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Abstract

In the present work we discuss certain characteristic features encoded in some of the fundamental

QCD Green’s functions, whose origin can be traced back to the nonperturbative masslessness of

the ghost field, in the Landau gauge. Specifically, the ghost loops that contribute to these Green’s

functions display infrared divergences, akin to those encountered in the perturbative treatment, in

contradistinction to the gluonic loops, whose perturbative divergences are tamed by the dynamical

generation of an effective gluon mass. In d = 4, the aforementioned divergences are logarithmic,

thus causing a relatively mild impact, whereas in d = 3 they are linear, giving rise to enhanced

effects. In the case of the gluon propagator, these effects do not interfere with its finiteness, but

make its first derivative diverge at the origin, and introduce a maximum in the region of infrared

momenta. The three-gluon vertex is also affected, and the induced divergent behavior is clearly

exposed in certain special kinematic configurations, usually considered in lattice simulations; the

sign of the corresponding divergence is unambiguously determined. The main underlying concepts

are developed in the context of a simple toy model, which demonstrates clearly the interconnected

nature of the various effects. The picture that emerges is subsequently corroborated by a detailed

nonperturbative analysis, combining lattice results with the dynamical integral equations governing

the relevant ingredients, such as the nonperturbative ghost loop and the momentum-dependent

gluon mass.
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I. INTRODUCTION

In recent years our understanding of the infrared (IR) sector of QCD has advanced con-

siderably, due to a detailed and systematic scrutiny of the fundamental Green’s functions

of the theory. In particular, high quality lattice simulations of propagators [1–5] and ver-

tices [6, 7] have furnished new insights on the subtle underlying mechanisms, and have

spurred an intense parallel activity within the various nonperturbative approaches in the

continuum [8–28].

At this point, the plethora of available information needs to be interpreted carefully, and

be used in the construction of a reliable picture of the fundamental dynamics, with increas-

ingly stronger predictive power. To that end, in the present work we elaborate on what

appears to be a profound connection between the masslessness of the ghost, the precise form

of the gluon propagator in the deep IR, and the divergences observed in certain kinematic

limits of the three-gluon vertex. This particular connection is valid in the Landau gauge,

both in d = 3, 4; however, in d = 3 the associated effects are considerably more enhanced,

for reasons that will become clear in what follows.

As is well-known by now, the infrared finiteness of the gluon propagator and the ghost

dressing function, observed in a variety of (Landau gauge) lattice simulations, may be

explained in a rather natural way by invoking the concept of a dynamically generated

mass [29–32]. In particular, the (Euclidean) gluon propagator ∆(q2) assumes the form

∆−1(q2) = q2J(q2) + m2(q2), where the first term corresponds to the “kinetic term”, or

“wave function” contribution, while the second denotes the momentum-dependent mass

function [33, 34]. Within the framework of the Schwinger-Dyson equations (SDEs) both

J(q2) and m2(q2) satisfy two independent but coupled integral equations, which, at least in

principle, determine their dynamical evolution.

In d = 4, the main observation underlying the present work may be described as follows.

The fact that the ghost propagator, D(q2), remains massless, has as consequence that the

contribution to J(q2) stemming from the ghost-loop diagram [(a3) in Fig. 1] contains a

pure logarithm, ln q2, which is “unprotected”, in the sense that there is no mass term in

its argument that could tame its divergence in the IR. This is to be contrasted with the

corresponding logarithms originating from the gluonic loops [(a1) in Fig. 1], of the type

ln(q2 +m2), which, due to the presence of the dynamical gluon mass m2(q2), are finite for
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arbitrary Euclidean momenta. Of course, the massless logarithm does not interfere with

the overall finiteness of ∆(q2), simply because it is multiplied by q2; its presence, however,

makes the first derivative of ∆(q2) diverge at the origin. In addition, it induces a subtle

effect on the precise shape of the gluon propagator in the deep IR. Specifically, ∆(q2) is not

a monotonic function of q2, displaying a (numerically small) maximum, precisely due to the

q2 ln q2 term. The size and location of this effect is largely controlled by the relative weight

with which the two types of logarithm contribute to J(q2); in particular, the weight of the

massless logarithm is about one order of magnitude less than that of the massive, a fact

which pushes the appearance of the effect in the deep IR, reducing at the same time its size.

It turns out that the quantity which accounts for the divergent behavior of the three-gluon

vertex (for recent studies of this vertex see also [35, 36]) in some special kinematic limits

studied on the lattice, is precisely the J(q2) considered above. In particular, in the “orthogo-

nal” configuration with one momentum vanishing, the usual quantity employed in the lattice

studies, to be denoted by R, satisfies R(q2) ∼ [q2J(q2)]′, where the “prime” denotes deriva-

tive with respect to q2. Thus, the dominant contribution as q2 → 0 is R(q2) ∼ J(q2) ∼ ln q2;

evidently, for sufficiently small q2, R(q2) becomes negative, and diverges as a logarithm.

In d = 3, the situation is qualitatively similar to the one described above, but the diver-

gences induced due to the masslessness of the ghost are stronger. Specifically, as may be

already established at the level of a simple one-loop calculation [37], the part of J(q2) coming

from the ghost loop behaves like 1/q. As a result, the corresponding effects are significantly

enhanced: the maximum of the gluon propagator is clearly visible on the lattice [2], and so

is the abrupt negative divergence seen in the corresponding R(q2) [6].

Note that our theoretical prediction for the signs of the divergence both at d = 3, 4 is

unequivocal: they are fixed by the sign of the logarithm obtained from graph (a3) in Fig. 1

(for earlier related works, see, e.g., [38, 39]). In addition, it is interesting to note that

the observed divergences occur within a theory with a finite gluon propagator and a non-

enhanced ghost dressing function. In fact, the origin of the divergences encountered in the

three-gluon vertex is not associated in any way with the (intrinsically divergent) “scaling”

solutions [14, 17], but rather with the loop effects of massless (but non-enhanced) ghosts.

The article is organized as follows. In Section II we present a simple description of

the gluon propagator, which captures quite faithfully all qualitative features mentioned

above. This section serves as a reference for fixing the main ideas, and can guide the reader
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through the more complex analysis that follows. In Section III we venture into the full

nonperturbative analysis of the divergent ghost loop, and the implication for the gluon

propagator and the three-gluon vertex. Throughout this study we make extensive use of the

full nonperturbative equation governing the momentum evolution of the gluon mass, derived

in [34]. Finally, in Section IV we discuss our main results and present our conclusions. The

article ends with two Appendices, one where the R-projector is discussed in a technically

simplified but qualitatively accurate setting, and one where the subleading nature of the

transverse part of the ghost-gluon vertex is established.

II. MASSIVE VERSUS MASSLESS LOOPS: A QUALITATIVE DESCRIPTION

In this section we discuss the general ideas that underly the present work, and introduce

a simple, one-loop inspired model, which explains, with little calculational effort, the main

effects.

A. General considerations

In what follows we will work in the Landau gauge, where the full gluon propagator takes

the form

i∆µν(q) = −iPµν(q)∆(q2); Pµν(q) = gµν − qµqν/q
2. (2.1)

In addition, the ghost propagator D(q2) and its dressing function, F (q2), are related by

D(q2) =
F (q2)

q2
. (2.2)

We will now consider the SDE obtained through the combination of the pinch technique

(PT) [29, 40–43] with the background field method (BFM) [44], known as the PT-BFM

scheme [20, 21, 45]. Specifically, the SDE for the conventional gluon propagator reads

∆−1(q2)Pµν(q) =
q2Pµν(q) + i

∑6
i=1(ai)µν

1 +G(q2)
, (2.3)

where the diagrams (ai) are shown in Fig. 1. Note that these diagrams give rise to the self-

energy of ∆̃(q2), namely the propagator formed by a quantum gluon (Q) and a background

one (B). Thus, Eq. (2.3) is the nonperturbative diagrammatic representation of the formal

relation

[1 +G(q2)]∆−1(q2) = ∆̃−1(q2), (2.4)
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FIG. 1: (color online). The SDE obeyed by the QB gluon propagator. Each of the three different

boxes (continuous, dashed, and dotted line) encloses a set of diagrams forming a gauge-invariant

subgroup. Black (white) blobs represent fully dressed 1-PI (connected) Green’s functions; finally,

small gray circles appearing on the external legs indicate background gluons.

known in the literature [46, 47] as a Background-Quantum identity (BQI). A SDE similar to

that of Eq. (2.3), but with more diagrams, relates ∆(q2) with the propagator ∆̂(q2), formed

by two background gluons (B2) [45]; the corresponding BQI reads

[1 +G(q2)]2∆−1(q2) = ∆̂−1(q2). (2.5)

The auxiliary function G(q2) has been studied in detail in [48]; here it should suffice to men-

tion that, for practical purposes, throughout the present work we will use the approximate

relation

1 +G(q2) ≈ F−1(q2), (2.6)

which becomes exact in the deep IR, in d = 3, 4 [48–51].

As was already mentioned in the Introduction, in the case of an IR finite gluon propagator,

the scalar function ∆(q2) can be decomposed as (Euclidean space)

∆−1(q2) = q2J(q2) +m2(q2), (2.7)

where J(q2) is the inverse of the gluon dressing function and m2(q2) is the dynamically

generated (momentum dependent) gluon mass. Note that Eq. (2.4) is satisfied separately

by the kinetic and the mass terms [33]; thus, using the approximation (2.6), we have

J(q2) = F (q2)J̃(q2); m2(q2) = F (q2)m̃2(q2). (2.8)
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A completely analogous relation, obtained from Eq. (2.5), relates J(q2) with Ĵ(q2) [see

Eq. (A3)], as well as the corresponding gluon masses.

