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Abstract

We consider the contribution of the extra sterile states in generic low-scale seesaw models to

extra radiation, parametrized by Neff . We find that the value of Neff is roughly independent of

the seesaw scale within a wide range. We explore the full parameter space in the case of two extra

sterile states and find that these models are strongly constrained by cosmological data for any

value of the seesaw scale below O(100MeV).

PACS numbers: 14.60.St
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Models with extra light sterile neutrinos with masses in the range ofO(1eV) could provide

an explanation to some of the neutrino anomalies [1], such as the appearance signal ν̄µ → ν̄e

of the LSND experiment [2], undisproved by the MiniBOONE [3] experiment, or the deficit

of neutrinos (ν̄e → ν̄e) in short-baseline reactor experiments, the so-called reactor neutrino

anomaly [4]. Sterile species in the keV range could still be valid candidates for warm dark

matter [5], while species in the GeV range could account for the baryon asymmetry in the

Universe [6].

Models with N extra sterile states are usually defined as phenomenological models with a

generic neutrino mass matrix of size 3+N without specifying whether neutrinos are Dirac or

Majorana. In the former case, a renormalizable Lagrangian representing this model would

require the addition of 3 + 2N extra singlet Weyl fermions to the minimal Standard Model

(SM) so that they can be paired up into 3 +N Dirac neutrinos. In contrast, if neutrinos are

Majorana, such model is necessarily an effective low-energy theory. We can insist on having

3 + N Majorana fermions only and a renormalizable Lagrangian, but in this case the mass

matrix will not be generic, since Majorana entries for the charged neutrinos are forbidden by

the gauge symmetry. We have in this case the so-called mini-seesaw [7] or minimal models

[8]. These are simply the standard Type I seesaw models with a low (ie. below electroweak)

Majorana mass scale. The generic feature of these models is that active-sterile mixings are

strongly correlated with the ratio of the light-to-heavy masses. They are therefore much

more constrained (ie. they have less free parameters than the phenomenological models). It

should be stressed that seesaw models are the simplest extensions of the SM to accommodate

massive neutrinos, but they can do so independently of the value of the seesaw scale (ie. the

scale of Majorana masses).

It has been pointed out that the neutrino anomalies could also be accounted for in these

minimal models if N ≥ 2 (with the same caveats as in the phenomenological models) in

spite of the strong correlation between mixings and mass splittings [9]. In other words, the

order of magnitude for the active-sterile mixing given by the seesaw limit for a seesaw scale

of O(1eV) is in the right ballpark to explain the neutrino anomalies, which is remarkable.

These minimal models with N = 3, and a much higher seesaw scale, have also been proposed

as candidates to explain dark matter and the baryon asymmetry [10].

It is well-known that light sterile neutrinos with significant active-sterile mixing can

be strongly constrained by cosmological measurements. The energy density of the extra
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neutrino species, εs, is usually quantified in terms of Neff (when they are relativistic) defined

by

Neff ≡
εs + εν
ε0ν

, (1)

where ε0ν is the energy density of one SM massless neutrino with a thermal distribution

(below e± annihilation it is ε0ν ≡ (7π2/120)(4/11)4/3T 4
γ at the photon temperature Tγ). In

the minimal SM with massless neutrinos Neff = 3.046 at CMB [11]. One fully thermal extra

sterile state that decouples being relativistic contributes ∆Neff ' 1 when it decouples.

Neff at big bang nucleosynthesis (BBN) strongly influences the primordial helium produc-

tion. A recent analysis of BBN bounds [12] gives NBBN
eff = 3.68(3.80)0.80

−0.70 at 2σ, where the

central value depends on the choice for the neutron lifetime, and assumes no lepton asym-

metry. Neff also affects the anisotropies of the cosmic microwave background (CMB). Recent

CMB measurements from Planck give NCMB
eff = 3.30±0.27(1σ) [13], which includes WMAP-

9 polarisation data [14] and high multipole measurements from the South Pole Telescope

[15] and the Atacama Cosmology Telescope [16].

The contribution of extra sterile states to Neff within phenomenological models has been

extensively studied [17]-[19]. For recent analyses see [20]-[23]. In particular the models that

could accommodate the neutrino anomalies seem to be in strong tension with cosmology,

specially those with two extra species.

