show that WENO schemes with these weights

and parameter ε satisfying:

ε ≥ O
(
h3r−4

)
, (4.5)

have maximal order regardless of the number of vanishing derivatives

of the solution. As the parameter ε is user-defined, this condition can

always be satisfied.

We are going to study now the order of accuracy of the reconstruc-

tions obtained using the WENO scheme with Yamaleev and Carpenter’s

weights near discontinuities when the function f is not smooth but it is

smooth at least in one of the stencils Sk, k = 0, . . . , r − 1. We know that:

• if f is not smooth at the stencil Sk then the smoothness indicator of

f in Sk satisfies Ik 9 0, when h→ 0, i.e, Ik = O(1),

• whereas if f is smooth at the stencil Sk, then Ik = O(h2).
Since the nodes in the undivided difference that defines τ2r−1 cross a

discontinuity, then τ2r−1 = O(1). Denoting K = {k/f not smooth at Sk},
we obtain that:

αk = Ck

(
1 +

τ2r−1

Ik + ε

)
= Ck

(
1 +

O(1)
O(1) + ε

)
= O(1), if k ∈ K,

whereas

αk = Ck

(
1 +

τ2r−1

Ik + ε

)
= Ck

(
1 +

O(1)
O(h2) + ε

)
= O(h−2), if k /∈ K.

This yields

r−1∑

i=0

αi =
∑

k∈K
αi +

∑

k/∈K
αi = O(1) +O(h−2) = O(h−2),

and

wk =
αk∑r−1
i=0 αi

=
O(1)
O(h−2)

= O(h2) if k ∈ K,
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whereas

wk =
αk∑r−1
i=0 αi

=
O(h−2)

O(h−2)
= O(1) if k /∈ K.

Using that
∑r−1

k=0wk = 1, we then deduce:

f(xj+ 1
2
)− q(xj+ 1

2
) = f(xj+ 1

2
)−

r−1∑

k=0

wkp
r
k(xj+ 1

2
)

=
r−1∑

k=0

wk

(
f(xj+ 1

2
)− prk(xj+ 1

2
)
)

=
∑

k/∈K
wk

(
f(xj+ 1

2
)− prk(xj+ 1

2
)
)
+
∑

k∈K
wk

(
f(xj+ 1

2
)− prk(xj+ 1

2
)
)

=
∑

k/∈K
O(1)O(hr) +

∑

k∈K
O(h2)O(1) = O(h2)

As we can see the order of accuracy of the reconstructions obtained

using the YC-WENO scheme drops to 2 wherever one stencil, but not

all of them, can avoid a discontinuity. This order of accuracy is worse

than the order of accuracy r of the corresponding ENO scheme when

r > 2. Furthermore, it is expected that the order of approximation to the

derivative will drop to 1 when performing finite differences of the recon-

structions, as can be seen in the following experiment, in which we test

the performance of the YC-WENO5 reconstruction near discontinuities.

This experiment appears in [3], where the authors test the performance

of JS-WENO5 reconstructions.

Test 4.1.

We consider the discontinuous function f(x) = x3+cos(x)+H(x) where

H(x) = 0 if x ≤ 0.5, H(x) = 1 if x > 0.5, and uniform grids on [−1, 1] with

N = 25 · 2i, i = 0, . . . , 7. We compute the errors of the approximations of

f ′ (xj±1) provided by the YC-WENO5 reconstructions with r = 3 at the

points xj±1, where xj−1 is at the left part of the discontinuity and xj+1 is

at the right part of the discontinuity, 0.5 ∈ [xj , xj+1 ).
In this experiment we use ε = 10−100 ≈ 0 and ε = h2 and respec-

tively display in Tables 4.1 and 4.2 the errors ej±1 for the correspond-

ing h. We also display the experimentally observed convergent rates

crj±1(h) = log2
(
ej±1(h)/ej±1(h/2)

)
to reveal that the convergence rate of

the YC-WENO5 reconstructions drops to 1 when using divided differ-

ences, as we expected, while the convergence rate of the JS-WENO5

reconstructions is 2, as can be seen in [3]. The numerical results in
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Section 4.4 will show that this order loss may be reflected as oscillations

near some discontinuities.

h ej−1 crj−1 ej+1 crj+1

8.000e-02 -2.9427e-03 -1.6680e-03

4.000e-02 2.9280e-03 7.2249e-03 -1.0310e-03 6.9407e-01

2.000e-02 3.1714e-03 -1.1520e-01 -6.8904e-04 5.8138e-01

1.000e-02 1.7614e-03 8.4840e-01 -3.3584e-04 1.0368e+00

5.000e-03 9.2775e-04 9.2491e-01 -1.6846e-04 9.9537e-01

2.500e-03 4.7607e-04 9.6256e-01 -8.4671e-05 9.9247e-01

1.250e-03 2.4114e-04 9.8130e-01 -4.2481e-05 9.9505e-01

6.250e-04 1.2135e-04 9.9070e-01 -2.1281e-05 9.9725e-01

Table 4.1: Results of accuracy test 4.1 with ε = 10−100 for YC-WENO5.

h ej−1 crj−1 ej+1 crj+1

8.000e-02 1.9614e-01 -3.8327e-02

4.000e-02 1.0758e-01 8.6647e-01 -1.9529e-02 9.7274e-01

2.000e-02 5.6185e-02 9.3715e-01 -9.9767e-03 9.6898e-01

1.000e-02 2.8386e-02 9.8501e-01 -4.9889e-03 9.9984e-01

5.000e-03 1.4260e-02 9.9321e-01 -2.4969e-03 9.9858e-01

2.500e-03 7.1465e-03 9.9667e-01 -1.2493e-03 9.9902e-01

1.250e-03 3.5772e-03 9.9841e-01 -6.2493e-04 9.9935e-01

6.250e-04 1.7895e-03 9.9927e-01 -3.1253e-04 9.9970e-01

Table 4.2: Results of accuracy test 4.1 with ε = h2 for YC-WENO5.

4.3

New weights for maximal-order WENO

schemes

The analytical and numerical results obtained in Section 4.2 show that

YC-WENO schemes achieve maximal order of accuracy when the func-

tion is smooth but the results could be improved near discontinuities. To

solve these accuracy problems we propose new WENO weights, based on

Yamaleev and Carpenter’s weights, that yield maximal order of accuracy
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when the function is smooth and provide higher order of accuracy than

the order of accuracy provided using Yamaleev and Carpenter’s weights,

when the function is not smooth. As we will see, these weights also

reduce the spurious oscillations that appear near discontinuities.

The new WENO weights that we propose, named AMM-WENO hence-

forth, are defined by:

wk =
αk∑r−1
i=0 αi

, αk = Ck

(
1 +

(
τ2r−1

Ik + ε

)µ)
, (4.6)

µ =
⌈r
2

⌉
, k = 0, . . . , r − 1, (4.7)

where Ik is the classical Jiang and Shu’s smoothness indicator, ε is a

small positive parameter and the quantity τ2r−1 is the square of the un-

divided difference defined on the entire (2r − 1)−point stencil. It is worth

noticing that µ = 1 gives Yamaleev and Carpenter’s weights and that our

choice yields 2µ ≥ r.

The notation ⌈·⌉ denotes the ceiling function which maps a real num-

ber to the next integer.

With an analysis as in [3, Proposition 3], we can state some con-

straints on the order of the parameter ε to guarantee maximal-order

WENO methods when we use the modified weights proposed above. These

constraints are less restrictive than Yamaleev and Carpenter’s restriction

(4.5).

Proposition 1. Let ε = Khq with K > 0, q ∈ N,

q ≤ 4r − 4− r

µ
, (4.8)

and µ =
⌈r
2

⌉
. The WENO reconstruction of f is defined by:

q(x) =

r−1∑

k=0

wkp
r
k(x), (4.9)

where

wk =
αk∑r−1
i=0 αi

k = 0, . . . , r − 1 and αk = Cr
k

(
1 +

(
τ2r−1

ε+ Ik

)µ)
.

Then:
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1. At regions where f is smooth:

wk = Cr
k(1 +O(hr)), 0 ≤ k < r,

f(xj+ 1
2
)− q(xj+ 1

2
) = d(xj+ 1

2
)h2r−1 +O(h2r),

for a locally Lipschitz function d.

2. If f is not smooth but it is smooth at least in one of the stencils Sk, k =
0, . . . , r − 1, then:

f(xj+ 1
2
)− q(xj+ 1

2
) = O(hr).

Proof. Let us suppose that the function f is smooth, then τ2r−1 = O
(
h2(2r−2)

)
.

With this we have:

αk = Cr
k

(
1 +

(
τ2r−1

ε+ Ik

)µ)
≤ Cr

k

(
1 +

(τ2r−1

ε

)µ)
=

= Cr
k

(
1 +

(
O(h2(2r−2))

Khq

)µ)
= Cr

k

(
1 +O

(
h(4r−4−q)µ

))
.

To get (4r − 4− q)µ ≥ r, we deduce that q ≤ 4r − 4− r

µ
.

It follows that if q satisfies this bound then αk = Cr
k (1 +O(hr)), there-

fore
r−1∑

i=0

αi =
r−1∑

i=0

Cr
k +O (hr) = 1 +O (hr) ,

wk =
αk∑r−1
i=0 αi

=
Cr
k (1 +O(hr))
1 +O(hr) = Cr

k (1 +O(hr)). (4.10)

Now if F is a primitive of f and P is an interpolator of F at {xj−r+ 1
2
, . . . , xj+r− 1

2
},

then P ′ = p2rr−1 and we can deduce that

f(xj+ 1
2
)− p2rr−1(xj+ 1

2
) = bf (2r−1)(xj+ 1

2
)h2r−1 +O(h2r), b 6= 0. (4.11)

We know that the r−th order polynomial reconstruction defined on the

stencil Sk, p
r
k(x), satisfies

prk(xj+ 1
2
) = f(xj+ 1

2
) +O(hr).
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Using this, (4.9), (4.10), (4.11) and

r−1∑

k=0

(Cr
k − wk) = 0, we get:

f(xj+ 1
2
)− q(xj+ 1

2
) = f(xj+ 1

2
)− p2r−1

r−1 (xj+ 1
2
) + p2r−1

r−1 (xj+ 1
2
)− q(xj+ 1

2
)

= bf (2r−1)(xj+ 1
2
)h2r−1 +O(h2r) +

r−1∑

k=0

(Cr
k − wk) p

r
k(xj+ 1

2
)

= bf (2r−1)(xj+ 1
2
)h2r−1 +O(h2r) +

r−1∑

k=0

(Cr
k − wk)

(
prk(xj+ 1

2
)− f(xj+ 1

2
)
)

= bf (2r−1)(xj+ 1
2
)h2r−1 +O(h2r) +

r−1∑

k=0

(Cr
k − Cr

k(1 +O(hr)))
(
prk(xj+ 1

2
)− f(xj+ 1

2
)
)

= bf (2r−1)(xj+ 1
2
)h2r−1 +O(h2r) +

r−1∑

k=0

(Cr
k − Cr

k − Cr
kO(hr))

(
prk(xj+ 1

2
)− f(xj+ 1

2
)
)

= bf (2r−1)(xj+ 1
2
)h2r−1 +O(h2r)−

r−1∑

k=0

Cr
kO(hr)O(hr)

= bf (2r−1)(xj+ 1
2
)h2r−1 +O(h2r)

with bf (2r−1) a locally Lipschitz function.

Let us now suppose that f has a discontinuity at some, but not all, of

the stencils Sk, k = 0, . . . , r − 1. Since Ik 9 0, when h→ 0 for the stencils

where f has a discontinuity, whereas Ik = O(h2) otherwise, with a similar

analysis to the one conducted in the previous section, we deduce that, if

f has a discontinuity on Sk then:

αk = Ck

(
1 +

(
τ2r−1

Ik + ε

)µ)
= Ck

(
1 +

O(1)
O(1) + ε

)µ

= O(1),

and

αk = Ck

(
1 +

(
τ2r−1

Ik + ε

)µ)
= Ck

(
1 +

O(1)
O(h2) + ε

)µ

= O(h−2µ),

if f is smooth at Sk.

Therefore,

r−1∑

i=0

αi = O(h−2µ) and:

wk =
αk∑r−1
i=0 αi

=
O(1)
O(h−2µ)

= O(h2µ) if f has a discontinuity in Sk,

wk =
αk∑r−1
i=0 αi

=
O(h−2µ)

O(h−2µ)
= O(1) if f is smooth in Sk.
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If we denote K = {k/f not smooth in Sk}, and using that
∑r−1

k=0wk = 1,
then

f(xj+ 1
2
)− q(xj+ 1

2
) = f(xj+ 1

2
)−

r−1∑

k=0

wkp
r
k(xj+ 1

2
)

=
r−1∑

k=0

wk

(
f(xj+ 1

2
)− prk(xj+ 1

2
)
)

=
∑

k/∈K
wk

(
f(xj+ 1

2
)− prk(xj+ 1

2
)
)
+
∑

k∈K
wk

(
f(xj+ 1

2
)− prk(xj+ 1

2
)
)

=
∑

k/∈K
O(1)O(hr) +

∑

k∈K
O(h2µ)O(1)

= O(hr)

since µ =
⌈r
2

⌉
implies 2µ ≥ r.

Note 1. The parameter ε in Proposition 1 is a dimensional quantity. For

finite-difference WENO schemes K should be chosen proportional to the

square of some reference flux value, so that the scheme would not be af-

fected by changes of units.

4.4

Numerical experiments

In this section we illustrate numerically the theoretical results obtained

previously. We will also see that Yamaleev and Carpenter’s weights may

produce oscillations near discontinuities that our proposed weights seem

to reduce.

The parameter ε is chosen in order to satisfy both condition (4.5) pro-

posed by Yamaleev and Carpenter for their weights and condition (4.8)

stated to guarantee maximal-order WENO methods when using the mod-

ified AMM weights. For WENO5 scheme we know that r = 3, so, if ε = Khq

then we have:

• For YC weights:

ε ≥ O(h3r−4) = O(h5)⇒ q ≤ 5
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• For AMM weights:

q ≤ 4r − 4− r

µ
= 4r − 4− r⌈

r
2

⌉ = 12− 4− 3

2
= 6.5⇒ q ≤ 6.5

In order to satisfy both conditions in our experiments with WENO5

scheme we choose ε = h2 or ε = h5. For WENO9 scheme we usually use

ε = h2 or ε = h11 that satisfy both conditions (4.5) and (4.8) for r = 5.

