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Abstract

The most general supersymmetric seesaw mechanism has too many parameters to be predictive

and thus can not be excluded by any measurements of lepton flavour violating (LFV) processes.

We focus on the simplest version of the type-I seesaw mechanism assuming minimal supergravity

boundary conditions. We compute branching ratios for the LFV scalar tau decays, τ̃2 → (e, µ)+χ0
1,

as well as loop-induced LFV decays at low energy, such as li → lj + γ and li → 3lj , exploring their

sensitivity to the unknown seesaw parameters. We find some simple, extreme scenarios for the

unknown right-handed parameters, where ratios of LFV branching ratios correlate with neutrino

oscillation parameters. If the overall mass scale of the left neutrinos and the value of the reactor

angle were known, the study of LFV allows, in principle, to extract information about the so far

unknown right-handed neutrino parameters.
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I. INTRODUCTION

Neutrino oscillation experiments have demonstrated that neutrinos are massive particles

[1]. With the most recent experimental data by the MINOS [2] and KamLAND [3] collab-

orations atmospheric and solar mass-squared differences are now known very precisely and

global fits to all neutrino oscillation data [4] also give quite accurate determinations for the

corresponding neutrino mixing angles. For the overall mass scale of neutrinos and the third

neutrino mixing angle currently only upper limits exist, but considerable progress is expected

from future double beta decay [5] and reactor neutrino oscillation [6, 7] experiments.

Neutrino masses provide the first experimental signal of physics beyond the standard

model (SM). From an experimental point of view, neutrino oscillation data can easily be

fitted in very much the same way as the SM accounts for quark masses and mixings, i.e.

namely by Dirac neutrino masses. From a theoretical point of view, however, such an ansatz

is ad hoc since, being electrically neutral, neutrinos are expected to be Majorana particles [8].

Indeed, as noted already in [9], the dimension-5 operator,

mν =
f

Λ
(HL)(HL), (1)

induces Majorana masses for neutrinos once the electroweak symmetry breaks. This way

the smallness of the neutrino masses can then be attributed to the existence of some lepton

number violating scale larger than the electroweak scale. A variety of ways to generate this

operator have been suggested. The resulting Majorana neutrino masses can be suppressed

either by loop factors, by a large mass scale, by a small scale whose absence enhances the

symmetry of theory, or by combinations of these mechanisms [10].

Electroweak scale models, such as, for example the Zee model [11], the Babu-Zee model

[12], supersymmetric models with violation of R-parity [13, 14, 15, 16, 17] or lepton number

violating leptoquark models [18] generate neutrino masses at loop-level, resulting in f ≪ 1

and Λ need not be much larger than mW . A similar situation arises in models like the inverse

seesaw [19]. Such low-scale models have the advantage that the new fields responsible for the

generation of neutrino masses may be directly accessible to future accelerator experiments,

see for example [20, 21, 22, 23, 24].

The most popular mechanism to generate Majorana neutrino masses, however, the cele-

brated seesaw mechanism [8, 25, 26, 27, 28, 29] assumes that lepton number is violated at a

very large scale, probably at energies comparable to the grand unification scale. This “clas-

sical” version of the seesaw mechanism, while automatically suppressing neutrino masses

without the need for any small pre-factor, will unfortunately never be directly testable.

2



However indirect insight into the high-energy world might become possible, if weak scale

supersymmetry is realized in nature. Indeed, starting from flavour diagonal soft super-

symmetry (SUSY) breaking terms at some high-energy “unification” scale, flavour violation

appears at lower energies due to the renormalization group running of the soft breaking

parameters [30]. If the (type-I) seesaw mechanism is responsible for the observed neutrino

masses, the neutrino Yukawa couplings leave their imprint in the slepton mass matrices as

shown first in [31]. Flavour off-diagonal entries in the neutrino Yukawas then can lead to

potentially large lepton flavour violating lepton decays such as li → lj + γ and li → 3lj

[32, 33, 34, 35, 36, 37] or µ − e conversion in nuclei [38, 39]. In a similar spirit, if super-

symmetry is discovered at a future accelerator such as the LHC, one can use measurements

of masses and branching ratios of supersymmetric particles to obtain indirect information

on the range of allowed seesaw parameters [40, 41, 42, 43, 44]. The most general supersym-

metric seesaw mechanism has too many parameters to be predictive and thus can not be

excluded by any measurements of lepton flavour violating (LFV) processes. Within the su-

persymmetric version of the seesaw measurements of LFV observables outside the neutrino

sector allow one to obtain valuable independent information about the seesaw parameters

[45]. There are two logical possibilities of how such LFV measurements might be useful. (a)

Given the current incomplete knowledge on the light neutrino masses and angles, one could

make some simplified assumptions about the right-handed neutrino sector. Then “predic-

tions” for LFV observables as a function of the remaining unknowns for the left-handed

light neutrinos result. Or (b) one could learn about the parameters of the right-handed

neutrinos once the most important, but currently unknown light neutrino observables have

been measured. While the second option might look more interesting, the time scale for

making progress on mν , s13 or the Dirac CP phase δ will be long. Worse still, the Majorana

phases of the light neutrinos are unlikely to be ever reliably measured. Hence experimental

information most likely will be incomplete and measurements of LFV observables will be

useful to at least partially reconstruct the seesaw parameters.

In this paper we study lepton flavour violating decays of the scalar tau as well as LFV lep-

ton decays at low energies. We assume minimal supergravity (mSugra) boundary conditions

and type-I seesaw as origin of neutrino masses and mixings. We compare the sensitivities of

low-energy and accelerator measurements and study their dependence on the most important

unknown parameters. LFV measurements at accelerators could be argued to be preferable

to the low-energy LFV experiments for “reconstructing” seesaw parameters, since from a

theoretical point of view they involve fewer assumptions. However, the absolute values of

LFV stau decays and, for example, Br(µ → e + γ) depend very differently on the unknown
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SUSY spectrum. Whether low-energy LFV or LFV at accelerators yields more insight into

the seesaw mechanism can currently therefore not be predicted.

While absolute values of LFV observables depend very strongly on the soft SUSY breaking

parameters, it turns out that ratios of LFV branching ratios can be used to eliminate most

of the dependence on the unknown spectrum. I.e., ratios such as, for example, Br(τ̃2 →
e+χ0

1)/Br(τ̃2 → µ+χ0
1) are constants (for fixed neutrino parameters) over large parts of the

supersymmetric parameter space and therefore especially suitable to extract information

about the seesaw parameters. We therefore study such ratios in detail, first in a useful

analytical approximation and then within a full numerical calculation.

The rest of this paper is organized as follows. In the next section, we will recall the

basic features of the supersymmetric seesaw mechanism, mSugra and LFV in the slepton

sector. Section III then discusses analytical estimates for slepton mixing angles and the cor-

responding LFV observables. In Sec. IV we present our numerical results before concluding

in Sec. V.