Given that the function F (q2) has been simulated accurately on the lattice, Eq. (2.8)

allows one to obtain J(q2) from J̃(q2); the latter is easier to calculate, due to the special

properties of its diagrammatic expansion, implemented by the PT-BFM Feynman rules. In

particular, we remind the reader that all subsets of graphs enclosed within each box Fig. 1

give rise to a transverse contribution [21, 45]; thus, their individual treatment (or the total

omission of the “two-loop dressed” subset) does not compromise the transversality of the

gluon self-energy.

Even though the dynamical equation governing J̃(q2) [or, equivalently, J(q2)] is not fully

known, mainly due to the poor knowledge of the four-gluon vertex appearing in the “two-

loop dressed” diagram of (a5), the main effect that we want to study here originates from

the two sets of “one-loop” dressed graphs, namely (a1) + (a2) and (a3) + (a4).

It turns out that there is a profound qualitative difference between these two sets of

graphs, which manifests itself in the behavior of the resulting J(q2). Specifically, the cor-

responding contributions to J(q2) reflect the fact that the virtual particles forming these

loops (gluons and ghosts, respectively) have completely different behavior in the IR: while

the gluons are effectively massive, the ghosts behave as massless particles, D(q2) ∼ 1/q2. As

a result, in d = 4, whereas the perturbative logarithm emerging from the first set of graphs

is tamed by the presence of the gluon mass, and is therefore finite for all momenta, the cor-

responding logarithm coming from the ghost loop remains massless, and, as a consequence,

it vanishes at a finite value of q2, then reverses its sign, becoming finally divergent at q2 = 0.

A similar situation occurs in the d = 3 case, but the corresponding divergences are linear in

q instead of logarithmic.

B. The toy model

The picture described above may be concisely captured by setting

Ja1(q
2) ∼





ln [(q2 +m2)/µ2] , d = 4;

(1/q) arctan(q/2m), d = 3,
(2.9)
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and

Ja3(q
2) ∼





ln (q2/µ2) , d = 4;

1/q, d = 3.
(2.10)

The corresponding gluon propagator then becomes

∆−1(q2) = q2J(q2) +m2

= q2[1 + c1Ja1(q
2) + c2Ja3(q

2)] +m2, (2.11)

with c1 and c2 two real constants, whose values will be fixed according to arguments given

below.

In the case of d = 4, the form proposed for Ja3(q
2) corresponds simply to the one-loop

integral
∫

1
k2(k+q)2

, reflecting the fact that the internal ghost propagators are massless. On

the other hand, Ja1(q
2) simulates an integral whose internal propagators are massive1. As a

result, the subset of logarithmic contributions originating from gluon loops [practically (a1)

in Fig. 1] undergoes the replacement2 ln (q2/µ2) → ln [(q2 +m2)/µ2]. The presence of the

mass prevents this logarithm from diverging; depending on the ratio m/µ, the logarithm

may turn negative past a certain value of q2, but remains finite, reaching the final value

ln (m2/µ2).

On the other hand, in the d = 3 case the corresponding transition from massless to

massive loops is implemented through the substitution (Minkowski space)
∫

k

1

k2(k + q)2
=

(
i

8

)
1

q
−→

∫

k

1

(k2 −m2)[(k + q)2 −m2]
=

(
i

4π

)
1

q
arctan

( q

2m

)
. (2.12)

Returning to the values of c1 and c2, let us first focus on the d = 4 case. Given that the

proposed toy model is clearly one-loop inspired, it is natural to expect that the values of

c1 and c2 would be determined by the pre-factors multiplying the corresponding one-loop

diagrams. Specifically, one has

c1 = 2

(
αCA

4π

)
; c2 =

1

6

(
αCA

4π

)
, (2.13)

1 We hasten to emphasize that we do not advocate the use of naive massive gluons inside loops as a self-

consistent theoretical option. In fact, such an approach would clash with a number of field-theoretic

principles that the PT-BFM formalism is designed to preserve, such as the transversality of the gluon

self-energy.
2 A loop with hard masses gives rise to the text-book integral

∫ 1

0
dx ln[q2x(1 − x) + m2]; however, the

resulting expression does not provide any further insights to the question at hand than the simple massive

logarithm employed here.
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where CA is the Casimir eigenvalue in the adjoint representation [CA = N for SU(N)],

and αs = g2/4π. Note that c1 + c2 = 13
6

(
αCA

4π

)
, which is precisely the total coefficient

appearing in the well-known one-loop result [52], ∆−1(q2) = 1 + 13
6
q2

(
αCA

4π

)
ln (q2/µ2).

In obtaining these values we have used the asymptotic (ultraviolet) one-loop result

F (q2) = 1− 3
4

(
αCA

4π

)
ln (q2/µ2), and have replaced the perturbative logarithm by a massive

one, since, as mentioned already, nonperturbatively the function F (q2) saturates at a finite

value.

The corresponding values for c1 and c2 in d = 3 may be determined following a completely

analogous procedure, using certain auxiliary results presented in [37]; they are given by

c1 = −

(
25g2CA

32π

)
; c2 = −

(
g2CA

32

)
(2.14)

(notice that there is no π in c2). In addition, since in d = 3 the gauge coupling g2 has

dimensions of mass, so do c1 and c2.

In the analysis that follows we will depart from these particular values of c1 and c2, in

order to expose better the underlying effects. The main lessons that we will retain from the

one-loop discussion given above are : (i ) in d = 4, both c1 and c2 are positive, (ii ) in d = 3,

both c1 and c2 are negative, and (iii ) in both cases, c2 is significantly smaller than c1.

C. The main implications

The model presented above leads to important consequences for the gluon propagator

and for the three-gluon vertex.

1. The maximum of the gluon propagators

The gluon propagator, ∆(q2), of this toy model displays a maximum, both in d = 3, 4,

or, equivalently, the inverse propagator, ∆−1(q2), displays a minimum. This can be easily

established by taking the first derivative of Eq. (2.11); specifically, in d = 4 (and with m2

constant)

[∆−1(q2)]′ = [q2J(q2)]′

= c2 ln
(
q2/µ2

)
+

{
1 + c1 ln

[
(q2 +m2)/µ2

]
+

c1q
2

q2 +m2
+ c2

}
. (2.15)
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The quantity in curly brackets is finite, but in general of indefinite sign, due to the presence

of the logarithm. However, it is clear that for q2 > µ2 it is positive definite, and so is the

massless logarithm; in fact, for q2 ≫ m2 the two logarithms combine to give the asymptotic

result 13
6

(
αCA

4π

)
ln (q2/µ2). On the other hand, in the opposite momentum limit, since the first

term can become arbitrarily large and negative as q2 approaches zero (remember, c1,2 > 0),

there exists a value 0 < q2
∆
< µ2 such that [∆−1(q2

∆
)]′ = 0, no matter how small c2 may be;

of course, as c2 assumes smaller values, q2
∆
is pushed closer to zero. It is then elementary to

show that the above zero of the derivative corresponds to a minimum of ∆−1(q2), since the

second derivative is positive,

[∆−1(q2)]′′ =
c1

q2 +m2
+

c1m
2

(q2 +m2)2
+

c2
q2

> 0. (2.16)

Thus, one reaches the conclusion that the IR divergence of the first term, caused by the

massslessness of the ghost, and the positivity of the ultraviolet logarithms, reflecting the

asymptotically free nature of the theory, force ∆(q2) to have a maximum. In what follows

we will denote the location of this maximum by q∆.

Let us emphasize that the above conditions are sufficient but not necessary for the ex-

istence of such a maximum. Indeed, one can easily imagine eliminating the divergent loga-

rithm, by setting c2 = 0, or saturating it (artificially) with some mass. Then, even though

everything is finite in the IR, depending on the relative values of parameters and masses,

one may still get the rhs of Eq. (2.15) to vanish. But, if the massless logarithm is there,

Eq. (2.15) will always have a solution.

It is of course obvious that the quantity [q2J(q2)]′ displays a minimum located exactly at

the same point where the maximum of ∆(q2) is, and that the reason for this coincidence is

simply the constancy of the gluon mass. However, in anticipation of the full nonperturbative

analysis of the next section, where the gluon mass will be a function of q2, we will already

at this level distinguish these two points, by introducing a different symbol for the location

of the minimum of the kinetic term, namely qJ . So, whereas within the toy model we have

trivially q∆ = qJ , in the complete nonperturbative treatment we will have q∆ 6= qJ .

An analogous proof may be constructed for the d = 3 case, where the corresponding

differentiation yields

[∆−1(q2)]′ = [q2J(q2)]′ = 1 +
c1
2q

arctan(q/2m) +
c2
2q

+
c1m

q2 + 4m2
. (2.17)
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To find the approximate q∆ for which the rhs vanishes, assume that q < m, expand, and

keep only first order terms in q/m. Then, one arrives at the simple solution

q∆/m = −
c2/m

2 + c1/m
. (2.18)

For this solution to be consistent, we must have 0 < q∆/m < 1, or (remember that c1,2 < 0)

|c1| + |c2| < 2m. This, in turn, restricts the allowed values of the (dimensionless) ratio

m/2g2; in particular, at the one-loop level our toy model provides the lower bound

m

2g2
& 0.14, (2.19)

in agreement with a plethora of independent studies based on a variety of approaches in the

continuum [53–56] and on the lattice3 [58–61].