The purpose of this paper is to evaluate Neff in the context of the much more constrained

minimal seesaw models. Interestingly in spite of the fact that the active-sterile mixings

decrease with increasing seesaw scale, the rate of thermalisation of the sterile neutrinos is

roughly independent of that scale. The bounds therefore apply in a wide range of seesaw

scales.

a. Thermalization in minimal 3+N models. The minimal models are described by the

most general renormalizable Lagrangian including N extra singlet Weyl fermions, νiR:

L = LSM −
∑
α,i

L̄αY αiΦ̃νiR −
N∑

i,j=1

1

2
ν̄icRM

ij
N ν

j
R + h.c.,

where Y is a 3×N complex matrix and MN a diagonal real matrix. The model with N = 1,

that contains only two massive states, cannot explain the measured neutrino masses and

mixings [8]. For N = 2, the spectrum contains four massive states and one massless mode,

whose mixing is described by four angles and three physical CP phases. For N = 3, there
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are six massive states and the mixing is described in terms of six angles and six CP phases.

We will concentrate on the simplest model that can explain neutrino data, i.e. N = 2. The

case with N = 3 will be considered elsewhere.

We assume that the eigenvalues of MN are significantly larger than the atmospheric

and solar neutrino mass splittings, which implies a hierarchy MN � Y v and therefore the

seesaw approximation is good. A convenient parametrization in this case is provided by that

of Casas-Ibarra [24], or its extension to all orders in the seesaw expansion as described in

[9] (for an alternative see [25]). The mass matrix can be written as

Mν = U∗ Diag(ml,Mh) U
†. (2)

where ml is a diagonal matrix with a zero and the two lighter masses, and Mh contains the

N heaviest. Denoting by a the active/light neutrinos and s the sterile/heavy species, the

unitary matrix can be written as

U =

 Uaa Uas

Usa Uss

 , (3)

with

Uaa = UPMNS

 1 0

0 H

 , Uss = H,

Usa = i
(

0 HM
−1/2
h Rm

1/2
l

)
,

Uas = iUPMNS

 0

Hm
1/2
l R†M

−1/2
h

 , (4)

where UPMNS is a 3 × 3 unitary matrix, R is a generic 2 × 2 orthogonal complex matrix,

while H and H̄ are defined by

H−2 = I +m
1/2
l R†M−1

h Rm
1/2
l ,

H
−2

= I +M
−1/2
h RmlR

†M
−1/2
h . (5)

At leading order in the seesaw expansion, i.e. up to O
(
ml

Mh

)
, H ' H ' 1, and we recover

the Casas-Ibarra parametrization.

The measured neutrino masses and mixings fix most of the parameters in these models.

The only free parameters are two CP phases of UPMNS that are presently unconstrained,

the matrix R that depends on a complex angle and the two heavy masses in Mh.
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The active neutrinos in the minimal SM are in thermal equilibrium in the early universe

at temperatures above O(1MeV). The presence of extra singlets can modify the value of

Neff because the active-sterile mixing can also bring the singlets into thermal equilibrium.

Obviously the thermalisation process depends very strongly on the mixing parameters and

the neutrino masses. We assume throughout that neutrinos are relativistic.

In [26] a simple estimate for the thermalisation of one sterile neutrino was given as follows.

Assuming that the active neutrinos are in thermal equilibrium with a collision rate given by

Γa, the collision rate for the sterile neutrinos can be estimated to be

Γsi '
1

2

∑
a

〈P (νa → νsi)〉 × Γa, (6)

where 〈P (νa → νs)〉 is the time-averaged probability νa → νs (the factor 1/2 results from a

more detailed analysis, see below). This probability depends strongly on temperature be-

cause the neutrino index of refraction in the early universe is modified by coherent scattering

of neutrinos with the particles in the plasma [27]. Thermalization will be achieved if there

is any temperature where this rate is higher than the Hubble expansion rate Γs(T ) ≥ H(T ).

One can therefore find the maximum of the function fs(T ) ≡ Γs(T )/H(T ) as function of T

and estimate Neff ' NSM
eff +

∑
i (1− exp(−αfsi(T imax))) at decoupling, where α is an O(1)

numerical constant. The Hubble expansion rate is H(T ) =
√

4π3g∗(T )
45

T 2

MPlanck
, where g∗(T ) is

a function of the temperature.