For a given scheme we denote by e(h) the ∞-norm of the error and

by cr(h) the convergence rate cr(h) = log2(e(h)/e(h/2)) deduced from the

experiments. We use the notation ej±1 and crj±1(h) to denote the errors

and the deduced convergence rates at the points right before and after

the discontinuity respectively.

4.4.1

One-dimensional tests

Test 4.2.

We compute approximations up to t = 1 with N = 25 · 2l, l = 0, . . . , 6
and CFL = 0.5 to the solution of the linear advection equation

ut + ux = 0, 0 < x < 1,

with periodic boundary conditions and initial condition given in [104,

page 4264] as

u0(x) =





z18 − 14z16 + 69z14 − 175z12 + 259z10

−231z8 + 119z6 − 29z4 + 1, for |z| ≤ 1;
0, otherwise.

where z = 5(x − 0.5) and 0 ≤ x ≤ 1. It consists in a C6 function with

three critical points: x = 0.5 with order 3 (i.e., f ′(0.5) = f ′′(0.5) = f ′′′(0.5) =
0, f (4)(0.5) 6= 0), x = 0.3 and x = 0.7 of order 6.

We use WENO5 reconstruction scheme, i.e. r = 3, so µ =

⌈
3

2

⌉
= 2 is

used for our proposed AMM weights. We display in Table 4.3 the results

for ε = h2 and in Table 4.4 the results for ε = h5.

Since the ODE solver is third order accurate, we take ∆t = C∆x5/3,
with C = 0.5·502/3 to ensure ∆t3 = O(∆x5) and ∆t/∆x ≤ 0.5 for the sizes N
considered in the experiment. With this choice, the error introduced by
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JS-WENO5 YC-WENO5 AMM-WENO5

h e(h) cr(h) e(h) cr(h) e(h) cr(h)

1/25 4.92e-01 4.49e-01 4.95e-01

1/50 7.47e-02 2.72 6.84e-02 2.71 6.88e-02 2.85

1/100 5.99e-03 3.64 6.52e-03 3.39 6.52e-03 3.40

1/200 3.94e-04 3.93 2.28e-04 4.84 2.28e-04 4.84

1/400 1.96e-05 4.33 7.18e-06 4.99 7.18e-06 4.99

1/800 7.48e-07 4.71 2.25e-07 5.00 2.25e-07 5.00

1/1600 2.40e-08 4.96 7.04e-09 5.00 7.04e-09 5.00

Table 4.3: Results of Test 4.2 with ε = h2.

JS-WENO5 YC-WENO5 AMM-WENO5

h e(h) cr(h) e(h) cr(h) e(h) cr(h)

1/25 5.13e-01 4.75e-01 4.91e-01

1/50 2.84e-01 0.85 6.50e-02 2.87 1.42e-01 1.79

1/100 6.22e-03 5.51 6.64e-03 3.29 6.73e-03 4.40

1/200 1.32e-03 2.23 2.88e-04 4.53 2.61e-04 4.69

1/400 1.53e-04 3.11 1.55e-05 4.22 1.28e-05 4.35

1/800 1.69e-05 3.18 9.86e-07 3.97 7.62e-07 4.08

1/1600 2.06e-06 3.04 7.04e-08 3.81 5.20e-08 3.87

Table 4.4: Results of Test 4.2 with ε = h5.

the ODE solver has an order of accuracy not less than the spatial order

of accuracy.

As can be seen in Table 4.3 for ε = h2 the errors for YC-WENO5 and

AMM-WENO5 are similar and slightly smaller than the errors for JS-

WENO5 and the convergence rate is 5 for all three reconstructions. For

ε = h5 and small h the results in Table 4.4 are slightly better for AMM-

WENO5 than for YC-WENO5 and both quite better than JS-WENO5. The

convergence rate is more difficult to deduce in this case for YC-WENO5

and AMM-WENO5, since cr(h) does not seem to converge to 5, probably

due to round-off errors when adding h5 ≈ 10−15 for h ≈ 10−3. The conver-

gence rate of JS-WENO5 approaches 3, thus revealing an order loss at

smooth extrema.

Test 4.3.

We use the same setup as in Section 4.2 to test the performance of

the AMM-WENO5 reconstruction when using divided differences to ap-
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proximate derivatives. In Tables 4.5 and 4.6 we show the results of this

test for the AMM-WENO5 scheme with ε = 10−100 and ε = h2 respectively.

The columns corresponding to the deduced convergence rates crj±1(h) re-

veal that the convergence rate of the divided differences of AMM-WENO5

reconstructions is 2, the same convergence rate that we obtained with

the original JS-WENO5 method, whereas the convergence rate achieved

with divided differences of YC-WENO5 reconstruction is 1 in this case

(see Tables 4.1 and 4.2).

h ej−1 crj−1 ej+1 crj+1

8.000e-02 -5.5575e-03 4.6570e-03 2.0164

4.000e-02 -2.8473e-03 0.9648 1.1511e-03 1.9972

2.000e-02 -7.3601e-04 1.9518 2.8833e-04 2.0001

1.000e-02 -1.8480e-04 1.9938 7.2078e-05 2.0005

5.000e-03 -4.6252e-05 1.9984 1.8013e-05 2.0005

2.500e-03 -1.1567e-05 1.9995 4.5018e-06 2.0003

1.250e-03 -2.8922e-06 1.9998 1.1252e-06 2.0002

6.250e-04 -7.2311e-07 1.9999 2.8126e-07

Table 4.5: Results of Test 4.3 with ε = 10−100 for AMM-WENO5.

h ej−1 ej−1/h
2 ej+1 ej+1/h

2

8.000e-02 -1.0883e-02 4.4575e-03

4.000e-02 -2.8393e-03 1.9385 1.1361e-03 1.9721

2.000e-02 -7.2572e-04 1.9681 2.8650e-04 1.9875

1.000e-02 -1.8328e-04 1.9854 7.1827e-05 1.9959

5.000e-03 -4.6051e-05 1.9927 1.7979e-05 1.9982

2.500e-03 -1.1542e-05 1.9963 4.4972e-06 1.9992

1.250e-03 -2.8890e-06 1.9983 1.1246e-06 1.9996

6.250e-04 -7.2270e-07 1.9991 2.8119e-07 1.9998

Table 4.6: Results of Test 4.3 with ε = h2 for AMM-WENO5.

Test 4.4.

We use the same setup as in Section 4.2 for f(x) = x4 +
x2

2
+ cos(x).

In this experiment we want to test the order of accuracy of the recon-

structions computed using the AMM-WENO5 (r = 3) method when we

choose the value of the parameter ε depending on the condition (4.8) be-

ing satisfied or not. Note that f ′(0) = f ′′(0) = f ′′′(0) = 0 but f (iv)(0) 6= 0, so
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that the order of the critical point xj+ 1
2
= 0 is s = 3 and the order of the

smoothness indicator is Ik = O(h2s+2) = O(h8).
As we have seen, for r = 3, condition (4.8) leads to:

q ≤ 4 · 3− 4− 3⌈
3
2

⌉ = 6.5. (4.12)

For testing the accuracy order we choose ε = h2, h4, h6, which satisfy

condition (4.12), and ε = h8, h10 which do not satisfy this condition.

As we can see in Table 4.7, for the choices of ε that satisfy the condi-

tion (4.12) the method has maximal order of accuracy 2r−1 but the order

of accuracy is smaller for the choices that do not satisfy the condition.

h ε = h2 ε = h4 ε = h6 ε = h8 ε = h10

1.000e-01 4.9973 8.2845 2.1971 3.0001 3.0024

5.000e-02 4.9993 5.01797 5.1690 3.00004 3.0006

2.500e-02 4.9998 4.99984 7.2594 3 3.0001

1.250e-02 5 5 8.33170 3 3

6.250e-03 5 5 8.7003 3 3

3.125e-03 5 5 7.8990 3 3

1.562e-03 5 5 5.7840 3 3

7.812e-04 5 5 5.0672 3 3

3.906e-04 5 5 5.0043 3 3

1.953e-04 5 5 5.00027 3 3

9.765e-05 5 5 5 3 3

Table 4.7: Estimated orders log2 (e(hi)/e(hi+1)), i = 0. . . . , 19 for test 4.4 computed

with different values of ε.

Test 4.5.

We compute the approximations of the solution of the linear advection

equation

ut + ux = 0, 0 < x < 1,

with initial conditions: u0(x) =

{
5, x ≤ 0.2;
3, x > 0.2.

We compute the approximations up to t = 0.5 with CFL = 0.5, ε = h2

and µ = ⌈r/2⌉, that is, µ = 2 for WENO5. We use the third-order TVD

Runge-Kutta scheme described in (3.6), and proposed in [94], to solve

the semi-discretized problem.
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We observe in Figure 4.2 that the AMM-WENO5 scheme performs bet-

ter than the YC-WENO5 scheme, especially near discontinuities where

this scheme presents some oscillations which are reduced when using

our modified weights. In addition, the approximation to the exact so-

lution is better when using our modified weights than when Yamaleev

and Carpenter’s weights or Jiang and Shu’s weights are used. We can

also appreciate that the oscillations obtained near the discontinuity that

appear with Yamaleev and Carpenter’s weights are reduced when using

our modified weights. The same behavior can be deduced when we use

WENO9 scheme, as it could be seen in Figure 4.3.

In Figure 4.4 we show the results of this experiment when using

the AMM-WENO9 reconstruction scheme with different exponents µ =
1, 2, 3, 4 (note that the case µ = 1 corresponds to YC-WENO9 scheme). As

it can be seen, the AMM-WENO9 scheme with µ = 3 performs better than

the rest of the options, especially near discontinuities, where µ = 1 gives

an oscillatory behavior.
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Figure 4.1: Numerical solution of test 4.5 computed with WENO5 scheme and

N = 400 nodes, t = 0.5.

Test 4.6.

We consider Sod’s problem [96] which consists in the one-dimensional

Euler equations of gas dynamics (2.18), assuming the equation of state

(2.21), with γ = 1.4. The initial conditions are given by:

(ρ, u, p) =

{
(1, 0, 1), if x < 0.5;
(0.125, 0, 0.1), if x > 0.5,
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Figure 4.2: Enlarged views of the numerical solution of test 4.5 computed with

WENO5 scheme with N = 400 ((a) and (b)) and N = 1000 ((c) and (d)) nodes for the

final time t = 0.5.
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Figure 4.3: Enlarged views of the numerical solution of test 4.5 computed with

WENO9 scheme with N = 400 ((a) and (b)) and N = 1000 ((c) and (d)) nodes for the

final time t = 0.5.
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Figure 4.4: Enlarged views of the numerical solution of test 4.5 computed with

AMM-WENO9 using different values for the exponent µ present in the definition of

the AMM weights and N = 400 nodes.

and outflow boundary conditions are used.

The numerical scheme follows a method of lines approach. The spa-

tial discretization is obtained by Shu-Osher’s finite-difference strategy

[94], with the appropriate WENO reconstruction applied to characteristic

fluxes obtained by Donat-Marquina’s [33] two-Jacobians local character-

istic projections and local Lax-Friedrichs flux-splittings. This spatially-

discretized problem is solved by the third-order TVD Runge-Kutta scheme

(3.6). We use this numerical scheme, and its two-dimensional extension,

for all subsequent tests that require the solution of the Euler equations.

In Figures 4.5 and 4.6 we compare the solutions obtained with JS-

WENO9, YC-WENO9 and AMM-WENO9 schemes at t = 0.18, with CFL =
0.5, ε = h2 and µ = ⌈r/2⌉, that is, µ = 2 for WENO5, for N = 400 and 4000
cells. As can be deduced from these figures, the solutions obtained with

the YC-WENO9 scheme show oscillations near discontinuities that do

not seem to disappear upon mesh refinement. It can be further observed

that the resolution of AMM-WENO9 at singularities is slightly better than

the resolution of JS-WENO9.

Test 4.7.

We consider here the simulation of the interaction of a shock and

an entropy wave, [95], with the one-dimensional Euler equations of gas

dynamics (2.18).
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Figure 4.5: Results of test 4.6 with WENO9: (a) Plot of the density with N = 400
cells. (b), (c) and (d) are enlarged views of (a).
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Figure 4.6: Results of test 4.6 with WENO9: (a) Plot of the density with N = 4000
cells. (b), (c) and (d) are enlarged views of (a).
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The initial conditions are set by a Mach 3 shock interacting with a

perturbed density field:

(ρ, u, p) =





(277 ,
4
√
35
9 , 313 ) if x < −4

(1 + 1
5 sin (5x), 0, 1) if x ≥ −4

on the domain [−5, 5] with homogeneous Neumann boundary conditions

at the left part of the domain and Dirichlet boundary conditions at the

right part of the domain.

In Figures 4.7 and 4.8 we compare the results obtained using JS-

WENO9, YC-WENO9 and AMM-WENO9 schemes at t = 1.8 with N = 400
and 4000 cells and ε = h2. A reference solution is obtained with the JS-

WENO9 scheme and N = 12800 cells. As can be seen, the approximations

obtained using Yamaleev and Carpenter’s weights show some oscillations

in the vicinity of the strong shock near x = 2.4. These oscillations do not

seem to diminish upon mesh refinement. One can also observe that

our modified weights yield slightly better results than Jiang and Shu’s

weights, especially for N = 400.

4.4.2

Two-dimensional tests

Test 4.8.

In this test a double Mach reflection of a strong shock is simulated

with the 2D Euler equations of gas dynamics (see [102]). The problem

involves a Mach 10 shock in air (γ = 1.4) which makes a 60o angle with

a reflecting wall. The computational domain has been rotated by −30o,
so that the reflecting wall is located at the bottom, beginning at x = 0.25.
The domain is then a rectangle 4 units long and 1 unit high, starting at

x = 0, y = 0. Initially the shock extends from the point x = 0.25 at the

bottom of the computational domain to the top boundary. Post-shock

conditions are assigned at the boundaries located to the left of the shock;

the air ahead of the shock is left undisturbed and has density 1.4 and

pressure 1. Outflow conditions are applied at the right end of the domain,

and the values on the top boundary to the right of the shock are those of

undisturbed air.