II. SETUP: MSUGRA WITH TYPE I SEESAW

In order to fix the notation, let us briefly recall the main features of the seesaw mech-

anism and mSugra. We will consider only the simplest version of the seesaw mechanism

here. It consists in extending the particle content of the minimal supersymmetric standard

model by three gauge singlet “right-handed” neutrino superfields. The leptonic part of the

superpotential is thus given by

W = Y ji
e L̂iĤdÊ

c
j + Y ji

ν L̂iĤuN̂
c
j + MiN̂

c
i N̂

c
i . (2)

where Ye and Yν denote the charged lepton and neutrino Yukawa couplings, while N̂ c
i are

the “right-handed” neutrino superfields with Mi Majorana mass terms of unspecified origin.

Since the N̂ c
i are singlets, one can always choose a basis in which the Majorana mass matrix

of the right-handed neutrinos is diagonal M̂R.

Note that LFV arises from supersymmetric as well as from gauge boson loop diagrams,

for example slepton-gaugino exchange loops and W loops involving right-handed neutrino

exchange. The former (SUSY-induced LFV) can be described by taking a basis where the Ye

Yukawa coupling matrix is diagonal, its entries fixed by the observed charged lepton masses.

This reduces the relevant physical parameters to a total of 21.

While in extended schemes like inverse seesaw [37, 39, 46] gauge-induced LFV is poten-

tially sizeable, it is negligible in the simplest type-I seesaw model, due to the large values of
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Mi required. Therefore, we focus on such intrinsically supersymmetric LFV, which can be

well characterized Eq. (2) in the unbroken SU(2) limit.

Different parametrizations for the simplest seesaw have been discussed in the literature.

The most convenient choice for our calculation is to go to the basis where the charged lepton

mass matrix is diagonal. We then have as parameters 9 mass eigenstates (3 charged leptons,

the 3 light and the 3 heavy neutrinos). The remaining 12 parameters can be encoded in two

matrices VL and VR, with 3 angles and 3 phases each, which diagonalize Yν ,

Ŷν = V †
RYνVL. (3)

The effective mass matrix of the left-handed neutrinos is given in the usual seesaw approxi-

mation as

mν = −v2
U

2
Y T

ν · M−1

R · Yν . (4)

If one of the Mi eigenvalues of the matrix MR goes to infinity (or the corresponding vector

in Yν to zero) the corresponding eigenvalue of mν (mi) goes to zero. Since the neutrino mass

matrix is complex symmetric, Eq. (4) is diagonalized by [8]

m̂ν = UT · mν · U. (5)

Inverting the seesaw equation, Eq. (4), allows one to express Yν as [47]

Yν =
√

2
i

vU

√
M̂R · R ·

√
m̂ν · U †. (6)

where m̂ν is the diagonal matrix with mi eigenvalues and R in general is a complex orthogonal

matrix. Note, that in the special case R = 1, Yν contains only “diagonal” products
√

Mimi.

Note that in this approximation the 18 parameters in Yν are reduced to 12, which are

expressed as six light neutrino mixing angles and phases in the lepton mixing matrix U , the

3 light neutrino masses in m̂ν and the 3 heavy “ right-handed” neutrino masses in
√

M̂R.

In the general MSSM, LFV off-diagonal entries in the slepton mass matrices are free

parameters. In order to correlate LFV in the slepton sector with the LFV encoded in Yν

one must assume some scheme for supersymmetry breaking. We will restrict ourselves here

to the case of mSugra, characterized by four continuous and one discrete free parameter,

usually denoted as

m0, M1/2, A0, tanβ, Sgn(µ) (7)

Here, m0 is the common scalar mass, M1/2 the gaugino mass and A0 the common trilinear

parameter, all defined at the grand unification scale, MX ≃ 2 ·1016 GeV. The remaining two

parameters are tanβ = vU/vD and the sign of the Higgs mixing parameter µ. For reviews

on mSugra, see, for example [48, 49].
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Calculable LFV entries appear in the slepton mass matrices, due to the nontrivial gen-

eration structure of the neutrino Yukawa matrix in Eq. (2), as first pointed out in [31].

In order to determine their magnitude we solve the complete set of renormalization group

equations, given in [33, 50]. It is however useful for a qualitative understanding, to consider

first the simple solutions to the renormalization group equations found in the leading log

approximation [33], given by

(∆M2

L̃
)ij = − 1

8π2
(3m2

0
+ A2

0
)(Y †

ν LYν)ij (8)

(∆Al)ij = − 3

8π2
A0Yli(Y

†
ν LYν)ij

(∆M2

Ẽ
)ij = 0,

where only the parts proportional to the neutrino Yukawa couplings have been written. The

factor L is defined as

Lkl = log
(MX

Mk

)
δkl. (9)

Equation (8) shows that, within the type-I seesaw mechanism the right slepton parameters

do not run in the leading-log approximation. Thus, LFV scalar decays should be restricted

to the sector of left-sleptons in practice, apart from left-right mixing effects which could

show up in the scalar tau sector. Also note that for the trilinear parameters running is

suppressed by charged lepton masses.

Note also that the LFV slepton mass-squareds involve a different combination of neutrino

Yukawas and right-handed neutrino masses than the left-handed neutrino masses of Eq. (4).

In fact, since (Y †
ν LYν) is a hermitian matrix, it obviously contains only nine free param-

eters [45], the same number of unknowns as on the right-hand side of Eq. (6), given that

in principle all 3 light neutrino masses, 3 mixing angles and 3 CP phases are potentially

measurable 1.

In an ideal world where all low energy paramaters, namely the 3 light neutrino masses,

3 mixings and 3 CP violation parameters were known, the remaining parameters entering

Eq. (2) could in principle be reconstructed by measuring all entries in (∆M2

L̃
)ij . This would

determine the full set of 18+3 parameters which, to a good approximation, characterize LFV

in the minimal type-I seesaw. In practice, however, there are two obstacles. (i) Calculability

of (∆M2

L̃
)ij using Eq. (8) assumes implicitly that there are no threshold effects near the

1 In practice measuring the unknown angle θ13 and the Dirac CP phase requires improved neutrino oscil-

lation studies [51] and will not be an easy task. Even if we are lucky to measure the overall neutrino

mass scale in ββ0ν experiments [5], the Majorana phases contained in U are much harder to determine in

practice.
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unification scale which destroy the strict proportionality to the parameters m0 and A0 [52].

In realistic grand unified theory models this might not be the case. And (ii) it is not realistic

to assume that all entries in (∆M2

L̃
)ij can be measured with sufficient accuracy, since (a)

the diagonal shifts (∆M2

L̃
)ii are very small compared to (M2

L̃
)ii (nearly everywhere in the

available parameter space) and (b) the determination of the phases require to measure CP -

violating LFV observables. The latter does not seem to be a very realistic option either,

since, as our numerical results show, one expects only rather low statistics to be available

in measurements of LFV slepton decays.

III. ANALYTICAL RESULTS FOR FLAVOUR VIOLATING PROCESSES

In this section we present some general formulas describing lepton flavour violation within

type-I seesaw schemes. We concentrate on the discussion of ratios of LFV branching ratios,

since, as mentioned in the introduction, these are most easily connected to the seesaw

parameters. As a first approximation we adopt the mass insertion approximation, neglecting

left-right mixing in the slepton mass matrix and taking the leading-logs (see below). We will

demonstrate the reliability of our analytical estimates in the next section, where we perform

a full numerical calculation of the various LFV branching ratios, which does not rely on any

of the approximations discussed in this section.

