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Introducci6

Aquest treball esta composat per dos estudis teorics i un experimental.
En tots s’utilitza la teoria de jocs per a modelar la interaccié estratégica
dels agents economics que prenen part en ells i analitzar i caracteritzar
les estrategies d’equilibri en els jocs, i en dos d’ells s’utilitzen estructures
de xarxa per a especificar les seues inter-relacions. A més, en un s'u-
tilitza la Economia Experimental per obtenir dades empiriques sobre el

comportament de les persones a qui se’ls presenta el joc.



2 Introduccio

Resum

Capitol 1: Conflict and segregation in networks: An
experiment on the interplay between individual pre-

ferences and social influence

El primer treball de la tesi ‘Conflict and segregation in networks: An
experiment on the interplay between individual preferences and social
influence’ utilitza la metodologia que ofereix ’Economia Experimental
per testar els resultats exposats en un article teoric previ sobre jocs en
xarxa amb heterogeneitat de tipus. En ell, els jugadors guanyen punts
per cada coordinacié amb els seus veins en 'accié que decideixen. Cada
tipus de jugador prefereix una acci6 en el sentit que guanya més per ca-
da coordinaci6 en la seua acci6 preferida que en l'altra, factor que crea
un conflicte de preferéncies. Una analogia d’aquest joc al moén real pot
observar-se en el camp dels ordinadors, on cada persona té una prefe-
réncia individual (per exemple, Mac versus Windows) perd, si molt poca
gent o ningu del seu entorn utilitza el seu sistema preferit, pot arribar a
ignorar-la en pro d’'una major coordinaci6é. En aquest article afegim una
primera etapa on els subjectes trien amb qui volen connectar. Executem
tres tractaments diferent variant el nivell d’heterogeneitat en la xarxa:
cap, baixa i alta. Trobem que, sense importar aquest nivell, els subjectes

inicament es connecten amb aquells qui tenen les mateixes preferéncies



que ells. Les conseqiiéncies d’aquest comportament séon la ineficiéncia,
tant des del punt de vista individual com el social, i la completa segre-

gacio dels jugadors segons el seu tipus.

Capitol 2: Analysis of Strategies to Promote Coope-

ration in Distributed Service Discovery

El segbn estudi de la tesi ‘Analysis of Strategies to Promote Cooperation
in Distributed Service Discovery’ utilitza la teoria de jocs per a carac-
teritzar els perfils d’estratégies d’equilibri que sostenen la cooperacio en
processos de cerca de serveis en una xarxa de proveidors. A¢o és una
forma novedosa d’enfrontar aquest tipus de problemes, ampliament es-
tudiats en el camp de la Inteligéncia Artificial i sistemes multi-agent,
sobretot mitjangant simulacions. Dissenyem un joc repetit i calculem
analiticament les condicions que ha de satisfer el sistema de recompenses
a la cooperacié per a que el prefil d’estratégies on tots els agents reen-
vien les peticions que no poden resoldre per una de les seues connexions
elegida aleatoriament siga equilibri del joc. L’analisi d’aquesta estratégia
es basa en la dinamica del procés de recorregut de xarxes conegut com
a Random Walk, de la qual ens servim per a caracteritzar les condicions
que fan que cap agent tinga incentius economics a decidir unilateralment
no cooperar. A més, trobem que la estructura de la xarxa té un paper

clau en la tasa d’éxit del procés i la quantia dels pagaments que obtenen,
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de mitjana, els agents. Per contrastar els resultats exposats i estudiar
diferents estructures de xarxa realitzem simulacions amb agents virtuals.
Les dades que obtenim experimentalment van en la mateixa direccié que
els analitics, 1 ens permet fer ranquings d’estructures en quant a rendi-
ment. En ells, les xarxes Scale-free emergeixen com les niimero u en tots

els experiments.

Capitol 3: Bayesian model of peer review problem

El tercer i altim capitol d’esta tesi ‘Bayesian model of peer review pro-
blem’ novament fa servir un enfocament de teoria de jocs per modelar
el procés de revisio d’un article cientific. El sistema d’avaluacié conegut
com a peer review consisteix en sotmetre un treball a judici per part d'un
o més experts en l'area de coneixement del mateix. En I’ambit académic
és un sistema ampliament utilitzat per les revistes cientifiques per decidir
quins articles publicar, i qui millor per prendre aquest tipus de decisions
que un comité d’experts en la matéria. Perd aco pot comportar conflic-
tes d’interessos i problemes de risc moral, ja que els autors habitualment
son competéncia directa dels revisors en diversos assumptes (beques, fi-
nangament de projectes, places laborals, etc.) i pot fer que no valoren
el treball de manera justa. Moltes branques d’investigacié dins de 'eco-
nomia han estudiat aquest tipus de problemes, perd hi ha escassetat de

treballs que s’hagen centrat en el peer review problem. Nosaltres afrontem



el problema des d'un punt de vista economic, assumint agents racionals
maximitzadors d’utilitat individual. Hem modelat el sistema com un
joc, on els autors tenen una 'qualitat’ o 'nivell” a I’hora de crear articles
i els avaluadors poden ser de tipus distints segons el seu comportament
a I’hora de valorar els treballs. Un autor no sap amb exactitud quina
classe d’avaluador va a revisar el seu article, inicament té unes creences
sobre el tema. Usem el concepte d’equilibri bayesia per trobar les es-
tratégies d’estabilitat, caracteritzant ’equilibri pooling quan les funcions
de cost son constants i iguals per tots els agents, i I'equilibri separador
en la resta de casos (entenent el cost com la inversio realitzada en el
procés de creacié o avaluacid). Adicionalment realitzem estatica compa-
rativa, on observem que, generalment, a major proporci6 d’avaluadors
no-confiables o tramposos, la qualitat dels treballs i de les valoracions

rebudes pot decréixer.



Chapter 1

Conflict and segregation in
networks: An experiment on the
interplay between individual

preferences and social influence

Abstract:

We examine the interplay between a person’s individual preference and
the social influence others exert. We provide a model of network rela-
tionships with conflicting preferences, where individuals are better off

coordinating with those around them, but not all prefer the same ac-

6
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tion. We test our model in an experiment, varying the level of conflicting
preferences between individuals. Our findings suggest that preferences
are more salient than social influence, under conflicting preferences: sub-
jects relate mainly with others who prefer the same. This leads to two
undesirable outcomes: net- work segregation and social inefficiency. The

same force that helps people individually hurts society.

1.1 Introduction

The interplay between what we prefer to choose and the influence those
around us exert on our choices is at the core of our social and economic
life. Both individual preferences and social influence guide our behav-
ior and whether to establish relationships with others or not (Tajfel and
Turner, 1979; Lazarsfeld et al., 1954; McPherson et al., 2001). For in-
stance, when choosing our friends (Marsden, 1990) or neighbors (Schelling,
1978) individual preferences are a strong determinant of how we make
such decisions. But also, the social influence peers exercise on human
behavior is enormous (Jackson, 2009), affecting whether people act in
alignment or not with those they relate to (Morris, 2000; Lopez-Pintado,
2006). Examples of social influence range from which products we buy or
languages we learn (Galeotti et al., 2010), whether we engage or not in

criminal activities (Ballester et al., 2006), to our participation in collec-
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tive action (Granovetter, 1978). Arguably, by addressing the interplay
between individual preferences and social influence we can understand
the forces motivating how people decide what relationships to form and

how to behave with others, that is the aim of this paper.

One of the most prominent theoretical tools to study the effect individ-
ual preferences have on the way people behave is identity theory (Tajfel
and Turner, 1979; Akerlof and Kranton, 2000). From the perspective of
identity theory a person’s sense of self, her identity, is composed by three
elements. First, categorization, putting ourselves and others into social
categories (i.e., being a Christian orthodox, a female, a police man). Sec-
ond, identification, the process we use to associate ourselves with certain
groups. The group we identify with, say because we share a common
identity with its members, is the in-group. Conversely, the group we do
not identify with, for we do not share the identity of its members, is
the out-group. Third, comparison, the process we use to compare our in-
group and the out-group, most likely favoring one over the other. Identity
theory has highlighted how the social categories people identify with are
associated with particular behaviors prescribed for them. We refer to this
prescribed behavior as a person’s individual preference. Thus, what peo-
ple care about and how much they care about it greatly depends on their
identity. For example, in latin cultures, when dancing salsa or tango,

males are meant to lead and females are supposed to follow; such is the
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behavior associated to each category. In this direction, identity theory
stresses that a person obtains greater benefit from behaving as indicated
by her identity than doing otherwise. When people are doing what is in
accordance to their individual preferences they are happy, they get more
out of it, and those who are not living up to the norms set by their social
categories are unhappy, so they tend to change their decisions to meet

their standards (Akerlof and Kranton, 2010).

On the other hand, a leading research program studying how the struc-
ture of social relationships influences behavior is that of strategic inter-
action in networks (i.e., network games). Work on network interactions
gives account of the way we make our decisions influenced by the deci-
sions of our neighbors. For instance, if a person is choosing a technological
product and wants it to be compatible with her co-workers or friends, her
choice can change depending on how many of them are using the same
technology or a different one (Vives, 1990, 2005). These interactions are
known as coordination games with strategic complementarities, where a
person’s incentives to choose a given product or adopt a given behavior
increase as more of those around her make the same choice. The underly-
ing mechanism from social influence is that people perceive coordinating
with the behavior of others as beneficial for them. As a result, this line
of research has highlighted that people are more likely to adopt a given

behavior or not depending on who they are related with, even if such a
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behavior is not the one prescribed for their identity (Hernandez et al.,

2013).

The existing research on these two lines of work has illustrated ways
in which identities or social influence affect our relationships and our
behavior. However, it leaves open the very fundamental aspect of how
these elements relate to each other and work together. The current paper
aims to address this gap and give account of the interplay between indi-
vidual preferences and social relationships. To do so, we elaborate and
analyze a formal model where actors choose with whom to interact and
which behavior to adopt (i.e, network games), and experimentally tests
the model by varying the way identities and social influence take place.
Our model moves beyond the existing work in its combination of three
features. First, our model introduces identities as part of the strategic
considerations actors have by allowing for heterogeneity in social cate-
gories. In our case there are two social categories and an actor either
belongs to one or the other. Second, to assess the effect of identities on
the establishment of relationships, actors in our model form a social net-
work by making decisions about whom to link with and whom to leave
out. Particularly, the choice of forming connections is made after actors
are informed of their own identity and the identity of the other actors in
the population. Third, to understand how social influence affects actors

choices, we model the adoption of behavior as a choice that is made once
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the structure of relationships has been formed. There is one behavior
prescribed to each social category, so that the preference of an individual
is to adopt the behavior that corresponds to her identity but there is a
benefit in behaving the way those around us do. In this way, our theoret-
ical model considers the essentials of identity theory and social influence
in network relationships to unravel the way these two determinants of

our decision-making process relate to each other.

A key aspect of the relationships we model is that they portray strategic
complementarities. This means that actors are better off aligning their
behavior to that of those around them (i.e., their network relationships).
But, by introducing identities actors are in conflict about the behavior
each prefers to adopt. Depending on the social category they belong to,
some actors prefer one behavior and others prefer a different, yet they
rather coordinate with as many others as possible. Thus, we model the
interplay between identities and social influence in a context of conflicting
preferences. In this setting we design an experiment in which subjects
choose with whom to connect and how to behave playing a game derived
from our theoretic model. In our experimental design subjects are arti-
ficially assigned an identity and they know the identities of others. Our
focus is to consider different conditions where the relative size of the so-
cial categories vary. In this way we are able to control the social context

and therefore the intensity of the conflict in preferences between social
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categories. On one hand, social influence points to the idea that subjects
rather convey to the pressure of the strongest category (i.e., the major-
ity) and be better off by it. On the other, identities showed that subjects
will require different levels of pressure to adopt the behavior that does
not correspond to their individual preference, for people have a strong
inclination to behave accordingly to the prescription for their social cat-
egory. In this way, our theoretical and experimental work contribute to
the understanding of how the interplay between identities and social in-
fluence determine what relationships are formed and what behaviors are

adopted in a network environment.

The remainder of this paper builds as follows: In section 1.2 we describe
the theoretical framework of our modeling and experimental design in
relation to previous research on identity theory and on social influence.
Our game theoretic model is presented in Section 3.2. Section 1.4 ana-
lyzes the network structures that emerge from the interactions of actors
belonging to different social categories, and the conditions under which
either identities or social influence are stronger determinants of behavior
and of the resulting network architectures. In section 1.5 we describe the
experimental study, the design, procedures and methods used. Section
3.3 presents the main results of our study guided by hypotheses derived
from our theoretical model. We conclude with a discussion of the impli-

cations and limitations of the study in Section 1.7.
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1.2 Theoretical framework: Identities and so-

cial influence

Our theoretical framework builds on two lines of work examining how
relationships and behavior emerge from actors’ individual preferences
and the influence from those around them: identity theory (originat-
ing from psychology but recently increasingly adopted in economics; see
(Akerlof and Kranton, 2010) and strategic interaction in networks (from
economics). While elaborations of these lines of work differ in the ex-
tent to which actors are modeled as perfectly or imperfectly rational and
strategic (i.e., myopic or farsighted), both identity theory and the the-
ory of strategic interaction in networks start from the assumption that
individual actors strive to obtain optimal outcomes for themselves. Our
study integrates both lines of research for the particular case of interac-

tions with strategic complementarities.

Research on the theory of identities was initiated in psychology (Abrams
and Hogg, 2012; Tajfel, 1978; Tajfel and Turner, 1979; Turner et al.,
1987), mainly focusing on the effects that the social context has on group
processes and inter-group relations. The aim, to understand how differ-
ent inter-group interactions could be explained and whether groups of
people who share/differ in certain traits were more likely to integrate or

discriminate each other (Tajfel and Turner, 1979). A consistent finding in
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identity theory is that people favor their in-group relative to out-groups,
because people desire a positive and secure self-concept, which leads them
to think of their groups as good groups. The argument of in-group bias
has been widely supported by experimental research on identities (Billig

and Tajfel, 1973).

To assess the effect of identities on inter-group relations, experimental
studies on identities are characterized for their use of a methodology
called the minimal group paradigm. In these experiments researchers
sought minimal conditions that would create group identification. To
do so, subjects were assigned to groups using arbitrary criteria (i.e., the
toss of a coin). After informing subjects of their group membership (i.e.,
their identity), they were asked to allocate points to members of their
own group (the in-group) and to members of the other group (the out-
group). Minimal group experiments have typically shown a tendency to
allocate more points to in-group members than to out-group members
(Brewer, 1979; Mullen et al., 1992). This tendency of maximum differen-
tiation between in-group and out-group has even occurred when it means
sacrificing absolute in-group benefit. Psychological research on identities
has illustrated the strong tendencies that group identification generate
on our individual preferences. Nonetheless, this findings do not come
without shortcomings. An important limitation is that this approach

has no strategic considerations about the way people behave given the
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behavior of others. In general, participants in these experiments could
not benefit or lose in any way from their point allocation strategy, and
even in some experiments points did not carry any value at all (Turner,
1978). Therefore, the importance of identities for the understanding of
rational behavior was not clear from the existing research in psychology.
The interaction of identity considerations and individual incentives had
not been directly addressed theoretically or experimentally, leaving an

important gap for the development of rational choice theory.

Goerge Akerlof and Rachel Kranton initiated research on identities in
economics by developing a model in which identities are introduced in
the utility function of the actors (Akerlof and Kranton, 2000). By doing
this, they were able to characterize ways in which identities are included
as part of the process of maximization when rational actors choose how
to behave. For instance, an action may increase monetary benefits but
decrease identity utility, such as complying with social pressure to behave
as opposed to the prescription of our social category. The application of
their model has been found useful to explain gender discrimination (Ak-
erlof and Kranton, 2000), education (Akerlof and Kranton, 2002), and
contract theory (Akerlof and Kranton, 2005). A set of experimental work
has also included identity as part of the analysis, addressing the limitation
that the psychological approach has in the perspective of the behavior

of a rational actor, by taking into account monetary stakes (Bernhard
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et al., 2006; Goette et al., 2006; Tanaka and Camerer, 2009; Eckel and
Grossman, 2005; Charness et al., 2007; McLeish and Oxoby, 2007; Chen
and Li, 2009). Particularly, (Chen and Li, 2009) have adopted the mini-
mal group paradigm and showed that group divisions matter even when
monetary stakes are involved. Subjects gave more points to members
of their in-group, and in cases where punishment was possible they pun-
ished out-group members more. While the existing modeling of identities
in economics provides insight into broad patterns of social behavior, it
does not incorporate the micro-details of who interacts with whom (i.e.,
social networks). The inclusion of network relations in the analysis is
a matter of great importance because networks have a profound effect
on our decision-making process, and have proven to be necessary for our

understanding of the way others influence our behavior.

Research on network interactions has introduced the strategic behavior
of people into the analysis of social influence by modeling the interac-
tion as a game (for surveys of the literature see (Goyal, 2007; Jackson,
2009; Vega-Redondo, 2007). Network games model the way individuals
behave as a function of the actions of their neighbors. For the case of
coordination games with strategic complementarities; settings where in-
dividuals are better off the more of their neighbors in the network behave
as they do but there are at least two possible behaviors, network research

has captured individual behavior through thresholds (Granovetter, 1978,;
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Galeotti et al., 2010). Such thresholds are the representation of the social
influence a person requires from her neighbors to adopt a given behav-
ior. For instance, when a person is deciding whether to acquire a specific
technology or not, if more than a given number of her neighbors (i.e., the
threshold) have that same technology, this person would acquire it as
well, otherwise she would acquire a different one. A main interest in this
line of research has been to understand equilibrium selection, for there
are multiple equilibria and it is not clear which outcome is more likely
to occur. It is possible that all actors choose one of the available op-
tions, the same for all, or some acquire one technology and some acquire
the other. Work following this aim are (Ellison, 1993), (Kandori et al.,
1993), (Young, 1993), (Morris, 2000), and (Lopez-Pintado, 2006). A per-
sistent finding in the theoretical modeling of social influence in games
with strategic complementarities is that the most likely outcome is the
risk-dominant equilibrium. This means that instead of aiming to get the
highest payoffs by choosing a risky option, actors are more likely to focus
on the less risky behavior at the expense of payoffs. Two main aspects
of this research that need attention are: (i) relationships are given ex-
ogenously, so that people do not have the choice of selecting with whom
they want to interact, and (ii) actors have been assumed to be identical

so that identities are not part of the analysis.