2. The negative divergence of the three-gluon vertex

In order to understand how the (negative) IR divergences that appear in the studies of

special kinematic configurations of the conventional three-gluon vertex (Q3) are related to

the properties of the J(q2), it is convenient to consider a model inspired by the PT-BFM

three-gluon vertex (B3) [40, 62, 63], described in detail in Appendix A. The treatment of

the conventional three-gluon vertex will be addressed in the next section; it basically boils

down to a technically more involved realization of the main idea presented here.

The usual quantity employed in the lattice studies of the three-gluon vertex is denoted by

R (R̂ in the B3 case), and will be referred to as the “R-projector” [for its exact definition,

see Eq. (3.30)]; it receives contributions from the various form factors of the three-gluon

vertex, both “longitudinal” and “transverse” (see Appendix A). Due to the QED-like Ward

identity (WI) satisfied by the B3 vertex, as opposed to the Slavnov-Taylor identity (STI)

satisfied by the Q3 vertex, the former can be expressed exclusively in terms of the B2 gluon

kinetic term Ĵ(q2) [with J(q2) = F 2(q2)Ĵ(q2)], while the latter remain undetermined (they

satisfy the WI automatically). From the kinematic point of view, R depends on the modulo

of two independent momenta (q2 and r2) and the angle ϕ formed between them. It turns

out that for the special case ϕ = π/2 and r2 = 0, any contribution from the “transverse”

3 A review on the subject of d = 3 Yang-Mills theories can be found in [57].
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form factors of the three-gluon vertex drops out, and one finds that, quite remarkably,

R̂(q2) = [q2Ĵ(q2)]′.

It is now relatively straightforward to recognize that Ĵ(q2) and J(q2) display the same

type of logarithmic divergence in the IR, due to the masslessness of the corresponding ghost

loop. Thus, even though the precise prefactors between each ghost loop do not coincide, due

to the difference in the form of the ghost-gluon vertex in the linear covariant (Rξ) gauges and

in the BFM (see discussion in Section III), the qualitative behavior in the limit of interest

is common. Furthermore, one may recover R(q2) from R̂(q2) by assigning tree-level values

to the ghost dressing function F , and the gluon-ghost kernel H [see Eq. (3.35)]. Therefore,

if we use the fact that H does not introduce additional IR divergences [see discussion after

Eq. (3.40)], then R(q2) may be qualitatively modeled by

R(q2) ∼ [q2J(q2)]′. (2.20)

If we now employ the toy model of the previous subsection to evaluate the rhs of Eq. (2.20),

then R(q2) is given precisely by the expression obtained in Eq. (2.15) and Eq. (2.17). Specif-

ically, in either case

R(q2) ∼
q2→0

c2Ja3(q
2), (2.21)

which gives a negative logarithmic divergence in d = 4 [c2 > 0, but ln (q2/µ2) < 0], and a

negative linear divergence in d = 3 (1/q > 0, but c2 < 0). Summarizing,

R(q2) ∼
q2→0





ln (q2/µ2) , d = 4;

−1/q, d = 3.
(2.22)

Note that the value q∆, which determines the location of the maximum of ∆(q2) cor-

responds now precisely to the “crossing point”, q0, namely the point where R passes from

positive to negative values. Thus, within this toy model, the location of the maximum of the

gluon propagator coincides with the crossing point4 of R(q2), i.e., q∆ = q0. Of course, the

reason for this coincidence is directly related to the fact that we use a constant gluon mass,

m2. If instead we had employed a momentum dependent mass, m2(q2), the location of these

special points would differ, q∆ 6= q0, as will happen in the full analysis of the next section.

4 If the conditions for having a maximum in the gluon propagator were not fulfilled, R would still diverge

at the origin, but there would be no crossing point: R would be negative for all values of momenta.
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Finally, the ultraviolet behavior of the form factor R(q2) is given by

R(q2) ∼
q2→∞





1 + (c1 + c2)[1 + ln (q2/µ2)], d = 4;

1, d = 3.
(2.23)

Thus, in the three dimensional case R(q2) saturates at its tree-level value, while in four

dimensions it increases as a positive logarithm, R(q2) → +∞.

3. Numerics

In Fig. 2 we plot the propagator ∆(q2), its kinetic part q2J(q2), and finally the quantity

R(q2) ∼ [q2J(q2)]′ for some values of the ci constants (in the four dimensional case we have

additionally fixed5 µ at 4.3 GeV, and, accordingly, m2 = 0.14 GeV2).

As one can see from the top panels of this figure (continuous curves), the propagator

∆(q2) of Eq. (2.11) displays an IR peak. In d = 3, this particular feature is well-established,

both at the level of the lattice [2, 64], as well as from various treatments in the continuum

(see, e.g., [37]). On the other hand, in d = 4, the lattice evidence for the appearance of

such a peak is certainly inconclusive while in the continuum, to the best of our knowledge,

this possibility has not even been contemplated. Of course, we hasten to emphasize that

there are regions in the parameter space of our toy model where the “peak” flattens out

completely, and escapes detection due to numerical errors.

The kinetic part of the propagator, q2J(q2) = ∆−1(q2) − m2, is plotted in the mid

panels of Fig. 2. Clearly, as mentioned earlier, due to the fact that m2 is a constant, this

quantity will display a (negative) minimum at exactly the same point where the peak of the

propagator is located, q∆ = qJ . In the d = 4 case, the inset shows with more accuracy the

extremely shallow minimum that is obtained for precisely those values of the ci that cause

the maximum of ∆(q2) to flatten in the corresponding top panel.

Finally, in the bottom panels of Fig. 2 we plot R(q2). Again, the constancy of the gluon

mass implies that this quantity will cross zero exactly at the location of the propagator’s

5 The choice µ = 4.3 GeV is lattice-motivated, in the sense that it corresponds to the last available point

in the ultraviolet tail of the gluon propagator obtained from the simulation of [3]; therefore, in the full

non-perturbative treatment, one usually renormalizes the gluon propagator such that ∆−1(µ2) = µ2, at

that particular point. Then, the IR saturation point acquires the value ∆−1(0) = m2 = 0.14 GeV2. At

the level of the toy model these choices simply help us maintain a close analogy with the full treatment

presented in the next section.
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FIG. 2: (color online). The propagator ∆(q2), its kinetic part q2J(q2), and the quantity R(q2)

calculated in d = 3, 4 for various values of the constants c1 and c2. In d = 4 we have µ = 4.3 GeV,

m2 = 0.14 GeV2, whereas in d = 3 we chose m = 0.84 GeV. Open up/down triangles and circles

mark the position of the q∆, qJ and q0, respectively. Notice that, in this model, the location of

these three points coincides.
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peak, displaying afterwards the expected divergence as q → 0. Notice that when d = 4 the

zero-crossing is clearly detectable even in the region of parameters where the peak of the

propagator (or the minimum of the kinetic part) is barely visible.

Summarizing, the fact that the ghost remains nonperturbatively massless has far reach-

ing consequences, that can be captured and studied at the qualitative level by the simple

model (2.11). As we will see in what follows, the conclusions reached in this section are

robust, and will persist even in a fully nonperturbative setting.

III. FULL NONPERTURBATIVE ANALYSIS

In this section we proceed to corroborate by means of a genuine nonperturbative analysis

the qualitative picture derived from the toy model of the previous section. The material is

organized in five interconnected subsections: (i ) First, some general issues are discussed,

which facilitate the perusal of what follows; (ii ) Then, the detailed study of the ghost-loop

contribution Jc(q
2) follows, establishing its divergent behavior in the IR; (iii ) By employing

the gluon mass equation and the lattice data for the gluon propagator, the full kinetic part,

q2J(q2) is determined, or, equivalently [by “subtracting” q2Jc(q
2)] the gluonic contribution

q2Jg(q
2); (iv ) The R-projector of the three-gluon vertex is then studied in the relevant kine-

matic limit, revealing the announced divergence; (v ) Finally, a detailed numerical analysis

is carried out.

A. Supplementary considerations

Before entering into the technical parts of this section, let us briefly go over certain

conceptual subtleties related to the PT-BFM and its propagators [21, 45].

Within the conventional formulation [65] of the SDE of the gluon propagator ∆ (Q2),

while the full J(q2) comes out multiplied by the transverse projector Pµν(q), thus reflecting

the transversality of the full self-energy, no particular subset of the diagrams defining J(q2)

displays this special property. Indeed, there is a non-trivial conspiracy of terms, stemming

from each graph, that finally gives rise to a totally transverse self-energy. This fact is already

captured at the level of the text-book one-loop calculation of the gluon self-energy [52]: it is

only when the ghost-loop is added that one obtains the required transversality. Within this
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framework, therefore, the separation of “gluonic” and “ghost” contributions to J(q2) (say

“Jg” and “Jc”) using Feynman graphs as a criterion is ambiguous.

