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Current neutrino oscillation data indicate the existence of two large lepton mixing angles, while

Kobayashi-Maskawa matrix elements are all small. Here we show how supersymmetric SO(10) with

extra chiral singlets can easily reconcile large lepton mixing angles with small quark mixing angles

within the framework of the successful Fritzsch ansatz. Moreover we show how this is fully consistent

with the thermal leptogenesis scenario, avoiding the so-called gravitino problem. A sizeable asym-

metry can be generated at scales as low as possible within the leptogenesis mechanism. We present

our results in terms of the leptonic CP violation parameter that characterizes neutrino oscillations.

PACS numbers: 12.10.Dm, 12.60.Jv, 14.60.St, 98.80.Cq

I. INTRODUCTION

An endemic difficulty in unified gauge models is the understanding of fermion masses. Thanks to the

brilliant series of experiments which led to the discovery of neutrino oscillations over the past ten years or

so, we now have an improved knowledge of neutrino masses and mixings [1]. The maximal atmospheric

mixing angle and the large solar mixing angle both came as a surprise, at odds with naive unification–

based expectations that lepton and quark mixings are similar. Indeed, although not mandatory, within

unification models a similar structure for quark and lepton mixing is far easier to account for than what

is currently established by observation. Several approaches have been considered in the literature to

circumvent this problem, involving various types of extensions of the multiplet content [3, 4, 5, 6, 7].

A virtue of seesaw models is that they bring the possibility of decoupling the angles in the quark and

lepton sectors by having additional Majorana-type terms for the latter [8]. Moreover, seesaw models may

account for the observed cosmological baryon excess through the elegant mechanism called leptogene-

sis [9]. However in minimal supergravity models, with m3/2 ∼ 100 GeV to 10 TeV the supersymmetric

type-I seesaw scenario leads to an overproduction of gravitinos after inflation [10, 11] unless the reheat

temperature is restricted to be much lower than that required for successful leptogenesis [12]. One pos-

sible way out is resonant leptogenesis [13] as indeed suggested in Ref. [14]. Another alternative has been

considered in Ref. [15] requires going beyond the minimal seesaw by adding a small R-parity violating
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term in the superpotential.

Here we consider an alternative approach to supersymmetric SO(10) unification that involves mainly

an extension of the lepton sector and a novel realization of the seesaw mechanism already discussed

previously [16, 17]. We show how the observed structure of lepton masses and mixings fits together,

thanks to the presence of the extra states, with the requirements of a predictive pattern of quark mixing,

encoded within the successful Fritzsch ansatz [18]. Moreover, we show explicitly how such extended

supersymmetric SO(10) seesaw scheme provides a realistic scenario for thermal leptogenesis, avoiding the

so-called gravitino problem. Our approach is phenomenological in sipirit. Hence we do not seek to derive

a full-fledged unified theory of flavour incorporating a specific symmetry, such as A4 [19, 20, 21, 22, 23]

to the unified gauge group level.

The paper is organized as follows. In Sec. II we discuss the limitations of minimal supersymmetric

type-I seesaw in naturally providing a framework for thermal leptogenesis in agreement with bounds on

the reheat temperature after inflation, in Sec. III we recall the basic features of the considered model,

while ansatzes for the coupling matrices are discussed in Sec. IV. In Sec. V we discuss the calculation of

the final baryon number asymmetry from the decay asymmetry of the lightest singlet. There we discuss

how we can use results obtained previously on production and washout factors in the seesaw type-I case

also in our extended seesaw model. We show that leptogenesis scenario is consistent both with the reheat

temperature constraint as well as with fitting the lepton and quark mixing angles within the successful

Fritzsch ansatz.

II. MINIMAL SUPERSYMMETRIC SEESAW LEPTOGENESIS

In the most general seesaw model the Dirac fermion mass terms arise from the couplings of the 16

with the 10 and 126, while the diagonal entries in the seesaw neutrino mass matrix arise only from the

couplings of the 16 with the 126. The mass matrix expressed in the basis is νL, νc
L is given as [24],

Mν =

(

YL 〈∆L〉 Y 〈Φ〉
Y T 〈Φ〉 YR 〈∆R〉

)

, (1)

where the 16 denotes each chiral matter generation while the 10 and 126 are Higgs-type chiral multiplets.

Here Y , YL and YR denote the Yukawa couplings of the 10 and 126, respectively. These are all symmetric

in flavour, the symmetry of YL, YR results from the Pauli principle, while that of Y follows from SO(10).

Minimization of the Higgs scalar potential leads to a vev seesaw relation

〈∆L〉 〈∆R〉 ∼ 〈Φ〉2 , (2)

consistent with the desired vev hierarchy 〈∆R〉 ≫ 〈Φ〉 ≫ 〈∆L〉, where 〈Φ〉 is the standard vev and 〈∆L,R〉
are the vacuum expectation values (vevs) giving rise to the Majorana terms.