The first aspect of these limitations has received a great deal attention by
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modeling social relationships as endogenous decisions actors make (Jack-
son and Wolinsky, 1996). This block of research aims to understand
which network structures will emerge when rational actors have the dis-
cretion to create and severe their connections. Papers following this aim
are (Jackson and Wolinsky, 1996), (Bala and Goyal, 2000), (Jackson and
Watts, 2002) and (Munioz-Herrera et al., 2013). A main finding that en-
dogenous formation brings to network games is that the risk-dominant
equilibrium is not the most salient equilibrium anymore. So that if actors
can choose with whom they want to affiliate, other outcomes are likely.
The possibility actors have to select their partners reduces risk and the
payoff dominant equilibrium becomes salient (Jackson and Watts, 2002).
Social influence has therefore a strong impact on behavior given the net-
work of relationships. But, the possibility people have to influence the
relationships they form proves to have a strong impact on the outcomes
that occur. The idea is that people act strategically when deciding with
whom to form social relationships. We choose our relationships because
they are beneficial to us, and if an existing relationship with someone is
not beneficial anymore, it is very likely to terminate it (Jackson and
Wolinsky, 1996). Thus, a particularity of social influence is that its
strength can vary depending on whether we are able to adapt our be-
havior to respond to what others around us are doing or to adapt our

relationships with others given what we are interested in choosing.
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The second aspect of these limitations, the inclusion of identities, has
not received much attention until now. A study of conflicting prefer-
ences, closely linked to ours, is the work by (Hernandez et al., 2013). In
their model the authors address the effect of heterogeneity in identities
in network games. However, their analysis is restricted to a particular
set of exogenously given networks (i.e., Erdos-Renyi networks), so that
actors have no choice regarding whom they relate to. Our model extends
(Hernéndez et al., 2013) into a two stage game in which actors endoge-
nously decide over their connections in the first stage and then play a
coordination game with strategic complements in the second stage. Our
extension is motivated by the pervasive empirical findings showing how
actors’ identities influence who they connect with in their networks. For
instance, many social networks portray homophily (Jackson, 2009) and
show that is it more likely to have friends of the same race (Marsden,
1990) or gender (Verbrugge, 1977). By modeling both stages we can
study how the level of conflicting preferences influences the way net-
works are strategically formed, given the interplay between individual

preferences and social influence.
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1.3 The model

In this section we present our model of network interactions taking into
account identities and social influence. Identities are associated to two
social categories, each giving a behavioral prescription for the players,
and the utility from the adopted behavior will depend on the identity of
the players. This means that in our network game players have identities,
each identity is associated with a behavior that gives it higher payoffs
than the other, and the identities and behavior need not be the same for
all players. Thus, conflicting preferences can be present as part of the

social interaction.

Consider the set of players N = {1,...,n}, with cardinality n > 2, who
interact in a network game denoted by I'. In I' there are two social
categories expressed by the set © = {0, 1}. Every player i € N is ez-ante
and exogenously endowed with an identity corresponding to one of the
two social categories, 0; € {0,1}. Prior to the start of the game, players
are informed about the size of the network and the identity of all players,
including theirs. The network game I' has two stages: affiliation and

behavior adoption.

In the first stage, affiliation, players decide with whom they want to
interact in the game. To do so, players create undirected connections

between them. These connections are only created if both players mu-
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tually agree on their formation. Therefore, the action set of player ¢
is a vector in {0,1}". We denote by p' the vector of connections pro-
posed by player ¢ at stage 1 where pé» = 1 means that player ¢ proposes
a link to 7, and pz- = 0 otherwise. We suppose that p! = 0. Only if
pé = p{ = 1, we say there is a link between ¢ and 7. The profile of vectors
p = (p',p?,...,p") represents the network by the set of links, g. Notice
that, the set of potential connections is the complete network, ¢”, and
any network configuration is part of the set G = {g : ¢ C ¢"}. In the
network, if a pair of players ¢ and j are connected by a link, it is denoted
as gi; = g;i = 1, and if there is no link between them, we say g;; = 0.
The set of neighbors a player ¢ has is ki(g) = {j : g;; = 1}, V j # 1.
For simplicity we assume that ii ¢ g, so that all neighbors in k;(g) are
different from i. The cardinality of k;(g) is k;, the degree of node i in the

network.

In the second stage of the game: behavior adoption, players choose an
action from the binary set X = {0, 1}, once the network has been formed.
The action chosen by i, z; € X, is the same for all neighbors she plays
with. We construct identity-based preferences given the existing social
categories. A player ¢ who has identity 1 (0) prefers action 1 over 0
(0 over 1). This is a behavioral prescription expressed in the payoff
function below. We denote zy,(g) as the vector of actions taken by i’s

neighbors. The game is expressed through a linear payoff function, u;,



22 Chapter 1. Conflict and segregation in networks

that strategically depends on the choices made by connected players (i.e.,
those that can influence i’s behavior), their identities and proposed links

in the first stage, as follows:

k; n
7=1 j=1

where I, ,—,,) is the indicator function of those neighbors choosing the
same action as player ¢. The parameter A is defined by )\z"i = « when
a player chooses what she likes (z; = 6;), the action prescribed for her
identity, and )\Zii = [ otherwise (z; # 6;). The cost of proposing a
link is ¢ > 0, and the relation between the parameters in the model
is 0 < ¢ < B < a. Note that the cost of proposing a link, ¢, is paid

independently of whether a connection is formed or not.!

The main feature of our utility specification is that it captures hetero-
geneity in several strategic scenarios in a simple way. As a result, we can
observe how a player’s payoff is affected by the choices of others (i.e.,
social influence) given her identity. This is motivated by our desire to
develop an understanding of how the conflict of preferences, the scenario
in which players want to coordinate with others but the preferred choice

is not the same for all, interacts in a network game. As discussed in the

'We assume c to be lower than 3. Otherwise, the only outcome is the empty
network because the benefit of coordinating one’s behavior to that of a neighbor
would not be enough to cover the cost of affiliation. Note that if § < ¢ < «, this is
the case only when choosing the disliked option.
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Introduction, by incorporating players’ identities and social influence in
the analysis we are extending the applicability of network models to sit-

uations in which the preferences of different players may not be aligned.

In order to study the equilibrium of the sequential game, we fix a network
configuration {g} generated by the profile p. In the second stage of the
game, players decide on an action from the binary choice set X. This
is a formal game, represented by I' = {N,{g}i jen, X, {0;}ien, {witien },
and the proper equilibrium concept is the Nash equilibrium. Hence, fix
{g}, a unilateral deviation by player i changes her choice x; to choice 27,
where x; # ;. When no player has incentives to deviate from an action

profile (z7,...,x%), it is a Nash equilibrium. Formally:

wi(Os, Py s, xf, . oxk) > w(b,p, . xk, k) Vol £

x¥, Vi€ N.

Note that u;(0;, p, x7, ... x}) = u;(0;, p, i, vk, (g)), the actions of players
that are not ¢’s neighbors do not change her payoff. The next subsection
gives an illustration of the particularities of games with strategic comple-
mentarities when identities are introduced in the model. This illustration
is represented with the 2-person game, in which the link between the two
players is already formed. Thus it only relates to the second stage of the

game. Since the cost element in the utility function is common, inde-

pendently of the adopted behavior the link is already there, we can omit
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it.

1.3.1 The 2-person game

Definition 1. Strategic Complements: Let SC be a 2-person game
where every player has an identity 6; € {0, 1} and the finite set of actions
X. The payoff matriz, where 28 > a > [ > 0, depends on each player’s

choices and identity as follows:

0 1
1 0 1 0

1 120,20 | a,a 1 120,20 | a,p
0| 8,8 |26,2«x 0 ,a | 206,203

01 =1;0,b=0 0, =1,0,=1

0
1 0
0 126,268 | B«

0] a8 |2a,2«a

01:0;92:0

Table 1.1: Payoff matrices for SC games with identities.

Each 2 x 2 coordination game can be played between two players of equal
or opposite identities. There are two Nash equilibria in pure strategies
and one in mixed strategies.? Let us first discuss the pure strategy equi-

libria. The Nash equilibria (NE) in pure strategies NE= {(0,0), (1,1)}

2We consider a payoff structure such that a player prefers to coordinate in the
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present conflicting preferences if players have opposite identities, given
each likes a different action but both want to coordinate. Thus, it is
not possible to Pareto rank them. However, in games between players
with the same identity there is no conflict in preferences, because each
one likes the same action (i.e., their behavioral prescription is the same).
The equilibrium when both choose the action corresponding to their iden-
tity is Pareto dominant in payoffs: (1,1) Pareto dominates (0,0) if two
players with identity 1 are playing, and the opposite for two players with

identity 0.

In the mixed strategy equilibrium, the probability of choosing one’s fa-
vorite action when facing a player with the same identity is given by
¢ = (28 —a)/(a+B). When playing against a player with different
identity, the result is § = (2a — 8)/(a + ). Following Morris (2000)
and (Lopez-Pintado, 2006), these probabilities can be understood as the
adoption threshold functions, i.e., the influence required from others, the
proportion of neighbors making a given choice, so that a player adopts
that same action. The inclusion of identities in the analysis gives a new
insight to social influence (i.e, threshold models, see Granovetter, 1978),
showing that the ¢ needed varies depending on the identity of the player
choosing, but not on the identity of the player(s) she is interacting with.

That is, there exist ¢ < g, where ¢ is the probability of choosing the

disliked option than staying alone. This payoff structure is observed in the game of
the Battle of Sexes (BOS). For an example of the BOS n-person game see (Zhao et al.,
2008).
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liked action and g the disliked action. The intuition of this result relates
directly to the threshold functions that define the best responses in the
Nash equilibrium configurations of the network games. It is also asso-
ciated to many social scenarios where the utility of affiliation is based
on choices of others (i.e., social influence) and not on other’s preferences
(i.e., identities), but the utility of the individual is based both on her

choice and her identity.

1.4 Equilibrium characterization

In this section we provide the equilibrium characterization for our net-
work game. First we present a categorization of all the possible network
configurations that can emerge for any distribution of identities, level
of connectivity and action profile chosen. Based on these categories we
characterize the set of Nash equilibria for our network game, NE(I).
That is, the action profile chosen once the network is realized, after the
links are proposed. To do this we follow (Hernandez et al., 2013), who
model network games in fixed networks. We extend their analysis with
the characterization of the subgame perfect Nash equilibria of the two
stage network game. Finally we conclude with a discussion on equilib-

rium selection.

Notice that along the analysis we can assume without loss of generality
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a normalization of the utility function for which the cost of link proposal
is equal to zero, given the cost of proposal is independent of the action

played in the second stage.?

1.4.1 Network categorization

A player in the network game chooses a vector of link proposals and an
action from the set X = {0, 1}, the same for all her formed connections.
The action profiles in the network are such that either all players coor-
dinate on one action (specialized) or both actions are chosen by different
players (hybrid). Given the identity of the players, there are two possible
categories, depending on whether all players coordinate in choosing the
action they prefer (satisfactory) or at least one player chooses the dis-
liked action (frustrated).* Thus, there are four possible configurations:
(i) satisfactory specialized (Ss) where all players coordinate on the same
action, which is their preferred choice; (ii) frustrated specialized (Fs),
where all players coordinate on the same action, but at least one of them

is choosing her disliked option; (iii) satisfactory hybrid (Sg), where all

30nce the network is realized, for the computation of the best responses for any
player, it affects in the same way the cost of links independently of the action chosen:
[ui(Lpiv Lxn, (g))_cpi] - [ui(lvpi7 0, zn, (g)) _Cpi] = ui(L Lan, (g))_ui(L 0, 2w, (g))
Therefore, this cost is cancelled on both sides of the computation.

4We differentiate action profiles as satisfactory or frustrated following the argu-
ments in Akerlof and Kranton (2000). When a player adopts the behavior prescribed
for her identity, this reinforces who she is. However, anyone who chooses the non-
prescribed behavior suffers a loss in her identity, entailing a reduction in her utility.
That is the reason why a > (.
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players choose the action they prefer but there is at least one player with
a different identity from the rest, so that both actions are present; and
(iv) frustrated hybrid (Fj) which portray both actions and at least one

player chooses her disliked option. Figure 1.1 illustrates these categories.

2 83 63 83

Ss, (Ss,) Fs, (Fs,)

Figure 1.1: Categories of network configurations. The first digit of a
node refers to the identity of a player and the second to her adopted
behavior.

1.4.2 Nash equilibrium

As mentioned above, given the cost of link proposal is omitted from the
best response characterization, once the network is realized, the results
in (Hernandez et al., 2013) for fixed networks are applicable to our case.
In summary, their findings show that there are two threshold functions in
network games with SC when players have conflicting preferences. These
thresholds represent the social influence a player’s neighbors must exert
for her to choose one behavior or another. A function 7(k;) that repre-
sents the minimum number of ¢’s neighbors choosing the action she likes,

for her to choose her favorite action as a best response. The threshold
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function 7(k;) is the maximum number of neighbors choosing the non-
favorite action so that i’s best response is still to adopt the behavior she
likes, so that if one more of her neighbors chooses the non-favorite action,
player ¢’s best response is to change and adopt her disliked option. The
results are presented in Proposition 1, where the number of ¢’s neighbors
choosing action 1 is y; and the number of her neighbors choosing action

0 is kl — Xi-5

Proposition 1. (Herndndez et al., 2013) For an SC game, let

5o, _a-4p
a+B8" a+p
o 4+a—ﬁ
a+p " a+p

(ki) = |
(k) = |

1, (1.2)
1 (1.3)

defined for any degree k; € {1,...,n — 1}. The best response of player i

with identity 0; = 1 and degree k;, x}, is

L iff xi > 7(ky),
x; = (1.4)

0, otherwise.

The best response of player i with identity 0; = 0 and degree k;, z}, is

1, otherwise.

®Denote by [...] and |...] respectively the maximum lower integer or the minimum
higher integer of the real number considered.
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The intuition behind Proposition 1 is that in SC a player ¢ wants to
coordinate with the highest number of neighbors making the same choice,
and prefers coordination on the action prescribed for her identity. Players
with identity 6; = 1 have incentives to choose the action they like when
Xi: > 7(k;). Thus, players with identity 6; = 0 choose x; = 0 if x; <
7(k;). Clearly 7(k;) > 7(k;) for any k;, so that a player ¢ requires less
influence from her social network to choose what she prefers and more
social pressure to adopt her disliked behavior, compared to an analysis
ignoring identities. For instance, returning to the example of people
choosing between two technologies, say two operative systems such as
MacOS and Windows, those who prefer Mac over Microsoft need less
support from their friends to purchase this operative system. However,
they would require more pressure from their friends to buy the Windows

system that they dislike. The two tipping points are illustrated in Figure

1.2.
0 1 0 (k) 1 1
14 o CGEEEEED O | > . .x;.“:()
() | — — e > ®
0 0 0 Tk) 1 n

Figure 1.2: SC Adoption Thresholds

From the best responses characterized above, it is clear that there will be
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very many different equilibria. For an illustration consider the following
case: Satisfactory specialized equilibria (Sg) are a very restrictive case in
which all players must have the same identity. Assume 6, = 1 for all i €
N. Then, in a Sg equilibrium, all players choose their preferred behavior;
action 1. However, if for any reason a player or group of players chose
action 0 and for them the condition x; > 7(k;) is not verified, a frustrated
Nash equilibrium emerges, i.e., frustrated hybrid. This because all players
have the same identity but some are choosing the disliked option. In
general, when all players share a common identity, if an equilibrium is
satisfactory it has to be specialized. There is another manner in which
specialized equilibria emerge, namely when the distribution of identities
is not homogeneous but both social categories are present (there are
I’s and 0’s) and either condition y; < 7(k;) or x; > 7(k;) holds for
all players. As a consequence, for the same distributions of links and
identities, two players with opposite identities can best respond with
the same action and vice versa. This points to conditions where social
pressure can exert more influence than the individual preference of a
player who is interacting with others, when choosing what behavior to

adopt. Examples of Nash equilibria are illustrated in Figure 1.3.
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. W @ O O O @ O
(D D (D (D

SSI (SSO) FS1 (FSO) SH Fy

Figure 1.3: Examples of Nash equilibria. The first digit of a node refers
to the identity of a player and the second to her adopted behavior.

1.4.3 Subgame perfect Nash equilibrium

Our analysis so far has focused on the best response when players play
once the network is formed. We now proceed to the first stage of the
network game: affiliation. By backward induction analysis we develop a
characterization of the subgame perfect Nash equilibria (SPNE). In our
case, all players play simultaneously at each stage. Thus, we are inter-
ested in knowing which vector of link proposals is part of an equilibrium.
Notice that a given network can be generated from different vectors of
link proposals. For instance, if player ¢ has k; neighbors in {g¢}, it could
be because she proposed a link to only her k; neighbors, or because she
proposed links to those and even more players; who did not proposed
a link back to ¢. The first Lemma states that in a SPNE for a given
network {g} the best proposed links p' for any player i does not exceed

the set of her realized neighbors in {g}.

Lemma 1. Let {g} be a network where player i has k; neighbors denoted

by {i1,1s,... i, }. Consider two vectors of proposals:
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o p' with pi =1 if j € {ir,ia,.. .0k, } and pl =0 if j & {ir, iz, .. i, }

o D' with pi = 1 if j € {ir,ia,. . ix,, 2%, 22, .. 25} and pi = 0 if j ¢

{i1,90, .. U,y 2iy 22, - Zs )

For the game T" where {g;;}ijen is realized then

i * * * ~j * * *
wi(0;, p'xy, . xl, ) > (0, Py, T, )

where the set of players {z1, 22, ..., 2s} N{i1,d2, ..., } = 0.
Proof: 1t is straightforward to check that

*

wi(0;, 0, 2%, xk, . at) = w0, p ek, xkat) —cl {21, 20, 2]

As a consequence of the above Lemma, networks where players proposed
the final links will be the survival networks in the backward induction
process. In particular, a SPNE is a network that results given that in the
affiliation stage no link proposal is unreciprocated, and in the behavior
adoption stage players choose according to Proposition 1. Nonetheless,
the analysis of subgame perfection does not permit us to discriminate
enough, and there are multiple surviving configurations that satisfy these
conditions. In the last part of this section, we will refine the analysis of
equilibria by considering some selection criteria that have proven to be

essential for network studies.
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1.4.4 Equilibrium selection

To model equilibrium selection, we use two different concepts that are
commonly applied to network games: Pairwise stability (Jackson and
Wolinsky, 1996) and efficiency (i.e., utilitarian welfare). Our aim is to
discriminate equilibria in terms of how they dominate in payoffs and how
likely is it for players to be satisfied and adopt the behavior prescribed

for their identities in the presence of social influence from their neighbors.

We begin by evaluating for which networks, once an action profile is cho-
sen, players have incentives to change their connections (i.e, increase or
decrease their degree). Because pairwise stability only takes into account
link selection, we fix the set of action profiles, x, to establish what a sta-
ble network is. The original concept of pairwise stability, by (Jackson
and Wolinsky, 1996), states that a network is pairwise stable with re-
spect to the total value of the network (often the aggregate utility of all
nodes) and an allocation rule (how that utility is divided among nodes)
if (i) there is no player who is better off by unilaterally cutting one of
her existing links and (ii) if there is no pair of unconnected players who
would benefit from creating a link between them; if one of them is better
off by forming the link then the other is worse off by doing so®. We adapt

and formally the define the concept for our model as follows:

6For different theoretical characterizations of pairwise stability see also (Jackson
and Watts, 2001) and (Calvo-Armengol and Ilkilig, 2009).
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Definition 2. Pairwise stability: Let x be an action profile. A network

{g} generated by p is pairwise stable if:

1. Suppose p§ = pg = 1. Consider the network § generated by p that
cotncides with g except ]53- = j)’g =0, (i.e., players i and j are not

connected) then
ui(g”hpiwx) 2 ui(eiaﬁiwr) and u](QJ,p’,x) 2 uj<937f)Jax)

2. Suppose pé = pf = 0. Consider the network g generated by p that

coincides with g except ﬁ; = ]5{ =1, (i.e., players i and j are

connected) then

(a) if u;(0;, ', x) < ui(0;, ', ) then uj(Hj,pj,:v) > uj(Hj,f)i,a:*) or

(b) qu](ejapJ7'r) < U](Qj,f)‘],l') then ui(é’i,pi,x) > ui(ei,ﬁi’x)

Since in our model players choose both links and actions, we provide
now a definition of pairwise stable networks in our game, in order to
take into account not only links selection but also the action profile, z,
chosen at Stage 2. To do so, we integrate the subgame perfect framework
with conditions of an adapted concept of pairwise stability, and evaluate
how increasing or decreasing the density of the network affects players’
payoffs. Therefore, we select the set of action profiles to those leading

to Nash equilibrium in the second stage which correspond to a Nash
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Equilibrium profile even when the network configuration changes. The

following definition captures this idea:

Definition 3. The pair ({g},z*) is a pairwise stable Nash equilibrium if

1. g is pairunse stable, and

2. For the network g generated by p that coincides with g except ﬁ} =
ﬁz =0 or ;5; = ﬁg =1 the action profile x* is a Nash equilibrium in

g and g.