On the other hand, within the PT-BFM formalism, the SDE for the QB gluon propagator

∆̃ possesses special transversality properties [see the discussion following Eq. (2.8), and the

caption of Fig. 1]. As a result, one can meaningfully distinguish between two kinds of

individually transverse contributions to J̃(q2); one stemming from the ghost graphs (a3) +

(a4), to be denoted by J̃c(q
2), and the rest, stemming from gluonic graphs, to be denoted

by J̃g(q
2). Thus,

q2J̃g(q
2)Pµν(q) = [(a1) + (a2)]µν + [(a5) + (a6)]µν ,

q2J̃c(q
2)Pµν(q) = [(a3) + (a4)]µν . (3.1)

Evidently,

J̃(q2) = 1 + J̃g(q
2) + J̃c(q

2), (3.2)

where the “1” on the rhs comes from the tree-level graph. As far as J̃g(q
2) is concerned, it is

natural to expect that it will be IR-finite, since it originates from the gluonic graphs shown

in Fig. 1, namely (single and double) integrals containing fully-dressed (and IR-finite) gluon

propagators.

At this point, one may use the fundamental relation of Eq. (2.8), which is valid for the

full J(q2) and J̃(q2), in order to define the corresponding Jg(q
2) and Jc(q

2), namely

Jg, c(q
2) = F (q2)J̃g, c(q

2). (3.3)

As before,

J(q2) = 1 + Jg(q
2) + Jc(q

2). (3.4)

Finally, in order to establish a formal analogy with the toy model of the previous section,

note that the correspondence with the terms appearing in Eq. (2.11) is Jg ↔ c1Ja1 and

Jc ↔ c2Ja3 .

We next comment briefly on the renormalization procedure that we follow when dealing

with the ultraviolet divergences of the d = 4 case. Specifically, we adopt the momentum

subtraction (MOM) scheme, mainly because it is employed when renormalizing the lattice

results that we use as inputs in our analysis.

Within the MOM scheme, the renormalized gluon propagator is required to assume its

tree-level value at the subtraction point, i.e., must satisfy the condition ∆−1
R
(µ2) = µ2, for
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µ2 ≫ m2. The (quantum) kinetic terms JR

g (q
2) and JR

c (q
2) are then obtained from their

unrenormalized counterparts through simple subtraction,

JR

g, c(q
2) = Jg, c(q

2)− Jg, c(µ
2). (3.5)

Evidently, JR

g, c(µ
2) = 0. Thus, the full renormalized kinetic term is given by

JR(q2) = 1 + JR

g (q
2) + JR

c (q
2), (3.6)

with JR(µ2) = 1, consistent with the condition for ∆−1
R
(µ2) mentioned above.

Finally, in order to keep this section as self-contained as possible, we list explicitly the

three special values of the momentum q, first introduced in the context of the toy model,

namely:

(i ) The location of the maximum of the gluon propagator, ∆(q2), is denoted by q∆;

(ii ) The location of the minimum of the kinetic term, q2J(q2), is denoted by qJ ;

(iii ) The location of the zero-crossing of the R-projector is denoted by q0.

B. Nonperturbative ghost-loops and the minimum of the kinetic term

Our starting point are the two fully-dressed diagrams (a3) and (a4) of Fig. 1, which,

according to the above discussion, define Jc(q
2) through

q2Jc(q
2)Pµν(q) = F (q2)[(a3) + (a4)]µν . (3.7)

Since the ghost remains massless nonperturbatively, the resulting contribution will be IR

divergent, as happens in the one-loop perturbative case.

To see this in detail, let us focus on the rhs of Eq. (3.7). Factoring out the trivial color

structure δab, one has

(a3)µν = −g2CA

∫

k

(k + q)µD(k)D(k + q)Γ̃ν(k + q,−q,−k),

(a4)µν = g2CAgµν

∫

k

D(k). (3.8)

In the above equations, Γ̃µ(r, q, p) is the PT-BFM vertex describing the interaction of a

background gluon with a ghost and an antighost; unlike the conventional ghost-gluon vertex,

its tree-level expression is symmetric in the ghost momenta, Γ̃
(0)
µ (r, q, p) = (r − p)µ. In
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addition, we have introduced the d-dimensional measure
∫
k
≡ µǫ/(2π)d

∫
ddk, where µ is the

’t Hooft mass and ǫ = 4− d.

Since, due to the PT-BFM properties, Γ̃µ satisfies the WI [21, 45]

qµΓ̃µ(r, q, p) = D−1(p)−D−1(r), (3.9)

one may establish immediately the transversality of this subset of diagrams, as anticipated

by the presence of the projector Pµν(q) on the lhs of Eq. (3.7).

One may now introduce an Ansatz for Γ̃µ, that satisfies automatically the above WI,

namely

Γ̃µ(r, q, p) =
(r − p)µ
r2 − p2

[
D−1(r2)−D−1(p2)

]
. (3.10)

A corresponding construction for the conventional ghost-gluon vertex would be less forth-

coming, given the type of STI that the latter satisfies [52].

Obviously this procedure leaves the transverse part of the vertex,

A(r, p) [(r·q)pµ − (p·q)rµ], undetermined; however, under rather mild assumptions on

behavior of A(r, p), this term is subleading in the IR (see Appendix B), and its effects may

be neglected at this stage6.

Substituting the vertex (3.10) into the first equation of (3.8), and taking the trace of both

sides, one obtains

q2Jc(q
2) = Cd F (q2)

[
4T (q2) + q2S(q2)

]
, (3.11)

where we have defined

Cd =
g2CA

2(d− 1)
, (3.12)

and

T (q2) =

∫

k

F (k + q)− F (k)

(k + q)2 − k2
+

(
d

2
− 1

)∫

k

F (k)

k2
,

S(q2) =

∫

k

F (k)

k2(k + q)2
−

∫

k

F (k + q)− F (k)

k2[(k + q)2 − k2]
. (3.13)

Let us now study at the IR behavior of these quantities. For the term S one finds

S(q2) →
q2→0

∫

k

F (k)

k4
−

∫

k

1

k2

∂F (k)

∂k2
+O(q2)

∼

∫

k

F (k)

k4
−

∫
∞

0

dy yd/2−2F ′(y) +O(q2), (3.14)

6 Of course, in d = 4 the omission of the transverse term affects the ultraviolet properties of the resulting

SDE, forcing subtractive instead of multiplicative renormalization [66, 67].
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where in the last step we have passed to spherical coordinates, with y = k2 [see Eq. (B4)].

The first integral on the rhs contains the divergence discussed in the previous section.

This can be seen by simply setting F (y) = 1, in which case one finds a logarithmic (d = 4)

or a linear (d = 3) divergence. Given that the full F (y) saturates at a constant value in the

IR, its presence does not qualitatively modify the behavior of the integral with respect to

the case when F (y) = 1; roughly speaking, it simply changes its prefactor from 1 to F (0).

It is now relatively straightforward to establish that the second integral in Eq. (3.14) is

subleading compared to the first one, as a result of the fact that F (y) is a finite function in

the entire range of momenta. Indeed, in d = 4, integration by parts shows that it is simply

equal to F (0), and, therefore, it contributes a finite constant. In d = 3, let us assume that

F ′ ∼ y−a; then one may naturally distinguish three cases, depending on the value of the

exponent a. (i ) if a < 1/2, it is clear that the integral is finite, and evidently subleading;

(ii ) if 1/2 ≤ a < 1, the integral diverges, but with a degree of divergence inferior to 1/q

(or y−1/2); (iii ) if a ≥ 1, the second integral diverges faster than the first. Now, given that

from F ′ ∼ y−a one deduces that F (y) ∼ (1− a)−1y1−a +C, if a 6= 1, and F (y) ∼ C + ln y, if

a = 1, the finiteness of F (y) imposes the restriction a < 1. Therefore, one is driven to the

cases (i ) or (ii ), and, consequently, the second integral may be finite or divergent in the IR,

but is certainly subleading compared to the first.

Next, consider the term T (q2); following a similar procedure, we obtain

T (q2) →
q2→0

T (0) =

∫

k

∂F (k2)

∂k2
+

(
d

2
− 1

)∫

k

F (k)

k2
. (3.15)

It is now immediate to recognize that T (0) vanishes, since Eq. (3.15) is a particular case of

the so-called “seagull-identity” [68],

∫

k

k2∂f(k
2)

∂k2
+

d

2

∫

k

f(k2) = 0, (3.16)

valid in dimensional regularization7.

Then, employing that T (0) = 0, and after repeated use of (3.16), one finds that

T (q2) →
q2→0

−
1

12
(d− 2) q2

∫

k

1

k2

∂F (k)

∂k2
+O(q4), (3.17)

7 The origin of Eq. (3.16) is simple integration by parts, where the surface term is dropped by appealing to

the analyticity properties of dimensional regularization. Its main function in the context of gluon mass

generation is to enforce the complete cancellation of all quadratic (seagull-type) divergences.
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that is, we end up with the first integral on the rhs of Eq. (3.14), which is subleading.

Thus, if we split Jc in a part that contains the leading contribution in the IR, J ℓ
c (q

2), and

the rest that is subleading, J sℓ
c (q

2),

Jc(q
2) = J ℓ

c (q
2) + J sℓ

c (q
2), (3.18)

we conclude that the leading divergent contribution is that contained in the first term

of S(q2), namely

J ℓ
c (q

2) = CdF (q2)

∫

k

F (k)

k2(k + q)2
. (3.19)

On the other hand, J sℓ
c (q

2) consists of all those terms that have been discarded throughout

the procedure described above. It may be computed numerically, but its detailed form is of

no immediate interest, and it will be simply included in the full curve describing Jc(q
2).