Before we display our proposed model it is useful to consider the case of the Minimal type-I seesaw [25].

This consists in taking 〈∆L〉 → 0 in the above equations. Although not generally consistent with SO(10)

in the presence of the 126, this approximation is suitable for our purposes as the extension we will be

discussing is tripletless, the 126 being replaced by 16’s.

The matrix Mν is diagonalized by performing a a 6 × 6 unitary transformation Uν ,

νi =

6
∑

a=1

(Uν)iana UT
ν MνUν = diag(mi, Mi), (3)
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FIG. 1: Diagrams contributing to generate a lepton asymmetry of the universe.

whose form is given explicitly as a perturbation series in Ref. [26]. The effective mass matrix of the three

light neutrinos is given as

mν ≈ −Y YR
−1Y T 〈Φ〉2

〈∆R〉
(4)

The smallness of light neutrino masses follows dynamically from Eq. (4), since 〈∆R〉 is large.

In order to reproduce the observed pattern of quark masses and CP violation we assume the complex

matrix Y to have the form

Y =











0 a 0

a∗ b c

0 c∗ d











(5)

with a, c complex and b, d real. Notice that the large observed lepton mixing angles can always be

reconciled with the small quark mixing angles thanks to the presence of the coupling matrices YL,R which

exist only for neutrinos (in the limit of unbroken D-parity one has YL = YR). However, in a unified theory

where a flavour symmetry is assumed to predict the lepton mixing angles, it becomes a real challenge to

account naturally also for the quark mixing angles.

Now we turn to cosmology. One of the attractive features of seesaw models is that they open the

possibility of accounting for the observed cosmological matter-antimatter asymmetry in the Universe

through the leptogenesis mechanism [9]. This requires the out-of-equilibrium decays of the heavy “right-

handed” neutrinos Ni (see Fig. 1) to take place before the electroweak phase transition, and the presence

of CP violation in the lepton sector. The tree level and one loop diagrams for Ni decay that interfere in

order to generate a lepton asymmetry of the universe are shown.

These decays generate the asymmetry,

ǫi =
ΓNiL − ΓNiL

ΓNiL + ΓNiL

(6)

Here we recall the estimate of such asymmetry, as given in Ref.[27]. The relevant amplitudes follow from

the initial Lagrangian

L = λijN iPLLjH + h.c.. (7)

Here it is sufficient just to sketch their structure. At the tree level we have

M0
NL = iλ∗

ji, M0
NL

= iλji, (8)

while for the one-loop it is only necessary to evaluate the vertex contribution,

M1
NL = i7 f Mkλ∗

jkλ∗
mkλmi, M1

NL
= i7f Mkλjkλmkλ∗

mi (9)
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where f is some complex loop function. Now tree level plus one loop will be proportional to

|M0
NL + M1

NL|2 ≃ |M0
NL|2 + M0

NLM1∗
NL + M0∗

NLM1
NL (10)

so that the asymmetry is

ǫi ∝
M0

NLM1∗
NL + M0∗

NLM1
NL −M0

NL
M1∗

NL
−M0∗

NL
M1

NL

|M0
NL|2

(11)

Now using Eq. (8) and Eq. (9) we can write

ǫi ∝ Im(f)

∑

k,j,m Im
(

λ∗
jiλ

∗
miλmkλjk

)

Mk
∑

j λ∗
kiλki

(12)

Finally we get, in the case of hierarchical right-handed neutrinos,

ǫ1 = − 3

16π
M1

∑

k 6=1,j,m

Im
(

λ∗
j1λ

∗
m1λmkλjk

) 1

Mk

∑

k

λ∗
j1λj1

(13)

Note that in this limit the contribution of the self energy has the same dependence on the couplings and is

already included. The lepton (or B-L) asymmetry thus produced then gets converted, through sphaleron

processes, into the baryon asymmetry [9], observed to be O(10−10). In order to provide an acceptable

framework for leptogenesis, and taking into account the presence of washout effects, the asymmetry we

need is ǫ1 ∼ O(10−7) or larger, for the same values of parameters that reproduce the observed small

neutrino masses, Eq. (4). In order to generate this asymmetry thermally one requires the Universe to

reheat after inflation to a very high temperature [28, 29, 30, 31]

TR > 2 × 109 GeV (14)

Such large scale leads to an overproduction of cosmological gravitinos. In minimal supergravity models,

with m3/2 ∼ 100 GeV to 10 TeV gravitinos are not stable, decaying during or after Big Bang Nucleosyn-

thesis (BBN). Their rate of production can be so large that subsequent gravitino decays completely change

the standard BBN scenario. Since the abundance of gravitinos is proportional to TR such “gravitino cri-

sis” can only be prevented by requiring a low enough reheat temperature TR after inflation [10, 11]. A

recent detailed analysis gives a stringent upper bound

TR <∼ 106 GeV (15)

when the gravitino has hadronic decay modes [12]. Therefore, thermal leptogenesis seems difficult to

reconcile with low energy supersymmetry if gravitino masses lie in the range suggested by the simplest

minimal supergravity models. One possible way out is to have resonant leptogenesis [13] as suggested

in Ref. [14]. Another alternative considered in Ref. [15] requires going beyond the minimal seesaw by

adding a small R-parity violating term in the superpotential. In the following we discuss quantitatively

the alternative suggestion made in [16] in the context of the extended supersymmetric seesaw scheme.