We run the experiment with CFL = 0.25, t = 0.2 and ε = h2 for resolu-

tions 1024×256 and 2048×512 and display an enlarged view of the results

in Figures 4.9 and 4.10, respectively. As can be observed, the results
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Figure 4.7: Results of test 4.7 with WENO9: (a) Approximations of the density

with N = 400 nodes. (b), (c) and (d) are enlarged views of the most interesting

parts of (a).
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Figure 4.8: Results of test 4.7 with WENO9: (a) Approximations of the density

with N = 4000 nodes. (b), (c) and (d) are enlarged views of the most interesting

parts of (a).
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obtained with YC-WENO5 and AMM-WENO5 have more vorticity devel-

oped at the contact lines, thus indicating that they introduce a smaller

amount of numerical dissipation than JS-WENO5. The results obtained

with AMM-WENO5 seem to have some more vorticity than those obtained

with YC-WENO5 scheme.

In Figure 4.12, we show the results obtained when we use ε = h5 for a

resolution of 2048 × 512 cells. As it could be seen the vorticity diminishes

when we decrease the value of the parameter ε.
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Figure 4.9: Results of test 4.8 for a grid of 1024× 256 cells and ε = h2: 50 contour

lines of the density obtained with (a) JS-WENO5, (b) YC-WENO5 and (c) AMM-

WENO5 are shown, respectively.
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Figure 4.10: Results of test 4.8 for a grid of 2048 × 512 cells and ε = h2: 50

contour lines of the density obtained with (a) JS-WENO5, (b) YC-WENO5 and (c)

AMM-WENO5 are shown, respectively.
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Figure 4.11: (a) and (c) display sections of the 50 contour lines of the density

obtained with JS-WENO5, YC-WENO5 and AMM-WENO5 at pixel height 18 (a)

and 36 (c) of test 4.8 for a grid of 1024× 256 (a) and 2048× 512 (c) cells; (b) and (d)

are zooms of (a) and (c) respectively.



4. Weights design for maximal-order WENO schemes 75

50 100 150 200 250 300

50

100

150

200

250

300

50 100 150 200 250 300

50

100

150

200

250

300

(a) (b)

50 100 150 200 250 300

50

100

150

200

250

300

(c)

Figure 4.12: Results of test 4.8 for a grid of 2048 × 512 cells and ε = h5: 50

contour lines of the density obtained with (a) JS-WENO5, (b) YC-WENO5 and (c)

AMM-WENO5 are shown, respectively.
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5
Biased flux-splittings for

finite-difference WENO
schemes

5.1

Introduction

One of the main drawbacks of high-resolution shock-capturing schemes

is that most of them use the spectral decomposition of the Jacobian ma-

trix of the system to compute the numerical approximations by local

projections to characteristic fields. A typical computation involves an

eigenvalue-eigenvector decomposition of the flux Jacobian matrix and

approximations of the values of the numerical solution at each cell inter-

face. These approximations are obtained by high-order upwind-biased

reconstructions (i.e., cell-average interpolators whose stencils have more



78 5.1. Introduction

points at the upwind side of the points where they are evaluated). The

numerical solutions obtained are often excellent in terms of resolution

power, but the computational effort needed may be too high for some

problems, especially those for which the spectral information of the flux

Jacobian matrix is not available or is quite difficult to obtain.

Some authors have proposed schemes that do not use characteristic

projections. Amongst them we can cite Nessyahu-Tadmor and Kurganov-

Tadmor central schemes [61, 83] or Central WENO schemes [74]. The

use of component-wise finite-difference WENO schemes was introduced

in [106]. It is based on Shu-Osher’s finite-difference schemes [95], which

obtain the numerical fluxes at each cell interface by upwind-biased re-

constructions of split upwind fluxes (those whose Jacobian matrix has

eigenvalues of a definite sign).

Component-wise schemes use a global Lax-Friedrichs flux-splitting

for each component of the flux function, computing at a given time level

a numerical viscosity as the maximum of the characteristic speeds of the

solution at that time. Since the resulting schemes tend to be too diffu-

sive, in order to reduce those diffusive effects associated to the global

choice of the viscosity coefficient, a local Lax-Friedrichs approach was

proposed in [94], which consists in computing that viscosity coefficient

locally, not over all the domain, but only on a neighborhood of the cell

interface at which the numerical flux is computed.

In an attempt to improve the results obtained when using a Lax-

Friedrichs flux-splitting, by reducing the numerical viscosity, we pro-

pose to use a flux-splitting, named HLL flux-splitting, first introduced by

Harten, Lax and van Leer in [52] as a Riemann solver. This flux-splitting

is based on a possibly asymmetric choice of wave speeds of each of the

two terms of the flux-splitting.

The other key issue of the HRSC schemes is the use of a high-order

reconstruction method with a control of the oscillations. In this work we

use the fifth-order WENO reconstructions [59, 78]. As it has been men-

tioned in [51, 59], the numerical solutions obtained using a component-

wise scheme and a WENO5 reconstruction method present some spuri-

ous oscillations whose amplitude does not decrease as the grid is refined.

In order to diminish those spurious oscillations when using component-

wise schemes, we are going to study another strategy based on the work

of Levy et al. (see [74, 75]) and the use of a global definition of the

smoothness indicators in the definition of the weights of the WENO5

scheme. In this work we compare the results obtained using a global def-

inition of the smoothness indicators to prove that, in some cases, when

using these weights, we reduce the oscillatory behavior while maintain-
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ing the high resolution of the scheme.

In this chapter we recall first different flux-splitting functions used

in high-resolution shock-capturing schemes, introducing the HLL flux-

splitting. Second, we perform a brief exposition of an alternative to usual

WENO reconstruction scheme and finally we perform some numerical

experiments on standard tests of polydisperse sedimentation to illustrate

and compare the performance of several schemes.

5.2

Characteristic based and Component-wise

schemes with flux-splitting

In the case that the full spectral decomposition of the Jacobian matrix

f ′(Φ) is known, we denote, for k = 1, . . . ,M , λk(f
′(Φ)) the eigenvalues of

f ′(Φ) and by rk(Φ) and lk(Φ) the corresponding normalized right and left

eigenvectors respectively. Then, the numerical flux f̂j+ 1
2

computed using

an upwind characteristic-wise scheme (denoted in this work as SPEC

scheme) can be written as:

f̂j+ 1
2
=

N∑

k=1

rk
(
R+

(
lk · f+

j−2, . . . , l
k · f+

j+2;xj+ 1
2

))

+
N∑

k=1

rk
(
R−

(
lk · f−

j−1, . . . , l
k · f−

j+3;xj+ 1
2

))
,

(5.1)

where rk = rk(Φj+ 1
2
), lk = lk(Φj+ 1

2
), Φj+ 1

2
= 1

2

(
Φj + Φj+1

)
, f±

j := f±(xj),

R± are upwind biased reconstruction operators (WENO reconstructions

in our case) and the functions f± define a flux-splitting that satisfies

f+ + f− = f and ±λk ((f±(Φ))′) ≥ 0 (f± are upwind fluxes) for Φ in some

relevant range D:

D =

{
{Φi/i = 1, . . . , N} for global flux-splittings,

{Φi/i = j − 2, . . . , j + 3} for local flux-splittings.

The Lax-Friedrichs flux-splitting is given by f± = 1
2 (f(Φ) ± αΦ) with α

satisfying:

max{|λk(f
′(Φ))|/k = 1, . . . ,M,Φ ∈ D} ≤ α.
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In this work we are going to use SPECINT scheme introduced in [24].

This scheme differs from SPEC scheme in the way in which the parame-

ter α is computed. As we have said in local SPEC schemes (SPEC-LLF),

the viscosity coefficient α is computed as

αk
j+ 1

2
= max {|λk(Φj)|, |λk(Φj+1)|}

In [24], the authors show that, when they apply this scheme to the

polydisperse sedimentation problems, the numerical solutions computed

present some spurious oscillations which do not disappear upon mesh

refinement. In order to improve the results, the authors propose a new

approximation to the parameter α calculated based on the interlacing

property (2.23) as:

αk
j+ 1

2

= max
Φ∈Γj

{|vk−1(Φ)|, |vk(Φ)|}

where Γj denotes the straight line joining Φj and Φj+1.

As previously mentioned, the lack of information on the spectral de-

composition of the Jacobian matrix of some problems or the high com-

putational cost needed to obtain it may prevent the use of these fairly

sophisticated high-resolution shock-capturing schemes. To tackle this

shortcoming, a component-wise approach for these schemes was devel-

oped in [106]. For these schemes, the value of the numerical flux vector

f̂j+ 1
2

is computed by setting lkl = rkl = δk,l in (5.1). The numerical flux

then reads as:

f̂j+ 1
2
,k = R+

(
f+
j−2,k, . . . , f

+
j+2,k;xj+ 1

2

)
+R−

(
f−
j−1,k, . . . , f

−
j+3,k;xj+ 1

2

)
.

The oscillatory behavior of the component-wise schemes obtained from

global Lax-Friedrich flux splittings has been observed in the literature

[35]. Also, as it could be seen for example in [24, 35], that scheme tends

to be quite diffusive due to the global prescription of numerical viscosity.

In this chapter we explore the possibility of using local LF flux-splittings

for alleviating the oscillations and the excessive diffusion.

5.2.1

HLL flux-splitting

Another approach to address these issues is the use of a flux-splitting

that uses less numerical viscosity to stabilize the upwind reconstruc-

tions. If one defines F±(Φ) = f(Φ)− α∓Φ then a sufficient condition for

f = γF− + (1− γ)F+,
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to be a flux-splitting is that the eigenvalues λk((F
+(Φ))′) and λk((F

−(Φ))′)
have the corresponding sign for all Φ ∈ D and γ ∈ [0, 1].

We can compute λk((F
+(Φ))′) as

λk((F
+(Φ))′) = λk(f

′(Φ)− α−I) = λk(f
′(Φ))− α−

So,

λk((F
+(Φ))′) = λk(f

′(Φ))− α− ≥ 0⇔ λk(f
′(Φ)) ≥ α−

Analogously,

λk((F
−(Φ))′) = λk(f

′(Φ))− α+ ≤ 0⇔ λk(f
′(Φ)) ≤ α+

Therefore, λk((F
+(Φ))′) ≥ 0 and λk((F

−(Φ))′) ≤ 0 ∀k,Φ ∈ D if and only

if

α− ≤ λk(f
′(Φ)) ≤ α+, ∀Φ ∈ D, ∀k = 1, . . . , n.

As we see here, α± should be estimates of the extremal characteristic

velocities in D for the upwind condition on F± to hold.

Now, if

f(Φ) = γF−(Φ) + (1− γ)F+(Φ)

should hold for any Φ, then

f(Φ) = γ(f(Φ)− α+Φ) + (1− γ)(f(Φ)− α−Φ)

= f(Φ) + (−α− + (α− − α+)γ)Φ

yields γ =
α−

α− − α+
. Therefore 0 ≤ γ ≤ 1 if and only if α− ≤ 0 ≤ α+.

We define the HLL flux-splitting [52, 97] as:

f+ =





f α− ≥ 0,

0 α+ ≤ 0,

(1− γ)F+ α− ≤ 0 ≤ α+

f− =





0 α− ≥ 0,

f α+ ≤ 0,

γF− α− ≤ 0 ≤ α+

with

α− ≤ λk(f
′(Φ)) ≤ α+, ∀Φ ∈ D, ∀k = 1, . . . ,M.

max{λk(f
′(Φ))/k = 1, . . . ,M,Φ ∈ D} ≤ α+

α− ≤ min{λk(f
′(Φ))/k = 1, . . . ,M,Φ ∈ D}

This flux-splitting was similarly proposed in [97] for the Euler equa-

tions. We term it the HLL flux-splitting since a first order version of the
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scheme would be equivalent to the HLL scheme proposed in [52], based

on an approximate Riemann solver with two wave speeds.

It is worth pointing out that the numerical viscosity used in a Lax-

Friedrichs flux-splitting would be larger than that used for the HLL flux-

splitting. For instance, if α− ≤ 0 ≤ α+ and −α− < α+, then the LF

flux-splitting would read as:

f+ =
1

2
(f + α+Φ), f− =

1

2
(f − α+Φ),

and would satisfy:

min
k,Φ

λk((f
+)′) = min

k,Φ
λk((

1

2
(f + α+Φ))′) = min

k,Φ
λk(

1

2
(f ′ + α+))

=
1

2

((
min
k,Φ

λk(f
′)
)
+ α+

)
=

1

2
(α− + α+) > 0,

max
k,Φ

λk((f
−)′) = max

k,Φ
λk((

1

2
(f − α+Φ))′) = max

k,Φ
λk(

1

2
(f ′ − α+))

=
1

2

((
max
k,Φ

λk(f
′)
)
− α+

)
=

1

2
(α+ − α+) = 0,

whereas these extrema are 0 for the HLL flux-splitting:

min
k,Φ

λk((f
+)′) = min

k,Φ
λk(((1− γ)(f − α−Φ))′) = min

k,Φ
λk((1− γ)(f ′ − α−))

= (1− γ)

((
min
k,Φ

λk(f
′)
)
− α−

)
= (1− γ)(α− − α−) = 0,

max
k,Φ

λk((f
−)′) = max

k,Φ
λk((γ(f − α+Φ))′) = max

k,Φ
λk(γ(f

′ − α+))

= γ

((
max
k,Φ

λk(f
′)
)
− α+

)
= γ(α+ − α+) = 0.

5.3

Centered WENO5 reconstruction scheme

In [74], Levy et al. propose a central WENO reconstruction scheme for

which no characteristic decomposition is required and the upwinding
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is replaced by a straight-forward centered computation of the quanti-

ties involved, but retaining the non-oscillatory properties of the WENO

methodology.

In their numerical results they noticed the oscillatory behavior of the

central WENO schemes they proposed and found that the computation

of the smoothness indicators is a crucial issue. Their numerical results

suggested that one way to improve the resolution of the scheme near

the discontinuities could be that all the components are sensitive to the

presence of a discontinuity by means of their smoothness indicators.