A. General formulas

The charged slepton mass matrix is a (6,6) matrix, containing left and right sleptons.

Here we concentrate exclusively on the left-slepton sector. Taking into account the discussion

given in Sec. II, this is a reasonable first approximation, as can be seen from Eq. (8). The

left-slepton mass matrix is diagonalized by a matrix Rl̃, which in general can be written

as a product of three Euler rotations. However, if the mixing between the different flavour

eigenstates is sufficiently small, Rl̃ can be approximated as

Rl̃ ≃





1 θẽµ̃ θẽτ̃

−θẽµ̃ 1 θµ̃τ̃

−θẽτ̃ −θµ̃τ̃ 1



 , (10)

an approximation that corresponds to that employed in the mass-insertion method [31]. In

this small-angle approximation each angle can be estimated by the following simple formula

θij ≃
(∆M2

L̃
)ij

(∆M2

L̃
)ii − (∆M2

L̃
)jj

. (11)
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LFV decays are directly proportional to the squares of these mixing angles, for example

Br(µ → e + γ) ∼ (θẽµ̃)2 if all angles are small.

Within mSugra ratios of LFV branching ratios can then be used to minimize the depen-

dence of observables on SUSY parameters. Consider the case of LFV decays which involve

only one generation of sleptons, for example Br(τ̃2 → e + χ0
1) and Br(τ̃2 → µ + χ0

1). Taking

the ratio of these two decays

Br(τ̃2 → e + χ0
1
)

Br(τ̃2 → µ + χ0
1
)
≃

( θẽτ̃

θµ̃τ̃

)2

≃
((∆M2

L̃
)13

(∆M2

L̃
)23

)2

, (12)

i.e. one expects that (a) all the unknown SUSY mass parameters and (b) the denomina-

tors of Eq. (11) cancel approximately. The latter should happen practically everywhere in

mSugra parameter space since (M2

L̃
)ee ≃ (M2

L̃
)µµ. This straightforward observation forms

the basis for our claim that ratios of branching ratios are the theoretically cleanest way to

learn about the unknown seesaw parameters. Numerically we have found, that relations

similar to Eq. (12) hold also for ratios of observables involving decaying particles of different

generations, such as the low-energy ratio Br(µ → e + γ)/Br(τ → e + γ).

To calculate estimates for the different ratios of branching ratios we therefore define

rij
kl ≡

|(∆M2

L̃
)ij|

|(∆M2

L̃
)kl|

(13)

where the observable quantity is (rij
kl)

2. Of course, only two of the three possible combinations

that can be formed are independent. For example, Br(µ → e+γ)/Br(τ → e+γ) ≃ (r12
13)

2×R.

Here, R is a correction factor taking into account the different total widths of the muon and

the tau, R = Γτ/Γµ
2.

In the leading-log approximation the off-diagonal elements of the charged slepton mass

matrix are proportional to (∆M2
L)ij ∝

(
(Y ν)†L(Y ν)

)
ij
. Using the parametrization for the

Yukawa couplings of Eq. (6) the entries in (∆M2
L)ij can be expressed as

(∆M2

L)ij ∝ UiαU∗
jβ

√
mα

√
mβR

∗
kαRkβMk log

(
MX

Mk

)
. (14)

We can now rewrite Eq. (14) in terms of observables which are more directly related to

experiments. In the standard parametrization for the leptonic mixing matrix U is completely

2 The inclusion of this factor (and similar corrections for the other low-energy LFV decays) is necessary,

since (rij
kl)

2 relate really partial widths, whereas the measured quantity is usually the branching ratio.
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analogous to the CKM matrix and can be written as

U =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13



 (15)

where we assumed strict unitarity and neglected the Majorana phases [8], because they do

not affect lepton number conserving processes such as the LFV decays we are concerned

with here.

Given that neutrino oscillation experiments fix two mass-squared splittings, we can re-

express the three light neutrino masses in terms of one overall neutrino mass scale and the

measured quantities ∆m2
⊙ and ∆m2

A
, where ∆m2

⊙ (∆m2
A
) is the solar (atmospheric) mass-

squared splitting. We will refer to the case of m1 ≡ 0 (m3 ≡ 0) as strict normal (inverse)

hierarchy. This choice has the advantage that in both cases s12 ≡ sin θ⊙ and s23 ≡ sin θa.

Equation (14) can then be written in terms of the measured neutrino angles s12 and s23,

the measured neutrino mass-squared splittings, plus the so far unknown overall neutrino

mass scale mν and the reactor neutrino angle s13 ≡ sR. If the latter were measured, one

could extract information on the right-handed neutrino mass scale and/or the matrix R from

Eq. (14). Conversely, we could learn about mν and s13 from measurements of LFV decays,

making some assumptions about the scale MR and the possible textures of the Yukawa

couplings that determine MR and R.

B. Degenerate right-handed neutrinos

In this subsection we will assume that the three right-handed neutrinos are degenerate.

This simplifying ansatz allows us to study the sensitivity with a single mass-scale parameter

associated with the neutrino mass generation via type-I seesaw mechanism. This ansatz

can be theoretically motivated in the framework of some flavour symmetries, for example

A4 [53]. In the special case that the matrix R is real, Eq. (14) reduces to

(
∆M2

L̃

)
12

∝ c12c13

(
−s12c23 − c12s23s13e

−iδ
)
z1 (16)

+ s12c13

(
c12c23 − s12s23s13e

−iδ
)
z2 + s23c13s13e

−iδz3

(
∆M2

L̃

)
13

∝ c12c13

(
s12s23 − c12c23s13e

−iδ
)
z1

+ s12c13

(
−c12s23 − s12c23s13e

−iδ
)
z2 + c23c13s13e

−iδz3

(
∆M2

L̃

)
23

∝
(
s12s23 − c12c23s13e

−iδ
) (

−s12c23 − c12s23s13e
iδ
)
z1

+
(
−c12s23 − s12c23s13e

−iδ
) (

c12c23 − s12s23s13e
iδ
)
z2

+ s23c23c
2

13
z3,
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where

zi ≡ miMi log

(
MX

Mi

)
. (17)

For this degenerate right-handed neutrino ansatz the combination Mi log(MX

Mi
) becomes an

overall factor, which can be taken out from Eq. (14), since it cancels upon taking ratios.

I.e. for degenerate right-handed neutrinos one may simply make the replacement zi → mi

in Eq. (16).

As a starting approximation for the following estimates, let us assume that the lepton

mixing matrix has the exact tribimaximal (TBM) form [54]

U = UTBM =





√
2

3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2



 . (18)

As is well-known, Eq. (18) is an excellent first-order approximation to the measured neutrino

mixing angles [4]. With this assumption the ratios of the off-diagonal elements of the charged

slepton mass matrix are simply given by

r12

13 = 1 (19)

r12

23 = r13

23 =
2(m2 − m1)

|3m3 − 2m2 − m1|
.