Employing the method described in [31] we find the time-averaged probabilities in the

primeval plasma to be approximately

〈P (νa → νsi)〉 = 2

(
M2

i

2pVa −M2
i

)2

|Uasi |2 +O
(
U4
as

)
,

(7)

where p is the neutrino momentum and Va ≡ AaT
4p, with Ae = A, while Aµ/τ = B for T

below the µ/τ threshold (T . 20/180 MeV) or Aµ/τ = A for higher T & 20/180 MeV, where

B ≡ −2
√

2

(
7ζ(4)

π2

)
GF

M2
Z

,

A ≡ B − 4
√

2

(
7ζ(4)

π2

)
GF

M2
W

. (8)

A more detailed description is provided by the density matrix formalism [29, 30]:

ρ̇ = −i[Ĥ, ρ]− 1

2
{Γ, ρ− ρeqIA}, (9)
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where Ĥ is the Hamiltonian describing the propagation of relativistic neutrinos in the

plasma, which in the flavour basis is given by

Ĥ = U∗Diag

(
m2
l

2p
,
M2

h

2p

)
UT + Diag(Ve, Vµ, Vτ , 0, 0), (10)

and the collision term Γ = Diag(Γe,Γµ,Γτ , 0, 0)

Γa = ya
180ζ(3)

7π4
G2
FT

4p, (11)

with ye = 3.6, and yµ = yτ = 2.5 below the corresponding µ and τ thresholds, becoming

equal to ye above [28]. Finally ρeq is the Fermi-Dirac distribution and IA = Diag(1, 1, 1, 0, 0).

Separating the equations into the active A and sterile S blocks and assuming that

Γa(T )� H(T ), collisions are then fast enough to equilibrate ρAA and ρAS, ie. ρ̇AA = ρ̇AS = 0

(the so-called static approximation [17]). If we assume hierarchical heavy masses, and take

into account the seesaw expansion, it is possible to show that the thermalisation of the

different sterile states approximately decouple, and the equation for each species simplifies

to

ρ̇ss = −
(
H†AS

{
ΓAA

(HAA −Hss)2 + Γ2
AA/4

}
HAS

)
ss

ρ̃ss

' −1

2

∑
a

〈P (νs → νa)〉Γaρ̃ss, (12)

where ρ̃ss ≡ ρss − ρeq. This equation justifies the estimate of eq. (6).

Tmax is the value of the temperature at which Γs(T )/H(T ) is maximum. Taking p '

3.15T , it is easy to see that for each sterile state of mass Mi, Tmax can be bounded by(
M2

i

59.5 |Ae|

)1/6

≤ Tmax ≤
(

M2
i

59.5 |Aτ |

)1/6

, (13)

so it depends significantly on Mi but weakly on the mixings. Taking into account the seesaw

scaling |Uasi |2 ∼ O(ml/Mi), it follows that fsi(Tmax) is roughly independent of Mi.

b. Neff in minimal 3 + 2 models. In Figure 1 we show the numerical results for the

minimal value of fs(Tmax) (almost identical for both species) scanning the whole parameter

space for the two sterile states, assuming their masses differ a factor ten or more. Varying

Mi ∈ [1eV, 1GeV], we find an almost constant value which is significantly larger than one,

which means that both species thermalise, contributing ∆Neff ' 2 when they decouple. This

is the case for both neutrino hierarchies normal and inverted (NH/IH), but Min[fs(Tmax)] is

significantly larger for IH. The dependence on Mi is mostly due to the change in g∗(Tmax).

6



!6 !4 !2 0 2 4 6
0

10

20

30

40

Log10!Mi"MeV#

M
in
!f s i$T m

ax
%#

FIG. 1: Min[fsi(Tmax)] for the lighter sterile state as function of Mi for a light neutrino spectrum

with a NH (thick line) or IH (thin line). The dashed line at 1 corresponds to the minimum value

for thermalisation.

We note that the thermalisation is still possible for values of Mi � 1MeV. At some

point however, the decoupling temperature of the sterile species will be above their mass.