III. THE NEW EXTENDED SEESAW MODEL

For definiteness we work in the context of the supersymmetric SO(10) unified model considered in

Ref.[16, 17]. The gauge symmetry and D-parity are broken by 45 and 210 multiplets at the unification
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scale. The B-L symmetry breaks at lower scale thanks to expectation values of the χ fields in the 16,

instead of the more familiar left and right triplets present in 126 which lead to the standard seesaw

mechanism. Gauge couplings unification can not fix the B-L breaking scale, which can be relatively low,

as shown in Ref. [17]. The possibility of a low B-L breaking scale also fits with the observed neutrino

masses. The relevant Yukawa couplings leading to neutrino masses are

− LY = Yijν
c
iLνjLφ + FijνiLSjχL + F̃ijν

c
iLSjχR +

1

2
MΣΣΣ. (16)

Note that a direct Majorana mass term for the singlet fields Si is forbidden by an additional imposed

U(1)G symmetry and the fact that the only singlet scalar present (σ) is odd under D-parity, while SiSj

are even under D-parity. For the same reason, σ cannot couple to Σ, but a bare mass is allowed [16].

As we will show leptogenesis allows this mass to be of the order of TeV. We also introduce a soft term

breaking U(1)G, which allows mixing between the scalar components of these fields ΣSi,

− L6G = ∆iΣSi, (17)

This will then give a 10 × 10 neutrino mass matrix, in the basis (νi, Σ, νc
iL, Si):

Mν =













0 0 Y v FvL

0 MΣ 0 ∆T

Y T v 0 0 F̃ vR

FT vL ∆ F̃T vR 0













(18)

where, v = 〈φ〉, vL = 〈χL〉 and vR = 〈χR〉 are the vevs for the fields φ, χL and χR respectively and ∆ is

the U(1)G breaking entry. Besides the three light neutrinos, this mass matrix will give two heavy states

which are dominantly the right-handed neutrino νc
iL and the singlets Si, and a lighter state Σ. Notice

that we will not impose any specific family symmetry. In Sec. IV B we will, however, consider the case

where the Yij are restricted to follow the Fritzsch texture for the quark sector.

A. Light neutrinos

Using the seesaw diagonalization prescription given in Ref. [26] we obtain the effective left-handed light

neutrino mass matrix as [16],

mν = − 1

MΣ
GGT −

[

Y (FF̃−1)T + (FF̃−1)Y T
] vvL

vR
(19)

where G ≡ Y (F̃−1)T ∆ v
vR

. Since the D−parity breaking scale is much higher than the scale at which the

left-right symmetry breaks, and this in turn is higher than the electroweak symmetry breaking scale, one

has the “vev-seesaw” relation

vL ∝ vRv

MX
, (20)

where MX is determined by the SO(10) breaking vevs. In the following we will take this proportionality

constant equal to one and therefore write Eq. (19) as

mν = − 1

MΣ
GGT −

[

Y (FF̃−1)T + (FF̃−1)Y T
] v2

MX
(21)
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Note that the neutrino masses are suppressed by the unification scale MX instead of the B-L scale. As

noted in [17] we need two pairs of 16 16 in order to boost up the neutrino mass scale and bring in

an independent flavour structure beyond that of the charged Dirac couplings, constrained by the quark

sector phenomenology.

Now we want to extract as much information from the low energy neutrino data as possible. The

matrix mν can be diagonalized as,

UT mνU = diag(mν1
, mν2

, mν3
) (22)

where we use the standard parameterization from Ref.[8] and now adopted by the PDG

U =







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13






(23)

The values of U and diag(mν1
, mν2

, mν3
) are known to some degree from experiment and we want to

turn this information into the parameters of the theory, defined by Eq. (16). Of course we have too little

experimental information, three angles and two mass differences, to be able to reconstruct in full the

three matrices Y, F, F̃ and the vector ∆.