They propose then to define a global smoothness indicator, valid for all

the components of the system, as an average of the different smoothness

indicators defined in (3.12):

GIj,k =
1

M

M∑

q=1

1

||Φq||2




r−1∑

l=1

∫ x
j+1

2

x
j− 1

2

h2l−1(p
(l)
j,k,q(x))

2dx




=
1

M

M∑

q=1

1

||Φq||2
Ij,k,q (5.2)

where M is the number of equations, and pj,k,q and Ij,k,q are the poly-

nomial reconstruction and the Jiang and Shu’s smoothness indicator of

the data {fj+k−2,q, fj+k−1,q, fj+k,q}, respectively. The quantity ||Φq||2 is a

scaling factor, and it is defined as the L2 norm of the cell averages of the

r−th component of Φ, namely:

||Φq||2 =




N∑

j=1

|Φj,q|2h




1
2

,

In [75], the authors made an 2D extension of these schemes. The

correspondingly modified reconstruction (3.8), obtained with the global

smoothness indicators GI in (5.2), will be termed G-WENO5.
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5.4

Numerical experiments for polydisperse

sedimentation models

The numerical scheme that we use in this section use a varying time step

∆t computed as:

∆t =
0.5h

C
,

where C is an estimate of the maximal characteristic velocity of the ap-

proximated solution at the given time step. For the SPECINT scheme the

estimate is based on the computed eigenvalues. For the COMP schemes,

we use the bounds on the eigenvalues quoted in (2.23).

Since the edges of the spatial domain [0, L] are the cell interfaces x 1
2
=

0, xN+ 1
2
= L, our implementation for the zero-flux boundary conditions

is as follows:

f̂ 1
2
= f̂N+ 1

2
= 0.

This ensures conservation of each species throughout the time evolution.

In the following experiments for polydisperse sedimentation models

we work with normalized depth, consequently, the spatial coordinate x
varies between x = 0 (surface of the suspension) and x = 1 (bottom of the

settling column).

The L1−error for an approximation (φj,k), j = 1, . . . , N , k = 1, . . . ,M to

the solution at the cell centers xj and given time t, (φk(xj , t)), is computed

as

1

N

N∑

j=1

M∑

k=1

|φref
j,k − φj,k|

where (φref
j,k) is a reference solution computed at a fairly high resolution

and interpolated at the coarse cell centers. In all the experiments, the

reference solution is computed by the SPECINT scheme.

We will compare the different techniques at hand for improving the

resolution of component-wise finite-difference WENO schemes. The ba-

sic schemes will be named after the flux-splitting, with a prefix L or G,

depending on the character of the flux-splitting: LLF, LHLL, GLF, GHLL.

If global smoothness indicators are used, the corresponding scheme will

bear an additional G- prefix.

Test 5.1.
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We consider this standard test case, proposed by Greenspan and Un-

garish in [49] and solved numerically in [22, 24], defined by an initially

homogeneous suspension in a column of height L = 0.3m with four dif-

ferent species of particles with D1 = 4.96 · 10−4m and different normalized

sizes d1 = 1, d2 = D2/D1 = 0.8, d3 = D3/D1 = 0.6 and d4 = D4/D1 = 0.4 and

same density ̺s = 2790kg/m3. The initial concentrations of the particles

are φ0
i = 0.05 for all i = 1, . . . , 4, the Richardson-Zaki exponent is nRZ = 4.7

and the maximum total concentration is φmax = 0.68. The density and

viscosity of the fluid are ̺f = 1208kg/m3 and µf = 0.02416kg/(s · m), re-

spectively.

In Figure 5.1 the reference solution, computed with SPECINT with

N = 6400 cells and ε = h5, is displayed. In Figures 5.2 and 5.3 we display

some enlarged views of the numerical approximations of φ1 and φ3 for

all the numerical schemes that we consider in this comparison. The

conclusions about the qualitative behavior of the approximations that

we could draw from inspection of the other components would be similar

to those obtained for our choice.

It can be seen throughout the pictures in Figures 5.2 and 5.3 that:

the LF-based schemes are more diffusive than their HLL-based counter-

parts; schemes that use local flux-splittings are less oscillatory in smooth

regions than their corresponding global flux-splitting schemes, but may

present stronger oscillations near sharp discontinuities; the G-WENO5

reconstructions may help in reducing oscillations.

To perform quantitative assessments, in Table 5.1 and Figure 5.4 we

show the approximate L1−errors and the CPU times for this test. We

also show the results for the SPECINT scheme. We have run each of the

schemes for N = 100, 200, 400, 800, 1600 and recorded its CPU time for the

execution and approximate L1−error. Each symbol in a given graphic

corresponds to a number N of cells.

As could be expected from the previous comments, global schemes

should be less accurate than local schemes and schemes that use G-

WENO5 reconstructions might be more accurate than those using WENO5

reconstructions. But when considering CPU times, it should be taken

into account that: the local computations of extremal characteristic speeds

has a higher computational cost than their global computation; the G-

WENO5 reconstruction might be slightly faster than the WENO5 recon-

struction, for the former requires less divisions (an arithmetical opera-

tion that may take about 20 times more CPU time than sums or products)

to compute the weights than the latter.

From Figure 5.4 we deduce that the LHLL is the most accurate of

the component-wise schemes, closely followed by the LLF scheme. Com-
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pared with the GLF scheme, those take about 10 times less computa-

tional time to achieve a given error level. If we bear in mind the con-

siderations in the previous paragraph, the computational time of each

of the component-wise schemes is comparable for moderate resolutions

(N ≥ 400, say). The conclusions that can be drawn from this figure

are that local flux-splittings are more efficient than global ones (i.e., they

take less CPU time for a given accuracy), that the HLL flux-splitting yields

more efficiency than the LF flux-splitting, but the contribution of the G-

WENO5 reconstruction to enhance the efficiency is not clear.

The SPECINT scheme for a given N has an accuracy roughly compa-

rable to LHLL with 4N cells for about half the cost. The SPECINT scheme

is therefore more efficient than LHLL, but this one is much more com-

petitive with respect to SPECINT than the GLF scheme.
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Figure 5.1: Enlarged views of the reference solution for φ1, . . . , φ4 (a) and φ =
∑

i φi

(b) for Test 5.1 computed by SPECINT scheme for t = 300s with N=6400 cells.

Test 5.2.

We consider here an example based on experimental data from [92].

It consists on the batch settling of an initially homogeneous suspension

with eleven different species, in a column of height L = 0.935 m. We

consider the Richardson-Zaki exponent nRZ = 4.65, the maximum to-

tal concentration φmax = 0.641 and that the density of solid particles is

̺s = 2790kg/m3. The initial concentrations φ0
i , diameters Di and normal-

ized diameters di = Di/D1 of the particles are given in Table 5.2. The
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Figure 5.2: Enlarged views of φ1 for test 5.1 with N = 400 computed with all the

versions of the component-wise scheme analyzed in this work.
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Figure 5.3: Enlarged views of φ3 for test 5.1 with N = 400 computed with all the

versions of the component-wise scheme analyzed in this work.
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N
LLF GLF G-GLF

CPU error CPU error CPU error

100 0.715 24.86 0.526 42.93 0.488 47.14

200 2.481 13.48 1.890 27.48 1.631 26.82

400 9.444 6.821 7.125 17.10 6.269 16.17

800 35.68 3.370 27.98 9.409 24.23 8.944

1600 145.8 1.595 110.1 5.528 94.90 5.266

N
LHLL GHLL G-GHLL

CPU error CPU error CPU error

100 1.007 23.74 0.534 34.23 0.457 38.63

200 2.659 12.22 1.923 21.29 1.671 25.08

400 9.221 5.786 7.061 12.36 6.236 13.37

800 35.50 2.553 27.52 6.652 22.71 6.559

1600 140.0 1.495 110.7 3.774 95.24 3.458

N
G-LLF G-LHLL SPEC INT

CPU error CPU error CPU error

100 0.630 31.00 0.988 60.62 3.171 6.749

200 2.321 16.21 2.570 20.50 10.55 3.781

400 8.835 8.274 8.999 10.12 49.26 1.675

800 33.49 4.161 32.95 4.982 154.0 0.850

1600 131.1 1.983 126.8 2.550 669.6 0.369

Table 5.1: Approximate L1−errors (×10−3) and CPU times (seconds) for test 5.1.

10
0

10
1

10
2

10
−3

10
−2

CPU

T
ot

al
 e

rr
or

 

 
LLF
LHLL
G−LLF
G−LHLL
GLF
GHLL
G−GLF
G−GHLL
SPEC

10
1

10
2

10
−3

10
−2

CPU

T
ot

al
 e

rr
or

 

 LLF
LHLL
G−LLF
G−LHLL
GLF
GHLL
G−GLF
G−GHLL
SPEC

(a) (b)

Figure 5.4: (a): CPU-error comparison for test 5.1 with t = 300s.; (b): enlarged

view of (a).
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characteristic of the fluid are those of the previous test. We show the

results obtained at t = 300s with ε = h5.

In Figure 5.5 the reference solution, computed with SPECINT with

N = 6400 cells, is displayed. The appearance of very thin layers of sedi-

ment of the smaller particles at the top of the sedimentation vessel poses

severe difficulties for the numerical schemes to capture them.

In Figures 5.6 and 5.7 we display some enlarged views of the nu-

merical approximations of φ5 and φ10 for all the numerical schemes un-

der consideration. As in the previous test, it can be seen throughout

the pictures that: the LF-based schemes are more diffusive than their

HLL-based counterparts; schemes that use local flux-splittings are less

diffusive than their corresponding global flux-splitting schemes; the G-

WENO5 reconstructions do not seem to help in reducing oscillations near

sharp gradients.

To get quantitative assessments, in Table 5.3 and Figure 5.8 we show

the approximate L1−errors and the CPU times for this test. We also show

the results for the SPECINT scheme. We have run each of the schemes

for N = 100, 200, 400, 800, 1600 and recorded its CPU time for the execution

and approximate L1−error.

From Figure 5.8 we deduce that the differences between the component-

wise schemes are more reduced than in the previous test and that they

are more efficient than the SPECINT scheme, which is penalized by the

numerical solution of quite large eigenvalue/eigenvector problems. It is

also deduced that the LHLL is the most accurate of the component-wise

schemes, closely followed by the G-LHLL scheme. The G-GHLL scheme is

slightly less accurate than those schemes, but saves some computational

time, so, in this case, the G-GHLL scheme is the most efficient.

i 1 2 3 4 5 6

φ0
i [10

−3] 0.435 3.747 14.420 32.603 47.912 47.762

Di[10
−5] 8.769 8.345 7.921 7.497 7.073 6.649

di 1.000 0.952 0.903 0.855 0.807 0.758

i 7 8 9 10 11

φ0
i [10

−3] 32.663 15.104 4.511 0.783 0.060

Di[10
−5] 6.225 5.801 5.377 4.953 4.529

di 0.710 0.662 0.613 0.565 0.516

Table 5.2: Test 5.2: initial concentrations φ0
i , real and normalized diameters Di

and di.
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N
LLF GLF G-GLF

CPU error CPU error CPU error

100 0.344 10.49 0.315 12.94 0.225 12.36

200 1.366 5.989 1.090 7.628 0.807 7.319

400 5.316 3.166 4.119 4.185 3.201 4.145

800 21.14 1.770 12.60 2.319 16.82 2.350

1600 84.84 0.832 66.92 1.166 51.67 1.130

N
LHLL GHLL G-GHLL

CPU error CPU error CPU error

100 0.337 10.28 0.265 10.91 0.218 10.33

200 1.312 5.545 1.060 6.071 0.813 5.773

400 5.332 2.859 4.197 3.233 3.170 3.227

800 21.23 1.587 16.87 1.813 12.70 1.818

1600 84.93 0.720 67.26 0.857 51.62 0.851

N
G-LLF G-LHLL SPEC INT

CPU error CPU error CPU error

100 0.300 10.23 0.316 10.08 6.606 9.582

200 1.142 5.834 1.140 5.311 25.32 4.931

400 4.538 3.230 4.493 2.896 100.6 2.434

800 18.59 1.816 17.54 1.634 401.3 1.368

1600 72.32 0.850 71.68 0.743 1507 0.594

Table 5.3: Approximate L1−errors (×10−3) and CPU times (seconds) for test 5.2.
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Figure 5.5: Enlarged views of (a) reference solution φ1, . . . , φ11 and (b) reference

solution φ =
∑

i φi in test 5.2 computed by SPEC INT scheme with N=6400 cells

and t = 300s.

5.5

Further Numerical Experiments

In this section we repeat some of the experiments carried in this chapter

and in chapter 4. We compute the numerical solutions using all the dif-

ferent techniques at hand for improving the resolution of finite-difference

WENO schemes:

• the different weights’ definitions for the WENO scheme that we have

seen in chapter 4: Jiang and Shu’s weights (JS) (3.11) - (3.12),

Yamaleev and Carpenter’s weights (YC) (4.1 - 4.4) and our proposed

weights (AMM) (4.6) - (4.7),

• the flux-splitting methods used in this chapter: global and local

Lax-Friedrichs flux-splitting (LF) and HLL flux-splitting (HLL).

As in the previous experiments, the basic schemes will be named after

the flux-splitting, with a prefix L or G, depending on the character of the

flux-splitting: LLF, LHLL, GLF, GHLL. Depending on the WENO scheme

used, JS-WENO, YC-WENO or AMM-WENO, the corresponding scheme

will bear an additional JS-, YC- or AMM- prefix respectively.
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Figure 5.6: Enlarged views of φ5 for test 5.2 computed with N = 400 and all the

versions of the component-wise scheme analyzed in this work.
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Figure 5.7: Enlarged views of φ10 for test 5.2 computed with N = 400 and all the

versions of the component-wise scheme analyzed in this work.
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Figure 5.8: (a): CPU-error comparison for test 5.2 for t = 300s.; (b): enlarged view

of (a).

5.5.1

One-dimensional tests

Test 5.3.