In this case, the contribution to Neff requires a different treatment and will be Boltzmann

suppressed. We can estimate this decoupling temperature, Td, from the requirement fs(Td) =

1 for Td < Tmax. In Fig.2 we show the value of Td as a function of Mi (again the same

for both species) for three cases: the parameters that minimise fs(Tmax) (dashed lines),

the parameters that minimise Td (dotted) and the ones that minimise Td after taking into

account direct search constraints on active-sterile mixings (solid). We see that there are

regions of parameter space for all Mi where sterile neutrinos remain in equilibrium until

O(1MeV). However, as Mi increases this is only possible for very special textures, inverse-

seesaw like, where neutrino masses are suppressed due to an approximate global symmetry.

Large mixings are however strongly constrained by direct searches [37, 38], when those

bounds are included, we find that Td is well above Mi for Mi ≤ O(1GeV). If neutrinos

are below this mass they decouple when they are still relativistic, as we have assumed, and

therefore contribute one unit to ∆Neff(Td), but above this mass, they become non-relativistic

before decoupling and the contribution is suppressed by the Boltzmann factor.

After decoupling of the sterile species, however, two important effects could modify ∆Neff

before the active neutrino decoupling at TW [34]: dilution and decay.

First a dilution occurs if the sterile species decouple at Td � TW , due to the change

7



-6 -4 -2 0 2 4
0

1

2

3

4

Log10@MiêMeVD
Lo
g 1
0@T d
êMe

V
D

FIG. 2: Td as function of the the sterile mass for the NH (solid thick line), IH (solid thin line)

for parameters that minimise fs(Tmax) (dashed), those that minimise Td (dotted) and those that

minimise Td while being compatible with bounds from direct searches (solid). The single dashed

line satisfies T = Mi.

in g∗(T ). The dilution can be estimated to be ∆Neff(TW) = (g∗(TW)/g∗(Td1))4/3 +

(g∗(TW)/g∗(Td2))4/3 provided they are still relativistic at TW [34].

In order to numerically solve the kinetic equations, eq. (9), we rewrite them, as is common

practice, in terms of the new variables [30]

x = m0a(t), y = pa(t); (14)

where m0 is an arbitrary scale (fixed to be 1 MeV) and a(t) is cosmic scale factor. Equa-

tion (9) becomes:

H(x)x
∂

∂x
ρ(x, y)

∣∣∣∣
y

= −i[Ĥ(x, y), ρ(x, y)]− 1

2
{Γ(x, y), ρ(x, y)− ρ(x, y)eqIA}. (15)

Since we consider a range of temperatures where g∗(T ) is varying, entropy conservation

g∗(T (x))T 3(x)x3 = constant implies that temperature does not simply scale as 1
a(t)

and

we take this into account. In order to avoid numerical instabilities we consider the static

approximation.

We have checked that, for several choices of mass matrix parameters, the simple estimate

above gives a reasonable approximation to the numerical solution of the Boltzmann equa-

tions. The difference comes from the continuous change in g∗(T ), that we can only take into

account numerically. In Figure 3 we show the evolution of the ratio of the sterile number
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density to that of one active neutrino as T varies, at fixed y = 5 and for two widely different

values of Mi. We observe a double upward step reaching a value near 2 corresponding to the

thermalisation of the two species and a dilution at lower temperatures, significant only for

masses above keV. The dependence on y of the ratio is significant due to the dilution effect

and we take it into account in the definition of ∆Neff (TW ) which involves the integrated

energy density. We have considered numerically the case with degenerate heavy masses

M1 = M2. The only difference appears to be that the thermalisation curve does not show a

double step but a single one.

In Figure 4, we show the constant ∆Neff(TW) lines for the mixing parameters that mini-

mize fs1(Tmax), as well as those corresponding to the relativistic component, ∆N rel
eff (TW) ≡

(εs − εms )/ε0ν , where εms is the contribution of the sterile species to the matter density. We

only consider masses that remain relativistic at BBN, because more massive species would

quickly dominate the energy density as cold dark matter, unless they decay before BBN.

These results show that dilution allows to relax the BBN bounds for masses in the range 10

keV-10 MeV, however these particles give a huge contribution to the energy density when

they become non relativistic at later times, modifying in a drastic way CMB and structure

formation. The only way BBN and CMB bounds could be evaded in this range is if the

sterile states decay before BBN. We come back to this point later.