The next lemma characterizes the set of pairs ({g}, *) which are pairwise
stable Nash equilibria in the game I'. First, it describes the network
structures which satisfy the pairwise stability property. Finally, the set

of Nash equilibrium action profiles which verify the stability notion.

Lemma 2. The pair ({g},x*) is a pairwise stable Nash equilibrium of

the game T if it satisfies the following conditions:

(i) Every player i is connected to all other players in the network who
are choosing the same action as her: if xj = xj for any i,j € N,

then g;; = 1, and

(ii) Every player i is connected only to players who are choosing the

same action as her: if gi; =1 for any i,j € N, then x} = x;
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(11i) Let be 0; = 1, and x; the number of neighbors of player i playing
action 1 in the network g. Then,
(a) if 27 =1 then x; > 7(ki + 1)
(b) if e =1 then x;, — 1 > 7(k; — 1)
(c) if v =0 then x; + 1 < 7(k; + 1)
(d) if xf =0 then x; < 7(k; — 1)

%

The conditions for players with 0; = 0 are symmetric.

Proof:

From this point on, and abusing notation, we will use {¢g} and p indis-

tinctively in the utility function, given each p generates a unique {g}.

Let us prove that a network structure produces a pairwise stable Nash
equilibrium if every player is connected to all others coordinating their

behavior with her. Consider two networks:

e {g} where zf = 1 for player i, and there is at least one player j

choosing x} = 1, such that g;; = 0, and

e {3} D {g} in which i and j form a link between them, {g} =

19} + i)
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For the game I

*

wi(0:,{a}, 27, .. xf, . ooxn) > w6, {g}, 23, .., xf,...x),and

* *

ui(0;,{9}, 77, .-, 2y, o) > w05, {g}, 21, .. 2, 1)

where it is straight forward to check that

wi(0:,{9}, 1, .. xn) = alki+1)—ck; > ak;—c(ki—1) = u;(0;, {9}, x1,...,2,)

since o > c¢. From this, it derives that if player ¢ is linked to k neighbors,

her utility is increasing in k as long as they choose her same action.

We show now that a network forms a pairwise stable Nash equilibrium if
every player is connected only to neighbors coordinating their behavior

with her. Consider two networks:

e {g} where 27 = 1 for player i, and x; < k; of ’s neighbors play

x; =1, while (k; — x;) > 0 play 27 = 0, and

e {7} C {g} in which i drops any neighbor j whose action is 2} = 0.
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For the game I

wi(0:, {9}, 2%, .. al, . oxn) > w0, {g}, 21, .. xl, o x)

It is straightforward to check that

wi(05,{g}, 2%, ... ), .wy) = w0, {g}, 27, .., 27, ) + el e

Finally, the lemma states the conditions under which the equilibrium
action profile x* is robust to the addition or the removal of one link
(i.e. it is not profitable for any player to change her action after adding
any possible new neighbor or removing an existing one, regardless of
the behavior she may adopt). Then the conditions relating x; and the
threshold functions from (Hernandez et al., 2013) must be satisfied when

a player’s degree is increased or decreased by 1.

Given the utility structure of player ¢, when two players coordinate in
forming a link between them but their adopted behavior is uncoordinated,
say ¢ chooses x; = 1 and j chooses x; = 0, there is no positive payoft for
any of them from this relationship. On the contrary, there is a negative
payoff in terms of the cost of relating, without the complementarities

from choosing the same action. Therefore, players prefer networks where
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everybody in their neighborhood plays the same action they play, and any
link to a neighbor who is behaving differently is eliminated. The intuition
behind Lemma 2 points to a single argument: for each action profile x*
there is only one network configuration which conforms a pairwise stable

Nash equilibrium.

Up until now we have defined and analyzed pairwise stability and pair-
wise stable Nash equilibria for our network game. For the remaining
part of this section we introduce a new concept for equilibrium selection:

efficiency.

Let the value of a pair ({g}, x) be the aggregate of individual utilities:

’U({g}, l’) = Z uz(eza P, Zs, xkz(9)>
=1

From this, it follows that a pair ({g}, z) is efficient if v({g}, x) > v({g}, Z),

V{g} # {g} and Vz # &. The next definition formally expresses the idea:

Definition 4. Strong Efficiency: A pair ({g},x) is strongly efficient

in the game I' if ({g}, z) = argmax v({g}, z).

{g}x

We derive from the concept of pairwise stability that only two kind of net-
work configurations can conform a pairwise stable Nash equilibrium: (1)
a completely connected structure if the action profile is specialized, and

(2) a network with two isolated and completely intra-connected compo-
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nents if the action profile is hybrid, where each component is specialized

in a different action. For an illustration see Figure 1.4.

Figure 1.4: Pairwise stable Nash equilibria. Network a portrays the
specialized case for action 1. Network b portrays the hybrid case. The
digit of a node refers a player’s adopted behavior.

Notice that pairwise stability is absent of the inclusion of identities, and
just tackles the selection of structures by ranking one configuration over
another if both have the same action profile. To take identities into ac-
count, we discuss next the equilibrium selection for different compositions
of the population of players. As a consequence, this characterization de-
pends on the a prior: distribution of identities. We will refer to the
distribution of identities, the share of players with identity 1 or 0, as the
indicator for the level of conflict in preferences in the game, denoted by
®. This will be particularly useful in our experimental study, presented
in the next section. We assume there is a proportion of ; players with
identity 6;, where 6y + 6, = 1. Using the share of players with identity 1
as the reference group, we define the level of conflict in preferences as the
binary entropy function of the distribution of identities, where ® € (0, 1).

The more homogeneous a population is, the lower the level of conflict.
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Thus, if 6, = 0 or ; = 1, then ® = 0. The more heterogeneous the
population is the higher the level of conflict. This means that if 6; = 6,

then & = 1. See figure 1.5 for an illustration.

P

0 91

Figure 1.5: Entropia function. The horizontal axis represents the share of
players with identity 1 (6 ) in the population. The vertical axis represents
the level of conflict (®).

Based on this consideration of conflicting preferences, we want to know
what are the conditions, in terms of @, for players to choose a specialized
or a hybrid equilibrium. In order to achieve this we characterize efficiency
as a measure of utilitarian welfare and denote a network as efficient if
it maximizes the aggregate utility of all players, given the distribution
of identities (i.e., the level of conflict in preferences). Lemma 3 presents

this arguments.

Lemma 3. The strongly efficient configuration of the game I is the com-
plete network specialized in the prescribed behavior for the majority, for

any level of conflict. So that:

(i) if ® =0, such that 6; = 1(0), f = 1(0) and k; =(n—1)Vie N
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(i1) if0 < ® < 1, such thatby > 6y >0, 2; =1 andk; = (n—1)Vie N

(iii) if & = 1, such that 6, = 0y, either xf = 1 or x7 = 0, and k; =
(n—1)VieN

Proof: The first element follows because a network in which all players
who adopt the same behavior are affiliated dominates in payoffs any less
connected network. Moreover, such a network will rank the highest if all
players are choosing the behavior they like. For the case of ® = 0 this is

the Satisfactory Specialized (Ss) configuration.

To prove the second element we compare two networks. A satisfactory
hybrid configuration (Sg), in which all players choose the action they
like, and a frustrated specialized configuration (Fs), in which all players
choose the action of the majority. It follows from the statement above
that a Fs in the action preferred by the minority will be dominated in
payoffs, given a > . Also, it follows from Lemma 2 that such networks
are pairwise stable, so that k; = n — 1 for all players in the Fg, and

k; = 6;n for players in the Sy.

Consider a distribution of identities such that there are #,n players with
identity 1 and Oyn = n(1 — 6;) players with identity 0. The aggregate

payoffs of the Fg network are given by:
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Oin Oon

v(Fy) :Zan+c(n—1)+25n+c(n—1)

(1.6)
=nlfi(an —c(n —1)) + (1 = 01)(Bn — c(n — 1))]
The aggregate payoffs of the Sy network are given by:
O01n Gon
v(Sg) = a(lin) +c(01(n— 1)) + > abon + c(fo(n — 1))
i=1 =1
=nl[01(abin —c(01(n —1))) + (1 — b61)(a(n — b1n) — c(n — 61(n — 1)))]
(1.7)
where it is straightforward to check that
1
v(Fs) > v(Sg) for 6; > 3 (1.8)

The third point is easy to prove under the conditions exposed so far,
because if ® = 1 then 6; = %, and Equation 1.8 states that under that
level of 6; the aggregate generated profit in a Frustrated Specialized
configuration is higher than in a Satisfactory Hybrid one. Obviously
the profit is the same if the action chosen by all players is 0 or 1, since

O = 0, = 1.

The intuition of this Lemma is that if all players behave as prescribed for

the majority, so that the entire population is specialized, this is strictly
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better from a social welfare perspective, than if each player adopts her
preferred behavior and the population segregates. That is, when social
influence in the population is exerted by a majority, it is socially better
for the members of the minority to choose the behavior that goes against
their identity but increases their benefits from the complementarities
of their neighbors. Specialization is socially better even if the share
of each social category in the population is exactly divided into equal
parts. Particularly, when this is the case, socially there is no difference
on which behavior players specialize in. Both specializing in 1 or 0 gives
the same aggregate value. Nonetheless, this is the aggregate welfare and
for cases with a strict majority it is not always the case that the minority
maximizes individual payoffs by following this strategy. In fact, a player
¢ from the minority gets higher payoffs in the satisfactory specialized

network in which each component is completely connected as long as

s (B9 o 1(a=p) 7
9’ > (a—c) > 2 (a—c) "

~

Going back to our example on the adoption of technologies we have
that a network is pairwise stable if all players purchasing MacOS are
connected and none of them relates to anyone purchasing Windows, and
viceverza. Furthermore, if those who like MacOS more than Windows are
a majority, it is better for everyone in the society to buy this operative

system, even for those who like Windows. By doing so they can all relate

"This comes from the comparison of choosing the behavior of the majority in
the complete network or the preferred choice in the network segregated into two
components: af;n — c(f;n —1) > pn —c(n —1).
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between each other and obtain greater benefits from the compatibility of
their choices than if they had segregated into clusters of Mac users and

Windows users.

Finally, note that there is an important consideration when relating ef-
ficiency and pairwise stability. If the satisfactory hybrid equilibrium
emerges, so that players are segregated by identities in two components
each choosing the preferred action of the players in the component, there
is no smooth transition to the specialized frustrated (efficient) config-
uration. Once a player has entered a pairwise stable but non efficient
network, there are no individual incentives to move to the efficient one.
A player who is part of the majority has only incentives to link to a player
from the minority if she knows the other will choose her frustrated action.
A player who is part of the minority has no incentives to unilaterally or
bilaterally deviate to the component where the majority is segregated,
because she would need multiple changes to be connected to all of them.
Such a transition requires a stronger restriction than dyadic coalitions as

modeled in pairwise stability.

In conclusion, our identity-based model and equilibrium characterization
points to the following considerations. First of all, players are always
better off coordinating with all their neighbors in the same behavior,
because social influence from others results in greater benefits from the

complementarities of the interaction. If this is not the case, a player will
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rather eliminate a relationship with an wuncoordinated neighbor. How-
ever, given the interaction between identity-based payoffs and the effect
of others’ behavior on a player’s choices, it is not always the case that
players adopt the behavior prescribed for their identity. Our model of
conflicting preferences shows that depending on the distribution of identi-
ties (i.e., the level of conflict in the population) some equilibria dominate
others. In particular, equilibria in which all players are integrated into
one same component and the behavior prescribed for the majority is the
specialized action are the socially efficient networks. Moreover, in many
cases, as long as the size of the minority is not big enough, these frus-
trated equilibria are also dominant on individual payoffs. Notice that
in this order of ideas, the share of the population that a given identity
occupies can determine whether players belonging to this group will be
governed by social pressure and sacrifice their identity-based preferences
for their social interaction benefit. In the next section we describe the

experimental study we have used to test our game theoretic model.

1.5 The experiment

Our theoretical model gives account of the way equilibrium takes place
in network games in which identities and social influence are at play. To

test the results of our theory we designed an experimental game which
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replicates our identity-based model in the laboratory. Our interest is to
evaluate the interplay between individual preferences and social influence
by assessing the effect that different levels of conflict in preferences have
on individual and aggregate behavior. As our game-theoretic analysis
shows, there are multiple configurations in equilibrium that are likely
to emerge and their likelihood depends on the strength of individual

identities and on the influence exerted by others.

1.5.1 The experimental game

There are 15 subjects in a one-shot network game interaction. FEach
subject at the beginning of the interaction is informed about a symbol
she is assigned to, either a square or a circle. The two symbols represent
the artificially generated social categories to which subjects can belong to.
Participants were also informed of how many of the remaining 14 subjects
in the population had been assigned to each category (how many were

circles and how many were squares).

The experimental game replicates the two-stage structure of our game
theoretic model. In the first stage, affiliation, subjects simultaneously
decided to whom in the group of 15 subjects they wanted to propose
a link to (see Figure 1.6). Subjects were also assigned an identification
number from 1 to 15 to facilitate the linking process. The identification

numbers were randomly associated to the social categories but kept the



1.5. The experiment 49

same for all groups (i.e., subject with identification number 12 always
belonged to the social category square). The cost of proposing a link
is ¢ = 2 and, only if two subjects proposed to each other a connection

between them was created.

F3

| =
I 6

8
o9
™ 10
- 11
1 2 12
13
! 13 14

J : 15

Figure 1.6: Screen of connection proposals.

In the second stage, subjects were informed about the proposals made
and connections formed in their group (see Figure 1.7). That is, subjects
were informed of the social network that resulted from the affiliation
stage. Then, they had to choose an action up or down. Up (down) gives
a = 6 points to a subject with identity square (circle) for every neighbor
she coordinates with in the same choice. Down (up) gives her § = 4
points. These choices represent the identity-prescribed behavior from

our model.

The total number of points earned is calculated with the payoff function

in Equation 1.1. This linear payoff function makes it straight forward
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Figure 1.7: Screen with resulting network and proposals made.

for participants to calculate their expected payoffs in any situation given
their individual preferences and the behavior of others (i.e., social influ-
ence). In addition, all subjects received a printed table illustrating the
points they can get for any level of connections (from 1 to 14) and any

choice in which they coordinated on (up or down).

Therefore, in the experiment subjects are assigned to one of two social
categories. Each of the categories has a behavior that gives more benefits
if chosen (in isolation) by a subject belonging to that category. Subjects,
knowing their own identity and that of all other participants, propose
to establish relationships between them. Only if proposals are mutual a
network connection is formed. Once they observe the resulting network,
subjects simultaneously choose an action (i.e., adopt a behavior). For ev-
ery connected neighbor with whom a subject coordinates in her behavior,
she benefits as a consequence of the strategic complementarities of the
interaction. If two subjects are connected but choose differently, they do

not benefit from the relationship but have to pay the cost of affiliation.
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If two subjects are not connected, they cannot influence each other, be-
cause their choices have no effect on the other’s payoffs. In this way our
experimental game addresses the question of how individual preferences
and social influence affect the decision-making process of whom to relate

with and what behavior to adopt.

1.5.2 Experimental design and treatments

The experiment consists of a two-stage network game played for 25 pe-
riods by groups of 15 subjects. It was conducted in the Laboratory
of Experimental Economics (LINEEX) at the University of Valencia in
November 2012. Subjects interacted through computer terminals and

the experiment was programmed using z-Tree (Fischbacher, 2007).

Upon arrival subjects drew a ballot to be randomly assigned to a seat
in the laboratory. At the beginning of the experiment instructions were
read out loud to all subjects to guarantee that they all received the same
information (you can see a full copy of the instructions in appendix 1.A).
Instructions also appeared on their screens. At the end of the experiment
each subject answered a debriefing questionnaire. The standard condi-
tions of anonymity and non-deception were implemented in the experi-
ment. In every period subjects were randomly matched using a strangers
protocol, so that each round represented an independent one-shot in-

teraction with no reputation effects. Identities were randomly assigned
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in the first round and kept constant along the 25 interactions and only
group composition varied (also the assigned identification number var-
ied). That is, the social category a subject belonged to was always the

same for all rounds. The first five periods were trial rounds.

To evaluate the effect that the level of conflict in preferences has upon
outcomes, the interplay between individual preferences and social influ-
ence, we used the distribution of identities in the groups as our experi-
mental variable. We implemented three treatments that systematically
vary this feature: No conflict, Low conflict and High conflict (see Table
1.2). In all our treatments we kept the social category square to be the
majority. Therefore, for all treatments the socially efficient and indi-
vidual payoff dominant outcome is the complete network specialized in

choosing up, the prescribed behavior for the majority.

Treatment  Majority Minority Session

No conflict 15 0 30
Low conflict 12 3 45
High conflict 8 7 45

Table 1.2:  Number of subjects in the majority and the minority per
treatment, and size of the subject sample per treatment /session.

Our experimental design captures an important mixed-motive social sit-
uation derived from our theory, which results from the incorporation of
identities into the analysis. Subjects earn more by coordinating their

choices with others, maximizing payoffs when the entire group integrates

and coordinates in one same choice (social motive). This motive results
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from the effect that social influence has on behavior. But subjects dis-
agree in their preferences about which action to coordinate on (individual
motive). This motive results from the effect that individual preferences
have on behavior. From this, we derive contrasting hypotheses for the
equilibrium selection strategies. On one hand, we use the category mo-
tivation in the identity literature stating that if there are artificially in-
duced identities, subjects are more likely to favor their in-group. On the
other, we use the payoff dominant motivation from the literature on social
influence in network interactions, which is independent of the identities
of the players, and states that if subjects can decide with whom to con-
nect they are more likely to coordinate in the equilibrium that gives them
the highest payoffs. Thus, hypotheses la and 2a, the identity-dominant
hypotheses, are a result of how identity predicts equilibrium selection in
our game. Hypotheses 1b and 2b, the payoff-dominant hypotheses, are a
result of how social influence predicts equilibrium selection for rational
payoff maximizers in our game. The hypotheses for the affiliation stage

of the experimental game are:

Hypothesis la. (Identity-dominant affiliation) The higher level of con-

flict the higher the tendency to propose connections only to the in-group.

Hypothesis 1b. (Payoff-dominant affiliation) The level of conflict does
not affect the tendency to propose connections to the in-group (the same

amount of links to in-group and out-group, adjusted for group size).
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The affiliation hypothesis argue that the probability of linking with one’s
in-group or out-group is the same if subjects aim to maximize payoffs.
However, if subjects rather strengthen their social identity, it is more
likely to be connected to one’s in-group. Therefore, integration between
identities is predicted for all treatments by Hypothesis 1b, and segrega-
tion is predicted for treatments with conflicting preferences by Hypothesis

la.

Hypothesis 2a. (Identity-dominant behavior) The higher the level of
conflict the more likely subjects will adopt the behavior they prefer as

prescribed by their social category.

Hypothesis 2b. (Payoff-dominant behavior) The level of conflict will
have no effect and subjects will adopt the behavior preferred by the ma-

jority.

