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Abstract

In an analysis of multihadronic events recorded at LEP by DELPHI in the
years 1992 through 1994, rapidity correlations of �-�, proton-proton, and �-
proton pairs are compared with each other and with the predictions of the string
fragmentation model. For �p pairs, the additional correlation with respect to
charged kaons is also analysed.
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1 Introduction

Due to the small number of baryons (B) produced in hadronic Z0 decays, their study
o�ers the possibility of a more detailed understanding of the fragmentation processes
than the study of mesons. In particular, because baryons are produced only in pairs
and at a relatively low rate, studies of baryon correlations can reveal �ner details of the
transition of partons into hadrons, e.g. how far the interactions in a string reach. In
addition, the combined study of �s and protons allows the compensation of strangeness
to be investigated.

The string model, as implemented in the Monte Carlo program Jetset [1], describes
the soft hadronization process as several break-ups of a colour string which is stretched
between the partons (the colour-charged particles) that were produced in the hard QCD
processes. The string is a 1-dimensional object and has an energy density per unit length
of � � 1 GeV fm�1. When the energy in the string becomes large enough, qq pairs are
produced, breaking the string.

a)





B





B
–

b)





B





B
–

c)





B





B
–

Figure 1: Schematic
representation of the
baryon production in
the string model. The
top lines indicate the
primary quarks, and
the semi-circles indi-
cate quark-antiquark
pairs that arise in the
fragmentation.

Occasionally, the string can break up producing a diquark-antidiquark (DD) pair.
This process is very similar to producing a qq pair since both states, the DD and the
qq, are pairs of colour triplets and colour anti-triplets. With the neighbouring quark
and antiquark in the string, the DD pair will form a baryon-antibaryon pair (Fig. 1 a).
In addition to this direct process, baryons can also be formed when qq pairs overlap in
other ways. This mechanism is called popcorn [2], and is illustrated in Figs. 1 b) and
c). Figure 1 b) focuses more on the fact that in the popcorn model the quarks are in
principle produced separately, while Fig. 1 c) underlines more the close relationship with,
and possible transition to, the direct diquark fragmentation in Fig. 1 a).

Neighbouring baryons in the string typically di�er in rapidityy by about 1 unit, with
popcorn fragmentation leading to bigger rapidity di�erences than the direct process.
Thus the rapidity correlation of baryon-antibaryon pairs is a tool to study the popcorn
mechanism, i.e. to study to what extent baryons are locally produced.

Previous publications on baryon production stated either that the data on �� rapidity
correlations [3{5] and on pp rapidity correlations [6] are in agreement with a relative
probability of popcorn production of 0.5, or that the data indicate larger values. However,
a di�culty in distinguishing direct baryon production from popcorn production is the fact
that the massive particles produced in the fragmentation process subsequently decay.

yThe rapidity is de�ned as y = 1

2
ln

E+pk

E�pk
, where E is the energy of the particle and pk the projection of the momentum

onto the thrust axis.
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2 Event and particle selections

A general description of theDelphi detector and its performance can be found in [7,8].
Features of the apparatus relevant for the analysis of multi-hadronic �nal states (with
emphasis on the detection of charged particles) are outlined in [9].

This analysis is based on 2:74 � 106 multihadronic events recorded in the years 1992
through 1994. Hadronic events were selected using the standard criteria as de�ned in [8].
The Delphi detector contains Ring Imaging CHerenkov (rich) detectors [11] to perform
pion, kaon and proton identi�cation. Here, this identi�cation was performed for particles
with momenta from 0.7 up to 45.6GeV using the newtag package [12]. This is based
on the ribmean clustering algorithm [8], which reconstructs a weighted mean Cherenkov
angle. For momenta below 1.3GeV, down to 0.3GeV, the measurement of the speci�c
ionisation, dE/dx, in the Delphi Time Projection Chamber (TPC) [8] was also used.
Giving equal logarithmic intervals in momentum equal weight in the average, the mean
purity of the selected proton sample was 76% for a mean e�ciency of 75%. The Delphi
procedure for reconstructing neutral 2-body decays (V0) is described in [8]. After rejecting
candidates in which the higher momentum particle was identi�ed as a pion, the sample
of �-Baryons selected had a purity of 97%.

The biases in the analysis due to the detector acceptance and performance and to
the selection criteria were studied using the full detector simulation program Delsim [8].
Around 107 events were generated using the Jetset 7.3 PS model with parameters
tuned as in [10]. The particles were followed through the detailed detector geometry, and
simulated raw data were produced and processed by the same analysis programs as the
real data.