B. Heavy neutrinos

Let us now turn to the discussion of the heavy neutrinos. The following terms in the Lagrangian,

−L =
1

2

(

2F̃ijν
c
iLSjvR + MΣΣΣ + 2∆iΣSi

)

=
1

2

(

vR νcT
LF̃S + vR ST F̃T νc

L + ∆T ΣS + ∆ST Σ + MΣΣΣ
)

=
1

2
NiMNijNj (24)

lead to a 7 × 7 mass matrix in the basis N =(Σ, νc
iL, Si):

MN =













MΣ 0 ∆T

0 0 F̃ vR

∆ F̃T vR 0













(25)

which determines the masses of the heavy neutrinos. Now in order to get the states with physical masses

we diagonalize this mass matrix in three steps. We start by diagonalizing the matrix F̃ . We define

UT
N F̃US vR = diag(M1, M2, M3) ≡ MD (26)

where UN and US are unitary matrices. Then we define new fields

ν′c = U−1
N νc, S′ = U−1

S S (27)

so that in the basis N ′ = (Σ, ν′c, S′) we have

−L =
1

2
N ′T M ′

NN ′ (28)
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with

M ′
N = RT

NSMNRNS =











MΣ 0 ∆T US

0 0 MD

UT
S ∆ MD 0











(29)

and

RNS =











1 0 0

0 UN 0

0 0 US











(30)

Now we rotate the fields ν′c and S′ to obtain the almost degenerate states N± = 1√
2
(ν′c ± S′). This is

done by defining a new matrix

R =













1 0 0

0
1√
2

1√
2

0 − 1√
2

1√
2













(31)

that obeys

−L =
1

2
N ′′T M ′′

NN ′′ (32)

with N ′ = RN ′′, N ′′ = (Σ, N−, N+) and

M ′′
N = RT M ′

NR =















MΣ − 1√
2
∆T US

1√
2
∆T US

− 1√
2
UT

S ∆ −MD 0

1√
2
UT

S ∆ 0 MD















(33)

We now have to perform the final rotation in order to get the physical states for these heavy neutrinos.

As we have seen in the discussion of the light neutrinos, the amount of G-violation must be small, therefore

Eq. (33) can be approximately diagonalized using the techniques of Ref.[26]. We obtain

−L =
1

2
N ′′′T M ′′′

N N ′′′ (34)

with N ′′′ = (Σ′, N ′
−, N ′

+), N ′′ = URHN ′′′ where

M ′′′
N = UT

RHM ′′
NURH =











MΣ 0 0

0 −MD 0

0 0 MD











(35)

and

URH =















1
1√
2
∆T

(

U−1
S

)T
M−1

D

1√
2
∆T

(

U−1
S

)T
M−1

D

− 1√
2
M−1

D UT
S ∆ 1 0

− 1√
2
M−1

D UT
S ∆ 0 1















(36)
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If we assume that the eigenvalues of F̃ are hierarchical we get also a hierarchical spectrum for the heavy

states, Σ′, N ′
−, N ′

+, namely, |MΣ| ≪ |M1| ≪ |M2| ≪ |M3|. In order to evaluate the asymmetry generated

we must evaluate the couplings of the mass eigenstates. For this we notice that

N = RNSRURHN ′′′ (37)

and a simple calculation gives

RNSRURH =















1
1√
2
∆T

(

U−1
S

)T
M−1

D

1√
2
∆T

(

U−1
S

)T
M−1

D

−UNM−1
D UT

S ∆
1√
2
UN

1√
2
UN

0 − 1√
2
US

1√
2
US















(38)

which allows us to write

Σ = Σ′ +
1√
2
∆T

(

U−1
S

)T
M−1

D N ′
− +

1√
2
∆T

(

U−1
S

)T
M−1

D N ′
+

νc = −
(

F̃−1
)T ∆

vR
Σ′ +

1√
2
UNN ′

− +
1√
2
UNN ′

+ (39)

S = − 1√
2
US N ′

− +
1√
2
US N ′

−

where we have used

(

F̃−1
)T

= UNM−1
D UT

S vR (40)

With this we can rewrite the relevant part of the Lagrangian of Eq. (16) in terms of the eigenstates

(we drop the primes from now on),

LY = YΣi Li H Σ + Y±ij N±i Lj H + h.c. (41)

where

YΣ = αHY
(

F̃−1
)T ∆

vR
, Y±ij = −

(

1√
2
αH

(

UT
N Y

)

ij
± αH

χ (F US)ji

)

(42)

where αH denotes the projection of the relevant light MSSM Higgs doublet h into the directions of the

defining Higgs doublets living in H ∈ 10H , and αH
χk are the projections of the light MSSM-like Higgs

doublet onto the defining Higgs doublets in the 16
k
H and M1 is the mass of the N±1.

C. Calculation of the Asymmetry

We now discuss the issue of leptogenesis in this model. It can occur only after the local (B − L) ⊂
SO(10) symmetry is broken. This will take place through the out-of-equilibrium decay of the singlet

fermion Σ. The total width of Σ is given by (treating YΣ as a column vector)

ΓΣ ∼ 1

8π
Y †

ΣYΣMΣ (43)

where YΣ is given in Eq. (42).
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The asymmetry coming from the diagrams of Fig. 2 involves the sum over k which reduces to the sum

over the lightest pair of the (almost degenerate) N± ≡ 1√
2
(νc±S) states with masses ±M1. A comparison

of the diagrams in Fig. 2 and Fig. 1 gives the following dictionary

λj1 → YΣj λm1 → YΣm

λmk → Y±m λjk → Y±j

(44)