The behavior adoption hypotheses state that if identity is more salient
than social influence (i.e., payoffs), the treatments with positive level
of conflict are more likely to result in satisfactory hybrid action profiles
(each subject chooses the behavior she prefers). Otherwise, the frustrated
specialized action profile will be the outcome (subjects in the majority
choose what they prefer and subjects in the minority choose what they do
not prefer). Particularly, for the No Conflict treatment the satisfactory
specialized outcome is predicted. Consequently, we use this treatment as

our baseline condition.
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Finally, we derive point predictions from our theory in relation to our
characterization of equilibrium and the selection criteria modeled. No-
tice, nevertheless, that as argued by Camerer (2003), it is unlikely that
equilibrium is reached instantaneously in one-shot games. It has been
pointed along the extensive experimental research on rational behavior
that the idea of instant equilibration is so unnatural that perhaps an
equilibrium should not be thought of as a prediction which is vulnerable
to falsification at all. A more useful perspective should be to perceive
equilibrium predictions as the limiting outcome of an unspecified learn-
ing process that unfolds over time. This means that we could expect
to observe learning from the repetition of the interactions in the exper-
iment. In this view, equilibrium is the end of the story of how strategic
thinking, optimization, and equilibration (or learning) work, not the be-
ginning (one-shot) or the middle (equilibration). The following are the

hypotheses on equilibrium derived from our game theoretic model:

Hypothesis 3. (Subgame Perfection) The higher the number of one-shot
interactions subjects are part of, the more likely the difference between

links proposed and links formed will be reduced.

This prediction is derived for the affiliation stage of our network game
from the backward induction process. Finally, the hypothesis on pairwise

stability is derived from our modeling of equilibrium selection:

Hypothesis 4. (Pairwise stability) The higher the number of one-shot
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interactions subjects are part of, the more likely subjects choosing the

same action will be neighbors.

From these previous hypotheses we can state that if learning is manifested
along the repeated interactions, subjects choosing the same behavior are
more likely to be connected, regardless of whether identities or social
influence motivate their behavior. Specifically for the payoff dominant
strategies networks will be completely connected into a single component,
so that the efficient configuration will emerge. Otherwise, the segregated
configuration where players are separated into social categories should
be observed. Nonetheless, whether it is one or two components, these
hypotheses predict that networks will tend to be more dense along time,

leading towards the pairwise stable predicted configurations.

1.5.3 Experimental procedures, data and methods

All subjects in our experiment were students from the campus of social
sciences of the University of Valencia (Spain). Subjects were recruited
through online recruitment systems. In total 120 subjects participated
in three sessions, one for each treatment (No, Low and High Conflict).
There were 30, 45 and 45 participants in each session, respectively. Each
session lasted between 90 and 120 minutes and no one participated in

more than one session. On average everyone earned 16.5 euros, including
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a show-up fee of 5 euros.

To conclude this section, we describe the measures we use to test the
hypotheses presented above, and the way we developed our analytical
strategy. Recall that in reference to a subject, others either belong to
her in-group, when they share her identity, or to her out-group, when

identities are different.

In-group favoritism. To assess a subject’s favoritism to propose connec-
tions to the in-group rather than the out-group, the number of proposals
sent by a subject to the in-group was divided by the subject’s total num-
ber of proposals sent. In-group favoritism could range from a maximum
of 1 where all proposals were sent to the in-group to a minimum of 0
where all proposals were sent to the out-group. A value of 0.5 denoted
equal preferences for sending proposals to both the in-group and the

out-group.

Reciprocation. Reciprocation was operationalized as a subject’s number
of reciprocated proposals (i.e., realized connections) divided by a sub-
ject’s total number of proposals, regardless of group membership. Recip-
rocation had a maximum of 1 (0) when all proposals were reciprocated
(rejected), and hence no coordination problem occurred in the affliation

stage.

Pairwise stability. Pairwise stability was measured with a subject’s num-
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ber of realized connections with in-group members as compared to the
total possible connections with this group. That is, the number of in-
group members minus the subject. Subjects in the No Conflict condition
could realize up to 14 in-group connections, subjects in the Low Conflict
condition could realize up to 11 (majority) or 2 (minority) connections,
and subjects in the High Conflict condition could realize up to 7 (major-
ity) or 6 (minority) connections. Again, a value of 1 expressed maximum
pairwise stability. That is, a subject sent proposals to all of her in-group
members of which all proposals were reciprocated, resulting in the sub-
ject’s connection with every in-group member. Note that this measure

disregarded activities with the out-group.

Analytical strategy. The data structure at hand did not permit standard
ordinary least square regression modeling. Standard regression models
base on the assumption that observations are measured independently
from one another. This independence assumption was violated in our
data: The experiment included 120 subjects who each played 20 one-
shot interactions, so that a total of 2,400 interactions (Level 1) were
nested within clusters of 120 subjects (Level 2). Interactions belong-
ing to the same subject could not be assumed to occur independently
from one another, as different subjects likely followed varying behavioral
tendencies. For example, throughout all interactions, some subjects may

have systematically favored in-group members more than may have other
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subjects.

Multilevel regression modeling is a methodology for the analysis of com-
plex data patterns with a focus on nesting (Snijders and Bosker, 2012).
Such models allow variability at multiple levels of observations, namely
variability between interactions (Level 1) and variability between sub-
jects (Level 2). While the interpretation of these models is comparable
to standard regression models, they additionally assume the intercept
(and sometimes the slope) to be randomly varied for each of the 120
subjects. These models, in the following referred to as mixed-models, al-
lowed subjects to differ in their general behavior with regard to in-group
favoritism, reciprocation and pairwise stability. Three separate models

were run for in-group favoritism, reciprocation and pairwise stability.

1.6 Results

Our experimental study assesses the interplay between individual prefer-
ences and social influence by varying the level of conflict in preferences
in a network game with strategic complementarities. In this section we
describe our main findings beginning with a descriptive discussion of the
behavior of the participants. The data show that nearly all choices cor-
responded with the subjects’ preference. We observed that 99.3 percent

of the decisions on behavior adoption where such that the prescribed be-
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havior for the social categories was selected. For the affiliation criteria
it was found that 99.4 percent of the connections were formed between
subjects choosing the same behavior. Table 1.3 presents an overview of
the proposals sent and reciprocated (i.e., the realized connections) for the
different experiment conditions and groups. In-group favoritism and re-
ciprocation were most prominent in the No Conflict condition. Stronger
in-group favoritism related to increased reciprocation (Pearson’s corre-
lation coefficient: » = .69, p < .001), which in turn was associated with

greater pairwise stability (r = .69,p < .001).

Hypothesis 1a (Identity-dominant affiliation) expected that higher level
of conflict would lead to greater favoritism for in-group proposals. The
alternative Hypothesis 1b (Payoff-dominant affiliation) stated that no
such effect would occur. Table 1.4 presents the results from the mixed-
effects regression models. The constant of 0.90 indicates that in-group
favoritism was generally high: put aside all other variables (experimental
conditions, group membership and development over periods), it could be
predicted that subjects send proposals to members from their own group
in 90 percent of the cases. According to the negative and significant
parameter estimate in Model A, subjects in the Low Conflict condition
showed less in-group favoritism than subjects in the No Conflict con-
dition (which served as the reference category). Subjects in the High

Conflict condition did not differ significantly in their favoritism from the
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Experimental condition

No Conflict Low Conflict High Conflict

Group M SO M SD M SD

Proposals *

to in-group Majority 12.87 247 982 195 6.50 1.27
Minority n/a n/a 1.96 0.24 597 0.17

to out-group Majority n/a n/a 021 059 0.28 0.92
Minority n/a n/a 122 2.67 0.11 0.48

Connections *

to in-group Majority 11.95 290 879 217 6.06 1.41
Minority n/a n/a 192 031 595 0.25

to out-group Majority n/a n/a 0.04 021 0.00 0.00
Minority n/a n/a 0.14 0.46 0.00 0.00

In-group favoritism ®

to in-group Majority 1.00 0.00 0.98 0.07 0.95 0.15
Minority n/a n/a 0.83 0.30 0.99 0.06

Reciprocation ®

to in-group Majority 0.92 0.12 0.87 0.12 0.89 0.18
Minority n/a n/a 0.84 0.27 0.98 0.07

Pairwise stability ®

to in-group Majority 0.85 0.21 0.80 0.20 0.87 0.20
Minority n/a n/a 0.96 0.15 0.99 0.04

Note:® Means and standard deviations for proposals and connections represent absolute numbers.

b Means and standard deviations for in-group favoritism, reciprocation and pairwise stability represent relative shares (percentages).

Table 1.3: Subjects’ proposals and connections within and between
groups (across all periods).
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No Conflict group. This suggests that in-group favoritism was greater
in the High Conflict group than in the Low Conflict group, supporting

Hypothesis 1a over Hypothesis 1b.

Model A Model B Model C
In-group favoritism Reciprocation Pairwise stability
B SE B SE B SE

No Conflict (ref.)
Low Conflict -0.04* (0.02) —0.06*  (0.02) -0.05 (0.03)
High Conflict -0.01 (0.02) —0.01 (0.02) -0.01 (0.03)
Period 0.01** (0.00) 0.03**  (0.00)  0.04**  (0.00)
Period squared -0.000***  (0.00)  —0.001** (0.00) —0.001** (0.00)
Minority (ref.)
Majority 0.04 (0.02)  —0.04*  (0.02) —0.14"* (0.02)
Constant 0.90*** (0.03) 0.79**  (0.02)  0.76™*  (0.03)
Novservations 2,399 2,399 2,399
Nindividuats 120 120 120
Varosservations 0.01 0.00 0.01 0.00 0.01 0.00
Varindividuats 0.01 0.00 0.01 0.00 0.01 0.00
Log likelihood 2,361.30 1,783.91 1,489.50

Note:Unstandardized coefficients. Standard errors in parentheses. *p < 0.05,** p < 0.01,*** p < 0.001.

Table 1.4: Mixed-effects regression models on favoritism, reciprocation
and connectivity

Hypotheses on behavior adoption stated that if subjects were more in-
fluenced by their identities the higher the level of conflict Hypothesis
2a (Identity-dominant behavior) they were more likely to behave as pre-
scribed for their social category (i.e., according to their individual prefer-
ence). Alternatively Hypothesis 2b (Payoff-dominant behavior) expected
subjects to be more influenced by their social context choosing the be-
havior prescribed for the majority. As mentioned above, 99.3 percent of
the choices corresponded to the behavior prescribed for each subject’s in-

dividual preference, so that there is essentially no variation between the
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choices across time, subjects identity or experimental condition. Thus,
the evidence suggests that regardless of the level of conflict, subjects’ be-
havior is influenced by identities above social pressure. To summarize the
findings regarding affiliation criteria and behavior adoption we present

the following result:

Result 1. In the presence of conflicting preferences, individual tdenti-
ties are more salient than social influence. Therefore, segregation arises

between social categories.

Hypothesis 8 (Subgame perfection) expected learning and thus increases
of reciprocation with higher number of one-shot interactions, in the fol-
lowing referred to as period. In support of this, the positive and signifi-
cant parameter estimate for period in Model B shows that reciprocation
increased by 0.03 percent points with every additional interaction. This
effect summed up to a total gain in 60 percent points over the whole
experiment of 20 rounds. That is, identity is more salient than social
influence as a behavioral criterion. By pursuing the prescribed behavior
for their social category, subjects segregate. In consequence, the con-
flicting aspect of the interaction is put aside. The two components in
the network appear as if they were two isolated populations. Once this
takes place and subjects end up in a network such that those around
them share their same identity (in-group), then social influence takes a

relevant role again. Subjects start behaving more and more in accor-
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dance with the predictions of social influence aiming to connect with all
those around them. The effect that experience and learning brings is that
subjects end up decreasing the gap between the connections they pro-
pose and the connections they form, maximizing the complementarities

of coordinating with their neighbors.

Similarly to the latter hypothesis, Hypothesis 4 (Pairwise stability) stated
an increase in connections within groups with an increasing number of
one-shot interactions. That is, not only subjects will coordinate more
along time so that the links proposed are formed. But also, subjects will
tend to form more links along time. Also supporting this assumption,
the positive and significant parameter estimate for period in Model C
shows that pairwise stability increased by 0.04 percent points with every
additional interaction. It was reasonable to assume that the learning
curve for reciprocation and pairwise stability increased steeply at the
beginning and flattened out toward very high numbers of interactions,
e.g. because a near-maximum had been reached in earlier interactions.
The small but significant squared effects for period show indeed that
both reciprocation and pairwise stability did not increase significantly
anymore in later experiment periods, namely after period 10, suggesting
a curvilinear learning effect. These findings are illustrated in Figure 1.8

and summarized in the next result:

Result 2. In the presence of conflicting preferences, when segregation
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arises between social categories, subjects aim to mazximize the benefits of

social influence from those around them through denser networks.

Additional tests showed that there was a learning effect in all experiment
conditions, further supporting our assumptions. The learning curve was
steepest in the No Conflict condition, but flattest in the High Conflict
condition. The predictive margins for the different conditions are plotted

in Figure 1.9.

Besides differences between experimental conditions and learning over
periods, the regression models yielded interesting findings with regard to
group membership. As presented by the negative and significant param-
eter estimate in Model C, subjects in the majority group reached less
pairwise stability than those in the minority group. This effect occurred
net of the different experimental conditions. Figure 1.10 shows that the
difference between majority and minority group persisted throughout the
entire period of the experiment. However, differences became smaller to-
ward high numbers of one-shot interactions, which was mainly due to the
learning effect in the majority group. While on average subjects in the
minority reached maximum pairwise stability of 1 in period 4, subjects
in the majority reached their maximum of 0.95 only in period 20. This

last finding is presented in the next result:

Result 3. In the presence of conflicting preferences, when segregation

arises between social categories, being the minority facilitates coordina-
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tion and stability. Majority groups find it harder to reach affiliation con-
sensus, which is not the case when all subjects have aligned preferences

in the population.

1.7 Discussion

In this article we have argued that in social interactions with strategic
complementarities the interplay between individual preferences and so-
cial influence can decisively affect outcomes of how people relate to each
other and what choices they make in terms of their behavior. To elabo-
rate this argument, we proposed a model in which actors have conflicting
preferences about the behavior they want to choose but are interested in
coordinating in the same behavior with more than less of those around
them. Following research on identity theory (Akerlof and Kranton, 2010)
we characterized identities as the result of belonging to social categories.
Each social category has a prescribed behavior which represent an actor’s
individual preference. Following research on social influence in network
interactions (Jackson, 2009; Hernandez et al., 2013) we characterized in
which way the behavior of others influences our decisions. To analyze
the interaction of these forces that affect our decision-making process we
developed a game theoretic model of network interactions with hetero-

geneous populations (i.e., people belonging to different social categories)
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and empirically tested the predictions of our theory by means of an ex-
perimental design that allowed us to control the social context, and thus
the interplay between individual preferences and social influence. We
first comment on our theoretical results from the model and then on the

empirical findings from our experiment.

Our model, which is an extension of the work by (Hernandez et al., 2013),
indicated that the choices an actor makes about what behavior to adopt
depend on her identity and the influence of others around her. An actor
wants to coordinate with the highest number of neighbors making the
same choice and prefers coordination on the action prescribed for her
identity. As a consequence, the level of social influence needed to choose
what we like is necessarily lower than the pressure we need from those
around us to behave in a different way. However, this result allows for
multiple outcomes depending on where in the network the influence in
exerted. It is possible that all actors behave in the same way, so that
the network is specialized, or that actors behave in different ways, so
that the network is hybrid. Moreover, it is also possible that actors in
specialized networks are all from the same social category and are all
choosing what they like, so that the network is satisfactory, or there are
actors from both social categories, so that some of them are not following

the prescribed behavior for their identity and are frustrated.

Given the multiplicity of equilibrium outcomes that arise from games



1.7. Discussion 71

with strategic complementarities we characterized different equilibrium
selection criteria. On one hand we used an adapted version of pairwise
stability (Jackson and Wolinsky, 1996). If actors can coordinate bilat-
erally the creation of a new link, in case they are not connected, or if
individually they can eliminate any relationship that is not beneficial,
then only very particular network structures can result. Pairwise stable
configurations would be those in which every actor is connected to all
other actors who are choosing the same as her, and every actor is con-
nected only to those choosing the same as her. This means that at the
network level, the only pairwise stable configurations are either a com-
pletely connected network where every actor is behaving in the same way,
or a network separated into two completely intra-connected networks,
where actors in each component behave the same but not between com-
ponents. Finally, we ranked the social efficiency of the resulting networks
and found that the network where all actors are connected and their be-
havior is the same is the one that gives the highest social benefit, as long
as the behavior chosen is that of the majority. This, regardless of the

social composition of the population.

Using our example of the acquisition of technologies, what our model
shows is that people who prefer one technology over the other will only
choose what they dislike if the social pressure from those around them

is stronger than the support they get to choose what is prescribed for
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their identity. People who like MacOS need much more pressure to buy
Windows than to buy MacOS. This result is very important for threshold
models because it points to the way identities and social influence interact
in the adoption of different behaviors. Our model then follows to show
that if people can also select the relationships they want to maintain or
eliminate, the resulting network configurations are those in which MacOS
users have no relation with Windows users and vice versa. Moreover, it
will be likely that if actors can coordinate by pairs on what relation-
ships to maintain, all MacOS users are linked together and all Windows
users are linked together. This because individually each actor can draw
out from her interactions the strategic complementarities of relating with
others whose choices are compatible to theirs. As a consequence of this,
the most beneficial outcome in social terms is when all actors are achiev-
ing such complementarities from all others in the population (i.e., the
network is completely connected), they are all coordinating in the same
behavior (i.e., the network is specialized), and the behavior is the one
preferred by the majority. Thus, if MacOS users are a majority, society
is at its best when all users are MacOS users even if some of them prefer

Windows.

To test our theory we designed an experimental study in which we var-
ied the composition of the population for three conditions: No Conflict,

Low Conflict and High Conflict. In this way, we could assess what role
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individual identities and social influence play when they are interact-
ing together but their intensity is varied. Our main empirical findings
suggest that when there are different social categories, so that there are
conflicting preferences about what behavior to adopt, individual identi-
ties are more salient than social influence. Therefore, networks segregate
into two components. Each component has the characteristics of a sat-
isfactory specialized network with a homogeneous population. That is,
all subjects in a component belong to the same identity, they choose the
behavior they prefer given their identity, and only connect with others
who belong to their social category. This first result reinforces the cat-
egorization argument of identity theory showing how identities can be
so strong that are used to help focalize equilibrium selection. However,
the strength of individual preferences leads to two undesirable situations.
In terms of relational structures, segregation between social categories is
dominant. In terms of social outcomes, inefficiency is pervasive. Thus,
the same force that helps individuals reduce risk and relate to others

hurts society in an important way.

As a consequence, the outcome dominant in payoffs, the one that is most
efficient from the societal perspective is not achievable. However, this
is not because individuals are not aware of the complementarities that
they could exert from relating to more than to less neighbors but be-

cause of the presence of conflict in preferences. Moreover, our second
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empirical result states that when there is conflict in individual prefer-
ences and segregation arises between social categories, subjects aim to
maximize the complementarities from the social interactions with those
around them and try to increase their number of relationships to a max-
imum. Thus, when a conflict between identities and social influence in
relation to payoffs is latent, an actor’s identity is more salient. However,
once segregation emerges, so that identities are not in conflict anymore,
actors social influence to each other becomes more salient so that they
aim to connect completely within their component. The conflict in pref-
erences makes the payoff dominant structure unreachable but within the
segregated configuration leads to the payoff dominant case for such types
of networks. This points to the tension between stability and efficiency
that has been so relevant and pervasive in network studies (Jackson and
Wolinsky, 1996; Jackson, 2009), but introduces the effect of identities
in it, bowing that the stable networks emerge because of the interplay
between identities and “selective” social influence. That is, only influence

from those around me who are like me (in-group).