Let us consider first Sod’s problem, explained in Test 4.6. In this sec-

tion we show the results obtained using WENO5 reconstruction scheme

with local LF and HLL flux-splitting with parameter ε = h2. A reference

solution is obtained with the JS-WENO5 scheme and N = 6400 cells.

As it could be seen in Figures 5.10 and 5.11 the use of the HLL

flux-splitting increases the oscillatory behavior of the numerical solu-

tions obtained with YC-WENO5 reconstruction scheme, especially near

discontinuities. These oscillations do not seem to diminish with mesh

refinement as it could be seen in Figure 5.11. With both flux-splittings

the best results are obtained with AMM-WENO5 reconstruction scheme.

It could be also noticed that the oscillations obtained with WENO5 re-

construction scheme are less strong than those obtained with WENO9

scheme (see chapter 4, Figures 4.5 and 4.6).

We also show in Figure 5.12 the results obtained using WENO9 re-

construction scheme and a local HLL flux-splitting. The use of the HLL

flux-splitting does not seem to diminish the numerical oscillations ob-

tained with YC-WENO9 scheme.

Test 5.4.
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Figure 5.9: Numerical solution of ρ in test 5.3 computed with N = 400 nodes.

We analyze the polydisperse sedimentation test 5.1, defined by an

initially homogeneous suspension in a column with four different species

of particles with same density. We use ε = h5 for WENO5 reconstruction

scheme and ε = h11 for WENO9 reconstruction scheme, regardless of the

definition of the weights chosen.

In Figures 5.13 and 5.14 we show some enlarged views of the nu-

merical solution of φ2 and φ4 computed with a global LF component-wise

scheme and WENO5 reconstruction scheme. The conclusions about the

qualitative behavior of the approximations that we could draw from in-

spection of the other components would be similar to those obtained for

our choice.

It can be seen throughout those figures and Table 5.4 that the use of

YC weights leads to more oscillations than the use of JS or AMM weights.

In terms of accuracy, the results obtained using AMM weights are better

than the results obtained with YC weights but they are not as good as

the results obtained with JS weights.

In Figure 5.15 we show the numerical solutions for φ4 obtained when

using global HLL flux-splitting. It could be seen that the use of this

flux-splitting diminishes the oscillatory behavior, improving the results

of the AMM-WENO5 scheme. The results of the YC-WENO5 scheme are

also improved but they are not as good as JS-WENO5 or AMM-WENO5

results.

In Figure 5.16 we show the approximations of φ4 obtained when using

a global LF and HLL flux-splitting and WENO9 reconstruction scheme.
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Figure 5.10: Enlarged views of interesting regions of the approximation of ρ for

test 5.3 computed with N = 400 and with all the versions of the weights for the

WENO5 scheme analyzed in this work and local Lax-Friedrichs ((a), (c) and (e))

and HLL ((b), (d) and (f)) characteristic based scheme. (c) and (d) are enlarged

views of the discontinuity present at the right side on pictures (a) and (b) respec-

tively.
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Figure 5.11: Enlarged views of interesting regions of the approximation of ρ for

test 5.3 computed with N = 4000 and with all the versions of the weights for the

WENO5 scheme analyzed in this work and local Lax-Friedrichs ((a), (c) and (e))

and HLL ((b), (d) and (f)) characteristic based scheme. (c) and (d) are enlarged

views of the discontinuity present at the right side on pictures (a) and (b) respec-

tively.
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Figure 5.12: Enlarged views of interesting regions of the approximation of ρ for

test 5.3 computed with N = 400 ((a), (c) and (e)) and N = 4000 ((b), (d) and (f)) and

with all the versions of the weights for the WENO9 scheme analyzed in this work

and local HLL characteristic based scheme. (c) and (d) are enlarged views of the

discontinuity present at the right side on pictures (a) and (b) respectively.
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As it could be seen, in this case the numerical solutions obtained using

YC weights present very strong oscillations near discontinuities and, as

we show in Table 5.5, the accuracy of the scheme is worse than the

accuracy obtained when using JS and AMM weights.

N
LLF-JS LHLL-JS GLF-JS GHLL-JS

CPU error CPU error CPU error CPU error

100 0.715 24.86 1.007 23.74 0.526 42.93 0.534 34.23

200 2.481 13.48 2.659 12.22 1.890 27.48 1.923 21.29

400 9.444 6.821 9.221 5.786 7.125 17.10 7.061 12.36

800 35.68 3.370 35.50 2.553 27.98 9.409 27.52 6.652

1600 145.8 1.595 140.0 1.495 110.1 5.528 110.7 3.774

N
LLF-YC LHLL-YC GLF-YC GHLL-YC

CPU error CPU error CPU error CPU error

100 0.855 26.63 1.033 31.71 0.559 55.75 0.731 36.82

200 3.432 14.71 3.208 17.40 1.964 43.21 2.914 24.23

400 11.86 8.364 11.17 8.319 10.30 31.26 8.340 13.75

800 46.94 4.848 41.39 4.386 30.17 20.04 28.14 7.708

1600 212.0 2.563 179.3 51.50 114.3 17.41 113.2 4.306

N
LLF-AMM LHLL-AMM GLF-AMM GHLL-AMM

CPU error CPU error CPU error CPU error

100 1.650 23.91 1.063 24.04 0.759 41.16 0.930 30.48

200 4.218 14.46 3.472 13.71 2.998 29.79 2.399 21.97

400 14.60 7.140 11.07 6.624 9.912 17.62 10.26 12.57

800 55.86 3.501 42.22 2.784 30.16 12.36 31.87 6.592

1600 234.9 1.656 170.6 1.623 132.7 9.062 143.7 3.892

Table 5.4: Approximate L1−errors (×10−3) and CPU times (seconds) for test 5.4

using WENO5 reconstruction scheme.

5.5.2

Two-dimensional tests

Test 5.5.

Finally, we show the results of test 4.8, the double Mach reflection

of a strong shock simulated with the 2D Euler equations of gas dynam-

ics, computed using two resolution grids of 1024 × 256 and 2048 × 512
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Figure 5.13: Enlarged views of interesting regions of φ2 for test 5.4 computed

with N = 800 and with all the versions of the weights for the WENO5 scheme

analyzed in this work and a global Lax-Friedrichs component-wise scheme.
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Figure 5.14: Enlarged views of interesting regions of φ4 for test 5.4 computed

with N = 800 and with all the versions of the weights for the WENO5 scheme

analyzed in this work and a global Lax-Friedrichs component-wise scheme.
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Figure 5.15: Enlarged views of interesting regions of φ4 for test 5.4 computed

with N = 800 and with all the versions of the weights for the WENO5 scheme

analyzed in this work and a global HLL flux-splitting component-wise scheme.
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N
LLF-JS LHLL-JS GLF-JS GHLL-JS

CPU error CPU error CPU error CPU error

100 3.516 30.08 2.832 33.83 1.576 38.04 1.226 31.62

200 44.75 14.93 7.578 50.59 18.83 21.97 10.93 20.50

400 102.9 8.341 31.97 55.70 26.01 12.78 21.61 11.66

800 188.3 4.889 100.6 54.98 131.9 7.268 71.08 6.725

1600 548.8 3.001 323.0 4.289 284.0 4.667 253.4 3.735

N
LLF-YC LHLL-YC GLF-YC GHLL-YC

CPU error CPU error CPU error CPU error

100 1.037 47.37 4.423 64.07 0.818 122.6 0.731 94.96

200 4.035 28.69 13.83 51.95 3.234 84.57 3.048 70.84

400 15.82 21.60 30.38 40.50 12.76 65.79 13.20 58.33

800 62.82 20.22 102.4 36.33 51.05 55.40 48.84 50.96

1600 315.8 18.33 579.0 33.74 199.4 18.83 193.6 47.30

N
LLF-AMM LHLL-AMM GLF-AMM GHLL-AMM

CPU error CPU error CPU error CPU error

100 3.509 30.27 2.688 33.65 1.523 37.69 1.517 31.60

200 24.90 15.02 7.326 50.65 17.80 25.56 6.643 21.43

400 59.44 7.739 30.63 55.64 24.48 16.38 20.09 12.86

800 177.6 4.542 94.59 54.95 90.81 11.99 66.93 7.776

1600 527.7 2.971 335.8 53.22 322.7 8.183 289.3 5.648

Table 5.5: Approximate L1−errors (×10−3) and CPU times (seconds) for test 5.4

using WENO9 reconstruction scheme.
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Figure 5.16: Enlarged views of interesting regions of φ4 for test 5.4 computed

with N = 800 and with all the versions of the weights for the WENO9 scheme

analyzed in this work and a global Lax-Friedrichs ((a) and (b)) and global HLL ((c)

and (d)) component-wise scheme.
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nodes, a characteristic based scheme with local HLL flux splitting and

JS-WENO5, YC-WENO5 or AMM-WENO5 reconstruction scheme.

If we compare the results obtained in Figures 5.17 and 5.19 with

those showed in Figures 4.9 and 4.10 it can be seen that the results

obtained with LLF-JS and LHLL-JS are very similar. When we use YC

or AMM weights it can be seen that the numerical results obtained with

both flux-splittings present some more vorticity than the LLF-JS numeri-

cal results. However, the results obtained with LLF flux-splitting seem to

have some more vorticity than those obtained with LHLL flux-splitting.

In Figures 5.18 and 5.20 we show some sections to compare the

results obtained with local LF and HLL flux-splitting and JS-WENO5,

YC-WENO5 and AMM-WENO5 schemes with ε = h2. When we use a

LHLL flux-splitting the results obtained using JS-WENO5, YC-WENO5

and AMM-WENO5 schemes are very similar but the numerical solutions

obtained with YC-WENO5 scheme show an stronger oscillatory behavior.

At last, in Figure 5.21 we show the results obtained with JS-WENO9

reconstruction scheme and local LF and HLL flux-splittings. It could be

seen that the numerical solutions obtained with LHLL scheme present

more or less the same vorticity than those computed with LLF scheme.
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Figure 5.17: Results of test 5.5 for a grid of 1024× 256 cells. We show 50 contour

lines of the density obtained with a local LF and HLL flux-splitting and all the

different definitions for the WENO weights studied in this work.
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Figure 5.18: Results of test 5.5 for a grid of 1024× 256 cells. (a), (c) and (e) display

sections of the 50 contour lines of the density obtained with a local LF and HLL

flux-splitting and all the different definitions for the WENO weights studied in this

work, at pixel height 18. (b), (d) and (f) are zooms of (a), (c) and (e) respectively.
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Figure 5.19: Results of test 5.5 for a grid of 2048× 512 cells. We show 50 contour

lines of the density obtained with a local LF and HLL flux-splitting and all the

different definitions for the WENO weights studied in this work.
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Figure 5.20: Results of test 5.5 for a grid of 2048× 512 cells. (a), (c) and (e) display

sections of the 50 contour lines of the density obtained with a local LF and HLL

flux-splitting and all the different definitions for the WENO weights studied in this

work, at pixel height 36. (b), (d) and (f) are zooms of (a), (c) and (e) respectively.
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Figure 5.21: Results of test 5.5 for a grid of 1024× 256 ((a) and (b)) and 2048× 512
((c) and (d)) cells. We show 50 contour lines of the density obtained with a local LF

and HLL flux-splitting and Jiang and Shu’s WENO9 reconstruction scheme with

ε = h8.



112 5.5. Further Numerical Experiments

0 50 100 150
0

2

4

6

8

10

12

14

16

18

 

 
LLF−JS
LHLL−JS

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

 

 
LLF−JS
LHLL−JS

(a) (b)

105 110 115 120 125 130 135

6.5

7

7.5

8

8.5

9

9.5

10

10.5

 

 
LLF−JS
LHLL−JS

200 210 220 230 240 250
6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

 

 
LLF−JS
LHLL−JS

(c) (d)

20 30 40 50 60 70 80 90

6.5

7

7.5

8

8.5

9

9.5

 

 
LLF−JS
LHLL−JS

40 60 80 100 120 140 160

6.5

7

7.5

8

8.5

9

9.5

 

 
LLF−JS
LHLL−JS

(e) (f)

Figure 5.22: Results of test 5.5 for a grid of 2048 × 512 cells. (a) and (b) display

sections of the 50 contour lines of the density obtained with a local LF and HLL

flux-splitting and Jiang and Shu’s WENO9 reconstruction scheme, at pixel height

18 for a grid of 1024× 256 (a), and at pixel height 36 for a grid of 2048× 512 (b). (c),

(d), (e) and (f) are zooms of (a) and (b) respectively.



6
Well-Balanced Adaptive

Mesh Refinement for
shallow water flows

6.1

Introduction

The shallow water equations are a non-linear, hyperbolic, system of

balance laws, which are obtained from the Navier-Stokes equations by

depth averaging, after neglecting effects such as turbulence or shear

stress. This system is widely used in many applications to model flows

in river and coastal areas, and has received a lot of attention in the sci-

entific community during the last ten to fifteen years. There has been a

tremendous research effort towards the development of numerical tech-

niques for the shallow water equations. This effort is due in part to the
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many modeling applications of shallow water flows, but also due to the

specific difficulties in the numerical simulation of this system that make

the problem attractive and challenging.

On a flat bathymetry, the shallow water equations become a homoge-

neous system of conservation laws. Their solutions may develop discon-

tinuities, even when the initial flow is smooth, which requires the use of

shock-capturing schemes in order to ensure a proper handling of discon-

tinuities in numerical simulations concerning this system of equations.

The presence of a non-flat bathymetry leads to the inclusion of source

terms in the system related to the bottom geometry. It is well-known

that naive discretizations of these source terms may lead to spurious,

numerical, oscillations that can obscure, or even ruin, the real solution

that needs to be computed. This spurious numerical behavior occurs

when computing stationary, or nearly stationary, solutions, for which

the balance between the convective fluxes and the source terms associ-

ated to the bathymetry is not respected by the numerical scheme. Well-

balanced schemes [17, 47] are specifically designed in order to maintain

this balance, to machine accuracy if possible, and Well-balanced Shock-

Capturing (WBSC) schemes constitute the state of the art in the numer-

ical simulation of shallow water flows.