The divergent nature of Jc(q
2) causes the kinetic term q2J(q2) to acquire a minimum in

the IR region, as can be demonstrated by following basically the arguments related with

Eq. (2.15). In particular, using Eqs. (3.4) and (3.18), one has

[q2J(q2)]′ = J ℓ
c (q

2) +
{
1 + q2J ′(q2) + J sℓ

c (q
2)
}
. (3.20)

Now, as happens in the case of the toy model, (i ) the quantity in curly brackets is subleading

in the IR, and (ii ) the above derivative is positive in the ultraviolet, since q2J(q2) increases

[and so, ∆(q2) decreases]. Thus, the derivative reverses its sign, becoming zero at the point

qJ , namely

[q2J(q2)]′q=qJ
= 0. (3.21)

We must emphasize at this point that even though the existence of the minimum is es-

tablished by means of the above argument, its location cannot be accurately determined,

because we do not know all terms appearing in the curly bracket of Eq. (3.20). Therefore,

qJ cannot be computed directly; however, in the next subsection we will determine its value

indirectly, from the (better known) combination ∆−1(q2)−m2(q2).

C. Maximum of ∆(q2), and indirect determination of Jg(q
2).

Let us now examine whether the maximum of the gluon propagator established in Sec-

tion II in the context of the toy model persists in the full nonperturbative treatment.
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Evidently, the main qualitative difference between the two situations is that now the

gluon mass is not a constant, but a function of the momentum, m2(q2). Specifically, the

corresponding [∆−1(q2)]′ reads

[∆−1(q2)]′ = [q2J(q2)]′ + [m2(q2)]′. (3.22)

Now, if the quantity [m2(q2)]′ is a “well-behaved” function, then the arguments following

Eq. (3.20) would again go through here. In particular, the existence of a zero is guaranteed,

provided that the IR divergence of J ℓ
c (q

2) is not cancelled exactly by a similar divergence

(with opposite sign) contained in [m2(q2)]′.

To discard this remote possibility, we turn to the dynamical equation that governsm2(q2),

which, in its exact form, reads [34]

m2(q2) = −g2CAD(q2)

∫

k

m2(k2)∆µ
ρ(k)∆

νρ(k + q)Kµν(k, q), (3.23)

with the kernel given by

Kµν(k, q) = [(k + q)2 − k2] {1− [Y (k + q) + Y (k)]} gµν

+ [Y (k + q)− Y (k)](q2gµν − 2qµqν), (3.24)

and Y defined through

Y (k2) =
g2CA

4k2
kα

∫

r

∆αρ(r)∆βσ(r + k)Γσρβ(−r − k, r, k), (3.25)

where Γσρβ is the full three-gluon vertex.

This equation has been studied in d = 4, under certain simplifying assumptions regarding

the structure of the function Y (k2). In particular, Y was replaced by its lowest perturbative

approximation, given by

YR(k
2) = −

αsCA

4π

15

16
log

k2

µ2
, (3.26)

with αs the value of the strong coupling at the subtraction point chosen. In practice, this

simple approximation is improved by letting Y → CY , where C is an arbitrary constant,

modeling further corrections that may be added to the “skeleton” result of Eq. (3.26).

From Eq. (3.23) one obtains positive-definite solutions for the gluon mass function, at

least within a reasonable range of physical momenta. In particular, for αs = 0.22, which
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FIG. 3: (color online). Solutions of the mass equation for the SU(2) (left) and SU(3) (right) gauge

groups. In the insets we show the deep IR region of the same curves.

is the “canonical” MOM value for µ = 4.3 GeV [69], and C = 9.2, the function m2(q2) is

positive and monotonically decreasing in the range of momenta between8 0 to 5.5 GeV.

Evidently, this behavior (see Fig. 3) excludes the possibility of m2(q2) having a divergent

(and positive) derivative at the origin. Therefore, we conclude that the rhs of Eq. (3.22)

must reverse its sign at some point (q∆), where the corresponding gluon propagator will

display a maximum. Of course, the presence of the term [m2(q2)]′ in Eq. (3.22) prevents the

coincidence between q∆ and qJ , unless [m
2(q2)]′q=qJ

= 0; but this possibility is discarded, due

to the monotonic nature of m2(q2). Thus, we conclude that q∆ 6= qJ .

One may go one step further, and demonstrate that, in fact, qJ < q∆. Indeed, evaluating

both sides of Eq. (3.22) at the point qJ , where the first term on the rhs vanishes, one has

[∆−1(q2
J
)]′ = [m2(q2

J
)]′ < 0, (3.27)

since m2(q2) is monotonically decreasing. Thus, at qJ the derivative of ∆−1(q2) is still

negative, and has yet to reach its point of zero-crossing, a fact that places q∆ to the right

of qJ on the axis of momenta. As shown in Fig. 6, this particular inequality is in complete

agreement with the numerical analysis presented in the last subsection.

In addition to consolidating the above considerations, the (approximate) knowledge of

m2(q2), when combined with the lattice information on the full ∆(q2) [1–5], may furnish the

8 Past this point m2(q2) turns negative (but its magnitude is extremely small), reaching finally zero from

negative values [70]. The necessary refinements for rectifying this will be reported elsewhere.
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full q2J(q2), simply from

q2J(q2) = ∆−1(q2)︸ ︷︷ ︸
lattice

− m2(q2)︸ ︷︷ ︸
Eq. (3.23)

. (3.28)

When coupled with the result (3.11), the procedure outlined above allows for a gauge-

invariant identification of the two components contributing to the gluon propagator. Specif-

ically, the gluon kinetic term can be obtained from [see also Eq. (3.4)]

q2 + q2Jg(q
2) = ∆−1(q2)︸ ︷︷ ︸

lattice

− m2(q2)︸ ︷︷ ︸
Eq. (3.23)

− q2Jc(q
2)︸ ︷︷ ︸

Eq. (3.11)

. (3.29)

The results of these operations will be discussed in the last subsection.

D. The R-projector

The final step is to link the gluon kinetic term with lattice simulations of the three-

gluon vertex. To this end, let us recall that the typical quantity employed on the lattice

projects the full vertex on its tree-level value, dividing out, at the same time, external leg

corrections [6, 7]. Specifically, for the three-gluon vertex in the Landau gauge, one considers

R(q, r, p) =
N (q, r, p)

D(q, r, p)
, (3.30)

where

N (q, r, p) = Γ(0)
αµν(q, r, p)P

αρ(q)P µσ(r)P ντ(p)Γρστ (q, r, p),

D(q, r, p) = Γ(0)
αµν(q, r, p)P

αρ(q)P µσ(r)P ντ(p)Γ(0)
ρστ (q, r, p). (3.31)

As already mentioned, the ratio (3.30) can be characterized by the modulo of two indepen-

dent momenta and the angle formed between them, so that one has R = R(q2, r2, ϕ). Then,

the quantity of interest corresponds to the so-called “orthogonal configuration”, ϕ = π/2,

where, in addition, we take the limit r2 → 0, namely R(q2, 0, π/2).

In this particular limit, R may be obtained from the combination [71]

R(q2, 0, π/2) = X7(q
2, 0, π/2) + q2X9(q

2, 0, π/2). (3.32)

In the formula above, X7,9 represent two of the ten longitudinal form factors which char-

acterize the longitudinal part of the vertex (see Appendix A); their explicit form can be
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determined by solving the STI satisfied by the vertex and reads [72]

X7(q, r, p) =
1

4
{2[F (q2)J(p2)arqp + F (p2)J(q2)arpq] + r2[F (p2)J(r2)bqpr + F (q2)J(r2)bpqr]

+ (q2 − p2)[F (r2)J(q2)bprq + F (q2)J(p2)brqp − F (r2)J(p2)bqrp − F (p2)J(q2)brpq]

+ 2(q ·r)F (p2)J(q2)drpq + 2(r·p)F (q2)J(p2)drqp}, (3.33)

X9(q, r, p) =
F (r2)

q2 − p2
[J(q2)aprq − J(p2)aqrp + (r·p)J(p2)dqrp − (q ·r)J(q2)dprq], (3.34)

with a, b and d representing the form factors appearing in the tensorial decomposition of

the gluon-ghost kernel H [72]

Hνµ(p, r, q) = gµνaqrp − rµqνbqrp + qµpνcqrp + qνpµdqrp + pµpνeqrp, (3.35)

and aqrp a short-hand notation for a(q, r, p), etc. Note finally that, in this particular

kinematic limit, the four (undetermined) transverse components of the three-gluon vertex

(see Appendix A) drop out completely.

Let us now study the IR behavior of R(q2, 0, π/2). Consider first the X7 term; in the

orthogonal configuration one has

p2 = q2 + r2; (q ·r) = 0; (q ·p) = −q2; (r·p) = −r2; (3.36)

then, taking the limit r2 → 0, Eq. (3.33) gives the result

X7(q
2, 0, π/2) = F (q2)J(q2)a(0, q,−q). (3.37)

For X9, which in the orthogonal configuration reads

X9(q
2, r2, π/2) = F (r2)J(p2)dqrp −

F (r2)

r2
[J(q2)aprq − J(p2)aqrp], (3.38)

the corresponding treatment is slightly more involved. The first term appearing in Eq. (3.38)

can be simplified using the identity9 [73]

F (r2)[aqrp − (q ·r)bqrp + (q ·p)dqrp] = F (q2)[arqp − (q ·r)brqp + (p·r)drqp], (3.39)

yielding in the limit of interest

q2F (0)d(q, 0,−q) = F (0)− F (q2)a(0, q,−q). (3.40)

9 This identity is a direct consequence of the STI satisfied by the ghost kernelH , and constitutes a necessary

condition for obtaining a consistent solution of the STIs of the three-gluon vertex [73].
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In arriving at the above result we used the fact that, in the Landau gauge, a(q, 0,−q)

maintains to all orders its tree-level value [74], i.e., a(q, 0,−q) = 1.