Our third empirical result is a surprising observation. When there are
conflicting preferences and individuals segregate favoring only their in-
groups, being in the minority facilitates coordination and stability. So,
the minority groups tended to completely connect between them from

early stages but the majority failed to do so until the very end of the in-
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teractions. Although this could be considered as a consequence of group
size, because majorities are larger than minorities the coordination prob-
lem is greater, the failing of coordination was not present when the ma-
jority was absolute. That is, in the case of No Conflict, when all subjects
belong to the majority, and grow size was the largest, they did not show
the same limitations in maximizing the complementarities of their social
connections by reaching pairwise stable networks. This result comple-

ments the existing work on in-group bias in identity theory.

As mentioned before, when identification is experimentally induced (i.e.,
minimal group paradigm), in-group bias has been significantly observed.
(Leonardelli and Brewer, 2001) even observed this for cases where there
was a majority and a minority. Our results complement these findings
on the literature by showing that in network interactions with conflicting
preferences in-group bias is observed but groups in numerical minorities
express more bias than those in numerical majorities. Our results go in
accordance with what has been empirically found by (Mullen et al., 1992;
Otten et al., 1996) who have observed, outside of the lab, bias in group

size both when groups are real or artificial.

Some potential limitations of our work warrant further discussion. Com-
pared to other works on identities (Akerlof and Kranton, 2000), we model
social categories as fixed while their works have assumed that individu-

als can choose their individual identity and not only their behavior. Our
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main aim was to understand the adoption of behavior when given identi-
ties and social influence are at play in context of conflicting preferences.
Accordingly, we decided to maintain the identity assumptions central to
our approach. Fixed social categories are common in research on iden-
tities (i.e., race, gender, nationality) and our model can be extended to

include variable identities in further research.
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INSTRUCCIONES

Bienvenido/a. Vas a participar en un experimento econémico. Por favor lee atentamente las siguientes instrucciones. Si tienes alguna
pregunta, por favor levanta la mano y uno de los experimentalistas se acercara a ti para responder a tus preguntas de manera individualizada.
Durante el experimento no esta permitido comunicarte con otros participantes, ni utilizar tu teléfono movil, ni realizar ninguna otra tarea con
el ordenador que no sea la propia realizacion del experimento.

En este experimento vas a acumular puntos, que seran convertidos a euros. El nimero de puntos que obtengas
depende de tus propias decisiones y de las decisiones de los demas participantes.

Este experimento consta de 25 rondas, de las cuales las primeras 5 seran de prueba. Al comienzo de cada ronda todos
los participantes son aleatoriamente divididos en grupos de 15 personas, identificadas del 1 al 15 (es decir, 1, 2, 3, ...,
15). El ordenador asigna de manera aleatoria un simbolo a cada participante: circulo o cuadrado. El simbolo de cada
participante se mantendra constante a lo largo de todo el experimento, pero la composiciéon de los grupos y la
numeracion cambiaran de manera aleatoria en cada ronda. Todos los participantes conoceran la numeracion y
simbolos de todos los miembros de su grupo, pero no su identidad.

En cada ronda tomaras dos decisiones, y constara de 4 fases:
1. Elegiras de los 14 miembros de tu grupo a cuales quieres proponer una conexion.
2. Seras informado de las proposiciones de todos los miembros del grupo y de la red que se ha formado. Una
conexidn se forma si ambos participantes han propuesto dicha conexion.
3. Elegiras una accién: arriba o abajo.
4. Seras informado de las decisiones que se hayan tomado en esa ronda y de los puntos que hayas obtenido.

Tus elecciones, conexion y accion, asi como la de los demas participantes de tu grupo, determinan el total de
puntos que puedes obtener en cada ronda. Cada proposicion de una conexion, incluso si no se llega a formar,
tiene un coste de 2 puntos. Recibes puntos por cada participante al que estés conectado que elija la misma accién
que tu. Dicho nimero de puntos depende de la accidn elegida y de tu simbolo:

Eres circulo:
e Sieliges arriba recibes 6 puntos por cada coordinacion con tus conexiones.
e Sieliges abajo recibes 4 puntos por cada coordinacion con tus conexiones.

Eres cuadrado:

e Sieliges abajo recibes 6 puntos por cada coordinacién con tus conexiones.
e Sieliges arriba recibes 4 puntos por cada coordinacion con tus conexiones.

A continuacidn tienes las instrucciones detalladas de cada fase junto con ejemplos (ten en cuenta que los numeros,
tipos, redes y acciones son a modo de ejemplo y no tienen por qué producirse en el transcurso del experimento):
Inicio de Periodo:

Al inicio de cada periodo conoceras tu nimero y tipo, asi como los de todos los miembros de tu grupo. Tu tipo sera el
mismo a lo largo de todo el experimento, no asi tu nimero ni la composicion de tu grupo.
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Fase 1 - Propuestas:

Periodo

1t 2 Eres el participante 6 y tu tipo es cuadrado
Va a comenzar la Ronda.
Eres el participante nimero 6
Tu tipo es cuadrado
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La primera decision que debes tomar es a qué miembros de tu grupo quieres proponer una conexion. Para ello debes
marcar la casilla al lado de su nimero en la lista de la derecha. En el ejemplo de arriba, les propones conexion a los

participantes 13y 15.

Fase 2 - Conexiones

Proposiciones Realizadas

5 BIRIE Bl e ol & w v ]
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Una vez todos los participantes han realizado sus propuestas veras la red formada. Una conexién se forma cuando los
dos participantes la proponen mutuamente. En el dibujo de la red verds tus conexiones resaltadas en color verde, y en
la tabla veras también en color verde la fila correspondiente a las propuestas que tu has realizado y la columna
correspondiente a las propuestas que has recibido.

En el ejemplo de arriba eres el participante 4. Has propuesto conexion a los siguientes participantes:
e Detipocirculo: 2,3,5,8y 11.
e De tipo cuadrado: 13y 15.

A ti te han propuesto conexion los participantes 1, 3, 6, 8, 9, 10, 12, 13 y 15. Por tanto tienes una conexion con 3, 8, 13
y 15, que son los participantes a los que propusiste conexion y a su vez te la propusieron a ti. Es decir, las conexiones
finales son la interseccidn entre las proposiciones realizadas y recibidas.

Fase 3 - Accion:

Conexiones
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13 7 14

Elige entre las 2 acciones:  ( Arioa
© Abajo

Una vez formada la red, en la siguiente fase deberas decidir tu accidn, arriba o abajo. Ahora seguiras viendo la red
formada, pero en la tabla de la derecha veras unicamente las conexiones de cada participante. Recuerda que lo que
ganaras sera:

Si eres circulo o:
* 6 puntos por cada coordinacién en
* 4 puntos por cada coordinacién en
Si eres cuadrado oO:
* 6 puntos por cada coordinacién en
* 4 puntos por cada coordinacién en

Fase 4 - Resumen:
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Proposicion | Proposicion
Particpante | Realizada Recibida Accén | Coordinaddn| Puntos
1 ]
2
(3}
4
(5)
6
7}
8)
9
110

1D

>

P

| <P - | -

14
15/

ol o of 4| o o 2| o of u = ||

En la ultima fase verds un resumen de lo ocurrido en la ronda: las proposiciones que realizaste, las que te hicieron a ti, la accion
elegida por cada participante, si os coordinasteis o no y los puntos obtenidos por la interaccién con cada uno.

En el ejemplo de arriba eres el participante 15 de tipo cuadrado, y has elegido la accién abajo. Veamos detalladamente tu
interaccidn con algunos participantes:

e Con 2: Le propusiste y te propuso, y os habéis coordinado.
Ganas: 6 — (coste de la propuesta) =6 -2 =4

e Con 6: Hay conexidn pero no coordinacion. Pagas el coste de la propuesta (2).
e Con 12: Le propusiste y él no. Pagas el coste de la propuesta.

e Con 14: El te propuso y tu no. El paga el coste de la propuesta, td no.

e Con 15: “Contigo mismo” siempre te coordinas.

A continuacion tienes una tabla para ayudarte a calcular los puntos totales que puedes obtener por coordinarte con tus vecinos
(los costes de las propuestas de conexion NO estdn descontados, recuerda que cada proposicion cuesta 2 puntos):

Si eres v elijes Si eres

Si eres

0o
0o

v elijes v

v elijes

A
Vv

Coordinaciones  Puntos Coordinaciones ~ Puntos

Si eres v elijes




Chapter 2

Analysis of Strategies to
Promote Cooperation in

Distributed Service Discovery

Abstract:

New systems can be designed, developed, and managed as societies of
agents that interact with each other by offering and providing services.
These systems can be viewed as complex networks where nodes are
bounded rational agents. In order to deal with complex goals, they re-
quire the cooperation of the other agents to be able to locate the required

services. In this pa- per, we present a theoretical model that formalizes

89
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the interactions among agents in a search process. We present a repeated
game model where the actions that are involved in the search process have
an associated cost. Also, if the task arrives to an agent that can perform
it, there is a reward for agents that collaborated by forwarding queries.
We propose a strategy that is based on random-walks, and we study un-
der what conditions the strategy is a Nash Equilibrium. We performed
several experiments in order to validate the model and the strategy and
to analyze which network structures are more appropriate to promote

cooperation.

2.1 Introduction

Social computing has emerged as a discipline in different fields such as
Economics, Psychology, and Computer Science. Computing can be seen
as a social activity rather than as an individual one. New systems are
designed, developed, and managed as societies of independent entities
or agents that offer services and interact with each other by providing
and consuming these services (Luck et al., 2005). These systems and
applications can be formally represented through formal models from
the field of Complex Networks (Newman, 2011). This area provides a
sound theoretical basis for the development of models that help us to

reason about how distributed systems are organized (Kleinberg, 2006).
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Complex Network models have been used in different contexts such as
social networks (collaboration, music, religious networks), economic net-
works (trade, tourism, employment networks), Internet (structure and
traffic networks), bio-molecular networks, and computer science networks

among others (Costa et al., 2011; Newman, 2003).

In systems of this kind, one of the challenges is the design of efficient
search strategies to be able to locate the resources or services required
by entities in order to deal with complex goals (Ban et al., 2010; New-
man, 2003; Del Val et al., 2014). Taking into account the autonomy of
the entities that participate in the search process, three levels of search
decentralization can be considered. We consider that at the first level
the search process is centralized when there is a common protocol that
is adopted by all the entities of the system and this protocol dictates
the actions that must be followed (i.e., the protocol specifies the entity
that starts the process, the sequence of participation of entities, and the
target). At the second level this protocol can be relaxed. The entities
adopt that protocol, and, therefore, they carry out the same set of ac-
tions, but the search path (i.e., the sequence of entities that participate
in the search process) is not specified. At the third level, a decentralized
search can be considered when there is a protocol adopted by all the
entities that specifies the set of available actions. However, these entities

can decide whether or not they are going to follow the protocol. It would
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not be desirable that to impose the same behavior on all the nodes if it
takes away their individual choice, (i.e., it would be desirable that all the
nodes would follow the protocol willingly). Therefore, we have looked
for a concept of stability within the strategies of the entities of the sys-
tem. This concept, which comes from Game Theory, is known as Nash

Equilibrium.

As an application scenario, we consider a P2P system that is modeled as
a multi-agent system. Agents act on behalf of users playing the role of a
service provider or service consumer. Agents that play the role of service
consumers should be able to locate services, make contracts agreements,
and receive and present results (Sierra et al., 2011). Agents that play the
role of service providers should be able to manage the access to services
and ensure that contracts are fulfilled. By considering the system as
a network, it is assumed that all the information is distributed among
the agents. Since agents only have a local view of the network, the
collaboration of other agents is required in order to reach the target.
During a search process, agents can carry out a set of actions: create a
task that must be performed by a qualified agent, forward the task to one
or several neighbors if they do not know how to solve the task, or perform
the task if they can provide the required service. The cooperation of
agents forwarding queries plays a critical role in the success of the search

process (Del Val et al., 2013). This action facilitates the location of a
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resource based on local knowledge. However, in our scenario, this action
has an associated cost and agents are free to decide whether or not the
forwarding action is profitable to them based on its cost and the expected

reward.

In this paper, we propose a model to formally describe the distributed
search for services in a network as a game. Specifically, we use the re-
peated games framework to model both the process that a task follows
through the network and the global task-solving process. In the former,
each period is a decision stage for the agent who is in possession of the
task. In the latter, a project is generated in each period and randomly

assigned to an agent in the network.

Our intention is to analyze the relationship between the cost of forward-
ing the task and the reward that agents obtain later when the task is
solved in order to guarantee that cooperation is a stable behavior in
the game. We called this reward a. We establish a bound for the to-
tal length of the search process total length using Mean First Passage
Time (MFPT), which is the average number of steps necessary to go
from an agent ¢ to another agent j in the same network. Therefore, the
structure of the network also characterizes a through the MFPT, and,
consequently, the network structure influences the agents’ behavior. In
order to verify this, we ran simulations to contrast the possible differ-

ences among network structures. The results show that the structure of
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the network has a significant influence on the emergence of cooperation.
The structure that offers the best results is the Scale-Free structure since
its diameter is closer to the limit of steps in the search process than the

other network structures.

The paper is organized as follows. Section 2.3 presents a repeated game
model to formalize the search process of services in agent networks. In
Section 2.4, some strategies that agents can follow in the repeated game
are analyzed in order to determine whether or not they are at a Nash
Equilibrium. Section 2.5 describes several experiments we performed to
empirically validate the theoretical results in different network structures
as well as to analyze the influence of the network structure and to de-
termine which structure facilitates the emergence of cooperation in the
proposed repeated game. Section 2.2 presents other works related to co-
operation emergence in distributed environments. Finally, Section 2.6

presents the conclusions.

2.2 Related Work

Random-walk strategies have been presented as an alternative search
strategy to flooding strategies (Chawathe et al., 2003; Yang and Garcia-
Molina, 2002; Lopes and Botelho, 2008) since they reduce the traffic in

the system and provide better results (Lv et al., 2002; Zhong, 2006).
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A random-walk search algorithm selects a neighbor randomly each time
to forward the message to (Gkantsidis et al., 2006). There are many
search proposals that navigate networks using random-walk since they
do no require specific knowledge and can be applied in several domains.
Some of these works have introduced modifications such as using random-
walk from multiples sources (Zhou, 2008; Pu and Pei, 2010) or adding
information about routes (Lee et al., 2009; Backstrom and Leskovec,
2011; Cajueiro, 2009) in attempt to improve the search efficiency. The
influence of network structural properties on random-walk has also been
studied. For instance, some of the properties that have been evaluated
are: the mean first-passage time (MFPT) from one node to another
(Zhang et al., 2011; Roberts and Haynes, 2011; Tejedor et al., 2011),
how the structural heterogeneity affects the nature of the diffusive and
relaxation dynamics of the random walk (Noh and Rieger, 2004), and the
biased random-walk process based on preferential transition probability

(Fronczak and Fronczak, 2009).

One of the common assumptions in network search is that all the agents
have homogeneous behavior and that all of them are going to cooper-
ate by forwarding messages. However, this does not correspond with
real scenarios. In real large-scale networks, decisions are often made by
each agent independently, based on that agent’s preferences or objec-

tives. Game Theoretic models are well suited to explain these scenarios
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(MacKenzie and DaSilva, 2006). Game theory studies the interaction of
autonomous agents that make their own decisions while trying to opti-
mize their goals. Game Theory provides a suite of tools that may be
effectively used in modeling interactions among agents with different be-

haviors (Srivastava et al., 2005).

There are works in the area of Game Theory that focus on the rout-
ing problem in networks where there are selfish agents. Specifically, this
problem has been studied in wireless and ad-hoc networks (Srivastava
et al., 2005; MacKenzie and DaSilva, 2006). Numerous approaches use
reputation (Jaramillo and Srikant, 2010) (i.e., techniques based on moni-
toring the nodes’ behavior from a cooperation perspective) or price-based
techniques (Janzadeh et al., 2009) (i.e., a node receives a payment for its
cooperation in forwarding network messages and also pays other nodes
which participate in forwarding its messages) to deal with selfish agents.
One of the drawbacks of reputation systems is that nodes whose repu-
tation values are higher than a threshold are treated equally. Therefore,
a node can maintain its reputation value just above the threshold to
obtain the same benefit as nodes with higher reputation levels. One of
the problems of the Price-based techniques is that they are not fair with
nodes located in region with low traffic that have few opportunities to
carn credit. Li et al. (Li and Shen, 2012) integrate both techniques

and propose a game theory model for analyzing the integrated system.
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However, this approach does not consider the influence of the underlying

structure in the cooperation emergence.

To understand the social behavior of the systems it is important to con-
sider the network structure. There are several works that analyze the
influence of the network structure when the agents of the networks do not
follow homogeneous behavior. These works study how structural param-
eters such as clustering or degree distribution affect the emergence and
maintenance of cooperative behavior among agents (Pujol et al., 2005;
Ohtsuki et al., 2006). Hofmann et al. (Hofmann et al., 2011) present a
critical study about the evolution of cooperation in agent societies. The
authors conclude that there is a dependence of cooperation on parame-
ters such as network topology, interaction game, state update rules and

initial fraction of cooperators.

The proposal presented in this paper analyzes through a game theory
model the problem of cooperation emergence in the context of decentral-
ized search. It differs from previous approaches in several ways. First, we
considered a game that fits better with the characteristics of decentral-
ized search than other games proposed in the literature that are based
on the often studied Prisioner’s Dilemma. Second, agents decision about
cooperation is based on an utility function that takes into account the
network topology properties. Moreover, the utility function also consid-

ers a limit in the number of possible steps to reach the target agent.
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This feature is important in distributed systems in order to avoid traffic
overhead. Third, the strategy that agents follow is based on a search
mechanism that is often used in network navigation and does not require
specific domain knowledge. Therefore, the model can be easily applied
in different search contexts. Finally, in order to promote cooperation,
instead of using a reputation or price-based mechanisms, we use a mech-
anisms based on incentives provided by the system. We formally and
experimentally analyze which is the minimum required reward in order

to consider the strategy a Nash Equilibrium.

2.3 The Model

Consider a finite set of agents N = {1,2,...,n} that are connected by
undirected links in a fixed network represented by the adjacency matrix
g. A link between two agents ¢ and j, such that 7,7 € N, is represented
by gi; = g5 = 1, where g;; = 0 means that 7 and j are not connected.

The set of neighbors of agent ¢ is

Ni = {jlgi; = 1}

For simplicity we assume that g; = 0 so all neighbors in N;(g) are dif-

ferent from . The number of neighbors that agent i has (its degree of
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connection) is denoted by k; = |N;(g)|, which is the cardinality of the set
N;(g). Alternatively, we use the adjacency matrix to represent the net-
work, which is denoted by A. A link between agents 7 and j is represented
by A;; =1, and by A;; = 0 if there is no link.

We consider that each agent has a type (service) 6; € [0, 1] that represents
the degree of ability of agent i. Let p € [0,1] be a task that must be
carried out by one of the agents in the network. We assume that there
is at least one agent ¢ € N such that ¢ is suitable to perform the task,
which means that, for a fixed ¢, its type 6; is ‘similar’ to the task p, i.e.,

0; — p| <e.

We define an N-person network game I'° that takes place in g. Each

agent has a set of actions A; = {0,1,2,..., N;, 00}, where:

e oo means the agent itself does the task

e {1,2,...,N;} means forwarding the task to one of the agent’s V;

neighbors

e () means doing nothing

In the first period of the game, a task p is uniformly assigned to a ran-
domly selected agent. Beginning at stage 1, the task passes through the
network stage by stage. At stage t > 0 each agent chooses one of the

above actions depending on whether or not the task is in the agent’s node.
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The action perform by an agent where the task is not in the agent’s node
is considered to be () or “doing nothing". We associate a null payoff to

this action. At stage 1, agent i(1) chooses one action from its action set.