Robust and accurate WBSC schemes often have a high computational

cost, which is related to the incorporation of upwinding through charac-

teristic information that needs to be computed at each cell boundary in

the computational domain, high-order reconstruction procedures, and

a sophisticated numerical treatment of the bathymetry source term. In

situations of practical interest, it is highly desirable to combine a WBSC

scheme with an adaptive technique that can lower its high computational

cost in 2D simulations [15, 42, 57, 62, 76].

The efficiency of an AMR algorithm is related to the reliability of the

mesh adaption procedure, which is usually controlled by user-dependent

thresholding parameters. Good efficiency factors are obtained when the

thresholding parameter is relatively large, however, the use of an ’effi-

cient’ thresholding parameter might lead to spurious numerical behav-

ior, akin to that observed when a non-Well-Balanced (NWB) numerical

scheme is used on a uniform mesh, when computing stationary or nearly

stationary solutions to the shallow water model, even if the underlying

solver is a WBSC scheme.

In this chapter we analyze a block structured AMR technique devel-

oped in [9] and briefly recall the underlying WBSC scheme used by the

block structured AMR technique, identifying those which are potentially

responsible of the WB loss. We point out that, in addition to using a
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WBSC scheme as the underlying scheme in the AMR process, it is neces-

sary to implement Well-Balanced interpolatory techniques in the transfer

operators involved in the multi-level grid structure in order for the com-

bined AMR-WBSC scheme to maintain its well-balanced character. In

section 6.4 we describe the necessary corrections to obtain a WB-AMR

code and, in section 6.5, we show several numerical experiments that

support our discussion.

6.2

Well-balanced schemes for shallow water

flows

The shallow water system (2.24) admits stationary solutions, in which

non-zero flux-gradients are exactly balanced by the source terms. Such

solutions, along with their perturbations, are difficult to capture nu-

merically because straightforward discretizations of the source term fail

to preserve this balance. Computing these solutions is indeed a chal-

lenge and there is a large body of recent research concerning numeri-

cal techniques that incorporate the necessary balance in their discrete

design (e.g. [20, 27, 40, 42, 80, 89, 103]). Such schemes are termed

well-balanced (WB) schemes after the work of Leroux and collaborators

[47, 48]. Bermúdez and Vázquez-Cendón, in an independent work [17],

introduced the concept of the C-property. A scheme is said to satisfy the

exact C-property if it preserves exactly the ’water at rest’ stationary so-

lution. Schemes that satisfy the exact C-property are WB for quiescent

steady states.

All WBSC schemes preserve exactly the ’water at rest’ stationary solu-

tion, for which vx = vy = 0 and h+ z = C (constant). However, as we shall

see later on, the ’water at rest’ might not be exactly preserved if the same

scheme is used in a multi-scale framework. Our goal in this chapter is

to address the issue of well-balancing when a WBSC scheme is used as

the underlying solver within a block-structured AMR technique.

The numerical experiments in this chapter are carried out using a

WBSC scheme developed in [34, 80], which preserves exactly the water

at rest steady state. For the sake of completeness, we give next a brief

description of the scheme for the simpler 1D shallow water model, which
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takes the form (v = vx):




ht + (hv)x = 0

(hv)t +

(
hv2 +

gh2

2

)

x

= −ghzx.
(6.1)

If we use the notation:

u =
[
h hv

]T
, f(u) =

[
hv hv2 + gh2

2

]T
, s(x, u) =

[
0 −ghzx

]T
,

system (6.1) can be written as:

ut + f(u)x = s(x, u)

which, in turn, can be rewritten in the homogeneous form:

ut + g[u]x = 0,

where the functional g (dependent on f and s) acts on u = u(x, t) as:

g[u](x, t) = f(u(x, t))−
∫ x

x0

s(r, u(r, t)) dr.

Here x0 is a reference point in the computational domain, e.g. x0 = 0
when the latter is [0, 1]. This reformulation, first proposed in [41], al-

lows a ’unified treatment’ of the flux and the source terms, so that up-

wind numerical methods for non-homogeneous conservation laws can be

derived from well-established techniques for homogeneous conservation

laws [26, 34, 41, 80].

In [34, 80] the authors proposed a Lax-Wendroff-type finite-differences

discretization for ut + g[u]x = 0, which is hybridized with a first-order

monotone scheme through flux-limiting techniques. The scheme applied

to the exact solution u(x, t) can be expressed as follows:

un+1
i = uni −

∆t

∆x
(Gn

i+ 1
2
− Gn

i− 1
2
) (6.2)

where Gi+ 1
2

are hybrid numerical fluxes for g[u]. The scheme follows the

finite-difference framework, so that its design makes use of the quantities

gni := g[u](xi, tn) = f(u(xi, tn))−
∫ xi

x0

s(r, u(r, tn))dr.

It is shown in [34, 80] that the flux difference Gn
i+ 1

2

− Gn
i− 1

2

in (6.2) can be

written as a sum of terms which contain the quantities ∆gn
i± 1

2

∆gn
i+ 1

2
:= gni+1 − gni = f(u(xi+1, tn))− f(u(xi, tn)) + bni,i+1,
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where

bni,i+1 = −
∫ xi+1

xi

s(r, u(r, tn))dr. (6.3)

Hence, to get a fully discrete numerical method one needs to approx-

imate the integral in (6.3) by some appropriate quadrature rule, which

provides an approximation b̂ni,i+1 ≈ bni,i+1. Then,

∆̂gn
i+ 1

2

:= f(uni+1)− f(uni ) + b̂ni,i+1

approximates ∆gn
i+ 1

2

.

As observed in [34, 80], exact preservation of a stationary solution is

obtained if the approximation b̂ni,i+1 ≈ bni,i+1 is exact for that solution. In

fact, if one takes a stationary solution u that satisfies f(u(x))x = s(x, u(x))
or, equivalently g[u]x = 0, then gni = g[u](xi, tn) is constant ∀i.

If b̂ni,i+1 = bni,i+1, this immediately gives that

∆̂gn
i+ 1

2

= ∆gn
i+ 1

2

= gni+1 − gni = 0, ∀i, n,

which implies that un+1
i = uni , ∀i, n. Hence, the scheme preserves exactly

the stationary solution u(x) iff b̂ni,i+1(u(x)) = bni,i+1(u(x)).

For the shallow water equations, suitable b̂ni,i+1 can be defined to get

exact preservation of the water at rest stationary solution, via an appro-

priate definition of the integral in (6.3), see [7, 80]. The exactness of b̂ni,i+1

relies heavily on the scheme being based on point-values. The resulting

scheme follows the finite-difference framework and is formally second

order accurate on smooth regions. The WB character of the scheme is

a consequence of the hybridization procedure on g[u] above, which leads

to hybrid fluxes for the convective terms and a specific upwinding of the

source terms compatible with it. More details on the scheme and its per-

formance when applied to the shallow water equations can be found on

the literature, e.g, [7, 34, 80].

6.3

Adaptivity: Block-structured AMR

The expected computational cost of explicit schemes for balance laws

in d-dimensional simulations on uniform meshes is O(Nd+1), with N =
1/∆x, and the storage requirements are O(Nd). The running time of a
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multidimensional simulation can, hence, be quite large for simulations

on uniform meshes with ∆x relatively small, which might be necessary

in order to guarantee a certain, prescribed, accuracy in the simulation.

Because of the hyperbolic nature of the system of balance laws, nu-

merical errors on uniform meshes are not uniformly distributed. Larger

errors occur at discontinuities, whereas much smaller errors occur at

smooth regions, hence adaptive schemes, that incorporate refinement

only where higher errors occur, are appropriate, and often absolutely

necessary, for multidimensional simulations and high precision needs.

There are various approaches to achieve this goal [8, 10, 29, 82]. In this

chapter we use the (block-structured) Adaptive Mesh Refinement frame-

work, proposed in [16] for finite-volume schemes and extended by many

authors (e.g. [10, 14, 87]), which we briefly review next.

Block-structured AMR algorithms compute the time evolution of a

multi-scale representation of the solution, based on a hierarchical sys-

tem of grids G0, . . . , GL. For simplicity of the exposition, we assume that

the computational domain is Ω = [0, 1]d. The coarsest grid, G0, is a uni-

form mesh, while at higher resolution levels, the computational cells are

obtained from a uniform subdivision of some of the cells in the immedi-

ately coarser level. Specifically, assume that the coarsest grid is obtained

by subdividing the unit interval in each dimension into N0 subintervals,

so that a coarse cell is given by

c0j =

d∏

k=1

[jkh0, (jk + 1)h0], j ∈ G0 := {1, . . . , N0}d, h0 =
1

N0
.

If each refinement level is obtained by bisecting each cell of the immedi-

ately coarser level, a cell at refinement level l is given by:

clj =
d∏

k=1

[jkhl, (jk + 1)hl], j ∈ Gl ⊆ {1, . . . , Nl}d,

hl =
1

Nl
, Nl = 2lN0.

The extent of Gl, i.e. the union of the cells indexed by elements of Gl,

is denoted by Ωl(Gl):

Ωl(Gl) =
⋃

j∈Gl

clj .

At the coarsest level, it is required that Ω0(G0) = Ω. At higher resolution

levels, Ωl(Gl) is formed by a set of disjoint uniform patches composed of
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cells at resolution l . Only nested grid hierarchies are considered, i.e.,

Ωl(Gl) ⊆ Ωl−1(Gl−1) for 1 ≤ l ≤ L is assumed to hold.

For the sake of illustration, we consider the 1D framework, with Ω =
[0, 1] as the computational domain. The coarsest mesh G0 is given by a

uniform partition of [0, 1], composed by N0 subintervals of length h0 =
1/N0. A mesh Gl at resolution level l can be identified as a subset of the

index set {0, . . . , Nl}, where Nl = 2lN0. The cells at resolution level l are

sub-intervals of length h0/2
l. Figures 6.1 and 6.2 show samples of grid

hierarchies that do and do not satisfy the nestedness requirement.

Figure 6.1: Nested mesh refinement. N0 = 3, L = 3. Every patch of cells is

contained in a patch at the previous level.

Figure 6.2: Non-nested mesh refinement. N0 = 3, L = 2. For l = 2 the first

patch of cells is not contained in any patch at the previous level.

At a given time, t, and resolution level, l, we have a multi-scale nu-

merical solution utl = (utl,j)j∈Gt
l
, where Gt

l is the mesh at resolution level
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l and time t and utl,j is the data attached to some point xlj ∈ clj (may be

the center or an edge of the cell) at time t. The AMR algorithm specifies

the time evolution of the multi-scale numerical solution and the associ-

ated hierarchical grid system. Each mesh on this system is dynamically

updated so that the entire hierarchical structure adapts to the features

of the associated multi-scale numerical solution at each step of a time-

evolution procedure, from time t = 0 to time t = T > 0.
We briefly describe next the main building blocks of the AMR algo-

rithm. We emphasize those aspects that are relevant for the analysis in

this chapter. A more complete description of the algorithm can be found

in [10].

6.3.1

Flow Integration

In order to advance the multi-scale solution from time t to time t+△t0, ∆t0
must be a suitable time step for the coarsest grid, so that the following

CFL condition relevant for the grid Gt
0 is satisfied:

∆t0 =
Ch0

maxu∈U t |f ′(u)| , 0 < C ≤ 1,

where U t = (utl,j)j∈Gt
l
, l = 0, . . . , L. As described in [10, 87], an adaptive

time-stepping strategy must be used, in order to avoid unnecessary re-

strictions on the time step used on the coarsest grids (i.e. C = O(1)).
Here, the corresponding time step for the evolution of patches in Gl is

given by ∆tl = ∆tl−1/2 = ∆t0/2
l, which implies that the equivalent CFL

condition holds automatically for Gl, but also that a time step for G0 cor-

responds to 2l time steps for Gl. The grids are integrated from coarse

to fine in a sequential fashion, according to the order dictated by the

following condition: tl′ ≤ tl ≤ tl′ + ∆tl, if l ≤ l′. For L = 2, the evolution

sequence from ut = (ut0, u
t
1, u

t
2) to ut+∆t0 = (ut+∆t0

0 , ut+2∆t1
1 , ut+4∆tl

2 ) would be

computed in 5 steps, ordered as shown in Figure 6.3.

At resolution level l, Gl is composed by a set of uniform, disjoint

patches, where a patch is

d∏

k=1

{mk,mk+1, . . . , nk}.

Each patch at a given resolution level must have been surrounded by a

sufficiently wide layer of ghost cells (2 cells in our code), which are given
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Step 1 ut0 → ut+∆t0
0

Step 2 ut1 → ut+∆t1
1

Step 3 ut2 → ut+∆t2
2 → ut+2∆t2

2

Step 4 ut+∆t1
1 → ut+2∆t1

1

Step 5 ut+2∆t2
2 → ut+3∆t2

2 → ut+4∆t2
2

Figure 6.3: Integration process for L = 2 from time t to time t+∆t0.

appropriate flow information prior to the application of the numerical

scheme to the patch. Then, one step of the time evolution of a given

patch at resolution level l can be done by a single call to the main solver,

in this case a WBSC scheme.

For the integration from time t to t + ∆tl, the data at the ghost cells

is obtained by spatial interpolation from (utl−1, Gl−1). On the other hand,

for the integration from time t + ∆tl to t + 2∆tl, the boundary data is

obtained by applying first a linear interpolation in time from (utl−1, Gl−1),

(u
t+∆tl−1

l−1 , Gl−1), and then the usual spatial interpolation operator.

It should be noticed that this procedure leads to several numerical

representations of the solution on areas covered by overlapping grids

at consecutive resolution levels. In particular, since 2∆tl = tl−1, once

(ut+2∆tl
l , Gl) is computed we have also some data coming from (u

t+∆tl−1

l−1 , Gl−1)
filling the same region in space. At this point, a projection operator, to

be discussed later on, needs to be applied in order to provide data that

is consistent throughout the multiresolution hierarchy.

6.3.2

Adaptation

The grids corresponding to the various levels Gl, 1 ≤ l ≤ L have to be

constructed according to the characteristics of the flow at the current

time. The main goal of the process is to ensure that discontinuities that

are initially covered by a grid at a given resolution level, continue being

covered at the same resolution at later time, as long as the discontinuity

persists. On the other hand, the refinement procedure should detect

newly generated discontinuities as they are forming. The adaptation at

each refinement level is performed by discarding the current grid and
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creating a new one according to specified refinement criteria. In this

way, coarsening is not directly performed on refined areas, but implicitly

obtained by not refining.