We have then for the numerator

∑

j,m,±
Y ∗

ΣjY
∗
ΣmY±mY±j

1

M±
=

1

M1

∑

j,m

Y ∗
ΣjY

∗
Σm (Y+mY+j − Y−mY−j)

=
4

M1

∑

j,m

Y ∗
ΣjY

∗
ΣmAmBj (45)

where we have defined: Y±m = Am ± Bm. Comparing with Eq. (42) we get

Am = − 1√
2
αH

(

Y T UN

)

m1
, Bm = − 1√

2
αH

χ (F US)m1 (46)

Putting everything together we finally obtain

ǫΣ = − 3

8π

MΣ

M1

Im[(Y †
ΣFkUSαH

χk)1(Y
†
ΣY T UNαH)1]

Y †
ΣYΣ

(47)

It is important to note that, in contrast to the asymmetry ǫ1 in the minimal seesaw discussed in the

previous section, ǫΣ is not constrained by the light neutrino masses. This can essentially be understood

by the fact that the neutrino mass, see eq.(19) and eq.(20), is suppressed by the small ratio vL/vR,

whereas in the calculation of ǫΣ, the small quantity ∆/vR appears quadratically in the numerator and

the denominator, and thus cancels. ǫΣ can therefore be much larger than in the minimal seesaw case,

independent of the light neutrino masses. Consequently, there is also no lower bound on MΣ from the

asymmetry parameter ǫΣ.

IV. ANSATZES FOR THE COUPLING MATRICES

We now estimate the resulting CP asymmetry needed for leptogenesis making use of the current values

of the neutrino oscillsation parameters given in [1]. A simple ansatz is to assume that it comes just

from the Dirac phase of the three-neutrino lepton mixing matrix assuming the unitary approximation.

In this approximation the asymmetry is proportional to the unique CP invariant parameter that can be

FIG. 2: Tree level and one loop diagrams for the decay of Σ that interferes to generate a lepton asymmetry of

the universe.
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probed in neutrino oscillations. The maximum value of the asymmetry that can be achieved is obtained

by varying randomly all the other model parameters and the results are displayed at each point of the

plane (sin θ13,sin δ).

A. Generic case: non-hierarchical Yij

We start by considering a non-hierarchical ansatz for the coupling matrices. In order to reduce the

unknowns we assume that both Fij and F̃ij matrices are proportional to the standard SO(10) Dirac

Yukawa coupling matrix Yij , which is symmetric, namely

Fij = fYij , F̃ij = f̃Yij , Yij = Yji (48)

With this choice Eq. (21) can be written as,

mν = m(a)
ν + m(b)

ν (49)

where

m(a)
ν = − v2

f̃2v2
RMΣ

∆i∆j ≃ −3 × 1010 1

f̃2

1
(

MΣ

103GeV

)

(

∆i

vR

)(

∆j

vR

)

(eV)

m(b)
ν = −f

f̃

2v2

MX
Yij ≃ −3 × 10−3 f

f̃
Yij (eV) (50)

Clearly, the projective nature of m
(a)
ν will not explain the neutrino data, therefore we need the contribution

of m
(b)
ν . The atmospheric scale can easily be reproduced with Y ≃ O(1), f/f̃ ≃ 0.1 and ∆

vR
≃ 10−7, for

MΣ = 1 TeV.

With the assumptions of Eq. (48) we can solve for the Yukawa matrix in terms of the experimentally

observed neutrino oscillation parameters via

Yij = −MX

2v2

f̃

f

[

(

UT
)−1

mexp
ν U−1 + ∆i∆j

v2

v2
RMΣ

1

f̃2

]

(51)

which also involves other parameters of the model.

With this ansatz and the choice f = 1, f̃ = 0.1 we take the lepton mixing parameters in the range

allowed by the experiment. At 3σ the latest neutrino oscillation data give [1]

sin2 θ12 ∈ [0.24, 0.40], sin2 θ23 ∈ [0.34, 0.68], sin3 θ13 < 0.04 (52)

In addition we take the other model parameters in the following ranges,

MΣ ∈ [103, 107] GeV, ∆i ∈ [10−3, 103] GeV, vR ∈ [103, 107] GeV (53)

With these values we can see the resulting vR, MΣ and ∆Σ values that follow from our ansatz in Fig. 3.

They show that it is possible to fit the neutrino data with this simple type of ansatz. The resulting CP

asymmetry produced is given in Fig. 4. Here we have calculated the maximum value of the asymmetry

that can be achieved at each point of the (sin θ13,sin δ) plane, varying randomly all the other parameters.

Clearly the sizeable values of the asymmetry can be obtained, especially for large sin θ13 and sin δ, as

expected, so that the necessary CP asymmetry needed for leptogenesis can be achieved.