At the initial stage, if the first agent, j € {1,..., N} chooses to do the
task itself because its type is € close to the task p, then the game ends.
Agent j gets a payoff of 1 — |p — 6;|, which depends on its type #; and
the task p. The more similar the type and the task are, the greater the
payoff is. The rest of the agents can do any action in their action sets.
More specifically, let ¢ > 0 be the cost of forwarding the task. If an agent
forwards the task, at some point it, the agent may earn a payoff a > c if
the task ends successfully. If an agent chooses the action (), the payoff is
0 if the agent did not forward any task in a previous period or the agent

did forward the task but the task ended unsuccessfully (i.e.,nobody chose

00).
Formally:
(
1—|p—10;] ifal=c0
—C 1faf€{1,,NZ}
ui(as, a_s;j) =
0 ifal =0AP <t:al €{1,...,N;}
« ifal=0A3t' <t:al €{l,.... N}ATjEN:a =00

By choosing actions at stage ¢, agents are informed of actions that are
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chosen in previous stages of the game. Therefore, let us consider a com-
plete information set-up. Formally, let H;,t = 1,..., be the cartesian
product Ax A t—1 times, i.e., H, = A", with the common set-theoretic
identification A° = @, and let H = U;>oH{®. A pure strategy o' for agent
i is a mapping from H to A%, o' : H — A’. Obviously, H is a disjoint

union of Hy, t =1,...,T and o!:H; — A' as the restriction of o' to H;.

The payoff function of each agent when the game is repeated a certain

number of times and when the task starts at any agent is formalized as:

N oo
wilos,o_) = ul(a,a_;;j) = %ZZU (ai,a—i; j)

t>0 Jj=1 t=1

This induces an order in the payoffs for each strategy o; that each agent
i chooses given the action profiles o_;, which allows us to rank them and

calculate the Nash Equilibriums of the game.

In order to characterize the set of feasible and individual rational level to
define the set of equilibria payoffs of the repeated game (i.e., the equilib-
rium payoff attained as a consequence of the well-known Folk Theorem)
(Fudenberg and Maskin, 1986), we have to establish the min-max level
in pure actions. The min-max strategy for agent ¢ is the one that guar-
antees the highest possible payoff in the action profile that is the worst
case scenario for agent i. This is sometimes called the reservation payoff.

Formally,
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w; = min max wu;(a;,a_;),a; € Aja_; € A (2.1)
a_; a;

In our set-up for the one-shot payoff function, the min-max strategy is ()
and, therefore, the min-max level is 0. An action profile (o7,...,0%) is a
Nash equilibrium in the network game I'; if and only if

ui(ei,af,...,a;) 2ui(ei,ai‘,...,@,...,a*), VU:#(}“ ’iEN, and 9166

n

We define the set of feasible payoff vectors as

F := conv{u(a),a € A}.

The set of strictly individually rational payoff vectors (relative to the

min-max value in pure strategies) is

VZ:{$:($1,...,$n)€FI$i>QIZ' VZGN}

Folk theorems in the context of game theory establish feasible payoffs for
repeated games. FEach Folk Theorem considers a subclass of games and
identifies a set of payoffs that are feasible under an equilibrium strategy
profile. Since there are many possible subclasses of games and several

concepts of equilibrium, there are many Folk Theorems.
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The Folk Theorem states any payoff profile in V' can be implemented as
a Nash equilibrium payoff if § is large enough. The intuition behind the
Folk Theorem is that any combination of payoffs such that each agent gets
at least its min-max payoff is sustainable in a repeated game, provided
each agent believes the game will be repeated with high probability. For
instance, the punishment imposed on an agent who deviates is that the
agent will be held to its min-max payoff for all subsequent rounds of the
game. Therefore, the short-term gain obtained by deviating is offset by
the loss of payoff in future rounds. Of course, there may be other, less
radical (less grim) strategies that also lead to the feasibility of some of
those payoffs. The good news from the Folk Theorem is that a wide range
of payoffs may be sustainable in equilibrium. The bad news is that, there

may exist a multiple number of equilibria.

2.4 Equilibrium strategies

In this section, we study which strategy profiles are a Nash Equilibrium
in the game I')°. Namely, we start defining the Nobody works strategy,
which basically consists of doing nothing, even in the case that an agent
can perform the task. We prove that the Nobody works strategy is not a
Nash Equilibrium in the game. Then we consider the so-called random-

walk strategy. In this strategy, an agent is not able to solve the project,
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it uniformly and randomly chooses one of its neighbors to forward the
task to. We establish the conditions under which the strategy profile
every agent plays the random-walk strategy is a Nash Equilibrium. We
enrich the model by adding a threshold for the number of times that a
task can be forwarded and we also study under which conditions is a

Nash Equilibrium.

2.4.1 Nobody works

One possible strategy is the strategy we call Nobody works, in which every
agent always chooses the action () and consequently gets a payoff of 0.
One of our model’s assumptions is that for all possible task p there exists
an agent that is able to perform it. Let that agent be 4, and let its type
be 6;. From our payoff criterion, we can state that in some period t the
project will start at agent ¢ and agent ¢ will be able to solve it. In that
case, if agent i chooses the co action (doing the project), agent i gets a
payoff of 1 — |p — 6;| > 0; therefore, the Nobody works strategy is not an

equilibrium strategy.

2.4.2 Random Walk

In this subsection, we study the case where all agents play a behavioral

strategy o : H'=! — A(A;), which leads to the well-known dynamics
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of “‘random-walk". We call this behavioral strategy the random-walk

strategy.

Let us formally define the random-walk strategy. At each stage t, agent

1 performs one of the three actions that are possible:

e the () action if no task arrives.
e the oo action if agent i’s type 6; is close to the task p;.

e the forwarding action when the task arrives and agent ¢ cannot solve
it, agent ¢ uniformly and randomly chooses one of its neighbors to

forward the task to.

This strategy is a “myopic" strategy since agents do not update the ex-
pected payoff. Each agent ¢ will uniformly and randomly choose one of
its neighbors to continue searching for the agent that can solve the task
p. Recall that in our game for all task p, there exists an agent k* such
that agent ¢ can do the task p (i.e., | — p| > €). As a consequence
of the random-walk strategy we can assert the existence of a finite time
0<t<ooandk* € {l,...,N} such that a’;{* = 00. Therefore, given
a task p, the achieved payoff for each agent first depends on whether or
not agent ¢ was part of the path of searching for the agent that did the
task. If agent ¢ did not in the procedure, then agent ¢ gets 0, which is

the min — max value.
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Now, suppose that i is part of the path. Let us define some parameters
that take part in the utility function. We refer to the probability of an
agent being capable of performing the task as 7;, and since it is the same
for all agents , we simply call it simply . P:° is the probability that the
task reaches a specific agent z in the long run, and the previously defined
parameters o and ¢ are the reward and the cost of forwarding the task,

respectively.

Hence, the utility function of the game I"° for agent ¢ is:

u;i(0;,00,0-1) = P2 (y(1 = |p = 0:]) + (1 = 1) (P (= ¢) + (1 = BP)(—¢)))
(2.2)

The following proposition states that the strategy profile in which every
agent plays a random-walk strategy is a Nash equilibrium in the game

re.

o0
n

Proposition 2. The strategy profile (o5°,...,0%°) is a Nash Equilibrium

in the game I'°.

Proof. Let i be an agent such that agent ¢ selects a strategy O'? # 0°; let

t be a time period such that the task p arrives to i; let ¢’ be another time
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period such that ¢ # ¢ and let |§; — p| < e. The strategy o? is formally
defined as

(of)': H' — A (2.3)
vt £, (o)) =0

When selecting that strategy, if 7 is able to afford the task agent ¢ does it,
and that is the only profit that agent ¢ eventually gets because it never

forwards the task. Consequently, agent ¢’s utility function is

ui(6;,07,0%) = P (1(1 = (p — 6:)) (2.4)

In order to prove that the strategy profile (o5°,...,05°) is a Nash Equi-
librium the utility function described in 2.2 must be greater or equal to

the utility function specified in 2.4

PR (y(1=(p—=0;) + (L =)(PE(a—c)+ (1= Fx)(=c) = PP (v(l—(p—10)))
(IL=N(Px(a—c)+ (1= PFx)(~c) > 0

Since 0 < v < 1, (1 — ) is always positive. Then

P2l —c)+ (1= F)(=¢)

Vv
o

Y]
|

«
00
Pk*
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By the definition of random-walk dynamics, in the long term, a task p
will always find the agent k* that is capable of solving it, so Pgy = 1.
Since a > ¢ by assumption, the strategy profile (67°,...,0°°) is a Nash

n

Equilibrium in the game I'°.

Now we enrich the model by introducing a “time” condition to solve the
task. It makes sense to limit the rewards for efforts to solve or forward the
task to a time limit within which the task must be solved (i.e., efforts are

only rewarded if the task is solved in a certain number of time periods).

2.4.3 Random-walk strategy with a finite number of

steps

An interesting measure for establishing the limit of steps that a task p
can take to be solved is the Mean First Passage Time (hereafter MFPT).
The MFPT between two nodes ¢ and 7 of a network is defined as the
average number of steps to go from i to j in that particular network
(Zhang et al., 2011). Therefore, we define the strategy o] for an agent
1, which consists of forwarding the task to a randomly selected neighbor
only if it has advanced a number ¢; < 7 times, where 7 is the average

MFPT of the network (which we formally define below).
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From equation 34 of (Zhang et al., 2011), we know that the MFPT from

any agent to a particular agent 7 in a network is defined as:

where k; and k; are the degree of agents 7 and j, respectively, 1 is
the kth eigenvector of S corresponding to the kth eigenvalue A\ (with
S = D’%AD’%, A being the adjacency matrix of the network, D being
the diagonal degree matrix of the network, and the eigenvalues being
rearranged as 1 = A\ > XAy > A3 > ... > Ay > —1) and 7; = d;/ K (with

K = Zjvzl dj)-

Rq
K

It follows from Eq. (6) from the same article that 3 11#;%\/7 =

Zij\il Y1, = 0. Thus, the second term is equal to 0. So

Mz

N
1 K 1,
(s k) - ey Lo

(2.5)

1—7r] p—

We define the maximum number of steps that must be taken for every

task p to be solved as the average (1)) for all j € N, which we denote as
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7. Formally:

=y % (2.6)

J=1

We now define a new game I'). In this game, if it takes more than 7
steps to solve the task, the game ends and the collaborating agents get
no reward. In the following, we explain the equilibrium strategies for the

game I'/.

Let us define some new parameters that play a role in the new game: the
number of steps a task has advanced until it reaches agent 7 is ¢;; QZ or
is the probability that the task reaches an agent k* starting from agent
tin 7 — t; or less steps and P, is the probability that the task reaches

8,1

an agent ¢ starting from agent s in 7 or less steps.

In order to formally define P7,

817

we use the adjacency matrix of the net-
work (denoted as A) and one of its properties which states that the values
(i,7) of A™ indicate the number of paths of length n between i and j in
that network. P{; can be defined as the number of paths of length 7 or
less between s and ¢ divided by the total number of paths with the same
length starting at s but ending at any possible agent j of the network.

Formally:
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T

2 (AD)s
== (2.7)

CTEEe)

Let us define r;] ~t or simply r;, as the number of agents that the task

can reach starting from 7 in 7 — ¢; or less steps. For this purpose, we use

the Reachability matrix, (denoted as R), which is defined as

(
1 if there exists at least one path between 7 and j

Vi,j € N, (RT™")y; = of length 7 — ¢; or less

0 otherwise
\

(2.8)
The process for obtaining R from the adjacency matrix is straightforward.

Then, we formally define r; as

r; = Z(RT_ti)z’j (2.9)

To define Q;;:i, we compute the probability that none of the reachable
agents for agent ¢ is able to solve the task, which is (1 —+)". Then QZ or

is defined as
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Qe =1—-(1—)" (2.10)

Hence, the utility function of the game I}, for an agent 7 when all agents

play the strategy o7 is

wi(li,07,07;) = PL (v(1 = (p = 0:) + (1 = N(Qf ' (@ — ) + (1 = Q1) (—¢))
(2.11)

T T

Now we study a bound for « for which the strategy profile (o7,...,07)

is a Nash Equilibrium in the game I').

Proposition 3. If o; > ﬁ, the strategy profile (o7,...,07) is
—_ —_— /'y T’L

a Nash Equilibrium in the game I'}.

Proof. The proof proceeds exactly like the proof for Proposition 2 but

T—1;

substituting the proper probabilities P; and Q;.’. Finally, we have

C

Q;k*l

o> (2.12)

By substituting 2.10 in 2.12, we have
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c

> —a (2.13)

Q@
The fact that o depends on r; implies that each agent has its own bound

for alpha which depends on the agent’s connectivity (a becomes «;).

This means that the network structure has a deep impact on « bounds.
In high clustered networks, r; is high for each agent i, and, consequently,
a; is low. The opposite occurs in low clustered networks (e.g., Erdos-
Renyi networks) where «; is uniform among all agents. In networks with
a non-uniform degree distribution (e.g., scale-free networks), average «
may be similar to the a for Erdés-Renyi networks, but it varies a lot

between hub and terminal agents.

2.5 Experiments

In this section, we validate the proposed mathematical model for ser-
vice search in different network structures. Specifically, we focus on how
the structural parameters of the networks influence the required reward
a in order to promote cooperation (i.e., forwarding tasks) and improve

the success of the search process. The structural parameters are repre-
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sented by the parameter r; (see Equation 2.9). For the evaluation, we
compare the success rate of the searches and the average agent utility in
different network structures. The network structures considered in the

experiments are: Random, Scale-free, and Small-World networks.

2.5.1 Experimental Design

Each network in the experiments is undirected and has 100 agents. We
also tested different sizes of networks, but the conclusions were similar
to those obtained with 100 agents and we do not include them here. The
structural properties of the networks are shown in Table 2.1. Each agent
has a type (service) 6; € [0, 1] that represents the degree of ability of
agent. The degree of ability is uniformly distributed among the agents.
A task p is generated and assigned to an agent following a uniform prob-
ability distribution. Each agent has a set of actions to choose from when
it receives a task: doing the task if the similarity between its ability and
the task p is under a threshold |0; — p| < ¢, forwarding the task based on
the expected reward (Formula 2.13), or doing nothing. The forwarding
action has an associated cost ¢ = 5. A task p is successfully solved when
an agent that has an ability that is similar enough to the task (]6; — p
< ¢) in less than 7 steps. For the experiments, the value of the 7 is
the Log(MFPT). We use this concave transformation to obtain clear re-

sults and illustrate the impact on the parameter with the structure of
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‘ topology ‘ N ‘ edges ‘ avDg ‘ std ‘ clust ‘ dens ‘ 7 = Log(mfpt) ‘ d ‘ diameter /T ‘

Random 100.0 | 200.00 | 4.00 | 1.46 | 0.02 | 0.04 5.00 7.09 1.418
100.0 | 300.00 | 6.00 | 1.82 | 0.03 | 0.06 4.00 5.00 1.25

ScaleFree | 100.0 | 197.00 | 3.94 | 3.94 | 0.02 | 0.04 5.00 5.09 1.09
100.0 | 293.00 | 5.86 | 5.08 | 0.04 | 0.06 5.00 4.27 0.854

SmallWorld | 100.0 | 200.00 | 4.00 | 1.02 | 0.08 | 0.04 5.00 7.55 1.55
100.0 | 300.00 | 6.00 | 1.27 | 0.10 | 0.06 4.00 5.45 1.36

Table 2.1: Network structural properties: topology, number of agents,
number of edges, average degree of connection of agents, standard devi-
ation of the degree distribution, clustering, density, 7 = Log(Mean First
Passage Time),diameter, ratio diameter /7.

the network. The value for the € parameter is 0.1. We executed each
experiment over 10 networks of each type and we generated 1,000 tasks

p in each network.

2.5.2 The Influence of Structural Properties and o

In this section, we analyze the influence of network structural properties
and reward « in the search process. We consider values for « in the
range [4.99975, 5.0005] in order to see the effects on the search process
(see Figure 2.1). In this interval, we observe the effects of considering
values for « that are lower than the cost of the forwarding action (¢=5),
values that are equal to the cost of the forwarding action, and values
that are greater than the cost of the forwarding action. With values of
a lower than or equal to ¢, the success rate was around 20%. This per-
centage represents the number of tasks that can be solved directly by the

first agent that receives the task. Values of « that are strictly superior
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Figure 2.1: Influence of « values in the percentage of successful searches
in different network structures of 100 agents. (Left) Network structures
with an average degree of connection of 4. (Right) Network structures
with an average degree of connection of 6.

to the cost of the forwarding action (a > ¢) provide an increase in the
success rate of the search process (see Figure 2.1 Left). The structural
properties of the network considered in the search process have an impor-
tant influence on the success rate. We observe that there are significant
differences between the results in Scale-Free, Random, and Small-World
networks. Scale-Free provided better results than the other networks
since its structural properties increased the number of agents that could
be reachable. The diameter of the network is closer to 7 than the diam-
eters of other network models (see Table 2.1). Another example of the
influence of structural properties is the average degree of connection of
the agents. As the average degree of connection increases, the number
of reachable agents increases and so does the probability of finding the
required agent. Therefore, agents estimate that it is profitable to forward

the task to their neighbors (see Figure 2.1 Right).
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The structural properties and the reward value « also influence the aver-
age utility obtained by an agent. In this experiment, we analyzed values
of a in the range [0, 60]. We considered a wider range in order to see the
values that made the average agent utility positive and how this utility
evolves (see Figure 2.2). Values of o lower than or equal to ¢ provided
a utility equal to 0 since agents estimate that the expected reward was
not enough to compensate the cost of the forwarding action. Values of
« that were in the interval (5, 10] made some agents estimate that the
forwarding action was going to be profitable. Although the value for
« was enough for agents to consider forwarding tasks, their utility was
not always positive for all the agents. Therefore, the average utility had
a negative value. The interval (5, 10] for o values could be considered
risky. The average utility became positive with a values greater than
10 (see Figure 2.2 Left). In this experiment, the network structure also
had a significant influence. The Scale-Free network provided higher val-
ues of utility than the Random or Small-Word networks. This difference
was also observed when we increased the average degree of connection of

agents (see Figure 2.2 Right).
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average agent profit
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Figure 2.2: Influence of o values on the utility in different network struc-
tures of 100 agents. (Left) Network structures with an average degree of
connection of 4. (Right) Network structures with an average degree of
connection of 6.

2.6 Conclusions

In this paper, we have analyzed the distributed search of resources in
networks that model societies of agents. These agents offer services and
interact with each other by providing and consuming these services. The
actions of these agents have an associated cost and not all of the agents
have homogeneous behavior. We have proposed the use of Game Theory
to formally model the interactions between the agents as a repeated game,
and we have described a strategy that is based on the simple well-known
random-walk strategy. We have also established the conditions under
which the random-walk strategy is a Nash Equilibrium. The strategy
proposed has been extended by adding a constraint for contexts where
the number of times a task can be forwarded is restricted. The condi-

tions under which this extended strategy is a Nash Equilibrium have also
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been analyzed. Finally, we validated the proposed model and the latest
strategy in different types of networks. The results show that in order to
promote cooperation among the agents of the network, the expected re-
ward should be greater than the cost of the forwarding action. Moreover,
the network structure has an important influence on the success of the
search process and in the average utility of the system. Scale-Free struc-
tural parameters facilitate the success of the search process because their
structural properties increase the number of agents that can be reached.
The experiments also show that even though there are certain values of
the reward that are enough to promote cooperation, these values are not

enough to obtain a positive average utility value.
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Chapter 3

Bayesian model of peer review

problem

Abstract:

Peer review is a system that subjects scientific work to scrutiny of experts
in the field. A fundamental problem of the peer review process is that it
introduces conflicting interests or moral hazard problems in a variety of
situations. We model the process from a game-theoretical approach. We
assume rational agents, where authors have a type which models their
“quality" or “ability" as producers of scientific articles, and the referees
can have different types regarding their behavior emitting evaluations
of them: wunreliable, cheater or fair. We characterize the Bayesian Nash

Equilibrium of the game of different scenarios achieving both pooling and

126
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separating equilibria.