The refinement criteria are based on thresholding of interpolation er-

rors and discrete gradients (see [8] for more details). A cell at level l < L,

cli, is selected for refinement if

∣∣∣utl+1,j − I
(
utl , x

l+1
j

)∣∣∣ > τ · max
q<L,s

∣∣utq+1,s − I
(
utq, x

q+1
s

)∣∣ ,

for some j ∈ Gl+1 such that jk ∈ {2ik, 2ik + 1}, k = 1, . . . , d (i.e., xl+1
j ∈

cli), where the thresholding parameter on relative interpolation errors,

denoted by τ in this work, is user/problem dependent.

Furthermore, we also include cli, l ≤ L, in the refinement list if the

max-norm of the discrete gradient exceeds some large threshold (10 in

our experiments), so that shock formation can be detected from steep-

ened data. For the discrete gradient we use the approximation

∂u

∂xm

(
xli, t

)
≈ 1

hl
max

{∣∣utl,i+em − utl,i
∣∣,
∣∣utl,i − utl,i−em

∣∣},

where em,k = δm,k.

Once a new grid-patch is constructed the solution on this patch is

updated by copying from existing data, or by spatial interpolation from

coarser grid data [10, 93].

6.3.3

Interpolation and projection

The transfer of information between grids is carried out by two opera-

tors: Interpolation, which is used in order to generate data at a given

resolution level (ghost cell data prior to integration and new data, after

refinement takes place) and Projection, which is used in order to enforce

consistency between data at different resolution levels. The definition

of the projection operator is related to the multi-scale framework used,

which we briefly recall next in the 1D case.

The cell-average setting

We may consider the data to be attached to the points xlj = (j + 1/2)hl.
Since (xl2j + xl2j+1)/2 = xl−1

j , this corresponds to the so-called cell-average

multiresolution setting (see [29, 50] and references therein). This setting
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is used when the underlying shock-capturing scheme is a finite-volume

scheme, since the numerical solution is, then, naturally associated to the

cell-averages of the true solution. For any L1 function, u(x), the relation

between its cell-averages at consecutive resolution levels also satisfies

(ul,2j + ul,2j+1)/2 = ul−1,j.

The canonical definition of the projection operator in the (1D) cell-

average setting is as follows (see e.g. [50]): for each j such that 2j ∈ Gl

we recompute

u
t+△tl−1

l−1,j ← [P (ut+2∆tl
l )]j =

ut+2∆tl
l,2j + ut+2∆tl

l,2j+1

2
(6.4)

The point-value setting

On the other hand, we may consider instead the data attached to the

points xlj = jhl, which corresponds to the point-value setting [50], since

now xl2j = xl−1
j . This setting is linked to finite-difference schemes, like

the so-called Shu-Osher numerical schemes for hyperbolic conservation

laws, whose numerical solutions are naturally interpreted as approxima-

tions to the point-values of the true solution.

In the (1D) point-value framework projection is just given by copying

[50],

u
t+△tl−1

l−1,j ← [P (ut+2△tl
l )]j = ut+2∆tl

l,2j ,

since xl−1
j = xl2j.

6.4

Well-balanced AMR

Our goal is to obtain an adaptive mesh refinement algorithm that pre-

serves at least a class of stationary solutions. Based on the above de-

scription, it seems necessary to require that its components (single grid

solver, but also interpolation and projection), should also preserve the

selected steady states. We recall that in the adaptation step, new values

of the numerical solution are created by interpolation from a lower reso-

lution level. Obviously, if a steady state, such as the ’water at rest’, is to

be maintained, these new values should comply with the ’water at rest’

conditions. Also, numerical values are produced by space and space-

time interpolation at ghost-cells, and the new values produced should

also comply with the steady state conditions which we seek to preserve.
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In fact, as we shall see in section 6.5, if the interpolation and/or pro-

jection operator do not comply with this requirement, the AMR algorithm

will not preserve stationary solutions in the same sense as the basic

WBSC scheme, which is a fact that is never explicitly mentioned in [57,

62], where adaptive techniques, in combination with WBSC schemes,

are also applied to shallow water models. A similar approach as the one

proposed in this chapter may be found in [73] in the cell-average frame-

work. Since the numerical oscillations induced by a non-WB interpo-

lation /projection operator are only observed near stationary solutions,

the need for this requirement may have been unnoticed, in particular if

only moving water experiments were performed.

We examine next the necessary conditions to be imposed on the pre-

diction and interpolation operators in order to enforce preservation of the

’water at rest’ stationary solution. As usual, and for the sake of clarity,

the description will be carried out in the 1D framework.

Let us assume that we use a WBSC scheme that preserves exactly

at least the ’water at rest’ steady state as the basic solver. Then, at

each step of the time evolution for a given patch, we have that whenever

i, j ∈ Gl

htl,j + zl,j = htl,i + zl,i = C → ht+∆tl
l,j + zl,j = ht+∆tl

l,i + zl,i, (6.5)

where zl = (zl,j)j∈Gl
is an appropriate discretization of the bathymetry at

the l-th level of resolution.

The projection operator preserves well-balancing iff whenever i, j ∈
Gl−1

[P (ht+2△tl
l )]j + zl−1,j = [P (ht+2△tl

l )]i + zl−1,i (6.6)

6.4.1

Well-balanced Projection in the cell-average setting

As mentioned previously, the canonical definition of the projection oper-

ator in the cell-average setting is as follows: for each j such that 2j ∈ Gl

we recompute

u
t+△tl−1

l−1,j ← [P (ut+2△tl
l )]j =

ut+2∆tl
l,2j + ut+2∆tl

l,2j+1

2
(6.7)

Hence, dropping the time for the sake of simplicity, relation (6.6) be-

comes
1

2
(hl,2j+1 + hl,2j) + zl−1,j =

1

2
(hl,2j+3 + hl,2j+2) + zl−1,j+1
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which, taking into account (6.5) is equivalent to

1

2

(
zl,2j+2 + zl,2j+3 − (zl,2j + zl,2j+1)

)
= zl−1,j+1 − zl−1,j

hence, the prediction operator in the cell-average setting can only be

well-balanced if the discretization of the bathymetry along the different

resolution levels follows the cell-average framework, i.e.

zl−1,j =
1

2
(zl,2j + zl,2j+1)

Remark 1. The cell-average projection (6.4) is not well-balanced if the

discretization of the bathymetry at each resolution level is obtained in a

point-value manner, i.e. considering zl,j = z(xlj) when xlj = (j + 1/2)hl,
unless very special (e.g. linear) z are considered.

Remark 2. We note that the projection operator (6.7) maintains conserva-

tion in the homogeneous case (no source terms). For homogeneous con-

servation laws, the use of a conservative scheme at each resolution level

ensures that the values obtained immediately after the application of a

single integration step satisfy

∑

j∈Gl

utl+∆tl
j =

∑

j∈Gl

utlj

If utll−1,j =
u
tl
l,2j+u

tl
l,2j+1

2 , then this consistency is maintained after application

of the projection step, i.e.

∑

j∈Gl−1

u
tl−1+∆tl−1

j =
∑

j∈Gl−1

u
tl−1

j

see [8].

6.4.2

Well-balanced Projection in the point-value setting

In the point-value framework, the projection operator is just given by

copying

ut+2∆tl
l−1,j ← [P (ut+2△tl

l )]j = ut+2∆tl
l,2j .

In this framework, (6.6) becomes

hl,2j + zl−1,j = hl,2j+2 + zl−1,j+1
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which, taking into account (6.5) is equivalent to

zl,2j+2 − zl,2j = zl−1,j+1 − zl−1,j

Hence, the prediction operator in the point-value setting is well-balanced

if the discretization of the bathymetry along the different resolution levels

follows the point-value framework, i.e.

zl−1,j = zl,2j ,

which is ensured when using the following assignment:

zl,j = z(xl,j).

Remark 3. We note that, in the homogeneous case, discrete conservation

on coarser grids cannot be ensured for this projection operator. On the

other hand, in the AMR context no adverse effects have been observed

when this projection operator has been implemented [93]. Our own experi-

ence for balance laws supports this evidence.

6.4.3

Well-balanced interpolation

The interpolation operator in the AMR algorithm is constructed using

piecewise polynomial interpolatory techniques. Linear interpolation is

used for the generation of ghost-cells by space-time interpolation, but

higher order polynomial pieces might be used for space interpolation. In

any case, the interpolation operator within the AMR algorithm is always

used in the following general context: Data at level l − 1 is known, say

ul−1, and a piecewise polynomial function is constructed in order to gen-

erate new data by evaluation of a polynomial, specifically constructed to

comply with the requirements of the multi-scale framework considered,

i.e.

I(ul−1, x
l
k) = pj(x

l
k)

where pj(x) is the polynomial piece corresponding to the j−th computa-

tional cell, which is the cell at level l − 1 that contains xlk.

Let us consider, for example, the space interpolation used when fill-

ing data at a newly created patch, in the adaptation step of the AMR

algorithm, and assume that a WBSC scheme, which maintains exactly

the water at rest steady state, has been used to determine the solution at
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time t so that (dropping the t superscript for simplicity) the data available

at resolution level l − 1 satisfies

hl−1,i + zl−1,i = hl−1,j + zl−1,j = C, ql−1,j = 0, i, j ∈ Gl−1,

and

hl,i + zl,i = hl,j + zl,j = C, ql,j = 0, i, j ∈ Gl.

To ensure that the water at rest conditions hold for the data generated

through the interpolation process, we propose to apply the interpolatory

technique on the data obtained from the equilibrium variables for the

water at rest steady-state,

V (x, [h, q]) = [h+ z(x), q]

For ’water at rest’ solutions, Vl−1 = [hl−1 + zl−1, ql−1] = [C, 0], hence any

piecewise polynomial interpolatory technique that preserves constants

will lead to

I(Vl−1, x
l
j) = [C, 0].

Then, the space interpolation is implemented as follows

ûtl,j = [htl,j , q
t
l,j] =

{
I(V t

l−1, x
l
j)− [zl,j , 0] if j ∈ Ĝt

l \Gt
l ,

utl,j if j ∈ Gt
l ,

where Ĝt
l is the adapted grid resulting from Gt

l . This well-balanced inter-

polation is related to hydrostatic reconstruction [5] (see also [21, 37] for

other recent approaches).

In order to preserve the ’water at rest’ stationary solution, the inter-

polation operator involved in the transfer of information between levels

should act on the so-called equilibrium variables for the ’water at rest’

steady state, V = [h+ z, q]. For the one-dimensional shallow water equa-

tions, a general stationary solution u(x) for which f(u)x = s(x, u) is char-

acterized by the equilibrium variables:

V (x,
[
h, q

]
) =

[
(q/h)2

2 + g(h+ z(x)), q
]
.

In order to preserve general stationary solutions a similar technique

could be employed, i.e. the interpolation procedure should be applied on

the equilibrium variables for the steady state to be preserved.

If we suppose that V (x, ·) is bijective onto some relevant range then

we could define an interpolator that preserves equilibrium variables by:

Ĩ((ui);x) = V (x, ·)−1(I((Vi);x)), Vi = V (xi, ui).
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For the shallow water system, V (x, ·) is not injective in general. There-

fore, to preserve the maximum number of stationary solutions it is nec-

essary to decide what is the regime of the stationary solution to be found

(subcritical, transcritical or supercritical) in order to choose the adequate

branch of the inverse V (x, ·)−1 in the definition of the interpolation pro-

cedure. There are several works addressing this problem. For example,

in [20] Bouchut and Morales only preserve the subcritical stationary so-

lutions while Castro et al. in [32] and Noelle et al. in [84] introduce

different techniques to locate singularities in the solution and choose

the adequate branch of the inverse in each case.

The Well-Balanced interpolatory technique can be made positivity pre-

serving by considering instead

Ĩ((ui);x) =P
(
V (x, ·)−1

(
I((Vi);x)

))
, Vi = V (xi, ui), ui ∈ R2

P (
[
h, q
]
) =

[
max(h, 0), q

]
.

Thus, the proposed space interpolation should be implemented as

follows

ûtl,j =

{
Ĩ(utl−1, x

l
j) if j ∈ Ĝt

l \Gt
l ,

utl,j if j ∈ Gt
l .

6.5

Numerical results

In this section we perform a series of numerical tests that intend to show

the effects of incorporating a WB interpolatory technique in the transfer

operators. The results in this section are obtained with an AMR code

based on the code used in [8, 10]. Here we use a point-value-based grid

hierarchy, instead of the cell-based grid hierarchy used in [8, 10]. The in-

terpolation operator used for the transfer of information between levels is

cubic in our experiments. A non-WB scheme results if the interpolatory

technique is applied directly on the variables (h, q). Neumann boundary

conditions are used at the domain boundary.

In this section the gravity acceleration is set to 9.812 and the CFL

number is set to 0.6 for the one-dimensional simulations and to 0.4 in the

two-dimensional setting.
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6.5.1

Stationary and Quasi Stationary Flows

We consider first the case of steady-state and quasi-steady-state flow.

The following tests demonstrate that the use of Well-Balanced interpola-

tion operators is essential in order to maintain the exact C-property in

the numerical solution computed with the AMR code.

Test 6.1. Water at rest over an irregular topography

The following test case was proposed in a workshop on dam-break

wave simulation [46]. The initial data are a non-smooth bottom topogra-

phy, tabulated in [46] and shown in Figure 6.4, and the water at rest at

a level of 12 m. The boundary conditions are a water level of 12 m and

no discharge. This data is taken as in [26], Section 4.1.1.

In Figure 6.4, we show the water height at T = 200 obtained with the

WB-AMR code with N0 = 50, L = 7 (i.e. eight levels with N7 = 6400),
for a threshold parameter τ = 10−2. The bottom topography and the

grid patches active at each resolution level at the time of the simulation

are also shown. Table 6.1 confirms that the steady state solution is

maintained up to machine precision.