As Eq. (19) shows, r12
23

and r13
23

depend on mass squared splittings and on the overall neutrino

mass scale, i.e. also on the unknown neutrino mass hierarchy. In the case of strict normal

hierarchy (SNH, m1 ≡ 0)

r12

23
= r13

23
=

2
√

α

3
√

1 + α − 2
√

α
(20)

where α ≡ ∆m2

⊙

|∆m2

A
| , while for the case of strict inverse hierarchy (SIH, m3 ≡ 0)

r12

23
= r13

23
=

2(1 −
√

1 − α)

2 +
√

1 − α
. (21)

Finally, for quasi-degenerate (QD) neutrinos, defined as
√

∆m2
A
≪ mν , one finds

r12

23
= r13

23
≃ 2α

3σa + α
(22)

where σa is the sign of the atmospheric mass splitting

σa ≡ ∆m2
A

|∆m2

A
| . (23)
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FIG. 1: Ratio (r13
23)

2 versus the neutrino mass m1 in eV. The light/yellow (dark/violet) band is for

the case of normal (inverse) hierarchy. The width of the band indicates the uncertainty due to the

currently allowed 3 σ C.L. ranges for ∆m2
A

and ∆m2
⊙. The calculation assumes exact tribimaximal

mixing for the left-handed neutrinos.

Note that σa equals +1 (−1) for normal (inverse) hierarchy. Thus QD neutrinos with

normal (QDNH) or inverse hierarchy (QDIH) lead formally to different results. However,

this difference is numerically not relevant, once uncertainties are taken into account.

Figure 1 shows the ratio (r13
23)

2 versus the neutrino mass m1 in eV for normal (inverse)

hierarchy. The figure demonstrates the importance of the absolute neutrino mass scale for

(r13
23)

2. In the most general case one must use Eqs. (13) and (16). However, for s13 = 0

the explicit dependence of the ratios of the off-diagonal elements of the charged slepton

mass-squared matrix on the other neutrino angles matrix follow rather simple expressions

r12

13 =
c23

s23

, (24)

r12

23 =
1

s23

s12c12

m2 − m1

|m3 − c2
12m2 − s2

12m1|
,

r13

23 =
1

c23

s12c12

m2 − m1

|m3 − c2
12m2 − s2

12m1|
.

Figures 2 and 3 show the dependence of the square ratios (rij
kl)

2 as a function of s2
13 for the

different extreme cases of SNH and SIH as well as QDNH and QDIH, for two choices of the

Dirac phase δ = 0, π. These ratios (rij
kl)

2 depend strongly on s2
13

. Note from Eq. (16) that for

tan2 θA = 1, (r12
23

)2 and (r13
23

)2 are invariant under exchange of δ = 0 ↔ δ = π. If tan2 θA 6= 1,

this symmetry is broken, but always one of the two ratios r12
23

and r13
23

is guaranteed to be

non-vanishing regardless of the value of s13. A non-zero measurement of both ratios would

therefore in principle contain information on both s13 and δ (if right-handed neutrinos are
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degenerate).

FIG. 2: Square ratios (r12
13

)2 (blue line, dotted line), (r12
23

)2 (red line, dashed line) and (r13
23

)2 (green

line, full line) versus s2
13 for SNH (upper panels), SIH (lower panels) for δ = 0 (left panels) and

δ = π (right panels). The plots assume that the heavy neutrinos are degenerate. The other light

neutrino parameters have been fixed to their b.f.p. values. Note from Eq. (16), that for tan2 θA = 1,

(r12
23)

2 and (r13
23)

2 are symmetric under the exchange of δ = 0 ↔ δ = π.

Figure 3 shows also that the cases QDNH and QDIH are also symmetric under the

simultaneous exchange of δ = 0 ↔ δ = π and QDNH ↔ QDIH, for the case of tan2 θA = 1.

This symmetry is broken in all cases for tan2 θA 6= 1, as seen from the numerical values given

in Tables I and II. Tables I and II show numerical values for rij
kl for the extreme cases of

SNH, SIH, QDNH and QDIH for various different choices of neutrino parameters. In the

rows labeled as TBM, we have used the TBM values for θ12 and θ23 and the neutrino mass

splittings have been fixed to their best-fit values taken from Ref. [4]. In the rows labeled

as 3σ, we take into account the experimentally allowed 3σ ranges for neutrino oscillation

parameters: s2
12

= 0.26 − 0.40, s2
23

= 0.34 − 0.67, ∆m2
⊙ = (7.1 − 8.3) × 10−5eV2 and

∆m2

A
= (2.0 − 2.8) × 10−3eV2. In the first column, θ13 has been fixed to its TBM value

(s13 = 0), while in the second and third columns s13 has been fixed to smax
13

, which is the

experimentally allowed maximum value: (smax
13

)2 = 0.050 at 3σ C.L. In the second column,

the Dirac phase is fixed to δ = 0, while in the third column δ = π. Note that, as already

12
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FIG. 3: As Fig. 2, but for the limit of quasi-degenerate light neutrinos. Square ratios (r12
13)

2 (blue

line, dotted line), (r12
23

)2 (red line, dashed line) and (r13
23

)2 (green line, full line) versus s2
13

for QDNH

(upper panels), QDIH (lower panels) for δ = 0 (left panels) and δ = π (right panels).

mentioned, these estimates are valid in the small mixing limit and hence these values are

indicative only.

C. Right-handed neutrinos strongly hierarchical

One can consider the case of degenerate right-handed neutrinos to be just one extreme

limit in a continuum of possibilities. The opposite extreme case would than be to assume

right-handed neutrinos are strongly hierarchical. Note that here we make the important

assumption that the matrix R is the identity.

13



s13 = 0 s13 = smax
13 , δ = 0 s13 = smax

13 , δ = π

SNH

TBM

(r12
13)

2 1.0 5.2 1.9 × 10−1

(r12
23)

2 1.7 × 10−2 2.3 × 10−1 4.4 × 10−2

(r13
23)

2 1.7 × 10−2 4.4 × 10−2 2.3 × 10−1

3σ

(r12
13)

2 [0.49, 1.9] [1.8, 35] [0.33, 5.7] × 10−1

(r12
23)

2 [0.91, 3.6] × 10−2 [2.0, 3.2] × 10−1 [0.96, 12] × 10−2

(r13
23)

2 [0.92, 3.7] × 10−2 [0.87, 11] × 10−2 [2.0, 3.2] × 10−1

SIH

TBM

(r12
13)

2 1.0 8.7 × 10−1 1.1

(r12
23

)2 1.1 × 10−4 9.7 × 10−2 1.1 × 10−1

(r13
23)

2 1.1 × 10−4 1.1 × 10−1 9.7 × 10−2

3σ

(r12
13

)2 [0.49, 1.9] [4.2, 18] × 10−1 [0.57, 2.5]

(r12
23)

2 [0.47, 3.2] × 10−4 [6.9, 15] × 10−2 [0.85, 1.7] × 10−1

(r13
23)

2 [0.48, 3.3] × 10−4 [0.83, 1.6] × 10−1 [6.8, 15] × 10−2

TABLE I: The parameters r
ij
kl are given for several values of neutrino oscillation parameters. SNH

and SIH are strict normal and strict inverted hierarchy of neutrino masses, respectively. Rows

labeled as TBM assume the TBM values for θ12 and θ23 and the neutrino mass splittings have

been fixed to their b.f.p. values taken from [4]. Rows labeled as 3σ take into account current

allowed 3σ ranges of neutrino oscillation parameters. In the first column, θ13 has been fixed to its

TBM value (s13 = 0), while in the second and third columns s13 has been fixed to its maximum

allowed value: (smax
13

)2 = 0.050 at 3σ C.L. and the Dirac phase is fixed to δ = 0 and δ = π,

respectively.