For the second term in Eq. (3.38) one needs to perform a Taylor expansion around r2 = 0

of both aprq and J(p)aqrp; using

aprq =
r2→0

1 + r2
∂

∂r2
aprq

∣∣∣∣
r2=0

+O(r4),

J(p)aqrp =
r2→0

J(q) + r2
∂

∂r2
[aqrpJ(p)]

∣∣∣∣
r2=0

+O(r4), (3.41)

we obtain

−
F (r2)

r2
[
J(q2)aprq − J(p2)aqrp

]
=

r2→0
F (0)

[
J ′(q2) + J(q2)

∂

∂r2
(aqrp − aprq)

∣∣∣∣
r2=0

]
, (3.42)

where the prime denotes, as usual, derivatives with respect to q2. Thus, inserting Eqs. (3.40)

and (3.42) in Eq. (3.38), one derives the expression

q2X9(q
2, 0, π/2) = J(q2)[F (0)− F (q2)a(0, q,−q)] + F (0)q2J ′(q2) +O(q), (3.43)

with O(q) indicating subleading terms, specifically the derivative of aqrp − aprq appearing

in Eq. (3.42).

Substituting the results (3.37) and (3.43) in Eq. (3.32), we obtain the final expression

(we only indicate q2 in the argument)

R(q2) = F (0)[q2J(q2)]′ +Rsℓ(q2), (3.44)

which shows that the behavior of R in the deep IR is determined solely by J ,

R(q2) ∼
q2→0

F (0)J(q2). (3.45)

The term Rsℓ(q2) denotes the subleading corrections not contained in the first term. There-

fore, from Eq. (3.19), the dominant contribution in that limit is

R(q2) ∼
q2→0

Cd F
2(0)

∫

k

F (k)

k2(k + q)2
. (3.46)

If we now assume that the ultraviolet behavior of R(q2) is qualitatively described by

Eq. (2.23), then the R(q2) of Eq. (3.44) must vanish at a point q0, R(q2
0
) = 0, and then

eventually diverge in the IR, according to Eq. (3.46).
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FIG. 4: (color online). The ghost-loop contribution, q2Jc(q
2), to the gluon kinetic term q2J(q2)

for the SU(2) (left) and SU(3) (right) gauge groups.

The location of q0 with respect to the other two special points, q∆ and qJ , is not possible

to determine. Since, from Eq. (3.22) we have [q2
∆
J(q2

∆
)]′ = −[m2(q2

∆
)]′, the value of R(q2) at

these two points is given by

R(q2
∆
) = Rsℓ(q2

∆
)− F (0)[m2(q2

∆
)]′,

R(q2
J
) = Rsℓ(q2

J
). (3.47)

For the point q0 to coincide with either q∆ or qJ , the corresponding rhs in Eq. (3.47) ought to

vanish; this possibility, however, cannot be checked analytically, due to the lack of knowledge

of the function Rsℓ. Of course, in the toy model, Rsℓ is identically zero, and so is the derivative

of the mass, forcing the equality between these three special points. The available lattice

data for SU(2) in d = 3 [2, 6, 7] seem to suggest a relative proximity between q0 and q∆,

with q∆ ≈ q0 ≈ 380 MeV; of course, the lattice parameters used for computing the two- and

three-point functions are rather different, so this comparison is only suggestive at this point.

E. Numerical results

We finally carry out a detailed numerical study of all the quantities introduced in the

previous four subsections.

We start with the four dimensional case, for which in Fig. 4 we show the full non-

perturbative results for the ghost-loop contribution (3.7) to the gluon kinetic term q2J(q2).
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FIG. 5: (color online). The dynamical gluon mass (left panels) and the propagator’s full kinetic part

∆−1(q2)−m2(q2) (right panels) for the SU(2) (top) and SU(3) (bottom) gauge groups. Whereas

the solutions of the mass equation are clearly insensitive to the presence of a maximum in the prop-

agator, as shown for two representative cases, the full kinetic term develops a negative minimum

(qJ), whose position is marked in the right panels by open (down) triangles. Insets show in all

cases the IR behavior of the various propagator fits used as input, together with the corresponding

lattice data.

For obtaining these results we have evaluated all the terms appearing in Eqs. (3.11)

and (3.13), using as input the SU(2) [2] and SU(3) [3] unquenched lattice data for the

ghost dressing function. As anticipated, the IR logarithmic divergence, clearly identified

by the linear behavior (in log scale) of the S term, persists in both cases even in a fully

nonperturbative setting.

As a consequence of this divergence, the lattice data for the gluon propagator must have

a maximum located in the (deep) IR region. It turns out that such a maximum is indeed
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FIG. 6: (color online). The points qJ plotted as a function of the points q∆ for the SU(2) (left) and

SU(3) (right) gauge groups. The shaded area on both panels corresponds to the region qJ ≥ q∆.

already encoded in the lattice data for the gluon propagator, which display a suppression of

the deep IR points. This particular feature is shown in the insets appearing in the panels

of Fig. 5, where, together with the lattice data, we also plot different fitting curves, in which

the position of the maximum is varied.

We next turn to the indirect determination of q2J(q2) from Eq. (3.28), using as basic

input the family of curves for ∆(q2) obtained in the previous step. To that end, we first

establish that, when the latter curves are used as input for the mass equation (3.23), the

resulting masses turn out to be completely independent of the location and the size of the

maximum of the propagator (left panels of Fig. 5). Thus, while ∆(q2) is varied on the rhs

of Eq. (3.28), the corresponding m2(q2) remains the same for all cases. The result of this

procedure is shown on the right panels of Fig. 5; each q2J(q2) so obtained vanishes at the

origin, decreases in the deep IR, and reaches a negative minimum before crossing zero and

turning positive. The location of the corresponding minimum, qJ , is clearly marked for each

separate case.

Evidently, since every ∆(q2) has a maximum at a point q∆, and since from each such

∆(q2) we obtain a q2J(q2) with a minimum at a point qJ , one may plot qJ as a function

of q∆. The resulting relation is shown in Fig. 6. The shaded area serves as a reference,

corresponding to the case qJ ≥ q∆. The plot clearly indicates that all points lie below this

region, demonstrating that, indeed, qJ < q∆, as previously anticipated using Eq. (3.27).

Notice that, as an important by-product of this analysis, we are able to disentangle
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FIG. 7: (color online). The gauge-invariant decomposition of the ghost and gluon components of

the gluon propagator (right panels) and its inverse (left panels) for the SU(2) (top) and SU(3)

(bottom) gauge groups. Notice that in the left panels the tree-level contribution to the gluon

kinetic term has been suppressed; its effect can be seen clearly in Fig 8.

gauge-invariantly the ghost and gluon contributions to the kinetic term and the propagator.

This is shown in Fig. 7, where one can appreciate that the gluon contribution is dominant;

however, in the crucial region below 1 GeV2 there are still sizable contributions from ghost

terms. It should be also noticed that there is a substantial difference between the SU(3)

and SU(2) gauge groups, in the sense that the relative size disparity between the various

components is more moderate in the SU(2) case. Finally, in Fig. 8 we show the tree-level and

quantum part of the gluon kinetic term: notice that in this case, any structure appearing in

the quantum term gets completely washed out by the tree-level term (obviously absent for

the ghost contributions).

As Eq. (3.44) reveals, the position of the minimum of the full kinetic term provides an

28



 0

 1

 2

 3

 4

 5

 6

 0.001  0.01  0.1  1  10

q2

q2Jg
q2(1+Jg)

-2

 0

 2

 4

 6

 8

 10

 0.001  0.01  0.1  1  10  100

q2

q2Jg
q2(1+Jg)

q2 [GeV2] q2 [GeV2]

q2
,
q2
J
g
,
q2

+
q2
J
g

q2
,
q2
J
g
,
q2

+
q2
J
g

FIG. 8: (color online). Tree-level and quantum contributions to the gluon kinetic term for SU(2)

(left panel) and SU(3) (right panel).

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5

β=2.2, V=164

β=2.2, V=224

β=2.5, V=164

β=2.5, V=224

q0 (theory)
-0.5

 0
 0.5

 1
 1.5

 2

 0.01  0.1  1  10

q [GeV]

R
(q

2
,0
,π

/2
)

FIG. 9: (color online). Prediction for the zero-crossing of the SU(2) form factor R(q2, 0, π/2)

measured on the lattice in four dimensions. The inset shows a logarithmic plot of the same

quantity.

estimate for the momentum q0 where the three-gluon projector R(q2, 0, π/2) crosses zero and

reverses sign. In the SU(2) case this turns out to be located quite deep in the IR, as one

gets (see Fig. 9) q0 ≈ 44 MeV, while for SU(3) we obtain q0 ≈ 132 MeV.
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FIG. 10: (color online). The ghost kinetic term q2Jc(q
2) (left panel), and the propagator’s full

kinetic part ∆−1(q2)−m2(q2) (right panel), for the SU(2) three dimensional case. The two curves

in the right panel corresponds to two different runnings for the dynamical mass. Finally, the inset

in the same panel shows the IR propagator fit together with the corresponding lattice data.