3.1 Introduction

Peer review is a system that subjects scientific work to scrutiny of experts
in the field. If the standards of scientific rigor, technical correctness, nov-
elty and the criterion of sufficient interest are approved. Usually two or
three peers evaluate the standards of scientific rigor, technical correct-
ness, novelty and the criterion of sufficient interest of a scientific work
(e.g., a submission to a journal or a conference). A scientific authority,
such as the editor of a journal, take the experts opinion into account and
decides if the work should be published (Meadows and Meadow, 1998;

Thurner and Hanel, 2011; Carvalho and Larson, 2013a).

A fundamental problem of the peer review process is that it introduces
conflicting interests or moral hazard problems in a variety of situations.
It is clear that in the presence of referees with conflicting interests the
quality selection aspect of the peer review system will work sub-optimally.
The issue between individual versus aggregate optimization is well stud-
ied in Economics where agents act as maximizers of their individual util-
ity instead of maximizers of a common goal. Moreover from Computer
Science there are an enormous interest of this phenomena as a social and

complex interaction among racional individuals.
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The high level of competitiveness for reaching scientific positions and
funding (Fanelli, 2010), and possible conflicts of interests, might have
lead to cases of misconduct (Squazzoni, 2010). Nationality, language,
speciality, reputation and gender biases have been evidenced in (Godlee
et al., 1998) and (Wenneras and Wold, 2001). This situation has moti-

vated several studies about the process.

The strategic behavior of scientists is being studied recently from different

approaches.

Agent Based Models such as (Thurner and Hanel, 2011), (Squazzoni
and Gandelli, 2012), (Paolucci and Grimaldo, 2014) and (Cabota and
Squazzoni, 2013) care about this and its consequences in the system.
(Baier, 2012) links the motivation and behavior of scientists to knowledge
growth and scientific innovations, taking a look at how they coordinate

and add to scientific progress as utility-driven agents.

Other studies model the process from a game-theoretical approach. (Leek
et al., 2011) develop a theoretical model for peer-review described in
terms of payoffs for author and referee behavior, and they analyze it to
determine the properties of optimal strategies under both open and closed
peer review. In the closed approach, players spent more time solving
problems than reviewing, while in the open games there was greater
balance between reviewing and submitting. Also in the open review there

are more cooperativeness. They observed that when a submitter and
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reviewer acted cooperatively, the accuracy of the reviews increased by 11
percent. (Squazzoni et al., 2013) describe an experiment that models Peer
Review under different incentive conditions, assuming that the quality of
peer review depends on a cooperative problem between editors, authors
and referees, and propose a modified version of the “investment game".
Results of the experiment demonstrate that offering incentives to referees

decreases the quality and efficiency of the review process.

Other works have defined a Bayesian model of the Peer Review Process
(Park et al., 2013), (Carvalho and Larson, 2013a) and (Carvalho and
Larson, 2013b). In (Carvalho and Larson, 2013b) authors propose a
scoring method built on scoring rules to induce honest reporting and
illustrate its application to the Peer-Review process using a Bayesian

Model.

There are several contributions aimed at counteracting the effects of mis-
behavior in science. (Grimaldo and Paolucci, 2013) propose an agent-
based model implementing a program committee update mechanism based
on disagreement control that removes rational cheating. (Cabota and
Squazzoni, 2014) studied different editorial policies, concluding that se-

lecting referees of good quality, might counteract evaluation bias.

Concerning the dilemma of taking into account a manuscript quality or
the author’s reputation when reviewing, (Thorngate and Chowdhury,

2014) propose a weighted rank of a manuscript taking into account the



130 Chapter 3. Bayesian model of peer review problem

manuscript quality (as perceived by two reviewers) and the track record
of the author (number of previous publications). They present it as a
possible approach for resolving disagreements among reviewers’ assess-
ments. Results show that increases in the weight given to track record
decrease the proportion of best articles published, decline the percentage
of best authors who accumulate the best track records and favor authors
who develop a track record of publications in the first cycles of journal

publication.

Summarizing, some works have explored different kinds of behavior, other
works have tried to adjust them empirically and experimentally. In this
article we study the bayesian equilibrium of different behaviors of authors
and referees, which lead us to stable and plausible situations from a game-

theoretical perspective.

We apply the framework of Game Theory to model the Peer Review
problem. We assume rational agents, which play the role of authors
or referees. Authors have a type which models their “quality" or “abil-
ity" as producers of scientific articles, and the referees can have different
types regarding their behavior emitting evaluations of them: wunreliable,
cheater or fair. We model such behavior assigning a different utility
function for each type. The Game Theory formalization studies agents’
strategic behaviors, which allows us to obtain a stability result, the well

known Bayesian Nash Equilibrium. This concept establishes stable be-
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haviors with respect to agent’s unilateral deviations, what implies that
agents have no individual incentives to change their strategy if every-
body “sticks to the plan". In this framework, authors choose their best
response investing resources to produce articles, what determines how
close the quality of the paper is to their ability. The level of resources
they invest depends critically on the probability distribution that deter-
mines which type of referee is evaluating their paper. The knowledge of
this distribution allow us to characterize the Bayesian Nash Equilibrium
in different scenarios. Our approach is based on the diversity of cost
functions, understanding the cost as the investment agents must make to
do their actions: authors to produce their papers and referees evaluating

them.

We characterize the Bayesian Nash Equilibrium strategy profile in dif-
ferent scenarios. In the first scenario the type of the author is common
knowledge and a constant cost function is present in every agent utility
function. We find a pooling equilibrium where all players choose the
exact amount of effort equal to author’s type, i.e authors produce ar-
ticles of the quality they are capable of and the referees evaluate them
fairly. Then we modify the cost functions for the different types of ref-
erees, making them linear and quadratic. In each case we characterize
the corresponding separating Bayesian Nash Equilibrium and doing some

comparative statistics show that, generally, higher percentages of unre-
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liable and cheater referees may result in lower quality papers and eval-
uations. Finally we characterize the Bayesian Nash Equilibrium when
author’s type is not exactly known by the referees, who are only aware

of its probability distribution.

The paper is organized as follows. Section 3.2 presents a bayesian game
model to formalize the peer review process between an author and a
referee. In Section 3.3 we characterize the Bayesian Nash Equilibrium for
a variety of cost functions for the referees, and we do some comparative
statistics over the different parameters of the model. Finally, Section 3.4

presents the final conclusions of the article and some future research.

3.2 The Model

Consider I' a two-player game under incomplete information where player
1 is called the author (A) and player 2 the referee (R). The type set of
the author is the compact set [0,1] and the type set of referee is the
discrete set {u,ch, f}. We assume independence between author’s type
and referee’s type. The nature chooses a realization of each type for both

players with the following law:

e 04 € [0,1] with probability distribution p.
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e O € {u,ch, f}, with prior probability P; = Prob(fr = j) such

that 0 < P; <1 for j € {u,ch, f} and P, + P, + Py = 1.

The author has as private information the realization 84 € [0,1]. The
value 04 can be understood as her capability, assuming that 4 = 0 means
the lower strength and 64 = 1 corresponds with the higher capability, in
other words, a pope in the field. Neverthless, the author does not the
type of the referee who later will revise her paper. On the other hand,
the referee knows whether his type is unreliable, cheater or fair but not

the realized type of the author.
The set of actions of player is for both the compact set [0, 1].

The timing of game is as follows:

e Once the author and the referee know their type, the author A
sends an article A, to the referee R to be evaluated. The action

played by the author is A, € [0, 1].

e In the second stage the referee R sees the action of the author
A and then sends and evaluation R, of the article to A knowing
the realization of his type. The action played by the referee is
Ry €0, 1].

Consider a pair of types (04,60r). The payoff functions for each player

depends on (64,0r) and the action pairs chosen by both players. More



134 Chapter 3. Bayesian model of peer review problem

specifically for the referee we can write the following three payoff func-

tions:

Ui(Rs, As,04) = (1= (Rs = 04)%) — c(u) (3.1)

U (Rs, As,04) = ol — (R, — Ay)?)

U(Re, As,04) = (1= (R, — A,)?) — c(f) (3.3)

Where c(u), ¢(ch) and ¢(f) are the costs the referee pays for the effort he
invests evaluating A, when he is unreliable, cheater or fair respectively.
Note that an unreliable referee takes only into account the author’s type,
a fair one only the article and a cheater does a convex combination of
both terms, weighted by a parameter a. This models the behavior of
referees who only focus on the author’s name, the quality the article

produced or both, respectively.

As the type set of the author is the [0, 1], we can write the author payoff

function as:

Ua(Rs, As,04) = a(1—(Ry— A)H) +(1—a)(1—(As—04)%) —c(4) (3.4)
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where ¢(A) is the cost the author pays for the effort he invests gener-
ating As. The author always produces a paper taking into account the

evaluation he thinks will get and how close it is to his own capabilities

(04).

A strategy o4 for the author is a map from her type set to her action
set: 04 :[0,1] = [0, 1]. Respectively, a strategy o for the type is a map:
or:{u,ch, f} =[0,1].

As a usual average criterium, the average payoff of each player given his

type allows us to compute the average payoff for each player:

E[UA(O-RJ AS7 QA)] — P’LLUA(RZ7 A87 6A)+PchUA(R§h7 A87 0A)+PfUA(R£7 AS7 814)
(3.5)
where 0(04) = A, and

E[Ur(Rs,04,0r)] = /01 Ui (R, As, 04)dp(0.4) (3.6)

where o(0r) = Rs for 0r € {u,ch, f}.

Definition 5. A pair (7, 0%,) is a perfect bayesian equilibrium if:

i E[UA(U}FDN sz 914)] > E[UA(U}k%a As7 QA)] and

e E[UR(RL 04 GR)] = E[UR<R87 T4 QR)]
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In this study we assume independence between the author and referee
types. As well, we depict several instances of this game taking into
account different cost function for the referee and the distribution prob-

ability of p(fa4).

3.3 Results

In this section, we drive for different cases of cost functions for the ref-
eree players by studying existence and characterization of some bayesian
equilibrium. We differentiate the cases where the equilibrium is a pooling

equilibria and those that each type of referee may act differently.

3.3.1 Bayesian Equilibrium when c(u) = ¢, ¢(ch) =
c, ¢(f) = ¢, and ¢(A) = ¢ and p(f4) is a Dirac

measure at 04

In this subsection we characterize a bayesian equilibria with a constant
cost function equal for all referee types. First, we formulate the proposi-
tion that states the bayesian equilibrium of the game and later we pro-
pose a static comparative of the equilibrium behavior attending different

cases.
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Proposition 4. For I' with c(u) = ¢, ¢(ch) = ¢, c(f) = ¢, c(autor) = ¢
and p(64) a Dirac measure at 04 the pair (ocg,04) = ((04,04,04),04) is

a pooling bayesian equilibium.

Proof. We obtain the best responses for each type of referee maximizing

the utility functions from equations (3.1), (3.2) and (3.3):

u
ouy,

oR, —2(Rs—04) =0
Riu) = 6, (3.7)
OUR 91— a) (Ry—04) — 20 (Ra— AL) — ¢ = 0
8Rs - « s A a s s c=
Ri(ch) = aAs+(1—a)ba (3.8)
ou,
= 2A,-2
8Rs s Rs

Now we substitute each referee’s best response in author’s expected util-

ity function from equation (3.5):
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ElUA(R: A, 04)] = aP,(1—(Ay—04)°) +aPy (1— (a —1)% (4, —04)?)

+aPr+(1—a)(1—(A;—04)%) —c (3.10)

To obtain the best response for the author, we maximize the previous

equation:

OFE[UA(R:, Ag,04)]
0A;

= 2a—1)aPy (—(a—1)04 + aAs — Ay)
+2aP, (04 — As) —2(1 —a) (As —04) =0

A = 6, (3.11)

Now we substitute (3.11) in equations (3.7), (3.8) and (3.9):

Ri(u) = 04 (3.12)
Ri(ch) = 04 (3.13)
R(f) = 0a (3.14)

We show now that the best responses we obtained satisfy definition (5)
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for the author

ElUA(R,,A> =04,04)] = aP,+aPy+aPr+(1—a)—c
> aP, (1 - (As —04)%) + Py (1 — (= 1)* (A, — 04)?)
+an+(1—a)(1—(As—9A)2)—c

= E[Us(R;, Ay # 04.04)]

and for each type of referee

UE(R: = QA,AS = HA,QA) = 1l-c

> (1 — (Rs — QA)Q) —C= U}%(Rs 7é HA,AS = 9,4,9,4)

U}C%h(R::(gA,ASZQA,QA) = Ck—i—(l—Oé)—C
> a(l = (R —04)%) + (1— a)(1 — (Rs — 04)%) — ¢

= U (R #0604, Ay =04,04)
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ULR: =04, A, =04,04) = 1—c

> (1= (Ry—04)%) —c=UL(Ry # 04, As = 04,0,)

3.3.2 Bayesian Equilibrium when c(u) = ¢, ¢(ch) = ¢,
c(f) = ¢, and ¢(A) = c and p(f,4) is not a Dirac

measure at 04

In this subsection we characterize a bayesian equilibria considering a
constant cost function equal for all referee types and p(64) is not a Dirac
measure at 04, i.e. 0, is not exactly known by the referee but how it is

distributed.

Proposition 5. For I" with c¢(u) = ¢, c(ch) = ¢, c(f) = ¢, and c(autor) =
¢ and p(04) is the distribution of 04, there exists a separating bayesian

equilibrium in pure strategies.

Proof. First, we obtain from equations (3.1), (3.2) and (3.3) the utility

functions when p(64) is not a Dirac measure at 6 4:
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Up(Rs, As,04) = (3.15)
/ (= (R~ 02)7) — ) d(p(6)) =
wW@%+Ah—wfﬂww@w@nz
<—1:—-f%§—%1)[p<eA>n;+—2fzsjfleA;f<eA>d<eA>-—Q/£1921f<eA>d<eA>:=
(—e— B2+ D)[p(0)} + 2Ry (p(0s = 1) — 1) — (p(0 = 1) — 2B[04]) =

p(0a =0) (R2+c—1)+p(0a =1) (—R2+ 2R, — ¢) — 2R, + 2E[04]

UilRa: A ) = (3.16)
/O (1= (Rs = Ay)?) —¢)d(p(6a)) =

(B + / (1= (R — A2 (0.2)d(6,) =

p(0a=1) (1 - (Re—A)2) —¢) — p(0a = 0) (1 — (Rs — A,)%) — ¢)
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UF(Ry, Ag,04) = (3.17)
A (a1 = (Re =A%) + (1= a)(1 = (Ry — 04)%) — ) d(p(0)) =

/O (a(1 = (Re — A)?) + (1 — a)(1 — (Ro — 04)?) — )/ (6.4))d(6,1) =

a(l — (R, — As)z)/ P'(04)d(Ba) + (1 - a)/ (1= (Rs = 04)*)p'(04)d(0.4)

_C/olp,(eA)d(QA) =
a(l = (Ry — A)*)[p(0a)lo — clp(9.4)]g

+p(0a=1)(1 - ) (1 + 2R, + pf@lj[iA]l)> —9R, =

p(fa=1) (a((Rs — AN+ Ry(A, — 1)) = Ry —c+1)

~(1—a)(1+2R,+ Iﬂ))

(0a=1)
—p(04 =0)(a((Ry — A)? + Ry(Ay — 1)) — Ry —c+ 1) — 2R, =
VR — A% — o 2E[04] .
P04 = D(a(RS = AT = R+ R) + (@ = 1) mets = 3R, = o)

—p(04 =0)(a(R>+ A2 — R,Ay — R,) — Ry —c+1) — 2R, =
1
p(0a=1)
+p(04 = 0)(Rs(1 + a + aA, — aR,) — aA? +c—1)

(2E[04)(a — 1)+ p(0a = 1)(a — 1 + 2(a — 2) R,

—p(04 = 1)(Rs(1 4+ a + ads — aR,) — aA? + ¢ — 1))

We obtain the best responses for each type of referee maximizing the
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utility functions from equations (3.15), (3.17) and (3.16):

ZZ}R — —2p(0a = 0)Ry +p(0a = 1) (2R, —2) =2 =0
1—p(@a=1)
R:(u) = 3.18
)= 0 =0+ 402 = D 1)
oUeh
SR 2(a—2)+p(0s=0)(a+aAs —2aR; + 1)
—p(0a=1)(a+ads —2aR;+1)=0
a+ad, + et
R;(ch) = POA0)p04=D) (3.19)
2cv
U},
= 2(p(04 = 0) — pl64 = 1)) (R~ 4,) =0
R(f) = As (3.20)

Now we substitute each referee’s best response in author’s expected util-

ity function from equation (3.5):
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E[Us(R;, As,04)] = P, (1 - (A + p(04 (_93 :+113(;A1— 1)) 2)

2(a—2)
mph(l__( )
«

+aP;+ (1-a)(1 —64)7%) —c (3.21)

To obtain the best response for the author, we maximize the previous

equation:

OE[UA(As, R}, 04)]
0A,

1
= S(—4(a— 1)~ A (~4a + aPy +4aP, +4)

2(a —2)
ha (C”p(eA —0)pl0a=1) 1)

B a(p(@Azl)—l)Pu) _0
pfa=0)+pla=1)

1 (a—2) | 20(p(0a=1)~1)Py
(@ =1)8a = 3 Fen (“W“) H0A=0) 19 0a=T)

oz—o‘_TPCh—ozPu—l

Ar =
(3.22)

Now we substitute (3.22) in equations (3.18), (3.19) and (3.20):
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1-— p(QA = 1)
R*(u) = 3.23
() p(0a=0)+p0s=1) ( )
1 2(a—2) 20(p(04=1)—1)P,
\ 2(a = 1)0a = 3 (0‘ T pOa=0)—pa=D) T 1) + o Ba=0) A=)
Rs (Ch) = aPygy
4la — 252 —aP, — 1)
(a—2) a+1
+ + 3.24
a(p(0s=0) —pBs=1)) 20 ( )
1 (a—2) 2a(p(6a=1)—1)P,
R(f) = (@ = 1) — ;P (O‘ T pOa=0—p(a=T) 1) + S0A=0)7p@a=T)

a— 2 — P, —1

(3.25)

The proof that the conditions of definition (5) are satisfied follows the

same procedure as in subsection (3.3.1). Therefore, the expression of the

pure bayesian equilibrium pair is (og,04) = ((%,

1 2(a—2) 2a(p(0 4=1)—1) Py
2(a—1)0a~4 P (0t g 20 tig=n TL) + o0s T n (a—2) e

4(a_ a}Zch —aPu—l) a(p(9A=0)*P(9A=1)) 20 7

1 (a—2) 2a(p(0 4=1)—1) Py
(a=1)0a—5Fen (OH_P(@A:OF (9A—1>+1)+P(0A—0)+p(9,4—1))

a—P,
a——FL—aP,—1

)

a—P,
a— 4Ch —aP,—1

_ 1 (a—2) 20(p(0 4=1)—1)Py
(a=1)0a 4P°h(a+P(9A0)p(9A1)+1>+p(9,40)+p(9,41)>
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3.3.3 Bayesian Equilibrium when c(u) = ¢, ¢(ch) =
cRs, c(f) = ¢, and ¢(A) = ¢ and p(f,) is a Dirac

measure at 04

In this subsection we characterize a bayesian equilibria when the cost
function associated to the cheater Referee is an increasing linear function
on R,. In this case, when the author’s type is known by the referee, it
matters the shape of the cost function generating a separating equilibria.
First, we formulate the proposition that states the bayesian equilibrium
of the game and later we propose a static comparative of the equilibrium

behavior attending different cases.