On the other hand, if the WB interpolation is not implemented in

the transfer operators of the AMR code, numerical errors do occur. The

effects of a rough thresholding parameter, τ , can readily be appreciated

in Figure 6.5. The results in Table 6.1 and Figure 6.5 show that the

loss of the exact C-property when using a non-WB interpolation in the

transfer operators is analogous to that observed when using a high-order

non-WB scheme on a similar mesh.

interp type WB NWB WB NWB WB NWB

L=5 7.1e-15 6.8e-3 7.1e-15 3.9e-4 8.8e-15 8.8e-15

L=7 2.8e-13 9.4e-3 1.6e-14 5.3e-4 1.2e-14 4.9e-5

thresholding τ =1e-2 τ =1e-3 τ =1e-4

Table 6.1: Steady state over rough topography test (N0 = 50). Errors ||h+z−12||∞.

For τ = 10−4, the adaptive patches cover the entire computational domain for

L = 5, but not for L = 7.

Test 6.2. Two-Dimensional Steady Flow
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Figure 6.4: Stationary flow over rough topography. T = 200, τ = 10−2, N0 = 50,

L = 7, (N7 = 6400) with WB interpolation in the transfer operators.
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(a) (b)

Figure 6.5: Same set-up and conditions as in Figure 6.4 with regular (non WB)

interpolation in transfer operators of AMR code. (a) L = 7 and (b) L = 5
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To test the C-property in a 2D setting we consider a test proposed in

[71].

The initial conditions correspond to water at rest with a total height

of 1 and a smooth bottom topography displayed in Figure 6.6. The com-

putational domain is the unit square and we have used τ = 10−1, N0 = 25
and 4 levels (L = 3, N3 = 200).

Table 6.2 shows the errors with respect to the steady state solution at

T = 1.0 . As in the previous example, the use of a non-WB interpolation

in the transfer operators of the AMR code leads to the loss of the exact

C-property. In Figures 6.6 and 6.7 we display the approximation to the

’water at rest’ surface obtained using the AMR scheme with and without

well-balanced interpolation respectively, in order to show the numerical

oscillations present in the simulation without well-balanced interpola-

tion.

interp type WB NWB WB NWB

||h+ z − 1||∞ 6.38e-14 3.3e-2 6.04e-14 7.1e-3

||vx||∞ 2.0e-13 5.8e-2 1.4e-13 2.86e-2

||vy ||∞ 3.0e-13 6.09e-2 2.3e-13 2.45e-2

thresholding τ =1e-1 τ =1e-2

Table 6.2: 2D-water at rest over smooth topography. Computational results at

T = 1.0. N0,x = N0,y = 25, L = 3.

Test 6.3. Quasi Stationary Flow over smooth topography

The following test, proposed by R. LeVeque in [71], has become a

standard test for evaluating the capability of a numerical scheme to ac-

curately compute small perturbations of ’water at rest’ flows over non-flat

topographies. The (smooth) bottom topography is given by the following

function,

z(x) =

{
0.25(cos (π(x− 0.5)/0.1) + 1) if |x− 0.5| < 0.1,

0 otherwise

and the initial conditions are q = 0 and

h(x) =

{
1− z(x) + ε if 0.1 < x < 0.2,

1− z(x) otherwise.

Here, we shall consider ε = 10−3.
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Figure 6.6: Bottom topography and computed water-surface using the AMR

scheme with WB interpolation in 2D ’water at rest’ test.

Figure 6.7: Computed water-surface using the AMR scheme without WB interpo-

lation.
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We consider first N0 = 50 and three levels (L = 2, N2 = 200), which

is a rather coarse final mesh. In addition, we consider τ = 10−1, which

is a refinement threshold much larger than the initial perturbation, and

τ = 10−3, i.e. a threshold of the order of the perturbation itself. The

numerical results at T = 0.224 are shown in Figure 6.8.

The simulation shows that the WB-AMR code produces an approxi-

mate solution that allows for a reasonable representation of the evolu-

tion of the initial perturbation when τ = 10−1. On the other hand, the

numerical approximation obtained with the NWB-AMR code for this large

value of the threshold parameter displays a numerical perturbation sim-

ilar to those obtained with non-WB schemes. For τ = 10−3, the difference

between the numerical solutions computed with the WB-AMR and NWB-

AMR codes is well below 10−4.

(a) (b)

Figure 6.8: Quasi Stationary Flow over smooth topography with N0 = 50, L = 2
(N2 = 200) and (a) τ = 10−1, (b) τ = 10−3. The grid hierarchies of the WB and non

WB data are very similar, so, for simplicity, we have displayed their merging.

Test 6.4. Quasi Stationary Flow over rough topography

With the same bottom topography as in Test 6.1, we consider now a
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slight perturbation of the steady state h+ z = 12, as follows

η(x) = h(x) + z(x) =

{
12.01 x ∈ [680, 720]

12 otherwise

and v(x) ≡ 0. For this simulation, we use N0 = 50, L = 5, so that N5 = 800,
and τ = 10−2. In Figures 6.9 and 6.10 we compare the approximated

solutions obtained with N0 = 800, L = 1 (single-grid solution) with those

obtained with the AMR code with and without WB interpolations in the

transfer operators.

Again, the lack of WB interpolation in the transfer operators leads

to oscillations, that are of the same order as the moving perturbations,

hence displaying the typical behavior of a non-WB approximation.

6.5.2

Rapidly varying flow in 1D and 2D

The well-balancing of the transfer operators is not a crucial issue when

computing numerical solutions of rapidly moving shallow water flow.

This might explain why the issue of WB interpolation in the inter-level

transfer operators has not been discussed in previous works. The fol-

lowing tests illustrate the performance of the AMR technique for rapidly

moving flows. In these cases, there are no significant differences between

the WB-AMR and non-WB-AMR results.

Test 6.5. Dam break over a square bump bottom topography

This test involves a rapidly varying flow over a discontinuous bottom

topography, see e.g. [26] for details. The initial conditions are q = 0 and

h(x) =

{
20 − z(x), x ≤ 750

15 − z(x), otherwise

The bottom topography is given as

z(x) =

{
8, |x− 750| ≤ 1500/8

0, elsewhere,

where 0 ≤ x ≤ 1500.

In Figures 6.11 and 6.12 we display the computed water level at T =
15 and T = 60, together with the bottom topography. Figure 6.11 shows
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(a) (b)

(c) (d)

Figure 6.9: Temporal evolution of the perturbation of the steady state in Figure

6.4. N0 = 50, L = 4, (N4 = 800), τ = 10−2, T = 1 (a) and T = 2 (c). (b) and (d) are

enlarged views of (a) and (c) respectively. The grid hierarchies of the WB and non

WB data are very similar, so, for simplicity, we have displayed their merging.
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(a) (b)

Figure 6.10: Temporal evolution of the perturbation of the steady state in Figure

6.4. N0 = 50, L = 4, (N4 = 800), τ = 10−2 and T = 5. (b) is an enlarged view

of (a). The grid hierarchies of the WB and non WB data are very similar, so, for

simplicity, we have displayed their merging.
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also the grid patches active (at that time) at each resolution level. For this

test, we have used τ = 10−2, N0 = 50, and eight levels (L = 7, N7 = 6400).
We readily observe that the AMR technique is able to identify cor-

rectly the discontinuities in the flow variables. In Table 6.3, we display

the difference between the AMR solution and a reference solution com-

puted by the single-grid algorithm on a very fine mesh. As expected, the

error is lower than the chosen tolerance. The CPU speedup of the AMR

computation is ≈ 17.36.

(a) (b)

Figure 6.11: Dam Break over a discontinuous topography with N0 = 50, L = 7,

τ = 10−2 and (a) T = 15 and (b) T = 60s. We display the water surface and

multilevel grids structure.

Test 6.6. Circular Dam-Break Problem

This test, proposed in [27], simulates a circular dam break problem

over a non-flat topography. The domain is the square [0, 2] × [0, 2] with

outflow boundary conditions.

In Figure 6.13 we display the numerical results for the WB-adaptive

scheme at T = 0.15 and T = 0.25. In Figure 6.14 we show the multilevel
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(a) (b)

Figure 6.12: Zoom of the approximations in Figure 6.11. (a) T = 15 and (b) T = 60s.

interp type WB NWB

||h− hfixed||1 2.77e-3 2.77e-3

||v − vfixed||1 2.74e-3 2.74e-3

Table 6.3: Dam break errors. In this case (hfixed, vfixed) is a reference solution

computed with N = 12800 points.
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grid structure for a simulation with L = 4 and in Figure 6.15 a longitu-

dinal section at y = 1 of h and a longitudinal section at y = 1 of q1 = uxh
at time T = 0.15, which allow for a direct comparison with [27, 80] . The

CPU speedup when using L = 2 (Figure 6.13) is 3.26 while using L = 4
(Figure 6.14) it is 9.57. As mentioned before, there is no noticeable differ-

ence between the solutions computed with the WB-AMR code and those

obtained with the non-WB-AMR code for this test.
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(a) (b)

(c) (d)

Figure 6.13: Circular Dam-break problem with N0 = 25, L = 2, (N2 = 100), τ = 10−1

and (a) T = 0.15 (c) T = 0.25. (b) and (d) are slices of the channel at y = 1
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(a)

(b)

Figure 6.14: Multi-level grid structure for the Circular Dam-break problem at times

(a) T = 0.15 and (b) T = 0.25. Here L = 4, and τ = 10−1.
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(a) (b)

(c) (d)

Figure 6.15: Circular Dam-break problem: (a) and (b) are a longitudinal section

at y = 1 of h. (c) and (d) are a longitudinal section at y = 1 of q1 = uxh at time

T = 0.15.
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7
Conclusions and further

work

7.1

Conclusions

In this work we have considered a high-order shock-capturing scheme

built from Shu-Osher’s conservative scheme, Lax-Friedrichs’ flux-splitting

method, a fifth-order WENO interpolatory technique and a third-order

Runge-Kutta algorithm and we have introduced some improvements to

some of its elements.

In first place, we have analyzed the Weighted ENO reconstructions

proposed by Yamaleev and Carpenter in [104], showing that the WENO

method with Yamaleev and Carpenter’s weights has worse order of ac-

curacy near discontinuities than the corresponding WENO method with

Jiang and Shu’s weights, fact that is reflected in the numerical experi-
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ments as some oscillations that may appear near discontinuities.

To alleviate the problem of loss of accuracy at extrema while retaining

maximal-order weights near discontinuities, we have proposed a new set

of weights based on Yamaleev and Carpenter’s weights. We have proved

that, near discontinuities, the order of accuracy with these weights is

better than the order of accuracy achieved with Yamaleev and Carpen-

ter’s weights and that the oscillations obtained in the approximated so-

lutions using Yamaleev and Carpenter’s weights diminish considerably

when we use the newly proposed weights.

Secondly, we have presented a comparative study of different strate-

gies to reduce diffusion and spurious oscillations when using HRSC

component-wise finite-difference WENO schemes for polydisperse sed-

imentation problems. On the one hand we have analyzed two flux-

splitting methods: the commonly used Lax- Friedrichs’ flux-splitting and

the HLL flux-splitting, which allows an asymmetric choice of the wave

speeds of each of the two terms of the flux-splitting. We have tested the

algorithm with several experiments and we have seen that a local HLL

flux-splitting improves the results obtained with global Lax-Friedrichs

flux-splittings.

On the other hand we have studied different weight’s design for the

fifth-order WENO scheme to reduce spurious oscillations caused by the

reconstruction method. We have focused our study on the global weights

defined by Levy, Puppo and Russo in [74, 75] and we have seen that when

using these weights instead of Jiang and Shu’s weights the spurious

oscillations may be reduced in some cases.

Finally, we have studied Adaptive Mesh Refinement algorithms ap-

plied to realistic simulations involving shallow water flows. We have com-

bined the HRSC scheme with the AMR technique, developed by Berger et

al., and we have seen how these techniques can be merged together to

build up a highly efficient numerical method.

We have shown that, even when the underlying scheme is well-balanced,

the numerical solution obtained when implementing block-structured

AMR techniques for shallow water flows, will fail to satisfy the exact C-

property if the operators that are in charge of transferring information

between levels are not well-balanced themselves.

We have pointed out some of the difficulties for getting finite-volume

well-balanced adaptive mesh refinement schemes for the shallow wa-

ter equation, and we have presented a technique for obtaining point-

value-based adaptive mesh refinement schemes for shallow water flow

which are well-balanced for water at rest solutions, provided the under-

lying scheme is so. Our technique is based on interpolating the equilib-
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rium variables, instead of the state variables, as in the original block-

structured AMR technique [9].

We have performed a series of numerical tests, taking as the underly-

ing well-balanced scheme the hybrid second-order scheme described in

[34, 80], that confirm that the proposed AMR technique is able to pre-

serve, up to machine accuracy, water-at-rest steady state solutions of

the shallow water equations in 1D and 2D.

7.2

Further work

As future research, we are working on improving the efficiency of the

HRSC scheme for polydisperse sedimentation models. We know that

when solving hyperbolic systems of conservation laws, non-smooth struc-

tures might appear spontaneously and evolve in time. Typical solutions

for the polydisperse sedimentation model considered for batch settling

in a column include stationary kinematic shocks separating layers of

sediment of different composition, as we have seen throughout the ex-

periments carried on this thesis. Analyzing this special structure of the

solutions, it is easy to see that the solution is over-resolved in regions

where the solution is smooth. Consequently, we can improve the compu-

tational cost of the scheme, while maintaining its high-order properties,

if we use expensive resources only at a neighborhood of a singularity.

With this idea on mind, we are developing a hybrid scheme, not adap-

tive, that uses the characteristic information only on a neighborhood of

a discontinuity, while uses a component-wise approach when we are lo-

cated on a smooth region. Some more effort could be invested on the use

of adaptive schemes to these models.

We are also analyzing the advantages of the use of a HLL flux-splitting

and the different definition of the weights studied in this thesis on a

characteristic-wise scheme.

In the case of the simulations involving shallow water flows, we are

working on the parallelization of the code, needed because of the high

computational cost of some problems, especially 2D realistic experiments,

and its extension to deal with dry zones. We are also exploring the pos-

sibility of getting an adaptive scheme that preserves more stationary so-

lutions if the underlying scheme does so.
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