At this point, we can use the relation (see, e.g., [75])

q =
2

a
sin

πk

L
× 197.3 MeV fm, (3.48)

with a the lattice size (in fermi), L the number of lattice sites and k ≤ L an integer

locating the different sites in the corresponding lattice direction, in order to convert the

numbers obtained above into the lattice volumes needed to resolve them. Setting k = 1

(corresponding evidently to the minimum momentum which can be reached for a given L),

and choosing the most coarse lattices used in the literature (a ≈ 21 fm at β = 2.5 for

the SU(2) case [7]), one obtains L ∼ 130, which does not seem attainable with current

simulations (which have L = 22 at most). In the SU(3) case, assuming that simulations can

be performed at β = 5.7 with a ≈ 0.17 fm (that is, in the same conditions used for simulating

the gluon and ghost two-point sectors in [3]), one obtains instead L ∼ 60. Obviously, these

numbers are indicative, but they seem to suggest that resolving the zero-crossing of R on

the lattice in four dimensions could represent a challenging endeavor.

We next turn to the three dimensional case. In the left panel of Fig. 10 we plot the

ghost kinetic term, showing the expected linear divergence; the latter translates into the

well-known peak structure displayed in the IR by the gluon propagator (right panel in-

set) [2]. However, in order to repeat in d = 3 the exercise of obtaining the kinetic term
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kinetic term for the two different runnings of the dynamical mass, with the error corresponding to

the semidifference of these two points.

q2J(q2) from Eq. (3.28), an additional assumption is needed. Specifically, whereas the mass

equation (3.23) is valid also in d = 3, the term Y has not been computed in this case; as

a consequence, no solutions for m2(q2) are available. We will circumvent this difficulty by

simply assuming that the three-dimensional gluon mass behaves in a way similar to that

of d = 4. Given the need for this additional assumption, it is natural to consider the cor-

responding results for q2J(q2) as less definite than in the d = 4 case. In fact, in order

to acquire a quantitative notion of how the running of the mass influences these results,

we carry out the analysis twice, once for the four-dimensional m2(q2) obtained for SU(2),

and once for the corresponding mass in SU(3). The results are shown in the right panel of

Fig. 10. Depending on the mass solution used, the position of the minimum of the kinetic

term is located between q0 ≈ 134 (SU(2) mass) and q0 ≈ 215 MeV (SU(3) mass); this com-

pares relatively well with lattice simulations of R (Fig. 11), which locate the zero-crossing

at around 380 MeV.
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IV. CONCLUSIONS

In this work we have presented a set of connections that link the IR behavior of the

gluon two- and three-point sector in quenched QCD. Specifically, we have shown that the

fact that the ghost field remains nonperturbatively massless, as opposed to the gluon which

acquires a dynamically generated mass, implies unavoidably the existence of a negative IR

divergence in the dimensionless co-factor J(q2) of the kinetic part of the gluon propagator

(in d = 4, J ∼ ln q2, and in d = 3, J ∼ 1/q). This divergence, originating exclusively

from the one-loop dressed diagrams involving a ghost loop, does not affect the finiteness

of the gluon two-point function, since the full kinetic term is multiplied by a q2. However,

its presence manifests itself in at least three different ways: first, the dimensionful kinetic

part q2J(q2) has a minimum, located at qJ ; second, the full gluon propagator ∆(q2) displays

a maximum, at a point denoted by q∆; third, a (negative) divergence emerges in certain

kinematic limits of the three-gluon sector, where the standard lattice projector, R(q2), is

proportional to J(q2); the point where R(q2) vanishes is denoted by q0.

The PT-BFM formalism turns out to be particularly suited for verifying the above picture

quantitatively, mainly because it allows for a gauge-invariant separation of the ghost and

gluon contributions to the gluon propagator. Consequently, one can identify the divergent

ghost term in a meaningful and unambiguous way. Specifically, the fact that the special

ghost-gluon vertex Γ̃µ satisfies the QED-like WI of Eq. (3.9), furnishes a closed all-order

expression for its longitudinal part, which is not possible to obtain for the corresponding

vertex of the conventional (Rξ) formulation. In addition, when one combines the aforemen-

tioned feature of individual transversality with the gluon mass equation and the available

large-volume lattice data, one is able to separate gauge-invariantly the gluon- and ghost-loop

contributions to the full kinetic term q2J(q2).

An additional interesting result in this context is the inequality between the special points

qJ and q∆, namely qJ < q∆, which constitutes a a clear and definite prediction of this particu-

lar approach based on the gluon mass generation. Specifically, the aforementioned relation is

a direct result of Eq. (3.22), and in particular of the monotonically decreasing nature of the

gluon mass m2(q2), as obtained from the corresponding dynamical equation. This relation,

in conjunction with the indirect determination of q2Jg(q
2) may provide valuable guidance

in the effort to obtain the entire kinetic term of the gluon propagator from a complete
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FIG. 12: The lowest order diagrams displaying a ghost loop in the case of the three- and four-gluon

sector.

treatment of the corresponding SDE.

In the study of the R-projector, we have used as reference the results obtained for the

vertex with three incoming background fields (B3). The main reason for this choice is the

simplifications obtained due to the Abelian-like WI satisfied by the B3 vertex. This property,

in turn, eliminates all complications related to the ghost-gluon kernel, thus exposing the

essence of the basic effect. For a very particular kinematic configuration R is expressed

solely in terms of the kinetic term of the B2 propagator, a fact that imposes an exact

coincidence between q̂0 and q̂J .

Then, the corresponding results for the conventional vertex (Q3) have been expressed as

deviations from this prototypical case. Even though no exact results may be derived due to

the “contamination” from the ghost-gluon vertex, the leading IR behavior can be accurately

determined. On the other hand, the location of q0 is not possible to pin down; however,

it is reasonable to expect it to be relatively close to the corresponding point obtained for

B3. Actually, this value compares rather well with the lattice data in d = 3; unfortunately,

a similar comparison in d = 4 is practically unattainable, since the corresponding lattice

simulations have not as yet firmly evidenced a sign change in R.
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In this respect, it should be noticed that, if taken at face value, our results predict that the

lattice volumes required in order to observe this zero-crossing point are definitely large. This

is a consequence of the fact that the divergence in J is only logarithmic in d = 4, something

that pushes the zero crossing further into the IR, when compared to the d = 3 case (where

the divergence in J is linear). Indeed, even if one assumes a factor of 2 inaccuracy in the

determination of q0, one would still need L ∼ 65 (at β = 2.5 and a ≈ 21 fm) for the SU(2)

gauge group, and L ∼ 30 (at β = 5.7 and a ≈ 17 fm) for SU(3). It would seem, therefore,

that SU(3) lattice simulations would offer better prospects in identifying the divergence in

the R-projector.

Our analysis suggests that the sort of IR divergence considered here is likely to appear

in other Green’s functions that contain a ghost loop at lowest order in perturbation the-

ory (Fig. 12). In fact, the four-gluon vertex [76–78], which constitutes one of the important

missing ingredients in the various SDE studies, is a prime candidate for having such a diver-

gence, due to the (one-loop) box-like ghost diagram. On the other hand, Green’s function

containing (at least) one external c̄c pair, (for example, the ghost-gluon vertex) cannot have

such a graph at one loop; this type of graphs appear at higher orders, and the additional loop

integrations are expected to smoothen out the original divergence. It would be interesting

to test the above conjectures by means of detailed calculations.

Since the origin of the effects described above is exclusively related to the presence of

massless ghost loops, the act of “unquenching” not expected to modify our results in a

significant way. Indeed, large-volume lattice simulations [5] and the corresponding SDE

analysis [79, 80] have explicitly shown that even when dynamical quarks are present (i ) the

ghost remains massless, and (ii ) the gluon acquires dynamically a (heavier) mass. As a

result, the machinery developed here is directly applicable to the unquenched case, with the

minimal modification ∆−1
Q
(q2)−m2

Q
(q2) = q2(Jc+Jg+Jq), where ∆

−1
Q
(q2) and m2

Q
represent,

respectively, the unquenched inverse propagator and dynamical mass, while q2Jq is the (IR

finite) quark loop evaluated in [79, 80].
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Appendix A: The vertex B3 and its R-projector

The B3 vertex exposes the basic divergent features of the R-projector, without the ad-

ditional complications of the conventional vertex. In this Appendix we present some of the

relevant technical points in this context.

At tree-level, the B3 and the conventional (Q3) vertices coincide,

Γ̂(0)
αµν(q, r, p) = Γ(0)

αµν(q, r, p) = (q − r)νgαµ + (r − p)αgµν + (p− q)µgαν , (A1)

where all momenta are entering. Beyond tree-level the two vertices differ, and are related

by a complicated all-order BQI; in addition, both vertices are completely Bose-symmetric.

More important in the present context is the fact that that Γ̂ satisfies Abelian WIs; one

has

qαΓ̂αµν(q, r, p) = p2Ĵ(p2)Pµν(p)− r2Ĵ(r2)Pµν(r), (A2)

with

J(q2) = F 2(q2)Ĵ(q2); (A3)

cyclic permutations of indices and momenta generate the remaining WIs.

These identities are to be contrasted with the STIs satisfied by the conventional vertex

qαΓαµν(q, r, p) = F (q2)
[
p2J(p2)P α

ν (p)Hαµ(p, q, r)− r2J(r2)P α
µ (r)Hαν(r, q, p)

]
, (A4)

(and cyclic permutations), which explicitly involve the ghost-kernel H .