Proposition 6. For I' with c¢(u) = ¢, c¢(ch) = cRs, ¢(f) = ¢, and

c¢(A) = c the pair (or,04) = ((0a,0As + (1 — )B4 —

(a—1)acP.p
—2a+2a((a—1)2P.p+Pu)+2

) is a bayesian equilibium.

Proof. We obtain the best responses for each type of referee maximizing

the utility functions from equations (3.1), (3.2) and (3.3):



3.3.  Results 147
ouy,
IR, —2(Rs—04) =0
Ri(u) = 64 (3.26)
U —2(1—a)(Rs—04) —2a(Rs — As) —c=0
8R5 s A S s -
R (ch) = aA,+(1—a)fs— g (3.27)
auy,
94, — 2R,
OR; s~ 2R
R(f) A, (3.28)

Now we substitute each referee’s best response in author’s expected util-

ity function from equation (3.5):

E[UA(R:7 AS? 914)]

= aP, (1- (A, —04)?)

+a Py, (1 — i (2(a—=1)04 —2(a = 1)As +¢) 2)

+aPr+(1—a)(1—(As—04)%) —c

(3.29)

To obtain the best response for the author, we maximize the previous
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equation:

OF[UA(As, RE,04)]

— —2(a— DaPy <—(a )04+ ad, — A, — f)

0A; 2
+2aP, (04 — As) —2(1 — ) (As — 04)
(v — 1)acPy,
A =0 :

’ AT —2a+2a((a —1)?Py, + P,) +2 (3.30)

Now we substitute (3.30) in equations (3.26), (3.27) and (3.28):
Ri(u) = 04 (3.31)

(v —1)c (P + 1) — acP,
“(ch) = 6 .32
fi(ch) A T 2a((a—1)2Ps + Py) + 2 (3:32)
(v — 1)acPy,

R; = 0 3.33
s(f) At —2a 4+ 2a ((a — 1)2Py, + P,) + 2 ( )

The proof that the conditions of definition (5) are satisfied follows the

same procedure as in subsection (3.3.1).

When the payoffs of authors and referees apply a constant cost function
equal for all of them, the best response is to follow the author’s type (i.e.

her capability or track record) faithfully.
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When the payoff of fair referees considers a linear cost function, while
the payoff of the rest of referees and the author apply a constant cost
function, fair referees underrate contributions, that continue to be sent
by the authors and reviewed by unreliable and cheater referees strictly

following the author’s type.

Best responses’ analysis

Authors and fair referees provide their best response by applying a vari-
ation to the author’s type (see equations 3.30 and 3.33) that can be

reformulated as follows:

AL =Ri(f) =04+ A104 (3.34)

where:
B (v — 1)acPy,
- —2a+2a((a—1)2Py + P,) +2

ANTN (3.35)
Figure 3.1 shows the values taken by Ai;04 when ¢ = 1 and « varies
from 0 to 1. Respectively, the X-axis and the Y-axis represent the prior
probability of having ch and u as the referee’s type. Thus, only the area
under the diagonal renders valid values, since it corresponds to probabil-

ity combinations in which P, + P, + Py = 1.

Note how extreme values of « (i.e. @ = 0 and o = 1) lead authors and fair
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referees not to apply any variation but to respond with the exact author’s
type (A104 = 0). On the other hand, intermediate values of « always
yield negative values of A0, that result in a reduction of the author’s
type. This reduction is smaller for low values of « (i.e. when the author’s
payoff function puts more weight on the difference between his track
record and the evaluation received) and it increases when either « (i.e.
the importance given to the difference between the evaluation and the
quality of the contribution) or the probability of finding a cheater referee
gets higher. In other words, authors would better reduce slightly their
capability when they face constant maximum cost functions and act in
competitive scenarios, a behaviour that will be imitated by fair referees.
On the contrary, under the same conditions, unreliable referees choose as
their best response not to modify the author’s type (see equation 3.31),

which implies overrating contributions.

In turn, the best response of cheater referees is obtained by applying a
different variation to the author’s type (see equation 3.32) that can now

be formulated as follows:

R*(ch) = 04 + Ayl (3.36)

where:
(a — Ve (aPy + 1) — acP,
—2a+20((a—=1)?Py, + P,) +2

Aol = (3.37)
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Figure 3.1: A164 applied by: (a) authors and fair referees when c(u) = ¢,
c(ch) = cRs, ¢(f) = c and ¢(A) = ¢; (b) just authors when c(u) = ¢,
c(ch) = cRy, c(f) = cRs and ¢(A) = ¢; (c) authors and fair referees when
c(u) = ¢, c(ch) = cRg, c(f) = cR?, and ¢(A) = ¢

Figure 3.2 shows the values taken by As04 when ¢ = 1 and « varies
from 0 to 1. The plot formatting is similar to that followed in Figure 3.1
and so is the interpretation of the figures. Though, we appreciate how
cheater referees reduce the author’s type to a greater extent (also when
a = 1), then providing evaluations that are considerably lower than those
coming from unreliable and fair referees. Therefore, the linear cost used
on the payoff function of cheater referees makes them undervalue the

contributions.
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alpha=0 alpha=0.2

Pu

Pu

Pu

Pch Pch

Figure 3.2: As6, applied by cheater referees when: (a) c(u) = ¢, ¢(ch) =
cRs, c(f) = ¢, and c(A) = ¢; (b) c(u) = ¢, ¢(ch) = cRs, ¢(f) = cRs, and
c(A)=c

3.3.4 Bayesian Equilibrium when c(u) = ¢, ¢(ch) =
cRs, c(f) = cRs, and ¢(A) = ¢ and p(f4) is a

Dirac measure at 64

In this subsection we characterize a bayesian equilibria when the cost
function associated to both cheater and fair Referee is an increasing linear

function on Rj.

Proposition 7. For I' with ¢(u) = ¢, ¢(ch) = cRs, ¢(f) = cRs, and

c(A) = ¢ the pair (o, 04) = (04,04 + —eieelut ot
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(a=)acPep _c (a—1)acP,p,
04+ —2a420((a—1)%Pep+Pu)+2 2)7 04+ —20420((a=1)%Pop+Pu)+2

> 18 a bayesian

equilibium.

Proof. Following the same process as in the previous subsections, we ob-
tain the best responses for both players, which characterize the Bayesian

Nash Equilibrium:

Ri(u) = 04 (3.38)
R(ch) = aA8+(1—a)9A—g (3.39)
Ri(f) = As—g (3.40)

Now we obtain author’s best response

(v — DacPy,

A =6
AT, +2a (( = 1)2Pa, + P,) + 2

(3.41)

and referees’ best responses
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Ri(u) = 04 (3.42)
(a —1)c(aPy + 1) — ach,

(ch) = 6 A
(v — 1)acPy, c
R; = 0 - — (3.4
(/) AT o 2a((a—1)2Pa+ P +2 2 (3:44)

The proof that the conditions of definition (5) are satisfied follows the

same procedure as in subsection (3.3.1).

Best responses’ analysis

When the cost function of authors and unreliable referees is constant and
that of cheater and fair referees grows linearly, authors provide their best
response by applying a small reduction to their type (see equation 3.41)

that can be expressed as follows:

AT =04+ A6, (3.45)

where:
B (a — 1)acPy,
- 2a+2a((a—1)2Py + P,) +2

A6, (3.46)

Figure 3.1 shows the values taken by A;64 when ¢ = 1 and « varies
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from 0 to 1. Respectively, the X-axis and the Y-axis represent the prior
probability of having ch and wu as the referee’s type. Thus, only the area
under the diagonal renders valid values, since it corresponds to probabil-
ity combinations in which P, + P, + Py = 1. A detailed interpretation
of these results can be found in section 3.3.3. Essentially, authors submit

contributions that are barely under their type or capability value.

Secondly, cheater referees apply a greater reduction (see equation 3.43)

that can be represented as follows:

R:(Ch) =04+ Aslly (347)

where:
(a = 1)e(aPy + 1) — acP,
—20+2a((a —1)?Pp, + P,) + 2

Agbfg = (3.48)
Figure 3.2 shows the values taken by As64 when ¢ = 1 and « varies from 0
to 1. The linear cost used on the payoff function of cheater referees makes
them undervalue the contributions whereas unreliable referees trust the

author’s track record (see equation 3.42).

Lastly, fair reviewers give their best response by also reducing the au-

thor’s type (see equation 3.44) in the following form:

Ri(f) =04+ D304 (3.49)
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where:
(v — 1)acPy, c
A3l = _ =
—2a+2a((a—1)2Pu+P,)+2 2

(3.50)

Figure 3.3 shows the values taken by Asz04 when ¢ = 1 and « varies
from 0 to 1. It is worth mentioning that, by comparing Figure 3.2 and
Figure 3.3, the reduction applied by fair referees is shown to be equal or

even higher than that applied by cheater referees.

alpha=0 alpha=0.2

Pu

Pu

Pu

Figure 3.3: Asf4 applied by fair referees when c(u) = ¢, ¢(ch) = cRs,
c(f) = cRs, and ¢(A) = ¢
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3.3.5 Bayesian Equilibrium when c(u) = ¢, ¢(ch) =
cRs, c(f) = cR%, and c(A) = c and p(f,) is a

Dirac measure at 64

In this subsection we characterize a bayesian equilibria when the cost
function associated to the cheater referee is an increasing linear function

and for the fair a quadratic one, both on R,.

Proposition 8. For I' with c(u) = ¢, ¢(ch) = cRy, c(f) = cR?%, ¢(A) =
¢ and p(04) a Dirac measure at 04 there exists a separating bayesian

equilibrium in pure strategies.

Proof. Following the same process as in the previous subsections, we ob-
tain the best responses for both players, which characterize the Bayesian

Nash Equilibrium:

Ri(u) = 04 (3.51)
Ri(ch) = ozAs—f—(l—a)QA—g (3.52)
Ri(f) = Cisl (3.53)

Now we obtain author’s best response
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1
2(ac’Pr+ (a—1)2a(c+1)2Py + (c+1)? (—a+ aP, + 1)) *

(v — DacPy,
(—204 +2a((a —1)2Py, + P,) +2 + 014) (3.54)

Al =

and referees’ best responses

R¥(u) =04 (3.55)
(@ —1)a?(c+ 1)*Py,

c
* _ - —1
fi(ch) 2 (acZPf + (@ = 1)%a(c+1)?Py + (c+1)* (—a+aP, + 1) ) "

. a*P Py 0
acP; + (a— 1)2a(c+ 1Py + (c+ 12 (—a+aP, +1) )
(3.56)

o 1
(1) = 2(ac*Py+ (a = 1)2alc+1)? Py, + (e + 1)? (—a+ aP, + 1)) '

( (a — 1)acPy, N QA) (3.57)

—2a+2a ((a —1)2Py + P,) + 2

The proof that the conditions of definition (5) are satisfied follows the
same procedure as in subsection (3.3.1). Therefore, the expression of the
pure bayesian equilibrium pair is (og,04) = ((HA,

c (a—1)a?(c+1)2 Py, 1
2 \ ac?Pr+(a—1)2a(c+1)2 Py +(c+1)2(—a+aPy+1)

262P
+ (1 - acQPf—i-(a—l)Qa(c+1)2PCh+(c+1)2(—oz—l—aPu—i-l)) QA’
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1 ( (a—1)acPey + 0 ) )
2(ac? Pp+(a—1)%a(c+1)? Pap+(c+1)2(—ataPy+1)) \ —2a+2a((a=1)*Pan+Pu)+2 Al )

1 ( (a_l)acpch _|_ 0
2(acQPf+(a—1)2a(c+1)2Pch+(c+1)2(—a+aPu+1)) —2a+20((—1)? Pon+Pu)+2 A ’

]

Best responses’ analysis
p y

When the cost function of authors and unreliable referees is constant,
that of cheater referees grows linearly and the one used for fair referees
grows quadratically, authors and fair referees provide their best response

by modifying their type (see equations 3.54 and 3.57) using the following

transformation:

Af = Ri(f) =ma* 04+ Ai04) (3.58)
where:
B 1
=g (ac?Pr+ (o —1)2a(c+ 1)?Pp + (c+ 1)? (—a+ aP, + 1))
(3.59)
— DacP.

Aif, (@ = Dacka, (3.60)

" 2a+2a((a—1)2Py + P,) + 2

On the one hand, A;64 has proven to be a small reduction of the author’s
type (for a throughout analysis, see Figure 3.1 along with its interpre-

tation in subsection 3.3.3). On the other hand, Figure 3.4 shows the
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values taken by the multiplication factor m; when ¢ = 1 and « varies
from 0 to 1. Again, the X-axis and the Y-axis represent the prior prob-
ability of having respectively ch and u as the referee’s type. Thus, only
the area under the diagonal renders valid values, since it corresponds to
probability combinations in which P, + P, + Py = 1. Note that this
factor actually entails a reduction of the author’s type, since all values

are positive and lower than the unity.

alpha=0 alpha=0.2

Pu
o0 04 08

Pu

Pu
00 04 08

Pch Pch

Figure 3.4: Multiplication factor m; applied by authors and fair referees
when c(u) = ¢, ¢(ch) = cRy, ¢(f) = cR?, and ¢(A) = c.
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To evaluate how m; behaves with respect to ¢ and «a, we use the partial
differential equations (3.61) and (3.62). The multiplication factor m,
grows with cost (c¢) as shown in Figure 3.5, where all values are positive.
However, m; decreases when more importance is given to the difference
between evaluations and the quality of contributions («). This is shown
in Figure 3.6, where all differential values are negative. Anyhow, these
opposing forces do not prevent m; from decrementing the author’s type,

which is the action taken by author an fair referees.

omi  ala=1*(c+1)Pu+acP;+(c+1) (—a+aP, +1)
oc — (ac?P;+ (a —1)2alc+1)2Py, + (c+ 1)2 (—a + aP, + 1)) 2
(3.61)
omy AP+ (a—1)Ba—1)(c+1)*Py, + (c+1)* (P, — 1)
oo 2(ac?P;+ (a —1)2alc+1)2Py, + (c+ 1)2 (—a + aP, + 1)) 2
(3.62)

The best response of cheater referees modifies the author’s type (see

equation 3.56) by now using the following transformation:

R:(Ch) =mo*x 04 + Ay04 (363)
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Figure 3.5: % applied by authors and fair referees when c(u) = ¢,
c(ch) = cRy, c(f) = cR?, and ¢(A) = c.

where:
= @?* Py
2T ac?Pr+ (a —1)%a(c+1)2Py, + (¢ + 1)? (—a+ aP, + 1)
(3.64)
Al — lc (a —1)a*(c+1)*Py, 1
AT 9"\ a@Pr + (@ —1)2a(c+ 1)2Py + (c+ 1)? (—a+ aP, + 1)

(3.65)

Figure 3.8 shows the values taken by the multiplication factor ms when
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Figure 3.6: % applied by authors and fair referees when c(u) = ¢,
Jo!
c(ch) = cRy, c(f) = cR?, and ¢(A) = c.

¢ = 1 and « varies from 0 to 1. As it also occurred with fair referees,
this factor reduces the quality of contributions, since all valid values (see
the area below the diagonal) are lower than 1. Similarly, A0, is again a
reduction of the author’s type as it can be seen in Figure 3.7, where all
values are negative and quantitatively similar to the reduction performed

by cheater referees in the rest of scenarios.
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Figure 3.7: A404 applied by cheater referees when c(u) = ¢, ¢(ch) = cRg,
c(f) = cR?% and ¢(A) = c.
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Figure 3.8: Multiplication factor msy applied by cheater referees when
c(u) = ¢, ¢(ch) = cRg, ¢(f) = cR?, and ¢(A) = c.
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3.4 Concluding remarks

In this paper we propose a Game Theory model for the peer review
problem. We model the charisma of possible referees using a combination
of both the effect of identity of the author versus the quality of the
article and the shape of the cost function; in other words, how non-blind
procedure and how much referees engage on the evaluation procedure
may affect the quality and technical correctness of the submitted articles

and the evaluations they get.

This analysis has been done under the assumption of only one iteration.
This implies that the roles of referee and author are not exchangeable
and no reputation based behavior emerges. An important issue we can
tackle is the same question that we address in this paper but under a
dynamic environment. It is well-known that an author in one stage may
be a referee and in the future an author, and viceversa. We would like

to answer as much as possible the previos question in future research.
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Conclusions

L’objectiu principal de la tesi ha sigut utilitzar la teoria de jocs per
analitzar diversos problemes d’interaccié entre agents. Aquesta potent
eina ens permet trobar estratégies d’estabilitat assumint que les parts en-
frontades es comporten com agents economics que pretenen maximitzar
la seua utilitat individual. Establim plans d’actuacié on cap jugador té
incentius unilaterals a canviar la seua estratégia, fixant les accions de la
resta. A més, hem enriquit I’analisi dels models presentats incloent el
supost d’informacié incompleta, situacié en la que hem fet servir el con-
cepte d’equilibri bayesia. Aco ens ha permés treballar amb la premisa
de que part de la informacié del joc és desconeguda per a un o més
dels jugadors que prenen part en ell, fet que es produeix en multitud
d’interaccions economiques en la realitat. Per als tres treballs que com-
posen la tesi hem plantejat un joc que modela el problema a tractar
i hem caracteritzat els prefils d’estratégies d’equilibri, especificant les

condicions que els diversos parametres del model han de complir per a

170
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que aixi siga. La teoria de jocs, doncs, ha resultat ser una eina adequada
i potent per a satisfer els objectius de la tesi. Adicionalment, hem fet
servir eines al nostre abast per a obtenir dades empiriques i fer estatica
comparativa que ens ha ajudat a contrastar les conclusions presentades

analiticament.

El primer capitol fa servir I’Economia experimental per obtenir evidéncia
empirica del comportament dels subjectes als quals se’ls presenta el joc,
analitzat préviament des del punt de vista teoric. Aquesta branca de
I’economia ha agafat un gran impuls els darrers anys, i es presenta com
una eina util per a obtenir dades sota condicions de control i replica-
bilitat. Nosaltres la hem utilitzat per contrastar els resultats d’equlibri
calculats, observant que els subjectes no s’han comportat guiats pura-
ment per I'incentiu economic individual i que, per tant, han influit altres

factors a I’hora de decidir com la identitat propia i I'afiliaci6 al grup.

El segon capitol presenta el nivell de recompenses a la cooperacié que
ha d’implementar un sistema de cerca de serveis en xarxa per a que
tots els agents col.laboren amb el procés seguint una estratégia Random
Walk. A més, presentem un analisi mitjancant simulacions multi-agent de
diverses estructures de xarxa, factor clau en I'éxit del procés i la utilitat
acumulada pels agents. Concluim que la estructura Scale-free és la millor

en ambdos aspectes.

En el tercer i altim capitol analitzem els problemes de conflicte d’interesos
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i risc moral que apareixen en el sistema d’avaluacié d’articles d’invesitgacio
conegut com a peer review. Modelem el problema com un joc amb infor-
macié incompleta, on un autor envia un article que sera revisat per un
cientific desconegut per a ell. El comportament del revisors el modelem
amb distintes funcions d’utilitat per als distints tipus possibles, variant
en cada cas la funcié de cost. Per cada escenari exposem les condicions
necessaries i les accions que composen els perfils d’estratégies d’equilibri,
pooling en uns casos i separador en altres. Realitzem estatica compar-
ativa per a concloure que , a menys proporci6 d’avaluadors ’honrats’,

menor resulta la qualitat dels articles produits.
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