1. Dominant M1

If M1 is the heaviest mass eigenvalue, the leading terms for the off-diagonal slepton masses

are (in case m1 6= 0)

(
∆M2

L̃

)
12

∝ c13c12(s12c23 + s13e
−iδc12s23) (25)

(
∆M2

L̃

)
13

∝ c13c12(s12s23 − s13e
−iδc12c23)

(
∆M2

L̃

)
23

∝ s2

12
s23c23 − s13s12c12(e

−iδc2

23
− eiδs2

23
) − s2

13
c2

12
s23c23

For the special case of s13 = 0, the ratios simplify to r12
13 = c23

s23

, r12
23 = c12

s12s23

and r13
23 = c12

s12c23
.

Note the large difference in the numerical values compared to the case of degenerate right-

handed neutrinos. Here, for example for s13 = 0 one finds (r13
23

)2 = 4, whereas in the case of
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s13 = 0 s13 = smax
13 , δ = 0 s13 = smax

13 , δ = π

QD

NH

TBM

(r12
13)

2 1.0 1.3 7.7 × 10−1

(r12
23)

2 4.4 × 10−4 1.2 × 10−1 9.4 × 10−2

(r13
23)

2 4.4 × 10−4 9.4 × 10−2 1.2 × 10−1

3σ

(r12
13)

2 [0.49, 1.9] [0.63, 3.0] [3.5, 17] × 10−1

(r12
23)

2 [1.8, 12] × 10−4 [0.94, 1.8] × 10−1 [6.2, 15] × 10−2

(r13
23)

2 [1.8, 12] × 10−4 [6.1, 15] × 10−2 [0.93, 1.8] × 10−1

QD

IH

TBM

(r12
13)

2 1.0 7.6 × 10−1 1.3

(r12
23

)2 4.6 × 10−4 8.9 × 10−2 1.2 × 10−1

(r13
23)

2 4.6 × 10−4 1.2 × 10−1 8.9 × 10−2

3σ

(r12
13

)2 [0.49, 1.9] [3.4, 16] × 10−1 [0.64, 3.1]

(r12
23)

2 [1.9, 13] × 10−4 [5.9, 15] × 10−2 [0.89, 1.8] × 10−1

(r13
23)

2 [1.9, 13] × 10−4 [0.88, 1.7] × 10−1 [5.8, 14] × 10−2

TABLE II: The parameters r
ij
kl are given for several values of neutrino oscillation parameters. QD

stands for the quasi-degenerate limit, while NH (IH) indicate that the neutrino hierarchy is normal

(inverse). The neutrino parameters have been varied in the same way as in Table I.

degenerate right-handed neutrinos one obtains (r13
23

)2 = 0.017 [best fit point (b.f.p.) values

for ∆m2
⊙ and ∆m2

A
]. For nonzero values of s13 Fig. 4 shows that (rij

kl)
2 depend to a much

lesser degree on s13 than for the case of degenerate right-handed neutrinos. Especially, note

that for the case of M1 dominance considered here none of the (rij
kl)

2 vanish in the allowed

range of s13. Numerical values for extreme values of s13 are summarized in Table III.

2. Dominant M2

If M2 is the heaviest mass eigenvalue, the dominant terms for the off-diagonal slepton

masses are

(
∆M2

L̃

)
12

∝ c13s12(c12c23 − s13e
−iδs12s23) (26)

(
∆M2

L̃

)
13

∝ c13s12(c12s23 + s13e
−iδs12c23)

(
∆M2

L̃

)
23

∝ c2

12s23c23 + s13s12c12(e
−iδc2

23 − eiδs2

23) − s2

13s
2

12s23c23

For the special case of s13 = 0, the ratios simplify to r12
13

= c23
s23

, r12
23

= s12

c12s23

and r13
23

= s12

c12c23
.

Here, for example, for s13 = 0 one finds (r13
23

)2 = 1, whereas for the case of M1 being
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FIG. 4: Square ratios (r12
13)

2 (blue line, dotted line), (r12
23)

2 (red line, dashed line) and (r13
23)

2 (green

line, full line) versus s13 for δ = 0 (left panel) and δ = π (right panel) for the case of M1 being

dominant. The remaining neutrino parameters have been fixed to their b.f.p. values.

dominant this quantity is expected to be (r13
23

)2 = 4. Figure 5 shows the (rij
kl)

2 as function

of s2
13

for the M2 dominance case. Again the dependence on s13 is weaker than in the case

of degenerate right-handed neutrinos. As in the previous case (rij
kl)

2 never vanishes in the

allowed range of s2
13

. Finally, the numerical values also differ from the ones found for the

case of M1 dominance. A summary of numerical values for extreme values of s13 is given in

Table III.
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FIG. 5: Square ratios (r12
13)

2 (blue line, dotted line), (r12
23)

2 (red line, dashed line) and (r13
23)

2 (green

line, full line) versus s13 for δ = 0 (left panel) and δ = π (right panel) in the case where M2 is

dominant. The other neutrino parameters have been fixed to their b.f.p. values.
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3. Dominant M3

If terms proportional to M3 give the leading contribution one finds

(
∆M2

L̃

)
12

∝ s13e
−iδc13s23 (27)

(
∆M2

L̃

)
13

∝ s13e
−iδc13c23

(
∆M2

L̃

)
23

∝ c2

13
s23c23

For the special case of s13 = 0, one finds that r12
23 = r13

23 = 0, otherwise both ratios are

proportional to s13. These numerical values allow us to distinguish the M3 dominance case

from the previous hierarchical cases already discussed. Numerical values for extreme values

of s13 are summarized in Table III.

IV. NUMERICAL RESULTS

The analytical results presented above allow us to estimate ratios of branching ratios for

LFV decays. For absolute values of the branching ratios, as well as for cross-checking the

reliability of the analytical estimates, one must resort to a numerical calculation. In this

section we present results of such a numerical calculation. All results presented below have

been obtained with the lepton flavour violating version of the program package SPHENO [55].