3 Baryon Correlations

3.1 Rapidity Di�erence Distributions

The analysis of �� pairs used the data taken from 1992 through 1994, which comprise
2:74�106 hadronic events. For proton identi�cation over the entire momentumrange, both
the liquid and the gas radiator of the rich detector need to be operational. Therefore the
analysis of �p and pp pairs was restricted to the data taken in 1994 (1:33 � 106 hadronic
events).

Hadronic events with

NB = Np +N� = 2 ; (1)

were selected, where Np, N� are the numbers of protons and �s respectively (antibaryons
are included). Events with more than two baryons were excluded, because already in the
case of NB = 3 at least two of the three possible combinations are uncorrelated. When
selecting the baryons, double counting was avoided by requiring that the �s did not share
a common outgoing track, and that the protons were not part of a reconstructed �. The
numbers of baryon pairs selected are given in Table 1.

Figure 2 shows the di�erences in rapidity with respect to the thrust axis of the event for
the three di�erent types of baryon pairs. The pairs with non-zero baryon number, shown
shaded, consist of di�erent sources of background. The analysis-speci�c background is
due to misidenti�cations (of one or both of the baryons) and ine�ciencies (e.g. only a
�p pair of a ��-pp event is reconstructed). But even with an ideal reconstruction and
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Figure 2: Rapidity di�erences of baryon-antibaryon pairs (points with error bars) com-
pared to those of baryon-baryon and antibaryon-antibaryon pairs (shaded histograms)
from Delphi data.

identi�cation, one would �nd uncorrelated baryon pairs from events with more than one
baryon pair, because of baryons that are not included in the analysis (e.g. n and �).

3.2 Background Subtraction

To determine the rapidity di�erence distribution for correlated BB pairs, the back-
ground as estimated from the sum of the distributions of the BB and the BB pairs was
subtracted. Statistical 
uctuations of the background distributions were reduced by �t-
ting a third order polynomial spline function before the subtraction.

The subtracted rapidity di�erence distributions have to be corrected for detector ac-
ceptance e�ects. These tend to strengthen the correlation observed. The correction
factors were obtained from the full simulation. They were found to depend linearly on
j�yj. Consequently the corrections were made using the result of a straight line �t to the
correction function. The pairs of �t parameters for the three di�erent BB types agreed
within their statistical errors. Thus a common correction factor calculated from the mean
values of the three parameter pairs could be used, independently of the BB type.

Figure 3 compares the resulting rapidity di�erence distributions both in the data and
in the full simulation, which assumed a popcorn fraction f = 0:5. There are only very
few pairs with absolute di�erences greater than 2. Thus correlated baryons are always
either both in a common jet or both in the inter-jet region. There is no evidence for a
long range baryon correlation.

While pairs of baryons of the same type are highly correlated, and show a similar
behaviour for �� and pp pairs, the mixed pairs in the data are clearly less correlated and
exhibit a plateau in the range j�yj < 0:4. This suggests that the popcorn probability
might be higher for the mixed pairs. The three points with error bars on the upper right
hand side of each part of Fig. 3 show the mean of the two leftmost bins (jy(B)� y(B)j <
0:2) for the three BB combinations.
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Combination n(BB) n(BB) + n(BB)

pp 5552 2764

�� 772 225

1829 602

�p 2922 1519

Table 1: Numbers of pairs for the di�erent baryon combinations. The second line for ��
contains the numbers for all data sets from 1992 through 1994, whereas the other lines
refer only to the data taken in 1994.

3.3 Systematic E�ects

Several checks of the stability and signi�cance of the observed di�erence in the rapidity
correlation were carried out.

Both for �s and protons, two di�erent selections were used. Then charged particle
identi�cation was omitted in the � selection, which trebled the background. The in
uence
of protons from hadronic interactions and other secondary decays was investigated by
relaxing the requirements on the impact parameters of the proton tracks. By checking
the stability of the signal over the data taking period between 1992 and 1994, detector
dependent 
uctuations were excluded. This also checked the e�ects of � reconstruction
with or without the aid of the z coordinate readout of the silicon vertex detectorz. The
shapes of the background distributions, as obtained from the BB and the BB pairs, were
compared with those based on a) background candidates taken from the sidebands of the
� mass distribution and b) randomly selected charged particles instead of tagged protons.
This was done for BB- and BB-like pairs as well as for BB-like pairs.