One sees that large values of the asymmetry, compatible with the experimental data, can be achieved

in the full parameter space, even for very small sin θ13 and sin δ values. However the ansatz is manifestly

inconsistent with the successful Fritzsch texture for the quark masses.
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FIG. 3: vR, MΣ and ∆Σ values that follow from our first ansatz Eq. (49) for f̃ = 0.1, when the parameters are

varied as in Eq. (53), see text.
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FIG. 4: Contour levels of the logarithm of the maximum value of the asymmetry ǫΣ obtained as a function of

sin θ13 and sin δ for the non–hierarchical ansatz of section IV A. The other neutrino mixing parameters are taken

the from the latest neutrino oscillation data given in [1].

B. Fritzsch case: hierarchical Yij

It is natural to ask whether our SO(10) model described by the Lagrangian of Eq. (16) can provide

thermal leptogenesis while reconciling the successful Fritzsch texture for the quark masses with the

observed structure of lepton masses and mixings that follow from neutrino oscillation experiments. To

this end we now assume that the Yij Yukawa’s involved in neutrino mass generation are also restricted

by the Fritzsch ansatz for the quark couplings, given in Eq. (5), with a, c complex and b, d real. Aware

of the fact that the phases will be necessary in computing the final asymmetry, we will, for the moment

take the ansatz parameters all real, as

a =

√

mumc

v2
, b =

mc

v
, c =

√

mcmt

v2
, d =

mt

v
(54)

These values imply a strong hierarchy among the Yukawa couplings. With this choice, let us now look at

the neutrino mass matrix. It is clear from Eq. (21) that this hierarchy must be corrected by a suitable
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hierarchy in the F̃ coupling matrix. In fact Eq. (21) can be “solved” for F̃ as

F̃ = X−1F (55)

where X is obtained from

Y XT + XY T = −MX

v2

[

(

UT
)−1

mexp
ν U−1 +

(

Y ∆̃
)(

Y ∆̃
)T v2

v2
RMΣ

]

≡ Z (56)

where ∆̃ ≡ F̃−1∆, F̃ being, in general, an arbitrary non-symmetric matrix. Now Z is expressed as a

combination of neutrino data and additional parameters, for which we take random values.

We have performed a random study of this Fritzsch ansatz assuming as our ansatz that F̃ = X−1F

with F = FT and taking random values of order one in various ways. We have found that in this case,

for example for vR in the range [107, 108] GeV, MΣ of few TeV and ∆Σ ∈ [10−2, 104] GeV one indeed

obtains a viable solution. One finds that some of the entries of F̃ are small (of order 10−3) in order to

compensate for the corresponding smallness of Y in Eq. (5).

We have also explicitly calculated the value of the asymmetry ǫΣ for this ansatz as explained above.

The results are shown in Fig. 5 for the case of the hierarchical ansatz with the current neutrino oscillation

parameters from [1] and the Dirac phase is δ ∈ [0, π].
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FIG. 5: Contour levels of the maximum asymmetry obtained as a function of sin θ13 and sin δ using the Fritzsch

texture with F̃ = X−1F , F=I (left panel) or F symmetric (right panel).

One sees that, in this case, values of the asymmetry of order 10−6-10−7 can only be obtained for large

values of sin θ13 and sin δ. Therefore, this scenario can be potentially probed by the future neutrino

oscillation measurements.

Larger values of the CP asymmetry compatible with current neutrino oscillation measurements can

be found for other ansatze of the current model using the Fritzsch texture. For instance, if we consider

F̃ = f̃Y with F symmetric, or F̃ diagonal and F = XF̃ , one can obtain very large values of the asymmetry

even for very small values of sin θ13 and sin δ, as illustrated in Fig. 6.

V. ASYMMETRY WASHOUT, SINGLET PRODUCTION AND THE SPHALERON

CONSTRAINT

Generating a large enough asymmetry in the decay of the lightest singlet is a necessary, but not

a sufficient condition for successful leptogenesis. Additional conditions are required, before one can

conclude that any given model can generate the required baryon asymmetry.
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FIG. 6: Contours of the maximum value of the asymmetry obtained using the Fritzsch texture. Left panel:

F̃ = f̃Y , F symmetric. Right panel: F̃ diagonal and F = XF̃ .

The first condition to be satisfied is the out-of-equilibrium decay of the heavy singlet, which is nothing

but the basic Sakharov condition [32]. This requires that the decay rate is smaller than the expansion

rate of the universe, i.e. ΓΣ ≪ ΓHubble at the decay epoch. For large ΓΣ, say, of order of the expansion

rate, part of the asymmetry produced in the decays will be washed out by inverse scattering processes

violating lepton number. This constraint will thus put an upper limit on the couplings of Σ to the leptons

(and Higgses) for any given mass MΣ. Second, we need to produce a sufficient number of singlets in the

early universe. Singlets could be either produced by their couplings to the thermal bath or through the

decay of some heavier particle, which was present in the universe at earlier times. Obviously, a sufficiently

strong direct thermal production requires a minimum value for the couplings of Σ, whereas the second

option does not. The third constraint comes from the fact that the Σ decays have to take place at a time

early enough that the SM sphalerons are still in equilibrium, otherwise we will produce a lepton number,

but no non-zero baryon number. This constraint puts a lower limit on ΓΣ, ΓΣ ≥ ΓSphaleron, independent

of the production mechanism of Σ.