For definiteness we will present results only for the mSugra “standard points” SPS3 [56]

and SPS1a’ [57], taken as reference examples. However, we have checked with a number

of other points that our results for ratios of branching ratios are generally valid. SPS1a’

[57] is a typical point in the “bulk” region for SUSY dark matter. It is a slightly modified

version of the original SPS1a point of [56], which gives better agreement with the latest

constraints from cold dark matter abundance. It has a relatively light slepton spectrum, i.e.

left sleptons around 200 GeV. SPS3 [56] is a point in the co-annihilation region for SUSY

dark matter. Left sleptons in this point are heavier than in SPS1a’, i.e. have masses around

350 GeV. We have chosen these two points to show the complementarity between low-energy

searches for LFV and LFV scalar tau decays at the LHC, see also the discussion below.

Our numerical procedure to fit the neutrino masses is as follows. Inverting the seesaw

equation, see Eq. (4), one can get a first guess of the Yukawa couplings for any fixed values of

the light neutrino masses and mixing angles as a function of the corresponding right-handed

neutrino masses. We then run numerically the renormalization group equations taking into

account all flavour structures in matrix form. We integrate out every right-handed neutrino

and its superpartner at the scale corresponding to its mass and calculated the corresponding
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s13 = 0 s13 = smax
13 , δ = 0 s13 = smax

13 , δ = π

M1

TBM

(r12
13)

2 1.0 3.7 2.7 × 10−1

(r12
23)

2 4.0 8.1 2.2

(r13
23)

2 4.0 2.2 8.1

3σ

(r12
13)

2 [0.49, 1.9] [1.5, 14] [0.66, 6.6] × 10−1

(r12
23)

2 [2.2, 8.4] [3.3, 35] [1.5, 3.4]

(r13
23)

2 [2.3, 8.6] [1.5, 35] [3.3, 38]

M2

TBM

(r12
13)

2 1.0 5.3 × 10−1 1.9

(r12
23

)2 1.0 7.1 × 10−1 1.3

(r13
23)

2 1.0 1.3 7.1 × 10−1

3σ

(r12
13

)2 [0.49, 1.9] [2.1, 11] × 10−1 [0.85, 4.5]

(r12
23)

2 [0.52, 2.0] [4.2, 12] × 10−1 [0.61, 3.4]

(r13
23)

2 [0.53, 2.0] [0.62, 3.5] [4.2, 12] × 10−1

s13 = 0 s13 = smax
13

M3

TBM

(r12
13)

2 − 1.0

(r12
23

)2 0.0 1.1 × 10−1

(r13
23)

2 0.0 1.1 × 10−1

3σ

(r12
13

)2 − [0.52, 2.0]

(r12
23)

2 0.0 [0.80, 1.6] × 10−1

(r13
23

)2 0.0 [0.79, 1.5] × 10−1

TABLE III: The parameters r
ij
kl are given for several values of neutrino oscillation parameters.

Each row labeled as Mi is calculated assuming the contribution from neutrino with mass Mi is

dominant. Neutrino oscillation parameters have been varied as in Table I. Notice that the row for

dominant M3 gives the same numerical result for the Dirac phase δ = 0 and δ = π.

contribution to the dimension-5 operator which is evaluated to the electroweak scale. This

way we obtain the exact neutrino masses and mixing angles for this first guess. The difference

between the results obtained numerically and the input numbers is then minimized in an

iterative procedure until convergence is achieved. As is well-known neutrino masses and

mixing angles run very little if physical light neutrino masses are hierarchical [58]. Thus,

barring the exceptional case where neutrinos become very degenerate, one usually reaches

numerical convergence very fast. For degenerate left neutrinos convergence from first guess to

exact results can be slow, especially for relatively large values for the right-handed neutrino
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masses, which require larger Yukawa coupling constants. In this case we used a numerical

fit procedure [59] based on the program MINUIT
3.

In the following two subsections we present numerical results first for the case of degener-

ate right-handed neutrinos, then for the case(s) of very hierarchical right-handed neutrinos.

We have checked numerically that, as expected from Eq. (8), right-sleptons have small

branching ratios for LFV final states. Thus, the discussion concentrates on the decays of

the “left” staus τ̃2 ≃ τ̃L.

A. Degenerate right-handed neutrinos

In this subsection we still adopt the simplifying ansatz that R = 1, see Eq. (6). Two

examples for hierarchical light neutrinos are shown in Fig. 6 and Fig. 7. Figure 6 has the

mSugra parameters fixed to the standard values SPS1a’ [56, 57], while Fig. 7 corresponds to

SPS3 [56]. The neutrino oscillation data are fitted for the strict normal hierarchy (SNH) case

where m1 ≡ 0 with exact tribimaximal mixing. The plot on the left panel shows low-energy

lepton flavour violating decay branching ratios for li → lj + γ and li → 3lj, while the one on

the right panel gives LFV stau (τ̃2) decay branching ratios as a function of the right-handed

neutrino mass scale M1 = MR.

As expected, all LFV processes show a strong dependence on MR. This can be straight-

forwardly understood from Eqs. (4) and (8). Keeping the light neutrino masses constant

∆M2

L̃
are proportional to MR log MR, thus all LFV branching ratios grow as (MR log MR)2.

As the figures show, as long as MR is not too large, all lepton flavour violating processes

show the same dependence on MR. Ratios of branching ratios follow very nicely the corre-

sponding analytically calculated ratios for (rij
kl)

2, once the corresponding correction factors

are taken into account for the low-energy observables. As is well known [35, 39, 60], for

most parts of the mSugra parameter space one expects

Br(li → 3lj)

Br(li → lj + γ)
≃ α

3π

(
log(

m2

li

m2

lj

) − 11

4

)
. (28)

thus the photonic penguin diagram dominates the three-lepton decay modes li → 3lj.

Figures 6 and 7 do indeed confirm the validity of this approximation. Only at large

values of MR one observes some deviations from the analytical estimates. The reason for

this departure is that in this parameter range the small-angle approximation no longer

3 Minimization package from the CERN Program Library. Documentation can be found at

http://cernlib.web.cern.ch/cernlib/
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holds, as can be seen from the absolute values for the decay Br(τ̃2 → µ + χ0
1
), which can

reach more than 10 % for MR ≥ 1014 GeV. However, Figs. 6 and 7 also show how the

LFV τ̃2 decays are strongly constrained by low energy data. For the degenerate right-

handed neutrino case shown here (and for s13 = 0), independent of the mSugra parameters

Br(µ → e+γ) is the most important constraint. Applying the current experimental limit on

Br(µ → e + γ) of Br(µ → e + γ) ≤ 1.2× 10−11 [61], the branching ratio for Br(τ̃2 → µ + χ0
1)

is expected to lie below 10−3 for SPS1a’, whereas it can reach several percent in case of

SPS3. Note that in the range of MR not excluded by the limit on Br(µ → e + γ) the ratio

Br(τ̃2 → e + χ0
1
)/Br(τ̃2 → µ + χ0

1
) follows very well the analytical estimate of Eq. (20).