We note that the analysis might not be accurate for T & TQCD [32, 33], however we do

not expect the conclusions to change drastically even if hadronic uncertainties are included.

It is important to stress that the approximate independence of thermalisation on the

heavy masses Mi results from the approximate seesaw scaling of the |Uasi |2Mi ∼ ml, which

is only approximate since there is dependence on several unknown parameters, see eq. (4).

Fig. 5 shows the values of |Uesi |2Mi and (|Uµsi |2 + |Uτsi |2)Mi within the full range of the

unconstrained parameters for the normal hierarchy. We note that |Uesi |2Mi can get extremely

small. Had we only considered the oscillations to electrons in this case, we would have found

that for those parameters fs(Tmax)� 1, but (|Uµsi |2 + |Uτsi |2)Mi is in the expected ballpark

and therefore the thermalisation takes place through the oscillation to µ and τ . A similar

pattern is observed for the IH, both combinations do not get very small simultaneously.

For sufficiently high mass the sterile neutrino could decay before BBN and our analysis is

not valid for this situation. The lifetime is in the range τ ∼ 6×1011
[

MeV
Mi

]4 [
0.05eV
|Uasi |2Mi

]
s, below

the π0 threshold, which means they decay after BBN below this threshold, for natural choices
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FIG. 3: Evolution of the ratio of the number density of sterile species over that of one active

massless neutrino for y = 5 for (M1,M2) ' (2 · 10−5, 10−3) (solid) and (0.1, 10) (dashed) in MeV

and mixing parameters that minimize fs1(Tmax) for NH (thick) and IH (thin).
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FIG. 4: ∆Neff = εs/ε
0
ν (left) and ∆N rel

eff = (εs − εms )/ε0ν (right) at TW as function of the sterile

masses NH (upper octant) or IH (lower octant). The thick lines correspond to maximum allowed

by BBN at 2σ.

of mixings. However, the mixings might reach values significantly larger (see Figure 5). For

extreme mixings of O(1), neutrinos as light as 10 MeV could decay before BBN. The bounds

on short-lived sterile neutrinos with masses in the range [10 MeV,140 MeV] have been studied

in [34–36] and very strong bounds have been found combining BBN and direct accelerator
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FIG. 5: (|Uµsi |2 + |Uτsi |2)Mi versus |Uesi |2Mi varying the unconstrained paremeters for NH. The

solid/dashed line corresponds to m3 ∼
√

∆m2
atm/m2 ∼

√
∆m2

solar.

searches, essentially excluding this possibility [38]. The analysis above 140 MeV gets more

complicated with various competing effects that occur near the QCD phase transition.

We want to stress however that in the generic seesaw models that we are considering,

such short lifetimes result only from very specific textures in which an approximate global

symmetry (and not small Yukawa couplings) suppresses light neutrino masses in front of

the seesaw scale. The flavour structure of these models is even more constrained, but

large active-sterile mixings can be reached. Note that in these corners of parameter space,

thermalisation will be more efficient and Td will be closer to TW , so dilution is less relevant.

The previous results show that the sterile states in generic low-scale seesaw 3 + 2 models

do thermalize independently of the scale of the Majorana masses, within a wide range. This

implies very strong constraints from cosmology. The following conclusions can be drawn.

1) M1,2 . O(100MeV): ∆Neff(Td) ' 2 and decay after BBN, which is incompatible with

the present BBN or/and CMB constraints independently of the mass of the sterile states.

These models are therefore strongly disfavoured.

2) M1 . O(100MeV), M2 & O(GeV): ∆Neff(Td) ' 1, while the heavy state is Boltzmann

suppressed at decoupling or decays before TW. BBN constraints can accommodate this case

if M1 is still relativistic at BBN. However CMB and LSS measurements close this window

all the way down to M1 ≤ 0.36 eV or so at 95%CL [39].

3) M1,2 & O(1GeV) survive at present cosmological constraints on Neff , because they
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decouple while being non-relativistic and therefore ∆Neff(Td) is Boltzmann suppressed, or

because they decay well before TW.

Establishing precisely what happens in the range 100 MeV-1 GeV, specially in the case

of approximate global symmetries (large mixings) where neutrinos could decay before BBN

requires a more complex analysis. A strong dependence on the unknown mixing parameters

is to be expected in this range.
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