To accurately calculate the first two of the above conditions, in principle, one needs to set up a

network of Boltzmann equations, which in general can only be solved numerically [33]. However, under

certain simplifying assumptions, one can derive approximate analytical solutions which reproduce the full,

numerical calculations quite well. Several analytical approximations have been proposed in the literature,

see for example [33, 34, 35]. In our earlier paper [16] we have used the following approximate form for

the washout factor:

κ′(z) =
1

1 + 10z
, (57)

where z ≡ Γ
ΓHubble

, with ΓHubble being the expansion rate of the universe [33]. Ref. [35] has numerically

solved the Boltzmann system for the case of the simpler type-I seesaw. In this case the decay width of the

lightest right-handed neutrino is proportional to Γ ∼ (Y †Y )11, and the authors of [35] define the “effective

mass” parameter m̃1 = (Y †Y )11v
2/M1, where M1 is the mass of the lightest right-handed neutrino and

v the SM vev. Thermal equilibrium for the right-handed neutrino is reached for an “equilibrium mass”

m̃∗ = 1.08 · 10−3 eV, for which by definition z = 1. The full numerical calculation is then very well

approximated by

κ(z) ≃ 0.24(x−e−x
− + x+e−x+) (58)
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with

x± =
( m̃∗

m̃±

)∓1−α

, (59)

and the numerical values

m̃+ = 8.3 × 10−4 eV, m̃− = 3.5 × 10−4 eV, α = 0.1. (60)

We can make use of the results of [35] with the straightforward replacement,

x± =
(m̃∗z

m̃±

)∓1−α

. (61)

Our more complicated setup of Boltzmann equations then is solved approximately by the fit eq. (58).

Note, that this implicitly assumes [40] that the heavier singlets are sufficiently decoupled so as to not

contribute significantly to the washout.

As seen in Fig. (7) eq. (58) and eq. (57) lead to very similar results for z > 1, The two forms

differ, however, for z < 1. This can be traced to the fact that eq. (58) also accounts for the suppressed

production in the weak coupling regime, while eq. (57) does not. For definiteness, in the plots shown

below, we have used eq. (58).

10-3 10-2 10-1 100 101 102 103
10-12

10-11

10-10

10-9

10-8

10-7
ηB

z (= Γ/H)

ǫ = 10
−5

ǫ = 10
−6

FIG. 7: Calculated range for ηB as a function of z, for the different fits to the washout factor. The dashed (full)

lines show the approximate analytical solutions to the Boltzmann equations, see eqs (57) and (58). Results are

shown for 2 typical values of ǫ = 10−5, 10−6. The horizontal black band is the currently allowed ηB range [37].

We have also used the constraint imposed by the condition that the decay of the singlets must happen

while the sphalerons are still active. We estimate the sphaleron time using

ΓSphaleron = ΓHubble|T=EWPT =
√

4π3g∗/45(
T 2

MPl
)|T=EWPT , (62)

with EWPT denoting the energy at which the electro-weak phase transition occurs, g∗ the effective

number of degrees of freedom and MPl the reduced Planck mass. We cut all points with ΓΣ ≤ ΓSphaleron.

This is, of course, a rough approximation to the real, dynamical situation. However, we believe it to be

sufficiently accurate for deriving order of magnitude constraints on the model parameters. Finally, when
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converting the produced lepton asymmetry to the baryon asymmetry, we have to take into account an

efficiency factor for the sphalerons. This factor has been calculated in [36] to be

ηB =
8nF + 4nH

22nF + 13nH
ηL, (63)

where nF (nH) is the number of families (Higgses). Numerically this factor is ∼ 1/3.

Fig. (8) shows as an example the resulting ηB as a function of ∆ for a numerical scan using the ansatz

shown in fig.(5), to the left. The light/dark (green/red) area is the calculated range for ηB without/with

the sphaleron constraint. One sees that the different constraints discussed above conspire to choose a

rather well-defined allowed range for the parameter ∆ in this case. A large enough baryon asymmetry

can be obtained roughly for ∆ = [1, 104] GeV, for the range of the other parameters as given in eq. (53).

It is amusing to note, that the requirement of producing a sufficient number of singlets and the sphaleron

constraint lead to rather similar lower cuts on ∆ [41].
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FIG. 8: Calculated range for ηB as a function of ∆, for the ansatz defined in fig. (5), to the left. The horizontal

band is the allowed range of ηB . The full shaded region corresponds to the allowed range without the sphaleron

constraint, while the superimposed darker/red area indicates the allowed range of parameters once the sphaleron

constraint is included. For a discussion see text.