The huge difference in the upper limit for Br(τ̃2 → µ + χ0
1
) when going from SPS1a’ to

SPS3 can be understood from the fact that both left-sleptons as well as (lightest) neutralino

and chargino are approximately a factor of two heavier for SPS3 than for SPS1a’. Since

Br(µ → e + γ) ∝ 1/m8
SUSY [33] one expects Br(µ → e + γ) to be a factor of more than

several hundred lower for SPS3 than for SPS1a’.
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FIG. 6: Branching ratios for li → lj + γ and li → 3lj (left) and τ̃2 → e + χ0
1 and τ̃2 → µ + χ0

1

(right) for the standard point SPS1a’ versus MR, assuming degenerate right-handed neutrinos.

Neutrino oscillation parameters have been fixed to the best fit values for ∆m2
⊙ and ∆m2

A
, with

exact tribimaximal neutrino angles. We also set m1 = 0. The coloured region in the right-side plot

is excluded from the current experimental limit on Br(µ → e + γ). Thus, one expects for SPS1a’

only very small branching ratios for LFV scalar tau decays. (Compare to Fig. (7).

The strong dependence of Br(µ → e + γ) on the supersymmetric mass spectrum is also

seen in Fig. 8, where we plot Br(µ → e + γ), Br(τ̃2 → µ + χ0
1
) and Br(τ̃2 → e + χ0

1
) versus

the mass of τ̃2, for light neutrino parameters as before and a fixed value of MR = 3 × 1013
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FIG. 7: Same as Fig. 6, but for the mSugra standard point SPS3. In this point the constraints on

the LFV τ̃2 decays from the upper limit on µ → e + γ are much less severe than for SPS1a’. As a

result Br(τ̃2 → µ+χ0
1) could be as large as several percent with all low-energy constraints fulfilled.
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FIG. 8: Branching ratios as function of scalar tau mass. The full line (red) is 1011· Br(µ → e + γ),

the dashed line (blue) Br(τ̃2 → µ + χ0
1) and the dot-dashed line (green) is Br(τ̃2 → e + χ0

1). Data

calculated for SPS1a with parameters varied along the “slope”. Note that SPS1a is used in this

plot instead of SPS1a’, since for SPSa1’ no slope is given in [57]. Right-handed neutrino mass is

fixed to MR = 3 × 1013 GeV. The black line is the current upper limit on Br(µ → eγ). While

SPS1a with MR = 3×1013 GeV is excluded by Br(µ → eγ), for slightly heavier slepton masses the

low-energy constrained can be evaded, having at the same time sizeable lepton flavour violating

slepton decay branching ratios.
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GeV. Here, the parameters for the point SPS1a have been varied around the slope given

in Ref. [56]. Note that Br(µ → e + γ) drops below the current experimental limit for mτ̃2

larger than about 250 GeV. In contrast, the τ̃2 LFV decay branching ratios increase for

increasing mτ̃2 . This is due to the fact that left-sleptons become more degenerate when

m0 is increased along the slope for SPS1a. The more degenerate sleptons are, the larger

the resulting LFV parameters, for given light neutrino parameters. Note, however, that the

ratio Br(τ̃2 → e + χ0
1
)/ Br(τ̃2 → µ + χ0

1
) remains constant in agreement with the analytical

estimate, as long as Br(τ̃2 → µ + χ0
1
) is smaller than a few percent. Again this reflects the

fact that the small-angle approximation is valid only for small branching ratios in the LFV

decays.

We have also checked numerically the reliability of our analytical calculation for the case

of m1 6= 0. An example is shown in Fig. 9. Here we have fixed the mSugra parameters to

the standard point SPS1a’, the right-handed neutrino mass scale to MR = 5×1012 GeV, the

light neutrino mixing angles to the TBM values, ∆m2
A

and ∆m2
⊙ to their b.f.p. values and

we have calculated Br(τ̃2 → e + χ0
1)/Br(τ̃2 → µ + χ0

1) as a function of the lightest neutrino

mass. As shown in Fig. 9 the value of this ratio obtained within a full numerical calculation

follows very closely the central value given in Fig. 1, as expected (here we assumed the case

of normal hierarchy).
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FIG. 9: Numerically calculated Br(τ̃2 → e + χ0
1)/Br(τ̃2 → µ + χ0

1) for the standard point SPS1a’

versus lightest neutrino mass for the case of normal hierarchy. (compare to Fig. 1).
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B. Hierarchical right-handed neutrinos

Now we turn to the extreme case of very hierarchical right-handed neutrinos. Again

our goal is to check the reliability of the analytical calculation for this case. In all figures

presented in this subsection we have taken two of the three right-handed neutrino masses to

be constant at MR = 1010 GeV and varied the remaining third right-handed neutrino mass

in the ranges given in the figures. In all cases we have fixed the neutrino angles to the TBM

values, ∆m2

A
and ∆m2

⊙ to their best-fit values and assumed normal hierarchical neutrinos.

The remaining free parameter m1 is given in each figure.

 (GeV)1M
1010 1210 1410 1610

) j
 3

 l
→ i

),
B

r(
l

γ j l
→ i

B
r(

l

-2010

-1910

-1810

-1710

-1610

-1510

-1410

-1310

-1210

-1110

-1010

-910

-810

 )µ 3 →τBr(
  3 e )→µBr(
 3 e )→τBr(

)γ µ →τBr(
)γ e →µBr(
)γ e →τBr(

=0.001 eV
1

νm

 (GeV)1M
1010 1210 1410 1610

) j
 3

 l
→ i

),
B

r(
l

γ j l
→ i

B
r(

l

-1610

-1510

-1410

-1310

-1210

-1110

-1010

-910

-810

-710

-610

 )µ 3 →τBr(
  3 e )→µBr(
 3 e )→τBr(

)γ µ →τBr(
)γ e →µBr(
)γ e →τBr(

=0.1 eV
1

νm

FIG. 10: Branching ratios for li → lj + γ and li → 3lj , as a function of M1 for constant M2 =

M3 = 1010 GeV and m1 = 0.001 eV (left) and for m1 = 0.1 eV (right). mSugra parameters have

been fixed to SPS1a’.

Figure 10 shows LFV lepton decays as a function of M1 for m1 = 0.001 eV (left) and for

m1 = 0.1 eV (right) for the mSugra parameters fixed at SPS1a’. For m1 = 0.001 eV, the

curves are not monotonous functions of M1. In fact, in the left figure only for M1
>∼ 1012

GeV do the different branching fractions follow the analytical estimates of Eq. (25). This is

due to the fact that the different contributions of the Mi to ∆M2

L̃ij
scale like miMi log Mi,

i.e. M1 becomes dominant in the expressions for the ∆M2

L̃ij
only if M1/Mj ≫ mj/m1. This

is confirmed by the figure in the right panel, for which m1 = 0.1 eV has been chosen. Here,

the contribution from M1 to the ∆M2

L̃ij
is indeed the dominant one for M1 ≥ (few) ×1010

GeV.

Figure 11 shows branching ratios for τ̃2 → e(µ)+χ0
1
as a function of M1 for the two mSugra

points SPS1a’ (left) and SPS3 (right). Again the region excluded by the current upper limit

on Br(µ → e + γ) is indicated. Ratios of the LVF slepton decays follow the analytical
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FIG. 11: Branching ratios for τ̃2 → e(µ) + χ0
1 as a function of M1 for constant M2 = M3 = 1010

GeV for SPS1a’ (left) and SPS3 (right).

estimate very well everywhere in the region allowed by the upper limit on Br(µ → e + γ).