The complete closed form of Γ̂ is not known; its longitudinal part, however, may be

reconstructed by ‘solving’ the identities (A2) [72]. Specifically, one begins by separating the

vertex into the “longitudinal” and the (totally) “transverse” parts,

Γ̂αµν(q, r, p) = Γ̂ℓ
αµν(q, r, p) + Γ̂t

αµν(q, r, p), (A5)

where the component Γ̂ℓ satisfies the WIs of Eq. (A2) (and its permutations), whereas

qαΓ̂t
αµν = rµΓ̂t

αµν = pνΓ̂t
αµν = 0.
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The longitudinal part is then decomposed into 10 form factors, X̂i, according to

Γ̂ℓ
αµν(q, r, p) =

10∑

i=1

X̂i(q, r, p)ℓ
i
αµν , (A6)

with the explicit form of the tensors ℓi given by [62]

ℓ1αµν = (q − r)νgαµ; ℓ2αµν = −pνgαµ; ℓ3αµν = (q − r)ν[qµrα − (q ·r)gαµ], (A7)

with ℓi+3
αµν given by cyclic permutations of momenta and indices and ℓ10αµν = qνrαpµ + qµrνpα.

The WIs of (A2) give rise to an algebraic system for the X̂i, whose solution reads [62]

X̂1 =
1

2
[Ĵ(q2) + Ĵ(r2)]; X̂2 =

1

2
[Ĵ(q2)− Ĵ(r2)]; X̂3 =

Ĵ(q2)− Ĵ(r2)

q2 − r2
, (A8)

with X̂i+3 obtained from X̂i as before, and with X̂10 = 0.

We thus see that the longitudinal form factors constituting Γ̂ℓ involve only the quantity

Ĵ ; instead, as seen in Eqs. (3.33) and (3.34), the corresponding expressions for the form

factors of the conventional vertex, contain, in addition, the ghost dressing function F and

the various form-factors comprising the gluon-ghost kernel H .

Finally, the (undetermined) transverse part of the vertex is described by 4 remaining

form factors Ŷi,

Γ̂t
αµν(q, r, p) =

4∑

i=1

Ŷi(q, r, p)t
i
αµν , (A9)

with the completely transverse tensors ti given by

t1αµν = [(q ·r)gαµ − qµrα][(r·p)qν − (q ·p)rν ], (A10)

t2αµν and t3αµν obtained from this expression by cyclic permutations, and, finally,

t4αµν = gµν [(p·q)rα − (r·q)pα] + gαµ[(r·p)qν − (q ·p)rν ] + gαν [(r·q)pµ − (r·p)qµ]

+ pαqµrν − rαpµqν . (A11)

Using these decompositions, it is straightforward to evaluate the R-projector defined

36



in Eq. (3.30). In particular, one obtains (in d dimensions)10 [71]

N ℓ(q, r, p) = 4
r2p2 − (r·p)2

q2r2p2

{
[(d− 1)q2r2 − (q ·p)(p·r)]Â1 + [(d− 1)r2p2 − (p·q)(q ·r)]Â2

+ [(d− 1)q2p2 − (q ·r)(r·p)]Â3 + [(q ·r)(r·p)(p·q)− q2r2p2]Â4

}
,

N t(q, r, p) = 2[r2p2 − (r·p)2]
{
[(d− 1)(q ·r)− p2]Ŷ1 + [(d− 1)(r·p)− q2]Ŷ2

+ [(d− 1)(q ·p)− r2]Ŷ3 + 3(d− 2)Ŷ4

}
, (A12)

and

D(q, r, p) = 4
r2p2 − (r·p)2

q2r2p2
[(d− 1)(q2r2 + q2p2 + r2p2) + (r·p)2 − r2p2], (A13)

where we have defined N = N ℓ +N t, while the combinations Âi are given by

Â1 = X̂1 − (q ·r)X̂3; Â2 = X̂4 − (r·p)X̂6;

Â3 = X̂7 − (p·q)X̂9; Â4 = −X̂3 − X̂6 − X̂9. (A14)

We next consider three particular kinematic configurations of the R̂-projector, which are

typically simulated on the lattice [6, 7]. Interestingly enough, as we will see, they all display

the same exact divergent behavior in the IR.

a. Orthogonal configuration with one momentum vanishing

In this case we take ϕ = π/2 and r → 0; as in the latter limit N t vanishes, we obtain the

simple result [71]

R̂(q2, 0, π/2) = [q2Ĵ(q2)]′. (A15)

The above result is exact, and valid for any q2; in particular, using Eqs. (A3) and (3.19), we

find the leading IR behavior to be

R̂(q2, 0, π/2) =
q2→0

CdF
−1(0)

∫

k

F (k)

k2(k + q)2
. (A16)

If at this point we set F = 1, and carry out the resulting (effectively one-loop) integral, we

recover Eq. (2.22).

10 Notice that the following expressions are general, and apply also to the conventional vertex case, with the

obvious replacements X̂i → Xi, where the Xi are now determined by the STIs (A4).
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It is interesting to observe that in this case, since Eq. (A15) is exact, R̂sℓ vanishes iden-

tically, so that the condition Eq. (3.47) simplifies to

R̂(q̂2
∆
) = −[m̂2(q̂2

∆
)]′. (A17)

This means that for the equality q̂∆ = q̂0 to hold, the mass m̂2(q2) = F−2(q2)m2(q2) should

not be monotonic; while a preliminary study shows that this is indeed what happens, this

issue needs to be thoroughly investigated.

Note, finally, that the ratio between Eq. (3.46) and Eq. (A16) is finite, and given by

R(0)

R̂(0)
= F 3(0), (A18)

as was first derived in [71], following different considerations.

b. Orthogonal configuration with equal momenta

In this case one has

q2 =r2; q ·r = 0; p2 = 2q2; q ·p = r·p = −q2; ϕ = π/2. (A19)

Clearly, in this configuration, the transverse part of the vertex survives,

N t(q2, q2, π/2)

D(q2, q2, π/2)
=

q2

5d− 6

[
2q2Ŷ1 + dq2(Ŷ2 + Ŷ3)− 3(d− 2)Ŷ4

]
, (A20)

where Ŷi = Ŷi(q
2, q2, π/2). However, if we assume that the form-factors Ŷi do not contain

poles in q2, it is clear that this term vanishes in the IR. Then, from N ℓ we obtain

R̂(q2, q2, π/2) =
1

5d− 6

[
2q2Ĵ ′(q2)− (d+ 4)Ĵ(q2) + 2(3d− 1)Ĵ(2q2)

]
+ · · · , (A21)

where the omitted terms are subleading in the IR. This result may be easily rearranged to

read

R̂(q2, q2, π/2) = Ĵ(q2) +
1

5d− 6

{
2q2Ĵ ′(q2) + 2(3d− 1)

[
Ĵ(2q2)− Ĵ(q2)

]}
, (A22)

where the first term is leading, and coincides with that of Eq. (A16), while the second is

subleading.
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c. All momenta equal

Setting

q2 = r2 = p2; q ·r = q ·p = p·r = −
q2

2
; ϕ = 2π/3, (A23)

we find for the transverse part

N t(q2, q2, 2π/3)

D(q2, q2, 2π/3)
=

q2

12d− 15

[
(d+ 1)q2(Ŷ1 + Ŷ2 + Ŷ3)− 6(d− 2)Ŷ4

]
, (A24)

where Ŷi = Ŷi(q
2, q2, 2π/3). Again, this term may be neglected under the same assumptions

stated above. Then, one finds

R̂(q2, q2, 2π/3) = Ĵ(q2) +
2(d− 1)

4d− 5
q2Ĵ ′(q2), (A25)

thus obtaining exactly the same leading IR behavior as in the previous two cases.

Appendix B: The transverse part of the vertex Γ̃µ

The contribution of the transverse part of Γ̃µ to Jc(q
2), to be denoted by J t

c(q
2), is given,

up to irrelevant constants and the finite ghost dressing function F (q), by

q2J t
c(q

2) ∼

∫

k

kµD(k)D(k + q) {(k ·q)(k + q)µ − [(k + q)·q)]kµ}A(k, k + q)

∼

∫

k

D(k)D(k + q)A(k, k + q)
[
(k ·q)2 − q2k2

]
. (B1)

So, after passing to spherical coordinates, and using that (k ·q)2 = q2k2 cos2 θ, we obtain

J t
c(q

2) ∼

∫

k

D(k)D(k + q)A(k, k + q)k2 sin2 θ. (B2)

Now, at q = 0, we have (setting k2 = y)

J t
c(0) ∼

∫

k

D2(y)A(y)y sin2 θ, (B3)

with ∫

k

=
1

(2π)d
π

d−1
2

Γ
(
d−1
2

)
∫ π

0

dθ sind−2 θ

∫
∞

0

dy y
d

2
−1. (B4)

The integration over the angle θ furnishes an additional irrelevant constant, and so, after

using Eq. (2.2),

J t
c(0) ∼

∫
∞

0

dy y
d

2
−2F 2(y)A(y). (B5)
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Thus, if we assume that, in the deep IR, A(y) ∼ ya, then the lower limit of this integral

is finite provided that a > 1 − d/2 (remember that F (y) saturates to a constant in the

IR). Thus, for d = 4, one gets a finite (and, therefore, subleading) contribution to Jc(q
2),

provided that A(y) diverges weaker than a simple pole. In d = 3, the corresponding limiting

case is a square root of a pole.

The above conditions appear relatively easy to satisfy, especially since the diagrammatic

representation of Γ̃µ does not include a ghost-loop at lowest order, according to the discussion

presented in Section IV.
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