We have repeated this exercise for all the different ansätze discussed above. The resulting allowed

ranges for the parameters ∆ and MΣ are shown in fig. (9). As shown in this figure, the random non-

hierarchical ansatz and the hierarchical ansatz shown in the right panel of Fig. 6 lead to the widest

allowed ranges for ∆ and MΣ.

Before we close this section let us briefly illustrate possible values for the relevant parameters. These are

∆, MΣ, the masses M1, M2, M3 of the three iso-singlet neutrinos and the resulting baryon asymmetry

ηB . Some examples are given in table I for each of the scenarios we have discussed. As one can see the

acceptable baryon asymmetry may arise for rather low scales, in contrast to the (simpler) seesaw type-I

schemes. Note, however that the values given in the table are by no means unique, and are also not

meant to be “representative” of the classes. The generation of the baryon asymmetry is far easier in

this context than in the traditionl seesaw model. The presence of the new singlets allows us to have, in

addition, acceptable textures for the quark and lepton mixing angles.
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∆[GeV] MΣ[GeV] M1[GeV] M2[GeV] M3[GeV] ηB [10−10]

Non-hierarchical

8.3×10−2 1.2×103 4.1×104 5.0×104 2.6×105 6.3

9.8 2.3×104 9.3×105 1.2×106 6.1×106 5.0

Hierarchical 5a

3.5×103 1.2×103 3.6×104 6.2×104 6.7×106 4.9

2.9×103 1.1×103 4.6×104 6.8×104 5.7×106 5.8

Hierarchical 5b

1.8×103 6.6×102 2.1×104 6.4×104 3.8×106 5.2

8.3×102 2.5×102 6.1×103 6.2×104 9.8×106 4.8

Hierarchical 6a

2.9×102 2.9×103 1.6×105 3.6×109 6.0×1011 5.1

3.3×103 8.3×102 2.5×105 1.3×1011 1.4×1013 5.8

Hierarchical 6b

1.0×101 1.8×103 1.9×105 1.1×106 2.0×106 5.4

3.4×101 2.8×103 1.5×106 1.5×106 2.5×106 5.9

TABLE I: Some example spectra for the different ansätze considered.

VI. CONCLUSIONS

We have reviewed the argument that in minimal type-I SO(10) seesaw one can not easily reconcile

the thermal leptogenesis scenario with the successful Fritzsch texture for the quarks and an acceptable

pattern of lepton masses and mixings that follow from neutrino oscillation experiments. This is due to the

fact that the large seesaw scale needed to account for small neutrino masses leads to an overproduction

of cosmological gravitinos, which destroys the standard predictions of Big Bang Nucleosynthesis (BBN).

Barring the very special case of resonant leptogenesis, one must go beyond the minimal type-I seesaw

mechanism.

In this paper we have studied in some detail an extended seesaw scenario as a natural way to overcome
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this limitation. The proposed extension has the added virtue of providing a natural setting for reconciling

the observed structure of neutrino mixing angles with the strong hierarchy among quark masses and the

smallness of the quark mixings. While this can always be accommodated in a “generic” unified theory

with arbitrary multiplet content, it becomes a real challenge for unified predictive models of flavour.

We have provided a quantitative study of fermion masses and (an approximative calculation of) lep-

togenesis in the context of supersymmetric SO(10) Unification. Our approach was phenomenological in

that we have not assumed a specific flavour symmetry. We have shown how thermal leptogenesis can

occur at relatively low scale through the decay of a new singlet, thereby avoiding the gravitino crisis.

Washout of the asymmetry is effectively suppressed by the absence of direct couplings of the singlet to

leptons. For illustration we have shown how one can accommodate current oscillation neutrino data and

the required value for the asymmetry for successful leptogenesis even if the only source of CP violation

is the Dirac phase δ in the low energy neutrino mixing matrix. Finally, we note that we have not taken

into account flavour effects [38, 39] in the calculation of the asymmetry. However, we believe that the

absence of a lower bound on MΣ in our model is independent on whether flavour effects are taken into

account or not.

Using the Fritzsch texture we have found that some ansatze lead to acceptable values of the asymmetry

of order 10−6-10−7 only for large values of sin θ13 and sin δ. Therefore, these scenarios can be potentially

probed by the future neutrino oscillation measurements, as the required value of the CP invariant is nearly

maximal. In contrast, we have also presented alternative Fritzsch-type ansatze leading to substantially

larger values of the CP asymmetry, even for very small values of sin θ13 and sin δ. We have also discussed,

how to approximately treat the conversion of the decay asymmetry to the baryon asymmetry, without

resorting to a full numerical solution of the Boltzmann equations. To this end, we made use of some

approximation formulas derived previously for seesaw type-I and discussed how they can be adapted to

cover also our more complicated case.

In summary, our extended seesaw scenario provides a way of reconciling the lepton and quark mixing

angles with thernal leptogenesis in a unified scenario. While this by itself does not constitute a complete

theory of fermion masses and leptogenesis, at least it provides a useful first step towards an ultimate

unified theory incorporating flavour.
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