None of these changes signi�cantly a�ected the rapidity correlations. This indicated
that the systematic uncertainties were unimportant compared with the statistical errors.

Finally, it should perhaps be remarked that not only do ' 5% of the tagged protons
come from � decays, as remarked earlier, but some others originate from �� and a
similarly small fraction of the � are from ��;0 decays, etc. However, all these e�ects are
included in the simulation, and at about the same level as in the real data, so they are
not expected to explain the e�ect observed.

3.4 Discussion

The correlation observed betweenmixed pairs (�p) is lower than that observed between
unmixed pairs (pp,��). This di�erence is not reproduced in the Jetset simulation shown
in Fig. 3. We were also unable to reproduce it by varying the available model parameters,

zUntil 1993 the vertex detector consisted of three layers of single sided silicon strip detectors at average radii R =

6.3, 9.0, and 10.9cm providing only an R-� measurement in the plane transverse to the beam. In 1994, two layers were

upgraded with double sided readout including also the z coordinate. At the same time the Delphi V0 reconstruction

procedure was updated to take advantage of the higher z resolution.
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Figure 3: Rapidity di�erences of baryon-antibaryon pairs for real data and full Jetset 7.3
simulation with Delphi tuning [10]. The three points with error bars on the far right
of each plot show the mean values of the two leftmost bins (jy(B)� y(B)j < 0:2) for the
three BB combinations, to show the signi�cance of the e�ect.

although it seems unlikely to be in disagreement with the principles of the string modelx.
The Herwig generator [14] was also found to predict only small di�erences between the
peak heights of the three BB combinations.

3.5 Rapidity Di�erence with Respect to the Charged Kaons

Events with mixed pairs (�p) in which exactly one charged kaon is also found, re-
gardless of its rapidity, o�er a possibility of investigating how far the observed rapidity
correlation between baryon pairs applies also for the mesons in the vicinity.

The �p pairs were split into three samples: correlated pairs with a small rapidity
di�erence, j�yBj < 0:6, pairs with a bigger di�erence, 0:6 < j�yBj < 2, and mostly
uncorrelated pairs with 2 < j�yBj. Only pairs with opposite baryon numbers were
taken into account: the events where strangeness was not compensated (�K� and �K+,
S = �2) were assumed to describe the background of misidenti�ed and uncorrelated
events with accidentally compensated strangeness (�K+ and �K�, S = 0). Thus the
distributions of the S = �2 pairs were subtracted from the ones with compensated
strangeness. The ratio of the number of S = �2 pairs to the number of S = 0 pairs
was (72 � 5)% in the real data and (68 � 2)% in the simulation. The purity of correctly
identi�ed particle trios in the simulation was about 50% for j�yBj < 0:6, and about 40%
for 0:6 < j�yBj < 2.

xIt might be noted that, since the completion of this analysis, a revised version of the popcorn model has been de-

veloped [13] in which the stepwise production of the quarks is carried through more consistently and the number of free

parameters is reduced.
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Figure 4: Rapidity
di�erence yK � y� be-
tween the kaon and
the � for two ranges
of the rapidity dif-
ference of the �p
pair. The two up-
per plots are obtained
from the data and the
two lower ones from
the Delsim simula-
tion, which contains
3.5 times more events
than the data. The
sign of y is chosen such
that �yB = yp � y�
would be negative.
The position range of
�yB is indicated as a
black bar on the ab-
scissa.

No correlation with respect to the kaon was visible if 2 < j�yBj. Fig. 4 shows that for
j�yBj < 2 the correlation with respect to the kaon follows the correlation between the
baryons. A high correlation between the baryons is associated with a high correlation
between the kaon and the �. The link between the two correlations is also present in the
Jetset simulation, but it seems to be smaller.

4 Summary

Rapidity di�erence distributions for protons and � baryons have been presented and
compared with Jetset simulations. The rapidity correlations for �� and pp pairs agree
with each other and with the Jetset model expectation. The correlation for �p pairs
is smaller than for �� or pp pairs. This e�ect is currently described neither by Jetset
nor by Herwig.

For �p pairs, there is also clear evidence for a short range compensation of strangeness
whose range depends strongly on the rapidity di�erence of the baryon pair. This be-
haviour is qualitatively described by the Jetset simulation, but there the dependence
seems weaker.
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