One observes, as is the case also for degenerate right-handed neutrinos, that for SPS1a’ the

absolute values for the LFV branching ratios are too small to be observable, whereas for the

mSugra point SPS3 much larger values for LFV scalar tau decays are allowed. Note that

Br(τ̃2 → e + χ0
1
) is larger than Br(τ̃2 → µ +χ0

1
) for M1 dominance, in contrast with the case

of degenerate right-handed neutrinos.
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FIG. 12: Branching ratios for li → lj + γ and li → 3lj (left) and LFV stau decays (right), for the

standard point SPS3 as a function of M2 for constant M1 = M3 = 1010 GeV.

Figure 12 shows branching ratios for li → lj + γ and li → 3lj (left) and LFV stau decays

(right), for the standard point SPS3 as a function of M2. As in Fig. 10, the left panel

illustrates that only for M2
>∼ 1012 GeV the contribution from M2 to the LFV mixing angles
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is dominant. For M2
>∼ 1012 GeV the ratios of branching ratios follow the expectation of

Eq. (26). LFV scalar tau decays as large as 1 % are allowed in this example. Note also that

Br(τ̃2 → e + χ0
1) = Br(τ̃2 → µ + χ0

1) for M2 dominance and TBM neutrino angles.
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FIG. 13: Branching ratios for li → lj + γ and li → 3lj (left) and LFV stau decays (right), for the

standard point SPS3 as a function of M3 for constant M1 = M2 = 1010 GeV.

Finally, Fig. 13 shows branching ratios for li → lj + γ and li → 3lj (left) and LFV stau

decays (right), for the standard point SPS3 as a function of M3 fixing s13 ≡ 0 exactly. This

implies that all final LFV states involving electrons are tiny, as is expected from Eq. (27).

Therefore for s13 ≡ 0 and M3 dominance there is no constraint from the upper limit for

Br(µ → e+γ). Once s13 is nonzero branching ratios for LFV final states involving electrons

also become nonzero and proportional to s2
13

.

In summary this section demonstrates that the full numerical calculation confirms the

analytical estimates presented above. Absolute values of the LFV branching ratios for lepton

decays are sensitive functions of the unknown SUSY spectrum. For light sleptons, usually

the constraint from the non-observation of Br(µ → e + γ) makes the observation of LFV

stau decays more likely when M3 gives the leading contribution to the LFV slepton mixing

angles and s13 is close to zero. In this case LFV stau branching ratios may exceed 10%, as

seen in Fig. 13. LFV stau branching ratios exceeding a percent are also possible for SPS3

for hierarchical right-handed neutrinos and M1 and M2 dominance, as seen in Figs. 11 and

12, but not for the SPS1a’ case. Similarly, for the case of degenerate neutrinos, LFV stau

branching ratios can exceed a few percent, as seen in Figs. 7, especially for heavier sleptons,

say 250 − 300 GeV, where the Br(µ → e + γ) is smaller than the experimental limit and

hence does not place a restriction, as seen in Fig. 8.

Finally we note that we have expressed our results in terms of branching ratios. To get
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a rough idea on the observability of the signal, one has also to consider cross sections and

backgrounds. For the signal itself one would have to work out a detailed set of cuts to

suppress background which is clearly beyond the scope of the present work. However, after

applying basic cuts used for SUSY signals [62] one can estimate the cross sections for τ̃2

production. Using PYTHIA 6.4 [63] we find for the sum of all (Drell-Yan) cross sections 126

fb (25 fb) and 31 fb (3 fb) for τ̃2 in cascade decays in the case of SPS1a’ (SPS3). Based

on Monte Carlo analysis [64, 65] it has been shown that lepton flavour violation can be

observed in dilepton invariant mass spectra within SUSY cascade decays. There the largest

SM background is due to tt̄ production. There is also SUSY background due to uncorrelated

leptons stemming from different squark and gluino decay chains. The di-lepton spectra can

provide a distinct signal of lepton flavour violation, namely the appearance of double peaks

[66] due to the fact that not only one but two or more sleptons can contribute to these

spectra. In case of Drell-Yan processes the main background will be W production. To

show more clearly the observability of such LFV signals a detailed Monte Carlo study would

be necessary. This, however, is beyond the scope of the present paper.

We have shown results only for two “standard” mSugra points. However, as mentioned

above, we have checked with a number of other points that ratios of branching ratios to a

good approximation do not depend on the mSugra parameters. For absolute values of the

branching ratios in general a heavier slepton spectrum leads to smaller LFV rates at low

energy and larger LFV branching ratios at the LHC become possible, see also Fig. 8. Heavier

sleptons, on the other hand, will lead to lower Drell-Yan production cross section, such that

stau production will be dominated by cascade decays, the exact number of events depending

on the details of the SUSY spectrum. We plan to do a more detailed, quantitative study of

absolute event rates over all of mSugra space in the future.

V. CONCLUSIONS AND OUTLOOK

We have calculated lepton flavour violating processes both in LFV decays of the µ and the

τ leptons, as well as branching ratios for LFV stau decays in the supersymmetric version of

the minimal type-I seesaw mechanism with mSugra boundary conditions. We have limited

ourselves to the study of a few standard mSugra points, ratios of LFV branching ratios are

independent of this choice and therefore an interesting instrument to study the unknown

seesaw parameters.

We have shown that the LFV branching ratios for lepton decays are sensitive functions

of the unknown SUSY spectrum. For light sleptons, the non-observation of Br(µ → e + γ)
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places an important constraint on the observability of LFV stau decays. The most favorable

case is when right-handed neutrinos are hierarchical, with M3 giving the leading contribution

to the LFV slepton mixing angles and s13 close to zero. In this case LFV stau branching

ratios may exceed 10% or so, see Fig. 13. LFV stau branching ratios exceeding the percent

level may also occur for hierarchical right-handed neutrinos with M1 or M2 dominance for

the SPS3 reference point, but not for the SPS1a’ case, see Figs. 11 and 12. Similarly, for the

case of degenerate neutrinos, LFV stau branching ratios can exceed a few percent, as seen

in Figs. 7, especially for sleptons heavier than 250 GeV or so, as seen in Fig. 8.

Notice that the above results rely crucially on an important simplifying assumption about

the right-handed neutrino spectrum. For example, for degenerate right-handed neutrinos

they require that R be real, while for hierarchical right-handed neutrinos they hold when

R = 1. This simplification allows one to calculate LFV decays of leptons and of the scalar

tau as a function of low-energy neutrino parameters. However the use of this assumption

should be critically scrutinized. We plan to come back to this issue in a future publication.

Once an improved experimental determination of m1 and s13 become available from future

double beta decay and neutrino oscillation studies at reactor and accelerators, one could

start “learning” about the right-handed neutrino sector, once the correct SUSY breaking

scheme has been identified and provided that the SUSY breaking scale is above the lepton

number breaking scale.
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